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Abstract

An underlying assumption typically made about machine learning algorithms is that
the data required for training is both available and curated. However, this assumption
does not often hold outside of very specific ad-hoc settings. This in turn hinders
the chances of deploying robust machine learning models to address real-world
problems, thus reducing the impact that the entire field could actually have.

One of the main obstacles to the successful application of many machine learning
algorithms stems from a lack of supervised data: if labels are unavailable, or only
available in limited quantities, supervised learning algorithms can struggle during
the process of learning useful patterns.

This work of thesis acknowledges the problems that come with limited label
availability scenarios and offers contributions within the field. In particular, three
main areas of interest are identified, where (i) labelled data is completely unavailable
– in which case only unsupervised techniques can be applied, (ii) labelled data is only
available in domains other than the one of interest, in which case useful information
can still be learned in the label-rich domain and propagated to the label-scarce
one and (iii) only reduced amounts of labelled data is available, along with large
quantities of unlabelled data.

The thesis addresses these aspects by proposing contributions from both an
algorithmic and an applied perspective. In particular, the following contributions that
address the aforementioned areas are introduced: (i) improving the training process
of existing unsupervised algorithms to reduce their computational complexity, (ii)
developing a methodology for propagating representations learned in label-rich
domain to label-scarce ones, by means of aligned latent spaces, and (iii) introducing
a semi-supervised learning algorithm that learns from self-assigned pseudo-labels
based on the introduction of an explicit confidence mechanism.



vi

The proposed contributions are evaluated from both theoretical and empirical
perspectives, discussed and contextualized within the existing state of the art. We
additionally extensively cover an applied use case, where labels are originally not
available but can be inferred in a semi-supervised way.
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Chapter 1

Introduction

In recent years, the field of machine learning has gained significant momentum.
Algorithms that were previously only studied in an academic setting have started to
be adopted in “real world” scenarios. For example, in the field of healthcare, gradient
boosting algorithms have been used to predict the likelihood of hospital readmission
[3]. In the field of finance, recurrent neural networks have been employed to identify
fraudulent credit card transactions [4]. In the field of natural language processing,
recurrent neural networks have been utilized for machine translation [5]. Additionally,
in the field of computer vision, convolutional neural networks have been applied to
object recognition tasks [6]. However, this transition has not been without problems.
Academic settings generally assume an application of algorithms in an ideal world,
where data is both available and curated. By contrast, applications of machine
learning techniques in the “real world” are typically faced with situations where data
is either not fully available or, when it is, not particularly well curated.

This lack of quality in the data that is actually available reflects in turn in poorer
quality in terms of performance obtained – if any performance can be obtained at
all. This in turn affects the rate of adoption of machine learning-based techniques
and the trust that is put in such techniques [7]. So, while it can be argued that quality
problems are only a limitation of applied machine learning and not of the underlying
foundations, it is reasonable to assume that improvements made in this direction will
be beneficial to the overall field.

Lack of labelled data is perhaps one of the most interesting scenarios of poor
data quality. The interest stems from two specific perspectives:
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• Economic perspective: a lack of labelled data is typically not due to accidents
that occurred during the data collection process (e.g. typos during data entry,
malfunctions in sensors). For non-trivial tasks, labels are typically assigned
by humans: it follows that labelled data comes at a cost. It is therefore
understandable that one may wish to find a reasonable trade-off between a
model’s performance and the cost of producing the required data.

• Learning perspective: the goal of learning from limited labelled dataset goes in
the direction of trying to reach an algorithm that mimics the learning capabili-
ties of humans. Indeed, it is a common experience that humans are capable of
learning from very limited “training” data. For example, we can identify a new
animal species after observing very few pictures of animals belonging to said
species. By contrast, typical machine learning algorithms require significant
amounts of labelled data to achieve results that are comparable to those of
humans.

Given the relevance of the topic of learning with limited label availability, there
have been significant advancements from a research perspective. In this section we
attempt to provide an overview of the main categories of approaches that can be
found in literature. Although far from comprehensive, this overview is meant to
provide a context for the topics covered in this work of thesis. Figure 1.1 shows a
graphical overview of the scenario. The following paragraphs further elaborate on
each of the covered fields.

Unsupervised learning One of the main fields of interest of machine learning,
unsupervised learning, is dedicated to the extreme situations where there is no kind
of label available whatsoever. The wide variety of unsupervised problems that exist
is representative of the importance that “no labels” scenarios have. The common
theme of unsupervised learning approaches is that of learning about the structure
of the data under study. There are clustering techniques, that focus on grouping
data points w.r.t. common behaviors. Similarly, the extraction of frequent patterns
attempts to extract, characterize and describe recurring patterns that occur within
the data. Additionally, the field of representation learning, which is often carried out
in an unsupervised manner, is concerned with the automatic construction of “good”
data representations. Among these tasks, we identify the task of clustering as the
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Limited label availability approaches
Active learning
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provided by an 
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Fig. 1.1 Recap of various limited label availability approaches, defining their scope and their
main characteristics.

one being most affine to limited label scenarios, since it allows for the identification
of plausible labels.

Semi-supervised learning At the intersection of supervised and unsupervised
learning is semi-supervised learning, which is concerned with the learning of super-
vised models (e.g. classifiers, regressors) starting from large quantities of unlabelled
data and a limited set of labelled points. This case well represents the common
scenario that arises in limited label availability situations. Semi-supervised learning
techniques can be divided into inductive and transductive ones [8]. Inductive tech-
niques focus on learning supervised techniques so as to make predictions even for
unlabelled data points (i.e. a model of the input space is learned and then applied to
unseen cases), whereas transductive techniques focus on directly inferring unlabelled
points’ labels based on the properties of labelled points (i.e. without learning a
model of the entire input space). These techniques can be often seen as extensions
of supervised or unsupervised techniques.

Active learning To reduce the amount labelled data required, active learning
algorithms are allowed to query an “oracle” (e.g. a human annotator) to request the
ground truth for an ideally small set of points. The idea behind active learning is to
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let the learning algorithms autonomously label instances that are well-understood
(e.g. those associated with a high confidence of the model) and to request further
support in areas of the input space that are not as well understood. The result of such
techniques are models that can choose the subset of data points from which to learn
in a supervised manner [9].

Domain adaptation There are situations where labelled data is actually available
in abundance, but for domains that are different from the one we may be interested in.
A very common example can be found in the field of Natural Language Processing
(NLP). Large amounts of labelled data may be available for resource-rich languages
(e.g. English), whereas we may be interested in working on languages that do
not have as many resources available. In domain adaptation, a subfield of transfer
learning, the goal is to be able to transfer the knowledge that can be learned from a
label-rich domain (source) to a low-resource domain (target). If the only labelled data
available belongs to the source domain, we refer to the problem as an unsupervised
domain adaptation one [10]. Another interesting distinction can be made in terms
of numerosity of source domains: some approaches can learn from a single source
domain, whereas others can be generalized to handle multiple source domains [11].

