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Abstract
Hierarchical (first-order) structured deformations are studied from the variational point of
view. The main contributions of the present research are the first steps, at the theoretical
level, to establish a variational framework to minimize mechanically relevant energies de-
fined on hierarchical structured deformations. Two results are obtained here: (i) an approxi-
mation theorem and (ii) the assignment of an energy to a hierarchical structured deformation
by means of an iterative procedure. This has the effect of validating the proposal made in
Deseri and Owen (J. Elast. 135:149–182, 2019) to study deformations admitting slips and
separations at multiple submacroscopic levels. An explicit example is provided to illustrate
the behavior of the proposed iterative procedure and relevant directions for future research
are highlighted.

Keywords Structured deformations · Hierarchies · Relaxation · Energy minimization ·
Integral representation

Mathematics Subject Classification (2020) 74A60 · 49J45 · 74M99

1 Introduction

Refinements of classical continuum theories of elastic bodies have the potential to broaden
their range of applicability by capturing phenomena of particular interest or to adapt the
theories to specific physical contexts. Structured deformations [12] provide a mathematical
framework to capture the effects at the macroscopic level of geometrical changes, such as
slips and separations, at submacroscopic levels. The variational formulation of the theory of
structured deformations [11] set the basis for the enrichment of the classes of energies and
force systems of interest in variational and field-theoretic descriptions of deformations of
elastic bodies, making it unnecessary to commit at the outset to any prototypical mechanical
theories, such as elasticity, plasticity, or fracture.

Following [11], a (first-order) structured deformation is a pair (g,G) ∈ SBV (�;Rd) ×
L1(�;Rd×N) =: SD(�), where g : � → R

d is the macroscopic deformation of the body
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and G : � →R
d×N is a tensor field associated with submacroscopic deformation. In classi-

cal theories of mechanics, the field g and its gradient ∇g alone characterize the deformation
of the body; in the framework of structured deformations, the additional geometrical field G

captures the contribution at the macroscopic scale of smooth submacroscopic changes, and
the difference ∇g − G captures the contribution at the macroscopic scale of non-smooth
submacroscopic changes, such as slips and separations, which are referred to as disarrange-
ments [13]. Accordingly, G is called the deformation without disarrangements, and, heuris-
tically, the disarrangement tensor M := ∇g − G is an indication of how non-classical a
structured deformation is: if g is a Sobolev field and M = 0, then the deformation with-
out disarrangements G = ∇g is simply the classical deformation gradient; if M �= 0, the
effect of submacroscopic slips and separations, which are phenomena involving interfaces,
is captured at the macroscopic level. This fact will be made precise in the Approximation
Theorem 2.3.

The classical variational methods for continuum mechanics rely on energy minimization.
In [11], the energy assigned to a structured deformation (g,G) ∈ SD(�) is the one arising
from the most economical way to reach (g,G) by means of a sequence {un} ⊂ SBV (�;Rd)

approximating (g,G) in the following sense

un → g in L1(�;Rd) and ∇un

∗
⇀ G in M(�;Rd×N), (1.1)

where M(�;Rd×N) is the set of bounded matrix-valued Radon measures on �; the conver-

gence in (1.1) will be denoted by un

∗−⇀
SD

(g,G).

We let the initial energy of a deformation u ∈ SBV (�;Rd) be

E(u) :=
ˆ

�

W(x,∇u(x))dx +
ˆ

�∩Su

ψ(x, [u](x), νu(x))dHN−1(x), (1.2)

which is determined by the bulk and surface energy densities W : � × R
d×N → [0,+∞)

and ψ : � × R
d × S

N−1 → [0,+∞). In formula (1.2), dx and dHN−1(x) denote the N -
dimensional Lebesgue and (N − 1)-dimensional Hausdorff measures, respectively; [u](x)

and νu(x) denote the jump of u and the normal to the jump set for each x ∈ Su, the jump set
of u.

In mathematical terms, the process to assign an energy to a structured deformation
(g,G) ∈ SD(�) reads

I (g,G) := inf
{

lim inf
n→∞ E(un) : un ∈ SBV (�;Rd), un

∗−⇀
SD

(g,G)
}
. (1.3)

In the language of calculus of variations, the operation in (1.3) is known as relaxation, and an
important goal is to prove that the functional I admits an integral representation, that is, that
there exist functions H : �×R

d×N ×R
d×N → [0,+∞) and h : �×R

d ×S
N−1 → [0,+∞)

such that

I (g,G) =
ˆ

�

H(x,∇g(x),G(x))dx +
ˆ

�∩Sg

h(x, [g](x), νg(x))dHN−1(x). (1.4)

In the case where the initial bulk and surface energy densities W and ψ do not depend
explicitly on the spatial variable x, this was the main result in [11], whose extension to
include the explicit x dependence can be found in [17, Theorem 5.1].
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In the recent contribution [14], Deseri and Owen extended the theory of [12] to hierar-
chical structured deformations in order to include the effects of disarrangements at more
than one submacroscopic level. This extension is based on the fact that many natural and
man-made materials exhibit different levels of disarrangements. Muscles, cartilage, bone,
plants, and biomedical materials are just some of the materials whose mechanical behavior
can be addressed within the generalized field theory proposed in [14]. Since a structured
deformation (g,G) identifies two levels, the macroscopic one and the submacroscopic one,
for L ∈ N, we call an (L + 1)-level (first-order) structured deformation an (L + 1)-tuple
(g,G1, . . . ,GL), where g : � → R

d is the macroscopic deformation and G� : � → R
d×N ,

for � = 1, . . . ,L, are the deformations without disarrangements at each of the L submacro-
scopic levels.

With the far-reaching goal of establishing a variational theory à la Choksi and Fonseca
[11] for hierarchical structured deformations, the main results of the present research are:
(i) an approximation theorem for (L + 1)-level structured deformations (see Theorem 3.3
below) and (ii) a proposal for the assignment of an energy to the (L + 1)-level structured
deformation (g,G1, . . . ,GL) by means of a well-posed recursive relaxation process (see
Theorem 3.4 and the example in Sect. 3.3 below).

After stating the notation that we use throughout this work, the plan of the paper is the
following: in Sect. 2 we collect some results coming from the theory of structured defor-
mations, together with some recent generalizations; we also state and prove Theorem 2.10
on the properties of the relaxed bulk and surface energy densities: this is the crucial re-
sult that allows the recursive relaxation process to continue through all levels. In Sect. 3, we
present our main results on hierarchical structured deformations, namely the Approximation
Theorem 3.3 and Theorem 3.4 on the well posedness of the recursive relaxation and, there-
fore, on the assurance that the energy assigned to an (L + 1)-level structured deformation
(g,G1, . . . ,GL) is well-defined. We also show an example in which explicit computations
can be carried out. Finally, Sect. 4 offers an outlook for future directions of research.

1.1 Notation

We will use the following notations

• N denotes the set of natural numbers without the zero element;
• � ⊂ R

N is a bounded connected open set;
• S

N−1 denotes the unit sphere in R
N ;

• Q := (− 1
2 , 1

2 )N denotes the open unit cube of RN centred at the origin; for any ν ∈ S
N−1,

Qν denotes any open unit cube in R
N with two faces orthogonal to ν;

• A(�) is the family of all open subsets of �;
• LN and HN−1 denote the N -dimensional Lebesgue measure and the (N − 1)-dimensional

Hausdorff measure in R
N , respectively; the symbol dx will also be used to denote inte-

gration with respect to LN ;
• M(�;Rd×N) is the set of finite matrix-valued Radon measures on �; M+(�) is the

set of non-negative finite Radon measures on �; given μ ∈ M(�;Rd×N), the measure
|μ| ∈ M+(�) denotes the total variation of μ;

• SBV (�;Rd) is the set of vector-valued special functions of bounded variation defined
on �. Given u ∈ SBV (�;Rd), its distributional gradient Du admits the decomposition
Du = Dau + Dsu = ∇uLN + [u] ⊗ νuHN−1 Su, where Su is the jump set of u, [u]
denotes the jump of u on Su, and νu is the unit normal vector to Su; finally, ⊗ denotes the
dyadic product;
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• Lp(�;Rd×N) is the set of matrix-valued p-integrable functions;
• for p � 1, SDp(�) := SBV (�;Rd) × Lp(�;Rd×N) is the space of structured deforma-

tions (g,G) (notice that SD1(�) is the space SD(�) introduced in [11]); the norm in
SD(�) is defined by ‖(g,G)‖SD(�) := ‖g‖BV (�;Rd ) + ‖G‖L1(�;Rd×N );

• C represents a generic positive constant that may change from line to line.

2 Preliminaries on Structured Deformations

In this section, we present the two results of great importance in the theory of structured
deformations, namely the Approximation Theorem (see Theorem 2.3 below) and the integral
representation result of Theorem 2.8 generalizing that in [11, Theorems 2.16 and 2.17], see
also [17, Theorem 5.1]. Since the energy for a structured deformation (g,G) is defined by
means of a relaxation process, it is necessary to show that the set on which the relaxation is
performed is non empty. At the same time, starting from an initial energy E of integral type,
Theorem 2.8 guarantees that also the relaxed energy I is of integral type, and identifies the
relaxed bulk and surface energy densities H and h, respectively. The most significant result
of Sect. 2, Theorem 2.10, shows that the relaxed energy densities H and h, themselves, can
serve as initial energy densities for the relaxation process, thus allowing the iterative process
in Sect. 3 to provide a well-defined energy for (L + 1)-level structured deformations.

2.1 Approximation and Definition of the Energy

A fundamental result in the theory of structured deformations is the Approximation Theo-
rem [12, Theorem 5.8], a counterpart of which was recovered in [11, Theorem 2.12] in the
SBV framework and in [19] in a broader framework. In simple terms, [11, Theorem 2.12]
states that given a structured deformation (g,G) ∈ SBV (�;Rd) × L1(�;Rd×N), there ex-
ists a sequence {un} ⊂ SBV (�;Rd) that approximates it, in the sense that the sequence of
functions n �→ un tends to the field g, and the sequence n �→ ∇un of the absolutely continu-
ous parts of their gradients tends to the (matrix-valued) field G, in suitable senses. The proof
of the approximation theorem rests on the following two results.

Theorem 2.1 ([1, Theorem 3]) Let f ∈ L1(�;Rd×N). Then there exist u ∈ SBV (�;Rd), a
Borel function β : � →R

d×N , and a constant CN > 0 depending only on N such that

Du = f LN + βHN−1 Su,

ˆ
Su∩�

|β(x)|dHN−1(x) � CN‖f ‖L1(�;Rd×N ). (2.1)

Lemma 2.2 ([11, Lemma 2.9]) Let u ∈ BV (�;Rd). Then there exist piecewise constant func-
tions ūn ∈ SBV (�;Rd) such that ūn → u in L1(�;Rd) and

|Du|(�) = lim
n→+∞|Dūn|(�) = lim

n→+∞

ˆ
Sūn

|[ūn](x)| dHN−1(x). (2.2)

We are now ready to state, and prove for the reader’s convenience, the approximation the-
orem for structured deformations. Even though its proof can be found in the literature, see,
e.g., [11, Theorem 2.12] or [17, Proposition 2.1], it is useful to show it here as a preparation
for the proof of Theorem 3.3 below.
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Theorem 2.3 (Approximation Theorem) There exists C > 0 (depending only on the dimen-
sion N ) such that for every (g,G) ∈ SD(�) there exists a sequence {un} ⊂ SBV (�;Rd)

converging to (g,G) according to

un → g in L1(�;Rd) and ∇un

∗
⇀ G in M(�;Rd×N) (2.3)

and such that, for all n ∈ N,

|Dun|(�) � C‖(g,G)‖SD(�). (2.4)

In particular, this implies that, up to a subsequence,

Dsun

∗
⇀ (∇g − G)LN + Dsg in M(�;Rd×N). (2.5)

Proof Let (g,G) ∈ SD(�) and, by applying Theorem 2.1 with f := ∇g − G, let u ∈
SBV (�;Rd) be such that ∇u = ∇g −G. Furthermore, let ūn ∈ SBV (�;Rd) be a sequence
of piecewise constant functions approximating u, as per Lemma 2.2. Then the sequence of
functions

un := g + ūn − u (2.6)

is easily seen to approximate (g,G) in the sense of (2.3). In fact, un → g in L1 and
∇un(x) = G(x) for LN -a.e. x ∈ �. Invoking the triangle inequality, the inequality in (2.1),
and (2.2), we obtain for C = 3(1 + CN)

|Dun|(�) � C‖(g,G)‖SD(�) for all n ∈N sufficiently large, (2.7)

so that (2.4) is proved for a suitable “tail” of the sequence un. The convergence of un → g

in L1 implies that Dun converges to Dg in the sense of distributions. The uniform bound
(2.7) ensures the existence of a (not relabeled) weakly-* converging subsequence such that

Dun

∗
⇀ Dg in M(�;Rd×N), so that, since ∇un

∗
⇀ G in M(�;Rd×N), we have

Dsun

∗
⇀ (∇g − G)LN + Dsg in M(�;Rd×N),

which is (2.5). The proof is concluded. �

Remark 2.4 An inspection of the proof of Theorem 2.3 (see also [11, Theorem 2.12] and
[17, Proposition 2.1]) shows that the sequence {un} in (2.6) satisfies

∇un = G. (2.8)

Furthermore, if p > 1 and either the density W in (1.2) satisfies a coercivity condition as
in (2.14) below with q = p, or a generic bound of the type supn{‖∇un‖Lp(�;Rd×N )} � C is
imposed on the sequences defining I (g,G) in (1.3), then the second convergence in (2.3)
can be strengthened to read ∇un ⇀ G ∈ Lp(�;Rd×N). On the other hand, as observed in
the Approximation Theorem, the existence of sequences approximating in this latter sense
is guaranteed by (2.8). Hence, in the case p > 1, for (g,G) ∈ SDp(�), we use the notation

un

p−⇀
SD

(g,G) to signify

un → g in L1(�;Rd) and ∇un ⇀ G in Lp(�;Rd×N). (2.9)
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Let p � 1 and let the initial energy E : SBV (�;Rd) → [0,+∞] be defined by (1.2),
where W : � × R

d×N → [0,+∞) and ψ : � × R
d × S

N−1 → [0,+∞) are the initial bulk
and surface energy densities, respectively. For (g,G) ∈ SDp(�), the energy I (g,G) is de-
fined by

I (g,G) := inf
{

lim inf
n→∞ E(un) : {un} ∈ Rp(g,G)

}
, (2.10)

where

Rp(g,G) :=
{
{un} ⊂ SBV (�;Rd) : un

p−⇀
SD

(g,G)
}
. (2.11)

2.2 Generalization of the Choksi–Fonseca Scheme

Here we define the class of initial bulk and surface energy densities W and ψ that can be
used to define the initial energy E to be relaxed to structured deformations. Compared to
the results in [11], we add the explicit dependence on the space variable and we prove that
the relaxed energy densities still belong to the class of initial energies.