1.1 Main contributions

All of the above-mentioned areas of research have been thriving in recent years, a
clear indication that label scarcity is being recognized as a significant challenge and
limitation to current state of the art techniques. Within this context, this work of
thesis is aimed at approaching a subset of the above fields, providing both theoretical
contributions and applied use cases. More specifically, the rest of this thesis is
organized into three main chapters. Here we provide an overview of the main
contributions that can be found in them.

Chapter 2 discusses the topic of domain transfer, with a focus on the field
of NLP and a proposed technique to transfer knowledge acquired from a high-
resource language to a low-resource one. Despite the focus on NLP, we explore
the extent to which this kind of transfer can be applied to other domains. The
chapter is based on the work published in [12], with subsequent extensions that
build on top of that. The main contribution of that work consists in proposing a
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novel technique for the propagation of information on a graph, based on already
available knowledge encoded as vector representations. We show that the proposed
methodology can outperform other techniques that are instead based on a less flexible
graph propagation technique.

Chapter 3 instead focuses on the topic of unsupervised learning. Finding struc-
ture within data – without any kind of supervision – is arguably one of the most
important aims of machine learning. In particular, we focus on the clustering task,
because of its affinity with label-scarce tasks. We acknowledge that the time and
memory complexities of many clustering algorithms (e.g. hierarchical agglomerative
clustering [13], DBSCAN [14]) are often prohibitive, O(n2) or higher. Even when
O(n), the constant coefficients may make some algorithms excessively expensive, or
their application unfeasible for streaming data. We thus focus on Self-Organizing
Maps [15], a neural network-based technique with linear and incremental learning,
and propose a training technique that significantly reduces the overall time, at little
cost in terms of performance. This technique is based on the initial training of a
smaller model, with a propagation of the learned information to a larger one during
a tuning phase. We show that the proposed methodology achieves a significant
improvement in terms of training speed, with a small impact as far as performance is
concerned.

Chapter 4 addressed the topic of semi-supervised learning. This topic is of
fundamental importance when learning in limited labels availability scenarios. The
assumption of labelled data scarcity does not typically stem from an overall lack of
data, but rather from the significant cost of the human labor required for the labelling
process. Thus, the main assumption made in semi-supervised scenarios (i.e. that
only limited labelled data is available, but there is a wide availability of unlabelled
data) is a reasonable one. In this chapter we will discuss how a recently proposed
state-of-the-art technique works to learn from both supervised and unsupervised
data, by means of pseudo-labels and weak/strong data augmentations. We propose
building a more robust confidence detection mechanism for the model, so as to better
assess whether a pseudo-labelled point could be a useful addition to the training
set. We present some preliminary results that show that the proposed confidence
estimation technique outperforms the original model, especially at early training
stages, although we acknowledge that significant work still needs to be done in that
direction to draw significant conclusions.
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Chapter 5 covers an applied use case in the field of predictive maintenance. When
the phenomenon of interest is one that is rarely observed (e.g. failures of a system)
it is common to have few, sometimes unreliable labels that describe the problem.
It is for these reasons that we approached a first predictive maintenance task by
applying both semi-supervised and unsupervised techniques on top of traditionally
supervised ones. This chapter is mainly based on work published in [16] and [17].
For completeness, we additionally cover some of the differences with a later work
[18], focused on a different predictive maintenance task, where the experimental
design has been driven by the previous experience.

Because of the multi-faceted nature of this work of thesis, each chapter is mostly
self-contained. An introductory overview of the problem and of the proposed
solutions are provided, with an exploration of the relevant related works. We then
introduce the main contributions that have been produced as a part of this thesis. An
experimental section is included for each chapter, where the proposed contributions
are evaluated in terms of various metrics (e.g. quality of the results, execution time)
and compared against other state-of-the-art methodologies. Based on the results
obtained, we draw conclusions on the usefulness of the proposed methodologies.
Each chapter is closed by a discussion section, where we explore the implications of
the proposed methodologies and identify what some of the possible future directions
might be. These future directions are identified both as ways of building on top of the
proposed methodologies, as well as exploring completely new directions of interest.

Following the four main chapters of this work of thesis is Chapter 6, which draws
conclusions based on the work proposed in the previous chapters. These conclusions
will consider both what has been achieved, and what might be relevant for the years
to come as far as limited labelled scenarios go.



Chapter 2

Cross-domain knowledge propagation

As already argued in Chapter 1, domain adaptation is a technique commonly used
when labelled data is available in a domain that is adjacent to the one of interest.
Because of this richness in labels, supervised models can be learned for the adjacent
domain. The knowledge learned in this way is then transferred in some way to the
domain of interest.

We typically refer to domain adaptation tasks to situations where we preserve the
original “building blocks” (e.g. “words” for NLP tasks, “pixels” for computer vision)
but we change the underlying domain (e.g. from social media posts to newspaper
articles for NLP, of from photographs to sketches for computer vision).

Other tasks, where the building blocks change between the source and the target
domains (e.g. words in English and words in Italian) require completely different
approaches. This kind of tasks has been referred to as “extreme adaptation” [19].
Although this kind of task is generally harder than the “shared building blocks” ones,
we recognize that many limited labels scenarios can belong to it.

As mentioned, NLP offers various great challenges for this extreme adaptation.
In this chapter we discuss a possible approach, contextualized in a sentiment analysis
(or opinion mining) task. We then discuss how such an approach can be generalized
to other challenges, both within and outside of NLP.

The decision of focusing on a sentiment analysis task stems from the fact that, in
recent years, an increasing amount of opinionated data has been recorded in digital
forms (e.g., reviews, tweets, blogs). This has fostered the joint use of NLP and ML
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techniques to extract people’s opinions, sentiments, emotions, and attitude from text,
i.e., sentiment analysis problems [20].

Recently proposed approaches (e.g., [21, 2, 22]) aim to predict the sentiment
polarity of the analyzed text by means of deep learning techniques. However, these
models require large corpus of labelled data in order to train accurate sentiment
predictors [23]. Meeting this requirement can be challenging while coping with
multilingual and cross-domain data. In particular, the majority of the annotated text
is written in English whereas small amounts of data are available for less commonly
spoken languages. Hence, tailoring deep learning models to the right language is
crucial for developing accurate and portable sentiment analyzers.

A promising strategy to overcome the lack of labelled multilingual training
data has recently been proposed by [2]. They propose an approach to propagate
sentiment information, encoded into high-dimensional embedding vectors [24],
across languages.

The idea behind this is to build, with a supervised approach, sentiment embed-
dings for the source language (usually in English). Then, using a pre-built lexicon
that maps English words to those in the target language, the embeddings for the target
language are induced using stochastic gradient descent on a graph that connects
source and target words. A more detailed description of [2] is given in Section 2.2.
The quality of the sentiment embeddings propagation strongly depends on the rich-
ness of the bilingual lexicon used. When a bilingual lexicon is either not available
or partly incomplete, the induction phase is unable to effectively propagate the
sentiment polarity scores from the original language to the target one.

The main focus of this chapter is to improve the quality of the sentiment propa-
gation phase across languages. We acknowledge that enriching languages that are
scarce in labelled contents is beneficial for a multitude of downstream tasks and
reduces the gap that currently exists between label-rich and label-poor languages.

The key idea is to enrich lexicon information in the propagation phase by deriving
the semantic links among pairs of words from an aligned bilingual vector space.
This allows us to exploit the underlying text similarities that are not made explicit
in the bilingual lexicon. We use an established model for vector representation of
words, i.e., fastText [25]. A learning approach to generate aligned fastText word
vectors has recently been proposed [26]. Once trained, the bilingual vector spaces
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not only embed lexicon information but also allow us to derive non-trivial semantic
text relationships directly from the latent space.

This simplifies the procedure of cross-lingual induction and exploits the vector
representation of text in the latent space to infer missing word relationships. The
authors of [26] have also published the pre-trained aligned vectors for a large number
of languages. Hence, a promptly usable, general-purpose vector representation of
text is currently available.

The most significant results presented in this chapter have been published in [12].
In this thesis we additionally cover experiments for what concerns the comparison
with deep learning methodologies.

The most interesting contribution of the work presented in this chapter is the
achievement of the construction of representations of new “building blocks” (i.e.
vectors for words in a new language) that only weakly relies on supervised data, as
opposed to the heavily supervised approach proposed by [2]. We further discuss
various implications of the proposed approach in Section 2.5. Of similar interest is
the fact that the proposed embeddings outperform the state-of-the-art ones by [2] on
various multilingual benchmark datasets: as an example, when using the proposed
sentiment embeddings with an SVM classifier, we achieve a 10% average macro F1

score improvement w.r.t. [2] on two Italian datasets.

2.1 Related works

To predict the sentiment polarity of textual reviews, news, and posts, several deep
learning-based sentiment analysis approaches have been proposed. Most of them
(e.g., [27–29]) are language- or domain-specific, i.e., they are specifically tailored
to a given context (e.g., movie reviews, Twitter posts) and language. Hence, model
learning assumes that a large enough training set is available. As it has already been
argued, this kind of approaches cannot be applied to languages (or domains) where
only limited labelled data is available.

To extend the applicability of existing sentiment analysis solutions towards other
languages, the use of automated machine translation tools has been investigated [30–
33].
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These approaches, however, rely on the quality of the machine translation tools
available. The machine translation task is typically a strongly supervised one, where
the same training corpus is available in both the source and the target language.
However, for low-resource languages such availability cannot always be guaranteed.
Since the focus of this thesis is on label-scarce scenarios, we strive to identify a
solution that does not rely on this kind of labelled data.

Parallel strategies entail (i) building sentiment lexicons tailored to different lan-
guages and domains of interest and exploiting them to train supervised models [34]
and (ii) integrate syntax-based rules in unsupervised models [35]. However, all the
aforementioned approaches require a significant human effort, which has already
been accomplished only for the major languages and the most popular domains:
once again, low-resource languages are heavily penalized.

To propagate sentiment information across different languages and domains, a
deep learning approach has recently been presented [2]. They consider an initial
vocabulary of English words for which sentiment embeddings are known and a trans-
lation lexicon is given, representing semantic relationships between pairs of words
(both non-English and English words) such as translations, synonyms, orthographic
variants, and other semantic, morphological, and etymological word relationships.
In [2] links between words are extracted from a multilingual Wiktionary dump [36].
However, this requires building a new lexicon for each pair of languages of interest,
assuming that enough data is available to be able to work in that direction. Fur-
thermore, some relevant semantic links could be missing in the input lexicon. Our
proposal builds on top of the work proposed in [2] and relies on an aligned bilingual
vector space, e.g., [26], from which explicit and implicit semantic relationships
among words can be inferred. In the following section we summarize the approach
proposed in [2].

2.2 Sentiment Propagation Based on Translation Lex-
icon

To propagate sentiment information to various languages, the approach proposed
by [2] generates a sentiment embedding vector vx for each word x in a multilingual
vocabulary V . A sentiment embedding is a high-dimensional vector reflecting the
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distribution of the word’s sentiment polarities across a large range of domains1. If
the same word is used in multiple languages, each instance is treated as a distinct
word in V .

The sentiment vector associated with each word x in the initial vocabulary V0

(which only includes word in the source domain) is derived via transfer learning.
Specifically, for each domain d j a linear Support Vector Machine classifier [37]
M j(x) = w j · x+b is trained from a set of domain-specific textual documents. The
classifier assigns a polarity to each word, denoting whether the word is peculiar to the
domain under analysis. The jth component of the embedding vector vx incorporates
the coefficient w j of the linear model M j. Hereafter, we will assume sentiment
information to be known for an initial vocabulary V0 ⊂ V , which usually consists
of a subset of English words (i.e., the most popular language used in electronic
documents).

The translation lexicon TL is a set of triplets {(x1,x′1,w1),. . ., (xm,x′m,wm)}
[x1,x′1, . . . ,xm,x′m ∈V ] providing evidence of the semantic relationships holding be-
tween pairs of words in the multilingual vocabulary. The lexicon maps words in the
original language to the corresponding translations. Notice that each word may have
multiple translations. To incorporate relationships such as synonyms, orthographic
variants, and etymological connections, the lexicon includes also links between pairs
of words of the same language. In [2] the translation lexicon is extracted from a mul-
tilingual Wiktionary dump [36]. The weight wq associated with a triplet (xq,x′q,wq)

denotes the relevance of the semantic relationship. In [36] it indicates the number of
semantic links occurring in the data source. For convenience, we will refer to T x

L as
the subset of TL where word x appears2, i.e. T x

L = {(a,b,w) ∈ TL : a = x}.

The sentiment vectors of all the words in V are populated by propagating the
cross-domain polarity scores ṽx of the words in V0 via an iterative optimization
approach, i.e., Stochastic Gradient Descent (SGD). The optimization problem ad-
dressed by the SGD entails assigning values to the sentiment vector vx for all words
x in the multilingual vocabulary V according to the following objective function:

1The vectors used in the experiments have 26 dimensions, one for each of 25 domains used by the
authors plus an extra dimension combining all domains together.

2Since the lexicon represents an undirected graph, we assume that all triplets in T x
L are in the form

(x,b,w).
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C · ∑
x∈V0

||vx − ṽx||2 +

− ∑
x∈V

vT
x

[
1

∑(a,b,w)∈T x
L

w
· ∑
(x,b,w)∈T x

L

w vb

] (2.1)

where, given a word x ∈V0, ṽx represents its initial sentiment vector (learned through
transfer learning).

The first term of the loss function ensures that the sentiment vectors of the words
in the initial vocabulary V0 do not diverge significantly from the original ones, for
a large enough constant C. The second term guarantees that the inferred sentiment
vectors of words that are linked together in the translation lexicon are kept similar.
The two terms of the loss function leverage different distance metrics. This preserves
the same magnitude for words in V0 (first term) and may assign different magnitudes
to the words in V \V0: indeed, larger magnitudes could indefinitely decrease the loss
function. As a part of the proposed approach, we will also address this aspect.