Definition 2.5 (Energy densities) For q � 1, we denote by ED(q) the collection of pairs
(W,ψ) of bulk and surface energy densities, where W : �×R

d×N → [0,+∞) and ψ : �×
R

d × S
N−1 → [0,+∞) are continuous functions satisfying the following conditions

(1) there exists a continuous function ωW : [0,+∞) → [0,+∞) with ωW(s) → 0 as s →
0+ such that, for every x0, x1 ∈ � and A ∈R

d×N ,

|W(x1,A) − W(x0,A)| � ωW(|x1 − x0|)(1 + |A|q); (2.12)

(2) (q-Lipschitz continuity) there exists CW > 0 such that, for all x ∈ � and A1,A2 ∈ R
d×N ,

|W(x,A1) − W(x,A2)| � CW |A1 − A2|
(
1 + |A1|q−1 + |A2|q−1

); (2.13)

(3) there exists A0 ∈R
d×N such that W(·,A0) ∈ L∞(�);

(4) there exists cW > 0 such that, for every (x,A) ∈ � ×R
d×N ,

cW |A|q − 1

cW

� W(x,A); (2.14)

(5) (symmetry) for every x ∈ �, λ ∈R
d , and ν ∈ S

N−1,

ψ(x,λ, ν) = ψ(x,−λ,−ν);
(6) there exist cψ,Cψ > 0 such that, for all x ∈ �, λ ∈R

d , and ν ∈ S
N−1,

cψ |λ| � ψ(x,λ, ν) � Cψ |λ|; (2.15)

(7) (positive 1-homogeneity) for all x ∈ �, λ ∈ R
d , ν ∈ S

N−1, and t > 0

ψ(x, tλ, ν) = tψ(x,λ, ν);
(8) (sub-additivity) for all x ∈ �, λ1, λ2 ∈R

d , and ν ∈ S
N−1,

ψ(x,λ1 + λ2, ν) � ψ(x,λ1, ν) + ψ(x,λ2, ν);
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(9) there exists a continuous function ωψ : [0,+∞) → [0,+∞) with ωψ(s) → 0 as s → 0+
such that, for every x0, x1 ∈ �, λ ∈R

d , and ν ∈ S
N−1,

|ψ(x1, λ, ν) − ψ(x0, λ, ν)| � ωψ(|x1 − x0|)|λ|. (2.16)

We say that (W,ψ) ∈ EDnc(q) if W satisfies only (1)–(3) while ψ satisfies (5)–(9). Clearly,
ED(q) is a smaller class than EDnc(q). For energy densities W : Rd×N → [0,+∞) and
ψ : Rd × S

N−1 → [0,+∞) (therefore not explicitly depending on the space variable), we
define the class EDCF (q) of pairs (W,ψ) satisfying (the obvious modifications of) (2), (4),
(5), (6), (7), and (8); as above, we say that (W,ψ) ∈ EDnc

CF (q) if W satisfies only (2) while ψ

satisfies only (5)–(8).

In this work, relevant values for q will be either q = p > 1 or q = 1.

Remark 2.6 We point out the following facts:

(i) as observed in [8, pages 298 and 305], the symmetry property (5) in Definition 2.5
ensures that ψ(x,λ, ν) can be equivalently seen as a function of x and λ ⊗ ν, for every
x ∈ �, λ ∈ R

d , ν ∈ S
N−1.

(ii) coercivity conditions (2.14) and (2.15) can rule out some physical relevant settings in
particular, some arising from fracture mechanics (see [11, Remark 3.3]). Extra bounds
on the norms of the admissible sequences can overcome these constraints to prove The-
orem 2.8 below, as observed in the proof of [11, Theorem 2.16], see also Remark 2.9.
Therefore, we can relax the request in property (6) of Definition 2.5 by requiring that

0 � ψ(x,λ, ν) � C|λ|. (2.17)

On the other hand (as evident also in the proof of [11, formula (4.22) and in the entire
Sect. 5]), our coercivity assumptions on W (or milder ones of linear type) and ψ are
crucial to deduce that densities H and h have the same type of properties as W and ψ ,
and thus it will be possible to apply Theorem 2.8, in turn, to H and h.

(iii) Notice that, if ψ does not depend explicitly on x, condition (2.17) need not be imposed
as an assumption, since it follows immediately from the continuity and the positive
1-homogeneity of ψ : indeed, continuity and property (7) of Definition 2.5 imply that
ψ(0, ν) = 0 for every ν ∈ S

N−1 and so, for every (λ, ν) ∈ (Rd \ {0}) × S
N−1, we have

0 � ψ(λ, ν) = |λ|ψ
( λ

|λ| , ν
)

� C|λ|,

where C = maxSd−1×SN−1 ψ , which is bounded by continuity.

For A,B ∈ R
d×N , let aA(x) := Ax be the linear function with (constant) gradient A and

let

Cbulk(A,B) :=
{
u ∈ SBV (Q;Rd) : u|∂Q = aA|∂Q,

ˆ
Q

∇u(x)dx = B, |∇u| ∈ Lp(Q)

}
;

(2.18)
for λ ∈R

d and ν ∈ S
N−1 let

Csurf(λ, ν) := {
u ∈ SBV (Qν;Rd) : u|∂Qν = sλ,0,ν |∂Qν ,∇u(x) = 0 for LN -a.e. x ∈ Qν

}
,

(2.19)
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where, for λ1, λ2 ∈R
d and ν ∈ S

N−1, the function sλ1,λ2,ν is defined by

sλ1,λ2,ν(x) :=
{

λ1 if x · ν � 0,

λ2 if x · ν < 0.
(2.20)

Given x ∈ �, U ∈ A(�), and u ∈ SBV (U ;Rd), we define the localized bulk and surface
energies for the relaxation process

Ebulk
x (u;U) :=

ˆ
U

W(x,∇u(y))dy +
ˆ

Su∩U

ψ(x, [u](y), νu(y))dHN−1(y), (2.21a)

Esurf
x (u;U) :=

ˆ
Su∩U

ψ(x, [u](y), νu(y))dHN−1(y), (2.21b)

and we define the relaxed bulk and surface energy densities H : � × R
d×N × R

d×N →
[0,+∞) and h : � ×R

d × S
N−1 → [0,+∞), respectively, by

H(x,A,B) := inf
{
Ebulk

x (u;Q) : u ∈ Cbulk(A,B)
}
, (2.22a)

h(x,λ, ν) := inf
{
Esurf

x (u;Qν) : u ∈ Csurf(λ, ν)
}
. (2.22b)

The first result that we provide is the sequential characterization of the bulk energy den-
sity H defined in (2.22a).

Proposition 2.7 (Sequential characterization of H ) Under Assumptions 2.5-(1), (2), (6), (8),
and (9), for every (x,A,B) ∈ �×R

d×N ×R
d×N , we have H(x,A,B) = H̃ (x,A,B), where

H̃ (x,A,B) := inf
{

lim inf
n→∞ Ebulk

x (un;Q) : {un} ∈ Cbulk
seq (A,B)

}
(2.23)

and

Cbulk
seq (A,B) := {{un} ⊂ SBV (Q;Rd) : un → aA in L1(Q;Rd),

∇un ⇀ B in Lp(Q;Rd×N)
}
. (2.24)

Proof The proof follows the lines of that of [11, Proposition 3.1]. �

Theorem 2.8 (Integral representation theorem) Let p � 1 and let (W,ψ) ∈ EDnc(q), with
either q = p or q = 1, as in Definition 2.5. For (g,G) ∈ SDp(�), let I (g,G) be defined by
(2.10). Then the functional I : SDp(�) → [0,+∞) admits the integral representation

I (g,G) =
ˆ

�

H(x,∇g(x),G(x))dx +
ˆ

�∩Sg

h(x, [g](x), νg(x))dHN−1(x), (2.25)

where H and h are defined in (2.22a), (2.22b).

Proof This theorem can be found in [17, Theorem 5.1]. Here we just highlight some differ-
ences from the result in [17], which are due to the definition of the class Rp in (2.11). We
notice that, for (W,ψ) ∈ EDnc

CF (p), the result is [11, Theorem 2.16], which provides cell
formulae for the relaxed bulk and surface energy densities H and h, respectively, which are
as in (2.22a), (2.22b), but with no x-dependence. On the contrary, for (W,ψ) ∈ EDnc

CF (1),
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the result corresponds to [11, Theorem 2.17], which provides the cell formula for the relaxed
bulk energy density H as in (2.22a), and for the relaxed surface energy density h a cell for-
mula similar to that in (2.22b), but containing also a contribution of the recession function
W∞ of the initial bulk energy density. This is not the case in our context because the class
Rp contains a uniform bound on the Lp norms of the gradients of the sequences converging
to (g,G), and this is enough to prevent the appearance of W∞ in the cell formula for h.

As done in [17, Theorem 5.1], and previously in [7, Theorem 3.2], the explicit x-
dependence is dealt with thanks to conditions (1) and (9) of Definition 2.5, borrowing tech-
niques from [5]. �

Remark 2.9 Assuming coercivity of the bulk energy density W (see property (4) in Defini-
tion 2.5) would make the proofs a bit easier. Nonetheless, we prefer to state the hypotheses
of Theorem 2.8 without this condition for the sake of generality. The integral representation
theorem proved in [11] is also stated without the coercivity assumption, which is temporar-
ily added in the proof to obtain Lp boundedness of the gradients of minimizing sequences,
and then is removed. In our setting, the very definition of the class Rp carries the needed
boundedness, so that our Theorem 2.8 can be safely stated without assuming condition (4)
of Definition 2.5.

In the next theorem, we collect the properties of the relaxed energy densities H and h

defined in (2.22a), (2.22b). We start from a pair (W,ψ) ∈ ED(q) and we prove that, via
(2.22a), (2.22b), they generate a pair (HB,h) ∈ ED(1). To show this, the coercivity of the
initial bulk energy density W is not only needed, but will also hold true for the density
HB(x,A) = H(x,A,B).

Theorem 2.10 (Properties of the relaxed energy densities) Let p > 1 and let (W,ψ) ∈
ED(p). Let H : � × R

d×N × R
d×N → [0,+∞) and h : � × R

d × S
N−1 → [0,+∞)

be the functions defined in (2.22a), (2.22b). Let us define, for B ∈ R
d×N , the function

HB : �×R
d×N → [0,+∞) by (x,A) �→ HB(x,A) := H(x,A,B). Then (HB,h) ∈ ED(1).

Moreover, the function H is p-Lipschitz continuous in the third component, namely for every
(x,A) ∈ � ×R

d×N there exists a constant C > 0 such that for every B1,B2 ∈R
d×N ,

|H(x,A,B1) − H(x,A,B2)| � C|B1 − B2|(1 + |B1|p−1 + |B2|p−1). (2.26)

Proof We start by proving that there exist constants c̄H , C̄H > 0 such that for every x ∈ �

and A,B ∈R
d×N there holds

c̄H (|A| + |B|p) − 1

c̄H

� H(x,A,B) � C̄H (1 + |A| + |B|p). (2.27)

The sequence {un} provided by Theorem 2.3 to approximate the structured deformation
(aA,B) belongs to Cbulk

seq (A,B), so that, by Proposition 2.7, we obtain the upper bound in
(2.27) by means of the following chain of inequalities

H(x,A,B) � lim inf
n→∞

(ˆ
Q

W(x,∇un(y))dy +
ˆ

Sun ∩Q

ψ(x, [un](y), νun(y))dHN−1(y)

)

� lim inf
n→∞

(
W(x,B) + Cψ |Dsun|(Q)

)
� C̄H (1 + |A| + |B|p),

where we have used the fact that ∇un = B and (2.15) in the second inequality, and (2.13)
jointly with property (3) in the third one; the constant C̄H depends on N , on the norm of A0,
on ‖W(·,A0)‖L∞(�), and on CW and Cψ .
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On the other hand, by (2.23) there exists a recovery sequence converging to (aA,B) in
the sense of (2.9). Thus, by the coercivity in (2.14) and (2.15) and the lower semicontinuity
of the Lp norm and of the total variation of measures, we obtain that, for c̃H := min{cW , cψ },

H(x,A,B) � c̃H (|B|p + |A − B|) − 1

c̃H

� c̄H (|A| + |B|p) − 1

c̄H

, (2.28)

for a suitable constant c̄H ∈ (0, c̃H ), so that (2.27) is proved.
To show that HB satisfies property (1) of Definition 2.5 with q = 1, we argue in the

following way. Let x0, x1 ∈ � and A ∈ R
d×N be given, and let ε > 0. By definition (2.22a),

there exists uε ∈ Cbulk(A,B) such that

Ebulk
x1

(uε;Q) < H(x1,A,B) + ε = HB(x1,A) + ε. (2.29)

Therefore, since the same uε is also a competitor for H(x0,A,B), we have, defining the
function ω̃H (s) := max{ωW(s),ωψ(s)},

HB(x0,A) − HB(x1,A) = H(x0,A,B) − H(x1,A,B)

�Ebulk
x0

(uε;Q) − Ebulk
x1

(uε;Q) + ε

�ωW(|x0 − x1|)
ˆ

Q

(1 + |∇uε(y)|p)dy + ωψ(|x0 − x1|)
ˆ

Suε ∩Q

|[uε](y)|dHN−1(y) + ε

� ω̃H (|x0 − x1|)
(

1 + 1

c2
W

+ 1

cW

ˆ
Q

W(x1,∇uε(y))dy

+ 1

cψ

ˆ
Sue ∩Q

ψ(x1, [uε](y), νuε (y))dHN−1(y)

)
+ ε

� ω̃H (|x0 − x1|)max
{

1 + 1

c2
W

,
1

cW

,
1

cψ

}(
1 + Ebulk

x1
(uε;Q)

) + ε

� ω̃H (|x0 − x1|)max
{

1 + 1

c2
W

,
1

cψ

}(
1 + H(x1,A,B) + ε

) + ε

� ω̃H (|x0 − x1|)max
{

1 + 1

c2
W

,
1

cψ

}(
C̄H (1 + |A| + |B|p) + ε

) + ε,

where we have used, in sequence, (2.29) in the first line, (2.12) and (2.16) in the second line,
the coercivity (2.14) and (2.15) in the third line, (2.29) again in the fifth line, and finally
(2.27) in the sixth line. By exchanging the roles of x0 and x1 and by the arbitrariness of
ε > 0, we have obtained that HB satisfies (2.12) with q = 1 and modulus of continuity
ωHB (s) := C(cW , cψ, C̄H , |B|p) ω̃H (s).