2.3 Proposed propagation algorithm

In this section we discuss the main contributions of this chapter. The core contri-
butions are published in [12]. In short, the main idea behind this work is to link
the semantically related words indirectly according to their similarity in a bilingual
word embedding space, instead of relying on a lexicon. We show that this improves
the quality of the cross-lingual propagation phase (by projecting polarity scores
extracted from a richer text representation based on latent spaces) and reduces the
need for labelled data.

2.3.1 Bilingual embedding space

Each word in a dictionary is mapped to a vector in the latent space. The application
of word embeddings to address many natural language processing tasks is well
established. A pioneering work in this field is the Word2Vec model [24]. fastText
is a famous extension of Word2Vec, which has been presented in [25]. fastText
provides a more effective vector representation by incorporating sub-words in the
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input dictionary. The vectors associated with the sub-words can be conveniently
combined in order to generate the embeddings of new words that are not present in
the dictionary.

Vector representations of text are generated, separately for each language, using
neural network-based architectures. Pre-trained vector models (learned from a
Wikipedia corpus) are also available for a large number of languages3. To links
words in different languages, the per-language models need to be aligned first. The
procedure to align bilingual fastText vector spaces is thoroughly described in [26]: in
short, it consists in identifying a transformation that can be applied to one of the two
embeddings to be aligned. Notably, a large number of pre-trained aligned models
is available4. This allows users to exploit the general-purpose, multilingual vectors
(characterized by 300 dimensions and trained from Wikipedia for 44 languages)
without the need for retraining them from scratch.

Let EO be the fastText embedding space in the original language (e.g., English)
and let ET be the aligned embedding space in the target language (i.e., a language
other than English). Each word x in the original language has a corresponding vector
veo

x in EO. Thanks to the aligned bilingual vector space, we can project veo
x to the

target vector space in order to get the corresponding target vector vet
x in ET . Notice

that the new vector does not necessarily correspond to any real word in the target
language.

2.3.2 Sentiment propagation strategy

We exploit word similarities in the latent space to propagate sentiment information.
Specifically, let vx be the sentiment vector of an arbitrary word x ∈V0. We assume
that these vectors are available (e.g. they have been learned from labelled sentiment
data for the original language). In [2] various initialization techniques are used –
we focus on using vectors extracted from training linear SVM models. We aim to
propagate sentiment information to other words in V\V0. This issue is addressed in
two steps: (i) first, we create a word graph representing the most significant pairwise
word similarities. (ii) Next, we propagate the sentiment scores to the other words
using gradient descent.

3https://fasttext.cc/
4https://fasttext.cc/docs/en/aligned-vectors.html
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Notice that step (i) allows us to get a richer word representation compared to a
bilingual lexicon.

Word Graph Creation We use a notion of word graph similar to the one already
presented in [2]. In particular, we assume the word graph G = (V,E) to be an
undirected weighted graph connecting pairs of words in V . Edges in E are triples
(a, b, w), where a,b ∈ V are the connected vertices and w is the edge weight.
Words are connected based on whether they share similar meaning (e.g. translations,
synonyms).

Differently from [2], we do not rely on a pre-built lexicon TL to obtain E. In-
stead, we leverage aligned word embeddings. For each word x ∈V0 we explore the
neighborhood of vector vet

x in the target latent space to look for the neighbor words
that are most semantically related to x. More specifically, we select the K nearest
vectors (where K is a user-specified hyperparameter) corresponding to the words of
the target languages that are closest to vet

x .

Given the set NNx of x’s nearest neighbors, we create a weighted edge e ∈ E
connecting every x′ ∈ NNx to x. The weight of the edge connecting words x and x′

indicates the pairwise word similarity in the latent space and is computed using the
cosine similarity [37]. To avoid introducing unreliable word relationships and to
limit graph connectedness, we filter out the edges (links) with weight below a given
(user-specified) threshold α . The effect of parameters K and α on the performance
and complexity of the proposed approach will be discussed in Section 2.4.

We note that by only choosing the nearest neighbors in the target embedding
space, we only focus on identifying the “translations” of words in V0. We could
additionally include other types of relationships (e.g. synonyms) by also including
the nearest neighbors in the source domain. Due to the considerations that we will
make about the desired sparsity of the word graph, we currently avoid adding this
information, but we acknowledge that it could be an interesting future development.

Example. Suppose that the original language is English and the target language is
Italian. Let us consider the following input parameters: K = 5 and α = 0.4. Table 2.1
and Figure 2.1 report an example related to the English word excellent. Specifically,
Table 2.1 reports the five nearest neighbors of excellent while Figure 2.1 shows the
word sub-graph associated with that word. Only the first two neighbors of excellent
are characterized by a cosine similarity greater than or equal to 0.4. Hence, only the
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xxx xxx’s nearest neighbors Cosine similarity

excellent eccellente 0.575
ottimo 0.513

apprezzabile 0.369
buon 0.367
adatto 0.322

Table 2.1 Example: K nearest neighbors of excellent. Original language = English, target
language = Italian, K = 5

excellent

eccellenteottimo

10 9.5 9.9 9.8 9.9

0.575
0.51

3

Fig. 2.1 Example: word sub-graph associated with excellent. Original language = English,
target language = Italian, K = 5, α = 0.4

Italian words eccellente and ottimo are connected to excellent in the word graph G .
This is semantically correct because eccellente is the Italian translation of excellent
and ottimo has a similar meaning. The three discarded neighbors are other “positive”
adjectives that do not have the same meaning of excellent (the translations of the
other three neighbors are appreciable, good, and suitable, respectively). Hence, the
enforcement of the minimum similarity threshold helps removing noisy connections.

The English word excellent, which is one of the words in V0, is characterized by
a specific sentiment embedding (i.e., a vector of cross-domain polarity scores). The
sentiment vectors of the Italian words are populated by propagating the cross-domain
polarity scores of the English words via the iterative optimization approach described
in the following paragraph.

Gradient Descent with updated loss function The Gradient Descent is used to
propagate sentiment information through the word graph. As discussed in Section 2.2,
the iterative propagation process should both preserve the values of the vectors in the
initial vocabulary V0 and guarantee a high degree of similarity between the sentiment
vectors of linked words. For convenience, we describe the subset of edges that



16 Cross-domain knowledge propagation

contain word x as Ex, defined as {(a,b,w) ∈ E : a = x}. To achieve these goals, we
adopt the following objective function:

C · ∑
x∈V0

||vx − ṽx||2 +

− ∑
x∈V

∥∥∥∥∥vx −

[
1

∑(a,b,w)∈Ex w
· ∑
(x,b,w)∈Ex

w vb

]∥∥∥∥∥
2

(2.2)

where, for each word x in the initial vocabulary V0, the first term minimizes the devi-
ation from its initial sentiment embedding vector ṽx. The second term minimizes the
deviation from the sentiment vectors of neighbors, represented as connected words
in the word graph. Adopting the L2-norm in the second term allows the propagation
of the vectors information without altering the vectors magnitude. Therefore, words
in the initial vocabulary keep, to a good approximation, the same original vectors,
whereas new words get sentiment polarity scores similar to those of their neighbors
in the target latent space. The distance used for the second term in the proposed
loss (Equation 2.2) differs from the one originally used, shown in Equation 2.1. We
choose to use an L2 norm for consistency with the first term of the loss. By doing so,
we prevent the model from infinitely decreasing the loss by increasing the magnitude
of the vectors learned, as it would happen if we attempted to maximize the cosine
similarity.