To show that HB satisfies property (2) of Definition 2.5, we recall that by [11, Proposi-
tion 5.2] the relaxed bulk energy density is uniformly continuous in the A-variable. A closer
inspection of the proof of that proposition, together with properties (1) and (9) of Defini-
tion 2.5 to control the x-dependence, shows that for every (x,B) ∈ � ×R

d×N the function
R

d×N 
 A �→ H(x,A,B) is indeed Lipschitz continuous, so that

|HB(x,A1) − HB(x,A2)| � C|A1 − A2|, (2.30)

which is (2.13) with q = 1. Continuity with respect to A follows. (We note, in passing, that
(2.13) is trivially satisfied also with a general q � 1.)
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To show that HB satisfies property (3) of Definition 2.5, let A0 ∈ R
d×N be the matrix that

makes the property hold true for W and let {un} ⊂ SBV (�;Rd) be the sequence provided
by Theorem 2.3 to approximate the structured deformation (aA0 ,B). Then, since {un} ∈
Cbulk

seq (A0,B), we apply Proposition 2.7 and for x ∈ � we have

HB(x,A0) = H̃ (x,A0,B)

� lim inf
n→∞

(ˆ
Q

W(x,∇un(y))dy +
ˆ

Sun ∩Q

ψ(x, [un](y), νun(y))dHN−1(y)

)

� lim inf
n→∞

(
W(x,B) + Cψ |Dsun|(Q)

)

�W(x,A0) + CW |A0 − B|(1 + |A0|p−1 + |B|p−1
) + CψC

∥∥(aA0 ,B)
∥∥

SD(Q)
,

where we have used (2.13) with q = p and (2.4). This shows that
∥∥HB(·,A0)

∥∥
L∞(�)

�
C + ‖W(·,A0)‖L∞(�), so property (3) of Definition 2.5 holds for HB with the same A0 that
was good for W .

Inequality (2.28) shows immediately that (2.14) holds for HB with q = 1, and properties
(1) and (2) of HB imply that HB is continuous.

For what concerns the surface energy density, we observe that, by its very definition
(2.22b), h satisfies properties (5), (6) with the constants ch := cψ and Ch := Cψ , (7), and (8)
of Definition 2.5. In particular, in view of (5), it can be equivalently expressed as a function
of x and λ ⊗ ν, see (i) in Remark 2.6. Therefore, as observed in [20, Theorem 2.3], the
function h can be seen as the restriction to rank-one matrices of a function � : � ×R

d×N 

(x,M) �→ �(x,M) ∈ [0,+∞).

In particular, [20, equations (15), (16)] provide, for every x ∈ �,

�(x,M) = inf

{
m∑

i=1

ψ(x,λi, νi) : m ∈N\{0}, (λi, νi) ∈R
d × S

N−1,

i = 1, . . . ,m,

m∑
i=1

λi ⊗ νi = M

}
, (2.31)

together with the subadditivity and the positive 1-homogeneity of the map M �→ �(x,M).
Therefore, �(x, ·) is convex on R

d×N , for every x ∈ �, and hence it is locally Lipschitzian
and thus continuous, see [15, Sect. 6.3, Theorem 1].

To show that h satisfies property (9) of Definition 2.5, we argue in the following way.
Let x0, x1 ∈ � and (λ, ν) ∈ R

d × S
N−1 be given, and let ε > 0. By definition (2.22b), there

exists uε ∈ Csurf(λ, ν) such that

Esurf
x1

(uε;Qν) < h(x1, λ, ν) + ε. (2.32)

Therefore, since the same uε is also a competitor for h(x0, λ, ν), we have, defining ω̃h(s) :=
c−1
ψ ωψ(s),

h(x0, λ, ν)−h(x1, λ, ν) � Esurf
x0

(uε;Qν) − Esurf
x1

(uε;Qν) + ε

�ωψ(|x0 − x1|)
ˆ

Suε ∩Qν

|[uε](y)|dHN−1(y) + ε
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� ω̃h(|x0 − x1|)
ˆ

Suε ∩Qν

ψ(x1, [uε](y), νuε (y))dHN−1(y) + ε

=ω̃h(|x0 − x1|)Esurf
x1

(uε;Qν) + ε

� ω̃h(|x0 − x1|)(h(x1, λ, ν) + ε) + ε � ω̃h(|x0 − x1|)(Cψ |λ| + ε) + ε,

where we have used, in sequence, (2.32) in the first line, (2.16) in the second line, the coer-
civity (2.15) in the third line, and (2.32) again and (2.15) in the fourth line. By exchanging
the roles of x0 and x1 and by the arbitrariness of ε > 0, we have obtained that h satisfies
(2.16) with modulus of continuity ωh(s) := Cψω̃h(s). Continuity of h in all of its variables
follows.

We prove now (2.26). Let (x,A) ∈ � × R
d×N be fixed, let B1,B2 ∈ R

d×N , and let
{un} ⊂ SBV (Q;Rd) be a recovery sequence for H(x,A,B2). Let {vn} ⊂ SBV (Q;Rd) be
the sequence provided by Theorem 2.3 to approximate (0,B1 − B2), so that the sequence
{un + vn} ∈ Cbulk

seq (A,B1). Then we have, for Cp a positive constant depending only on p,

H(x,A,B1) − H(x,A,B2)

� lim inf
n→∞

(
Ebulk

x (un + vn;Q) − Ebulk
x (un;Q)

)

� lim inf
n→∞

(
CW |B1 − B2|

ˆ
Q

(1 + |∇un(y) + B1 − B2|p−1 + |∇un(y)|p−1)dy

+
ˆ

Svn ∩Q

ψ(x, [vn](y), νvn(y))dHN−1(y)

)

� lim inf
n→∞

(
CW |B1 − B2|

(
1 + Cp(|B1|p−1 + |B2|p−1) + (1 + Cp)

ˆ
Q

|∇un(y)|p−1 dy
)

+ Cψ ‖Dsvn‖ (Q)

)

� lim inf
n→∞

(
CW(1 + Cp)|B1 − B2|

(
1 + |B1|p−1 + |B2|p−1 +

(ˆ
Q

|∇un(y)|p dy
) p−1

p
)

+ CψCN |B1 − B2|
)

,

where we have used (2.13), the sub-additivity property (8), and the fact that ∇vn = B1 − B2

in the second line, inequalities on powers and (2.15) in the third line, Hölder’s inequality
and the inequality in (2.1) in the fourth line. To treat the term containing ∇un, we argue in

the following way, letting cW,p := (
max{c−1

W , c−2
W }) p−1

p ,

lim inf
n→∞

(ˆ
Q

|∇un(y)|p dy

) p−1
p

� lim inf
n→∞

(
1

c2
W

+ 1

cW

ˆ
Q

W(x,∇un(y))dy

) p−1
p

� lim inf
n→∞ cW,p

(
1 + Ebulk

x (un;Q)
) p−1

p = cW,p(1 + H(x,A,B2))
p−1
p
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� cW,p

(
1 + C̄H (1 + |A| + |B2|p)

) p−1
p � K

(
1 + |A| p−1

p + |B2|p−1
)

where we have used the coercivity property (2.14), the non-negativity of the surface energy,
the fact that {un} is a recovery sequence for H(x,A,B2), the upper bound in (2.27), and
where we have called K a constant depending on p, cW,p , and C̄H . Therefore we have, for
a certain constant C > 0,

H(x,A,B1) − H(x,A,B2) � C|B1 − B2|(1 + |B1|p−1 + |B2|p−1);
reversing the role of B1 and B2, we finally obtain (2.26), namely that H is p-Lipschitz
continuous in the third variable. As a consequence, H is continuous in its arguments and the
proof is concluded. �

Remark 2.11 We observe the following facts.

(i) We point out that the inequality from above in (2.27) could have been equivalently
deduced by the fact that H satisfies (2.12), (2.13), and (2.26).

(ii) We observe that (2.22b) is BV -elliptic (see [4, Definition 5.17]): indeed, since x ∈ �

is fixed, it arises as a formula identical to the homogeneous version of [8, equation
(11) and Proposition 2.2] and [2, equation (3.5), where the functional setting coincides
with the current one]. In light of this coincidence, the density h guarantees the lower
semicontinuity of surface integrals also with respect to the SBVp convergence (see [3]
and [4]). Roughly speaking one could say that h is the BV -elliptic envelope of ψ ;
besides, the notion has been introduced in the purely brittle fracture context, i.e., in the
SBVp topology, (see [9, 10]). In particular, this observation goes in the direction that
in the next relaxation iterations the h remains unchanged.