After the gradient descent optimization, the words graph contains words for
which a vector representation has been learned. These vectors share the property of
being similar to those of their neighbors.

2.4 Experimental results

The experiments presented in this section are aimed at evaluating the quality of the
sentiment vectors resulting from the application of the proposed methodology. The
evaluation process is formulated as a binary sentiment analysis problem. The senti-
ment embeddings are compared, in terms of macro-F1 score, with those produced by
the method presented in [2].

All the experiments were run on a machine equipped with Intel® Xeon® X5650,
32 GB of RAM and running Ubuntu 18.04.1 LTS.
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The rest of this section is organized as follows. Subsection 2.4.1 describes the
settings used in the experimental validation as well as the analyzed datasets. Subsec-
tion 2.4.2 summarizes the main results. Subsection 2.4.3 discusses the influences of
the main parameters of the performance of the proposed approach. Subsection 2.4.4
analyzes the spatial complexity of the proposed approach. Finally, Subsection 2.4.5
makes comparisons in terms of classification performance using deep models.

2.4.1 Experimental setting

To validate the quality of the generated sentiment vectors, we set up a binary sen-
timent classification task over multilingual datasets. Specifically, we predict the
sentiment polarities of a given set of short text snippets labelled as either positive or
negative.

The main comparisons made are based on the adoption of two popular clas-
sification models, i.e. Support Vector Machines (SVM) and the Random Forests
(RF) [37].

Classifiers are first trained separately on each multilingual training dataset and
then applied to the corresponding test set. More specifically, each dataset is split into
a training set (80% of the data) used for training the models and for the tuning of the
hyper-parameters, and a test set (20%), which is used for the performance evaluation
step.

The adopted classifiers are trained on a vector representation of the input text
snippets. The vectors associated with each snippet are computed by averaging the
values of the vectors of the words included in the snippet. Other techniques (e.g.
using Recurrent or Convolutional Neural Networks [38]) may also be adopted to
produce a vector representation that preserves the sequential nature of the input. We
defer the comparison of the performance obtained with deep models to Subsection
2.4.5.

The hyperparameters of the classifiers are identified according to the outcomes
of a grid search based on a 5-fold Cross-Validation. Separately for each language
and dataset, we evaluate the performance of each classification model in terms of
macro-F1 score. The F1 score is a popular metric that indicates the harmonic mean
of precision and recall of the generated model [37]. The macro-F1 score is obtained
as the unweighted average of the F1 scores for all classes. This provides an overall
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Dataset Cardinality #Positive #Negative % Negative

cs 2,458 1,660 798 32.47
de 2,407 1,839 568 23.60
es 2,951 2,367 584 19.79
fr 3,912 2,080 1,832 46.83
it 3,559 2,867 692 19.44
nl 1,892 1,232 660 34.88
ru 3,414 2,500 914 26.77

Table 2.2 Cardinality and class distribution for each of the datasets presented in [2]

performance estimate that does not penalize minority classes, as would be the case
with, for example, the accuracy.

We use as the main competitor the sentiment vectors extracted with the method-
ology proposed in [2].

Source domain The language used for the source domain is English, as it is the
language for which we typically expect to have large quantities of labelled data. The
data used for training the source sentiment vectors has been collected from Amazon
reviews for products belonging to 25 separate categories, for a total of 1.4 million
reviews. These reviews have been assigned a rating of either 1 or 2 stars (for negative
reviews) and 4 or 5 stars (for positive reviews). From these reviews, 26 linear models
have been trained on a binary classification task: one model has been trained for each
of the categories, plus an additional model trained on all the available data. For each
word the coefficients learned by each model have been concatenated to produce a
26-dimensional representation that encodes that word’s sentiment in various contexts
(i.e. categories). The vector extraction process is described in more detail in [2].

Data The list of datasets used for the experiments includes all the datasets adopted
by [2], which are described in Table 2.2.

These datasets have been extracted from several websites that collect the reviews
left by users on specific topics (e.g. places, movies, food). The target binary class
(positive or negative) is derived from the user ratings. User ratings are not necessarily
binary values and generally follow a 5-star system. We have discretized the 5-star
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Dataset Cardinality #Positive #Negative % Negative

IT1 10,024 5,012 5,012 50.00
IT2 13,888 6,942 6,946 50.01

Table 2.3 Key statistics for the new Italian datasets

ratings as follows: reviews with 3 stars are discarded (as they are considered neutral).
1’s and 2’s are assigned to the negative class, 4’s and 5’s to the positive one.

The statistics reported in Table 2.2 clearly show a strong class imbalance in the
analyzed data: the positive class is the majority one. This may hinder the training
of robust classifiers, as the minority class may not be sufficiently represented in
the training data, resulting in poor learning by the trained models. To additionally
evaluate the performance of the proposed approach on more balanced data we
have additionally considered two extra datasets for the Italian language (i.e., the
language for which the imbalance ratio of the corresponding datasets is maximal).
Table 2.3 describes the two new Italian datasets. Data was extracted from reviews of
TripAdvisor5 users in different Italian cities.

2.4.2 Performance comparison

Table 2.4 summarizes the results obtained on the various datasets. For each dataset,
the performance for SVM and RF are reported for both the proposed methodology
(denoted as Our method) and for the sentiment embeddings produced by [2] (denoted
as Dong and De Melo). The outcomes of the proposed methodology were achieved
by setting K = 5 and α = 0.4. Subsection 2.4.3 discusses the effect of these two
hyperparameters on the performance of the proposed method.

The proposed methodology for cross-lingual sentiment propagation performs
better than the method proposed by [2] in terms of macro-F1 score on the majority
of the analyzed datasets (Russian reviews are the only exception).

To gain insight into classifiers’ performance, we additionally explore the pre-
cision and the recall of the model. Table 2.5 reports the macro-precision and
macro-recall values (indicating the means of per-class precision and recall val-
ues, respectively) [37]. Based on the results obtained, we can conclude that classifier

5https://www.tripadvisor.com
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Dataset Our method Dong and De Melo
SVM RF SVM RF

cs 0.7403 0.7198 0.7227 0.7297
de 0.6847 0.6981 0.6495 0.6756
es 0.6131 0.531 0.4451 0.4892
fr 0.7021 0.7291 0.6389 0.6764
it 0.8256 0.794 0.6805 0.6644
nl 0.6869 0.6369 0.5903 0.6022
ru 0.6840 0.6112 0.7221 0.7009

IT1 0.8439 0.8424 0.7435 0.7311
IT2 0.8441 0.8427 0.7415 0.7494

Table 2.4 Comparison, in terms of macro-F1 score, between the embeddings produced by the
proposed methodology (Our method) and those generated by [2] (Dong and De Melo)

performance is not biased towards either metric – i.e. the two metrics are rather close
to one another. Interestingly, the embeddings produced by [2] show – in some cases
– higher precision than the proposed method. However, the lower recall produces
worse overall results, as measured by the F1 score.

2.4.3 Parameter analysis

We also study the effect of setting different values for parameters K and α on the
quality of the generated embeddings. To do so, we separately analyze their impact
on the macro-F1 scores achieved by the binary classifiers. Hereafter, for the sake of
brevity, we will report only the results achieved on a representative dataset (IT2). It
is the largest and more balanced dataset among all the tested ones. Similar results
were achieved on the other datasets.

The parameter K indicates the number of neighbors considered when linking
words in the source language to those in the target language. The higher K, the
more word relationships are included in the word graph. As a drawback, when K is
relatively high, the model may include less relevant or unreliable links. Furthermore,
since the connectedness of the graph increases, the complexity of the sentiment
propagation process increases as well (see Section 2.4.4).

Figure 2.2 shows how the macro-F1 score varies as K increases, for α = 0.4.
The plot highlights a knee in the curve for K = 5. This implies that, for the purpose
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Dataset Metric Our method Dong and De Melo
SVM RF SVM RF

cs
Precision 0.7347 0.7326 0.7203 0.7547

Recall 0.7593 0.712 0.7474 0.7177

de
Precision 0.6797 0.7481 0.6563 0.7735

Recall 0.7372 0.6766 0.7131 0.6507

es
Precision 0.6111 0.7747 0.4010 0.6181

Recall 0.6154 0.5428 0.5 0.5172

fr
Precision 0.7025 0.7301 0.6488 0.6784

Recall 0.7019 0.7309 0.6403 0.6760

it
Precision 0.8494 0.8168 0.6750 0.8030

Recall 0.8071 0.7765 0.7637 0.6336

nl
Precision 0.6868 0.6651 0.6059 0.6491

Recall 0.704 0.6317 0.6162 0.6022

ru
Precision 0.6805 0.6623 0.7151 0.7362

Recall 0.7221 0.6025 0.7634 0.6845

IT1
Precision 0.8441 0.8425 0.7442 0.7314

Recall 0.8439 0.8424 0.7436 0.7312

IT2
Precision 0.8442 0.8428 0.7416 0.7495

Recall 0.8441 0.8427 0.7415 0.7495

Table 2.5 Results in terms of macro-precision and macro-recall, for embeddings generated
by the proposed methodology (Our method) and with those introduced in [2] (Dong and De
Melo)
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Fig. 2.2 Macro-F1 score as a function of K, on dataset IT2

of sentiment classification, using a larger value of K does not yield significant
performance improvements. Notice that, to remove the less reliable links, the word
graph is pruned early by enforcing the cut-off threshold value α . The impact of the
pruning phase is higher when using large values for K.

We separately analyze the impact of the parameter α . Enforcing low α values
potentially allows the presence in the graph of “noisy” links, while setting high
α values limits the connectedness of the graph. Given an edge (a,b,w) ∈ E, the
edge weight w is computed as the cosine similarity between a and b [37]. The
cosine similarity takes absolute values between 0 (orthogonal vectors) and 1 (parallel
vectors). Figure 2.3 shows how the macro-F1 score varies as α increases. Due
to limitations in the available computational resources, we study the behavior for
values of α ≥ 0.4. The empirical results show that lower values of α produce the
best results, with α = 0.4 being the best solution we identified due to hardware
limitations in terms of memory. When high α values are set (specifically, for values
of α ≥ 0.7), the pruning phase is not beneficial. This means that a noisier graph does
not significantly affect the quality of the embeddings learned. This can be explained
thanks to the lower importance that these “noisier” connections are assigned. Since
we identified limitations in terms of memory, Subsection 2.4.4 provides a more
detailed analysis of the space complexity of the problem.
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Fig. 2.3 Macro-F1 score as a function of α , on dataset IT2

2.4.4 Complexity analysis

The most computationally intensive step of the proposed method is the sentiment
propagation on the word graph based on Stochastic Gradient Descent. It entails com-
puting the gradient of the loss function described in Section 2.3 and then iteratively
updating the sentiment polarities until a local minimum is reached.

To exploit the hardware optimizations available for matrix computations, the
gradient can be computed on the entire matrix, rather than separately for each weight.
Specifically, to process the information embedded in the word graph, an adjacency
matrix A is defined. Each matrix value Ai j indicates the weight of the edge linking
two arbitrary words xi and x j. If the edge does not exist, the corresponding matrix
value is zero. Since graph connectedness is bounded by the cut-off threshold α , the
adjacency matrix is rather sparse (the higher α , the sparser A will be). To compute
the gradient of the loss function adopted, the adjacency matrix of the word graph
is loaded into main memory as a dense matrix. It should be noted that, despite the
possibility of representing large sparse matrices efficiently (i.e. by storing only the
non-zero elements), the gradient computation requires the dense version to be used.

Let N = |V0| be the size of the initial vocabulary V0 in the original language
(English, in our case). For each word in V0, K neighbor words are selected from
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the target language. Hence, in the worst case, the word graph contains (K + 1)N
words. However, since part of the neighbors in the target languages may overlap we
can assume, to a good approximation, that each word in the original language has
one translation in the target language, yielding 2N words in the resulting graph. The
corresponding adjacency matrix consists of 4N2 cells. Let us assume that B bytes are
used to represent each floating point number (B = 4 or B = 8 in modern systems),
the total adjacency matrix size is 4BN2. The size N of the initial English vocabulary
ranges between 80,000 and 100,000 words. Thus, the required memory allocation
ranges between 100 and 300 GB (B = 4, N = 80k and B = 9, N = 100k respectively).

A possible way to optimize the process is to identify connected components
and to run the Stochastic Gradient Descent on each sub-graph separately. This
approach is feasible and exact because nodes and edges outside from each connected
components do not influence sentiment propagation within the sub-graph itself. This
reduces the size of the processed adjacency matrices, which are stored into main
memory: as such, we use this optimization during the gradient descent process.
However, as α decreases, fewer – and larger – connected components emerge in the
word graph. Therefore, as discussed in Section 2.4.3, in the experimental evaluation
reported in this study we have decided to limit the computational complexity of the
propagation process by properly setting the K and α parameters.