(iii) The above result still holds under weaker continuity conditions on the original bulk
density W , thus enabling us to obtain a different, more analytically involved, energetic
treatment of hierarchical (first-order) structured deformations. This will be the subject
of a forthcoming paper.

3 Hierarchical First-Order Structured Deformations

In this section we extend the Approximation Theorem 2.3 and the integral representation
Theorem 2.8 to hierarchical first-order structured deformations. In order to achieve the ap-
proximation result, Theorem 3.3 below, an appropriate notion of convergence of a (multi-
indexed) sequence of SBV functions to an (L + 1)-level (first-order) structured deforma-
tion (g,G1, . . . ,GL) is introduced in Definition 3.2. Then a recursive relaxation process is
presented, in which Theorem 2.8 is recursively applied: in order to make this possible, The-
orem 2.10 guarantees that after each relaxation process, the densities obtained by freezing
the microscopic gradient are still in the class ED(1), so that Theorem 2.8 can be applied one
more time.

Definition 3.1 For L ∈N and � ⊂R
N a bounded connected open set, we define

HSDL(�) := SBV (�;Rd) × L1(�;Rd×N) × · · · × L1(�;Rd×N)︸ ︷︷ ︸
L-times

the set of (L + 1)-level (first-order) structured deformations on �. For p > 1, we define

HSD
p

L(�) := SBV (�;Rd) × Lp(�;Rd×N) × · · · × Lp(�;Rd×N)︸ ︷︷ ︸
L-times

.
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An example of a three-level structured deformation is provided by a stack of bundled
papers (see [14, Fig. 1]). Deformations at the macrolevel (level 1) correspond to changes
in shape of the entire stack, deformations at the first submacroscopic level (level 2) cor-
respond to changes in shape of each of the bundles, and deformations at the second sub-
macroscopic level (level 3) correspond to changes in shape of each single sheet of paper.
In this situation we have two levels of disarrangements, the first between bundled papers
and the second between sheets of paper. Thus, one can consider a macroscopic deformation
field g at each time, but also two tensor fields G1 and G2 that provide the effects at the
macrolevel of geometrical changes without disarrangements at the submacroscopic levels 2
and 3, respectively, while the difference ∇g − G1 captures disarrangements in the form of
slips or separations between adjacent bundles of papers, and the difference G1 −G2 captures
disarrangements in the form of slips or separations between individual sheets of papers.

3.1 Approximation Theorem for Hierarchical (First-Order) Structured Deformations

The first result that we present is the definition of convergence of a sequence of SBV

functions to an (L + 1)-level structured deformation (g,G1, . . . ,GL) belonging to either
HSDL(�) or HSD

p

L(�).

Definition 3.2 Let L ∈ N, let p > 1, let (g,G1, . . . ,GL) ∈ HSD
p

L(�), and let N
L 


(n1, . . . , nL) �→ un1,...,nL
∈ SBV (�;Rd) be a (multi-indexed) sequence. We say that

{un1,...,nL
} converges in the sense of HSD

p

L(�) to (g,G1, . . . ,GL) if

(i) limn1→∞ · · · limnL→∞ un1,...,nL
= g, with each of the iterated limits in the sense of

L1(�;Rd);
(ii) for all � = 1, . . . ,L − 1, limn�+1→∞ · · · limnL→∞ un1,...,nL

=: gn1,...,n�
∈ SBV (�;Rd)

and

lim
n1→∞· · · lim

n�→∞∇gn1,...,n�
= G�,

with each of the iterated limits in the sense of weak convergence in Lp(�;Rd×N);
(iii) limn1→∞ · · · limnL→∞ ∇un1,...,nL

= GL with each of the iterated limits in the sense of
weak convergence in Lp(�;Rd×N);

we use the notation un1,...,nL

p−⇀
HSDL

(g,G1, . . . ,GL) to indicate this convergence.

If (g,G1, . . . ,GL) ∈ HSDL(�) and if the weak Lp convergences above are replaced by
weak-* convergences in M(�;Rd×N), then we say that {un1,...,nL

} converges in the sense

of HSDL(�) to (g,G1, . . . ,GL) and we use the notation un1,...,nL

∗−⇀
HSDL

(g,G1, . . . ,GL) to

indicate this convergence.

The sequential application of the idea behind the Approximation Theorem 2.3 provides
the method for constructing a (multi-indexed) sequence {un1,...,nL

} that approximates an (L+
1)-level structured deformation (g,G1, . . . ,GL).

Theorem 3.3 (Approximation Theorem for (L + 1)-level structured deformations) Let
(g,G1, . . . ,GL) belong to either HSDL(�) or HSD

p

L(�). Then there exists a sequence
(n1, . . . , nL) �→ un1,...,nL

∈ SBV (�;Rd) converging to (g,G1, . . . ,GL) in both of the senses
of Definition 3.2.
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Proof We set G0 := ∇g, for convenience. For every � = 1, . . . ,L, let u� ∈ SBV (�;Rd) be
the functions provided by Theorem 2.1 such that ∇u� = G�−1 − G� and let n� �→ ūn�

be the
piecewise constant sequence approximating u� in L1(�;Rd) provided by Lemma 2.2. We
claim that the sequence of functions

un1,...,nL
:= g +

L∑
�=1

(ūn�
− u�) (3.1)

approximates (g,G1, . . . ,GL) ∈ HSDL(�) in the sense of the convergence
∗−⇀

HSDL

or

(g,G1, . . . ,GL) ∈ HSD
p

L(�) in the sense of the convergence
p−⇀

HSDL

, see Definition 3.2. In-

deed,

lim
n1→∞· · · lim

nL→∞un1,...,nL
= lim

n1→∞· · · lim
nL→∞

(
g +

L∑
�=1

(ūn�
− u�)

)

= lim
n1→∞· · · lim

nL−1→∞

(
g +

L−1∑
�=1

(ūn�
− u�)

)
= · · · = g, in L1(�;Rd),

(3.2)

proving (i). Using (3.2), we have that

gn1,...,n�
:= lim

n�+1→∞· · · lim
nL→∞un1,...,nL

= lim
n�+1→∞· · · lim

nL→∞

(
g +

L∑
j=1

(ūnj
− uj )

)

= g +
�∑

j=1

(ūnj
− uj ) ∈ SBV (�;Rd),

from which, observing that

∇gn1,...,n�
= ∇

(
g +

�∑
j=1

(ūnj
− uj )

)

=
(

∇g +
�∑

j=1

(Gj − Gj−1)

)
= G0 +

�∑
j=1

(Gj − Gj−1) = G�, (3.3)

we immediately obtain that

lim
n1→∞· · · lim

n�→∞∇gn1,...,n�
= G�,

both in the weak Lp(�;Rd×N) sense and in the weak-* M(�;Rd×N) sense, which is condi-
tion (ii) (equality (3.3) tells us that the sequence {∇gn1,...,n�

} is indeed a constant sequence).
Finally, condition (iii) follows upon observing that

∇un1,...,nL
= ∇g +

L∑
�=1

(G� − G�−1) = GL, (3.4)
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so that

lim
n1→∞· · · lim

nL→∞∇un1,...,nL
= GL,

both in the weak Lp(�;Rd×N) sense and in the weak-* M(�;Rd×N) sense (equality (3.4)
tells us that the sequence {∇un1,...,nL