2.4.5 Deep learning comparison

We additionally tested the quality of the output sentiment embeddings by adopting the
same deep learning methodology proposed in the original paper [2]: a Dual-Channel
CNN (DC-CNN) model. The architecture is described in detail in the original paper.
The main idea behind this architecture is to use two separate convolutional models
to process word and sentiment embeddings, through 1D convolutions. The result of
these separate models are then merged and used as input of a final fully-connected
layer. We adpoted an architecture that replicates the one described in the original
paper, including all hyperparameters. A recap of the architecture is shown in Figure
2.4.

Table 2.6 recaps the results obtained, in terms of macro-F1 score, for the various
datasets. The two main contributions of this comparison are in terms of (1) having a
1D convolution applied to address the sequentiality of the data and (2) having word
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Fig. 2.4 Architecture used for the DC-CNN. The same sentence {w1,w2, . . . ,w10} is encoded
using both word and sentiment embeddings. 1D convolutions are applied separately. The
final, pooled feature maps are then concatenated and fed to a fully-connected layer.

Dataset Our method Dong and de Melo
DC-CNN CNN DC-CNN CNN

cs 0.9311 0.9226 0.9241 0.9149
de 0.8701 0.9046 0.8838 0.8874
es 0.6845 0.6435 0.6834 0.6611
fr 0.9168 0.9078 0.9104 0.8988
it 0.9339 0.9361 0.9365 0.9285
nl 0.7087 0.7352 0.7195 0.7273
ru 0.9258 0.9141 0.8978 0.9187

IT1 0.9272 0.9526 0.9217 0.9471
IT2 0.9366 0.9539 0.9305 0.9539

Table 2.6 Results in terms of macro-F1 score for the proposed methodology and the competitor
for the sentiment analysis task solved with a DC-CNN (or CNN in the case of no word
embeddings being passed).
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embeddings in addition to the sentiment ones. To quantify the extent to which these
two changes affect the results, an additional CNN model that only receives as input
the sentiment embeddings has been used (labelled as CNN). When comparing the
results with the ones in Table 2.4, we immediately notice that, in this case, there is a
significant boost in the performance on the task. What is not affected is the fact that
the proposed embeddings still outperform the ones from the original work. However,
the gap between the two methodologies is not as significant: this is representative
of the fact that a more sophisticated model and additional vector representations
can provide significant aid. Quite interestingly, the addition of the word embedding
information does not always improve the quality of the results obtained and, in some
cases, it actually produces worse performance.

Finally, we note that the performance shown in Table 2.6 for the results of
the work in [2] have been obtained through a re-implementation of the original
architecture. In [2], the only metric for which the results are reported is the accuracy:
given the strong class imbalance, we decided to instead focus on the F1 score,
as already argued. Although it is possible to reconstruct some upper and lower
boundaries for one classification metric given another one (as we explored in a
separate work, [39]), we decided to instead use the same model implementation for
both the proposed embeddings and the ones presented in [2]. This is to guarantee
that the only variable that is evaluated is the quality of the sentiment embeddings
and not other implementation details that are beyond our control.

2.5 Discussion

The original solution proposed in [2] already addressed the “extreme adaptation”
task that is learning information across languages. It did so by providing a solution
that did not require any kind of labelled data in the target language. However, it still
relied on requiring a well-established lexicon that translates words from the source
to the target languages. With the proposed solution, instead, we no longer need this
kind of lexicon, and instead rely on having word embeddings that have already been
aligned.

Indirect lexicon dependency For the sake of completeness, we should note that
the alignment process does require having a lexicon that maps source to target words.
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As explained in [26], the lexicon is used to learn a transformation that can be applied
to the target embedding, so as to make it aligned to the source one. It can therefore
be argued that a lexicon is required nonetheless. However, we highlight the fact
that the lexicon needed for the alignment does not need to be exhaustive: only a
few points can be used to produce a transformation. After the mapping function
is applied, we can leverage the transformed embedding to infer more sophisticated
relationships between words in the source and transformed target, that where not
necessarily known in the original lexicon. Finally, we note that the learning process
for both source and target word embeddings only requires unlabelled data – we can
therefore learn good embeddings even for languages that do not happen to have large
labelled datasets (the full learning approach is described in [40]).

Multiple source and destination domains Both the proposed methodology and
the one presented in [2] support having multiple source and destination domains.
Our methodology is not concerned with having agreement between the various
languages, since all embeddings are aligned to the same vector space. The main
limitation that can occur when learning with multiple source/target languages is
given by the memory required for the gradient descent process to occur. As already
discussed, increasing the number of words and connections affects the scalability of
the proposed approach. Although introducing new domains would grow the size of
V , we can argue that the proposed solution would not be significantly affected from
a practical standpoint. We already discussed that the gradient descent algorithm can
be applied to each connected component independently of all others. Adding words
from multiple languages is expected to introduce new nodes in the graph but we can
expect the connectedness of the “original” (i.e. with only two languages) graph to not
change by much, if we assume that words from additional languages roughly belong
to a single connected component: this is a reasonable approximation, since words
across different languages will still typically connect to the same few words. Thus,
we expect the resulting connected components to grow proportionally to the number
of new domains added. If instead the new domains consistently “merged” previously
disconnected components, we could instead argue that a multi-domain approach
would not be as applicable. We have additionally introduced two parameters, K and
α , that allow controlling for the connectedness of the graph.
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Generalization to other tasks The decision of focusing on the sentiment analysis
task is mainly piloted by the already existing works in the field. Within NLP, the
same propagation technique can be adopted to propagate information on domain-
specific word embeddings, i.e. embeddings that have been fine-tuned to reflect the
peculiarities of a specific domain [41] (e.g. scientific writing, or social media posts).

Interestingly, a similar technique can be applied to fields outside of the scope
of NLP, when the same entity can be found in different contexts. For example, in
graph machine learning, separate graphs may contain the same nodes. For example,
a user may have accounts for multiple social network websites, and is thus part of
different social network graphs. Existing techniques allow for the learning of node
embeddings (e.g. node2vec [42], DeepWalk [43]). The proposed technique could be
adapted to allow for the estimation of information for nodes that are not found in
one of the two graphs: in other words, we could propagate the information learned
on users in one graph to users in the second graph.

Other options could also be available for all those scenarios where we have
entities that can be represented with multiple vector representations, across differ-
ent contexts, and for which we have some kind of information that needs to be
propagated.



Chapter 3

Fast training of self-organizing maps

Within the context of limited labels learning, unsupervised learning definitely has a
key role, since it is the only field that covers situations where no label whatsoever
is available. Instead, algorithms infer common properties found within the data
(e.g. frequent patterns). Various techniques approach this task differently. Self-
organizing maps (SOMs) are one such technique that offers interpretable results by
identifying topological properties in high-dimensional datasets and projecting them
on a typically 2-dimensional grid.

More specifically, SOMs are a type of artificial neural network used for unsu-
pervised learning. They consist in a (typically) 2-dimensional grid of nodes, each
with its own set of weights. During the training process, these weights are iteratively
updated, becoming centroids for the clusters that emerge in the data. This process
maintains the dataset’s topological properties on the 2D grid. Centroids that are close
in the input space will be close on the grid and further away from dissimilar ones.