} is indeed a constant sequence). The proof is concluded.
�

3.2 Recursive Relaxation

The assignment of an energy to an (L+1)-level structured deformation (g,G1, . . . ,GL) can
be approached in a variety of ways. The simple approach taken here is through a recursive
scheme whose initial step assigns an energetic response EL+1 to deformations uL+1 at level
L + 1 through a bulk energy density (x,A) �→ W0(x,A) and an interfacial energy density
(x,λ, ν) �→ ψ0(x,λ, ν), with (W0,ψ0) ∈ ED(p), and then relaxes that energetic response
to yield an energetic response EL to structured deformations (g̃L, G̃L) at level L. Here, the
field g̃L represents a deformation at level L and G̃L represents the amount of deformation
at level L that is due to smooth deformations at level L + 1, i.e., G̃L is the deformation at
level L without (L + 1)-level disarrangements. The energetic response EL to structured de-
formations (g̃L, G̃L) is determined according to Theorem 2.8 by means of the cell formulas
(2.22a), (2.22b) for the relaxed bulk energy density W1 and the relaxed interfacial density ψ1

in terms of W0 and ψ0. Although the initial bulk energy density W0 has domain � ×R
d×N ,

the relaxed bulk density W1 has domain � ×R
d×N ×R

d×N , so that the initial recursive step
results in the introduction of an additional matrix variable for the relaxed bulk density that
appears within the integrand in the expression for EL(g̃L, G̃L) as the argument G̃L(x) of
W1(x,∇g̃L(x), G̃L(x)). The context of Theorem 2.8 assures that the arguments of ψ1 are
the same as those of ψ0.

The simplicity of the present approach lies in the freezing of the additional argu-
ment G̃L(x) at a given but arbitrary matrix BL for all subsequent steps which, accordingly,
we describe as “partial relaxations”. This allows us to replace (x,A) �→ W0(x,A) in the
initial step by (x,A) �→ W1(x,A,BL) and to replace ψ0 by ψ1 to start the next recur-
sive step. Theorem 2.8 then can be applied to EL, with densities (x,A) �→ W1(x,A,BL)

and ψ1, because Theorem 2.10 guarantees that (W1(·, ·,BL),ψ1) ∈ ED(1), thereby ac-
complishing the first in the sequence of partial relaxations. We claim here that a single
initial relaxation followed by L partial relaxations can be carried out, resulting in a pair
(WL(·, ·,B1, . . . ,BL),ψL) of multiply relaxed energy densities in terms of the L matrices
B1, . . . ,BL that were introduced, one-by-one, at successive steps during the recursive pro-
cedure. Consequently, the energy E1 at level 1, the macroscopic level, can be assigned to an
(L + 1)-level structured deformation (g,G1, . . . ,GL) via the formula

E1(g,G1, . . . ,GL) :=
ˆ

�

WL(x,∇g(x),G1(x), . . . ,GL(x))dx

+
ˆ

�∩Sg

ψL(x, [g](x), νg(x))dHN−1(x).

This assignment of energy corresponds to a step-wise optimization as the number of levels
covered by the hierarchical structured deformation is increased by one at each recursive
relaxation step, while, as is detailed in Sect. 4, other possible assignments of energy might
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optimize without explicit passage from one level to another and without freezing the values
of any of the fields G1, . . . ,GL.

The discussion of recursive relaxation in the preceding paragraphs is preliminary to a
recursive specification in which the index k for a recursive stage represents the level L +
1 − k associated with submacroscopic refinement. For example, the recursive stage k = 0
corresponds to the initial level L + 1, the “finest” submacroscopic level, while the stage
k = L corresponds to level 1, the macroscopic level. In case the recursion should break down
at some stage, we specify an integer m ∈ {1, . . . ,L} to denote that stage and, accordingly,
require that k ∈ {0, . . . ,m}. Given p > 1, m ∈ {0, . . . ,L}, and (W0,ψ0) ∈ ED(p), we specify
recursively pairs (Wk,ψk) for k ∈ {1, . . . ,m} with

Wk : � × (
R

d×N
)k+1 → [0,+∞) and ψk : � ×R

d × S
N−1 → [0,+∞) (3.5)

emerging from the following counterparts of the cell formulae (2.22a), (2.22b) in which, for
notational convenience, we write Bk := (Bk, . . . ,B1) ∈ (Rd×N)k for k ∈ {1, . . . ,m}. Hence
the cell formulas at stage k are, for all Ak,B1, . . . ,Bk ∈R

d×N ,

Wk(x,Ak,Bk) := inf

{ˆ
Q

Wk−1(x,∇u(y),Bk−1)dy

+
ˆ

Q∩Su

ψk−1(x, [u](y), νu(y))dHN−1(y) : u ∈ Cbulk(Ak,Bk)

}
,

ψk(x,λ, ν) := inf

{ˆ
Qν∩Su

ψk−1(x, [u](y), νu(y))dHN−1(y) : u ∈ Csurf(λ, ν)

}
. (3.6)

We note that in the passage from the bulk energy Wk−1 to Wk , the expression
Wk−1(x,Ak−1,Bk−1, . . . ,B1) is replaced by Wk(x,Ak,Bk,Bk−1, . . . ,B1), so that the sin-
gle matrix Ak−1 in the arguments of Wk−1 is replaced by the pair of matrices (Ak,Bk) in the
arguments of Wk .

In particular, defining

� ×R
d×N 
 (x,A) �→ W

Bk

k (x,A) := Wk(x,A,Bk), (3.7)

by Theorem 2.10 (W
Bk

k ,ψk) ∈ ED(1) for every k ∈ {0, . . . ,m}. Due to this fact, there is no
stopping point to this process which allows us to consider energies associated to hierarchical
structured deformations with as many levels as needed.

For each (L + 1)-level structured deformation (g,G1, . . . ,GL), for each level � ∈
{1, . . . ,L}, and for each g̃� ∈ SBV (�,Rd), the (L + 2 − �)-tuple (g̃�,G�, . . . ,GL) is an
(L + 2 − �)-level structured deformation to which we assign the (partially) relaxed energy

E�(g̃�,G�, . . . ,GL) :=
ˆ

�

WL+1−�(x,∇g̃�(x),G�(x), . . . ,GL(x))dx

+
ˆ

�∩Sg

ψL+1−�(x, [g̃�](x), νg̃�
(x))dHN−1(x).

(3.8)

We observe that the arguments given in the proof of Theorem 2.10 to obtain prop-
erty (1) for the function x �→ H(x,A,B), the Lipschitz continuity of A �→ H(x,A,B)

(see (2.30)), and the p-Lipschitz continuity of B �→ H(x,A,B) (see (2.26)), applied
to WL+1−�, guarantee the measurability and the integrability of the integrand x �→
WL+1−�(x,∇g̃�(x),G�(x), . . . ,GL(x)), so that the energy (3.8) is well defined.
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The reasoning that we have just carried out provides a proof of the following statement.

Theorem 3.4 (Well-posedness of the recursive relaxation) Let p > 1 and let (W0,ψ0) ∈
ED(p); let L ∈ N and (g,G1, . . . ,GL) ∈ HSD

p

L(�). Then for every level � ∈ {1, . . . ,L}
and g̃� ∈ SBV (�;Rd) the (partially) relaxed energy E�(g̃�,G�, . . . ,GL) at level � in (3.8)
is well defined.

3.3 An Explicit Example

We present here an example of the recursive process described in Sect. 3.2 that, although not
strictly covered by the hypotheses of Theorem 3.4, is also well-posed in the sense of Theo-
rem 3.4 and yields explicit formulas for the relaxed energy at every stage of the recursion.
We set d = N , let p > 1, and consider initial energy densities W0 : RN×N → [0,+∞) con-
vex and satisfying property (2) of Definition 2.5 with q = p and ψ0 : RN ×S

N−1 → [0,+∞)

given by

ψ0(λ, ν) = |λ · ν| . (3.9)

Because p > 1 and because ψ0 satisfies (7) and (8) in Definition 2.5, the conclusions of
Theorem 2.8, including the cell formulas (2.22a), (2.22b), apply in this example (see Re-
mark 2.6). It is proved in [16, Proposition 3.6] that under these hypotheses we have the
following form of the relaxed bulk energy density in (2.22a), which we will denote here by
W1,

W1(A1,B1) = W0(B1) + inf

{ˆ
Q∩Su

ψ0([u](y), νu(y))dHN−1(y) : u ∈ Cbulk(A1,B1)

}
.

(3.10)
The minimization problem in the right-hand side of formula (3.10) was solved in [6, 18],
where it was proved that

inf

{ˆ
Q∩Su

ψ0([u](y), νu(y))dHN−1(y) : u ∈ Cbulk(A1,B1)

}
= | tr(A1 − B1)|

(see [20, Theorem 2.3] for a general formula). The results in [18, 20] also give the explicit
expression for the relaxed surface energy density in (2.22b), which we will denote here by
ψ1,

ψ1(λ, ν) = ψ0(λ, ν) = |λ · ν|.
(It is worth to underline that ψ0 is jointly convex, hence BV -elliptic (see [4, Definition 5.17
and Theorem 5.20] and Remark 2.11(ii)), hence ψ1 = h = ψ0.) Therefore we have

W1(A1,B1) =W0(B1) + | tr(A1 − B1)|
ψ1(λ, ν) =|λ · ν|. (3.11)

Upon noticing that the function R
N×N 
 A �→ W

B1
1 (A) := W1(A,B1) is also convex and

satisfies (2) in Definition 2.5 with q = p, we may then perform a second relaxation via the
argument that led to (3.11) to obtain the relaxed densities

W2(A2,B2,B1) =W
B1
1 (B2) + | tr(A2 − B2)| = W1(B2,B1) + | tr(A2 − B2)|

= W0(B1) + | tr(B2 − B1)| + | tr(A2 − B2)|
ψ2(λ, ν) =|λ · ν|.

(3.12)
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It is straightforward to show by induction that the recursive relaxation determined by W0

and ψ0 in this example admits relaxed densities at the kth recursive stage given by

Wk(Ak,Bk) = | tr(Ak − Bk)| +
k∑

j=2

| tr(Bj − Bj−1)| + W0(B1) (3.13a)

ψk(λ, ν) = |λ · ν|. (3.13b)

In this example, the L-fold relaxed bulk and interfacial energy densities WL and ψL just
obtained can be inserted in (3.8) to assign the energy E1 to a hierarchical structured defor-
mation (g,G1, . . . ,GL)

E1(g,G1, . . .GL) :=
ˆ

�

WL(∇g(x),G1(x), . . . ,GL(x))dx

+
ˆ

�∩Sg

|[g](x) · νg(x)|dHN−1(x). (3.14)

If we put G0 := ∇g and use (3.13a) with k = L, the volume integrand WL(∇g,G1, . . . ,GL)

in (3.14) can be written as

L∑
�=1

| tr(G� − G�−1)| + W0(GL). (3.15)

The matrix-valued fields G�−1 − G� in (3.15) are the contributions to the macroscopic de-
formation gradient ∇g from the disarrangements arising in upscaling from submacroscopic
level � to submacroscopic level � − 1, so that the sum over � represents a bulk energy
density arising from hierarchical disarrangements. The remaining term W0(GL) represents
a bulk energy density arising from the contributions at the macrolevel of the deformation
without disarrangements at submacroscopic level L.

4 Conclusions and Outlook

In this work we have taken the first steps towards a variational theory for hierarchical
structured deformations, introduced by Deseri and Owen in [14]. In the spirit of the vari-
ational framework introduced by Choksi and Fonseca in [11], we proved two main re-
sults: (i) the Approximation Theorem 3.3, stating that each (L + 1)-level structured de-
formation (g,G1, . . . ,GL) can be approximated by a (multi-indexed) sequence {un1,...,nL

} ⊂
SBV (�;Rd) in the precise sense introduced in Definition 3.2; (ii) the recursive relaxation
procedure described in Sect. 3.2 and culminating in Theorem 3.4, stating that the energy
assigned to an (L + 1)-level structured deformation (g,G1, . . . ,GL) by means of iterated
applications of the integral representation Theorem 2.8 is indeed well defined; this second
result rests on Theorem 2.10, the main technical effort of this paper, in which we prove
that the relaxed bulk and surface energy densities still belong to the class of energies that
can be relaxed. It is important to notice that these findings provide a validation of the pro-
posal initiated in [14], motivating the introduction of the notion of hierarchical structured
deformations to model materials exhibiting multiple submacroscopic levels.

The Approximation Theorem 2.3 for first-order structured deformations (g,G) is crucial
for the relaxation process (2.10), since it implies that the class Rp(g,G) defined in (2.11) is



A.C. Barroso et al.

not empty, so that (2.10) is a meaningful problem. The integral representation Theorem 2.8
then shows that starting from an initial energy E as in (1.2), the relaxed energy I (g,G)

assigned to (g,G) retains the integral form, and provides the cell formulae (2.22a), (2.22b)
for the relaxed bulk and surface energy densities H and h, respectively.

At the moment, Theorems 3.3 and 3.4 work independently: the way we assign the energy
to the (L + 1)-level structured deformation (g,G1, . . . ,GL) is independent of the fact that
(g,G1, . . . ,GL) can be approximated by means of the sequence {un1,...,nL

}. Thanks to The-
orem 2.10, our proposal for defining E1(g,G1, . . . ,GL) via (3.8) (for � = 1) is meaningful,
as formula (3.14) shows.

It would be amenable, and extremely interesting from the mathematical point of view, to
define the energy of an (L + 1)-level structured deformation (g,G1, . . . ,GL) ∈ HSDL(�)

via relaxation of the initial energy E of (1.2) directly, namely by

I1(g,G1, . . . ,GL) := inf
{

lim inf
n→∞ E(un1,...,nL

) : {un1,...,nL
} ∈ Rp(g,G1, . . . ,GL)

}
, (4.1)

where a possible definition of the class Rp in this context could be

Rp(g,G1, . . . ,GL) :=
{
{un1,...,nL

} ⊂ SBV (�;Rd) : un1,...,nL

∗−⇀
HSDL

(g,G1, . . . ,GL),

sup
n1,...,nL∈NL

∥∥∇un1,...,nL

∥∥
Lp(�;Rd×N )

< +∞
}
. (4.2)

The Approximation Theorem 3.3 grants that the class Rp defined in (4.2) is non empty, so
that, also in the context of hierarchical structured deformations, a definition by relaxation,
such as (4.1) is meaningful. The properties of such a definition are object of research in
progress. Whether the energy I1 admits an integral representation and in which fashion
the energy densities depend on the fields ∇g and G1, . . . ,GL, and on the jump [g] is still
unknown at the moment, as is the relationship between the energies E1 of (3.8) (for � =
1) and I1. It seems not unreasonable to expect the latter to be smaller than the former:
in the relaxation process defined in (4.1), the energy I1 is given as the most energetically
convenient way of reaching (g,G1, . . . ,GL), whereas in (3.8), the energy E1 is the outcome
of the iteration of the relaxation process (2.10), in which only one level at a time is upscaled,
keeping the others frozen. This is evident in the way we define the bulk energy densities Wk

at each stage by (3.7), by keeping the k fields Bk = (Bk, . . . ,B1) fixed, thus introducing
some constraints. On the other hand, as pointed out in Remark 2.11(ii), the properties listed
in Theorem 2.10 remain valid under weaker continuity assumptions on the original bulk
density. The study of the energy I1 is undertaken under these weaker conditions and is the
subject of a forthcoming paper.
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