The purpose of self-organizing maps is to model a possibly high-dimensional
problem using a low-dimensional representation. This offers insights on the dataset
properties and, by building a 2-dimensional grid, it may be adopted as a useful
visualization technique. Additionally, the trained nodes can be used for quantizing
the points in the dataset (e.g. for compression, or bucketing purposes).

In recent years, self-organizing maps have been used in a large number of works
in a variety of fields (among the others, hydrology [44], physics [45], cytometry [46]
and sociology [47]). In particular, all of these works leverage the self-organizing
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map’s interpretability by extracting 2-dimensional visualizations and making use of
the topological properties that self-organizing maps learn.

Self-organizing maps have the interesting property of being one of the few
clustering algorithms that (1) is linear in the number of data points available and (2)
allows for online learning (i.e. incrementally learning as new data arrives, without
necessarily storing the entire dataset at any given time). Because of these properties,
SOMs can be used for unsupervised learning of large datasets. This is particularly
convenient considering that – in general – it is fairly easy to gain access to large
quantities of unlabelled data, since no human-assigned labels are necessary.

Despite the linearity of the training time w.r.t. the number of input points, the
constant factor introduced by SOMs may sometimes make it infeasible to learn
useful information within a reasonable amount of time. During training, each data
point needs to be compared against each of the nodes of the grid. The size of this
grid defines how granular the results will be. Hence, a larger self-organizing map
typically offers better insights, but at the cost of a higher training time.

Part of this work of thesis has been focused on developing a fast approach to
train self-organizing maps. We propose a training algorithm for self-organizing maps
that relies on 2 steps. In the first step, a fraction of the available dataset is used to
train a smaller SOM. The weights of the model learned this way are then used to
initialize the weights of the larger, final SOM. In the second step, the larger SOM is
fine-tuned using the remaining fraction of the dataset.

This approach maintains performance comparable with standard self-organizing
maps, but at a fraction of the training time. Thus, larger problems that would not
have otherwise been tractable, become approachable. We analyze the performance of
our approach in detail, by considering several factors. This allows us to both define
meaningful values for the required hyperparameters, and understand how the model
works in specific situations (e.g. when data is scarce).

3.1 Related works

Self-organizing maps were first introduced in [15]. Originally, weight initialization
for the nodes was done randomly and resulted in already well-performing maps.
Another established approach is to perform the initialization based on the adoption
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of the first principal components. This approach has been shown to have substantial
practical advantages over alternative ones [48].

These approaches to initialization, though, introduce a significant computational
overhead to the training of the self-organizing map. Further studies focused, instead,
on fast initialization techniques that helped SOMs converge more quickly. Among
these, [49] adopts the centroids extracted with the k-means algorithm as initial
nodes for the map (with a heuristic for the placement of the nodes to preserve some
topological order). Then, the weights are fine-tuned with a partial training of the
SOM. Another approach, presented in [50], consists in the following three steps:
(1) identify – within the dataset – points that are furthest apart from one another
(thus building a “hyperbox” that wraps the points in the input space) and use them
as initial weights for the corners of the grid, (2) assign the weights of the edges of
the grid as an interpolation of the corner weights and (3) fill the rest of the weights
through similar interpolations. This approach, as the authors point out, requires
O(M2) comparisons (M being the number of points in the dataset) and is sensitive
to outliers. To work around these problems, their solution is once again based on
using an initial k-means step to quantize the dataset. These previous works address
the same problem we are facing in this work. However, our approach does not rely
on k-means nor any other algorithm other than self-organizing maps. The proposed
approach will be shown to train significantly faster than k-means: in these terms, the
proposed approach is shown to be a better candidate for larger datasets.

There have also been efforts toward building distributed versions of self-organizing
maps to cut down the training time. One such work is presented in [51]. The SOM
is divided into non-overlapping smaller maps that are distributed across different
workers. For each point of the training set, each worker first identifies the local
“winning” node (see Subsection 3.2.1 for more details), then all workers are synchro-
nized to identify the global “winner”. Finally, with this knowledge, each worker
updates its map’s weights. The union of all maps results in the final SOM. More
recently, other distributed approaches to self-organizing maps have been proposed
in [52]. They introduce a Map-Reduce approach where the map function is tasked
with identifying the winning neuron for each point of the dataset (which is split
across multiple workers) and emitting a (winning node, input point) key-value pair.
Then the reduce function performs batch updates for each of the self-organizing map
nodes. Both these distributed approaches leverage multiple workers to distribute the
training of standard SOMs. Our approach is instead based on a single worker. Since
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the proposed algorithm is based on the training of standard SOMs, our approach can
be easily distributed across multiple workers using either [51] or [52].

3.2 Fast Self-Organizing Maps Training

This section will first offer a brief formal introduction to self-organizing maps, with
considerations on their training complexity, followed by the presentation of the
proposed 2-step approach to self-organizing maps training.

3.2.1 Self-Organizing Maps

A self-organizing map is comprised of a set of neurons, or nodes, displaced on a
2-dimensional grid (for simplicity, we assume the grid to be a square of Q×Q nodes,
but all considerations made can be extended to rectangular grids). Let X ∈ RM×N

be the available dataset, where each of the M rows represents a point in RN . Each
node n j of the SOM is associated with a weight vector w j ∈ RN , typically randomly
initialized. Additionally, at any step t of the training phase and for each node n j a set
of neighbors N(n j, t) can be defined (i.e. a set of nodes close to n j on the grid). The
time dependency is necessary to allow for changes in the neighborhoods throughout
the training (e.g. by shrinking them during later steps). During the training phase,
for each point x ∈ X , the closest node nc according to a distance (e.g. the Euclidean
one) is identified as:

nc = argmin
n j

∥w j − x∥ (3.1)

nc will also be referred to as the “winning” node. The weights of the nodes in the
neighborhood of nc, {w j : n j ∈ N(nc, t)}, are updated to better resemble x:

w j(t +1) = w j(t)+α(t)β jc(t)(x−w j(t)) (3.2)

where α(t) is a learning rate and β jc(t) is a coefficient that dampens the learning as
the neurons get further away from the winner. By training the neighboring nodes as
well as the winning one, a topological order forms among neurons, where nodes that
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Fig. 3.1 16×16 trained SOM

model similar points are close to one another. An example of a 16×16 SOM trained
with the MNIST dataset (see Section 3.3 for more details) is shown in Figure 3.1.
Each cell of the grid represents one of the nodes trained by the self-organizing map.
The 784 pixels that represent each node (28× 28, the resolution of each MNIST
digit) are the weights learned. The grid shows how weights have evolved to resemble
samples of the dataset, with similar shapes being close to one another. An interesting
example of how “similar” nodes end up close to one another is the following. The
first row of Figure 3.1 has nodes that resemble the digits “7” and “1”. “1”s that
present a slant are placed closer to the “7”s because of their greater similarity.

Figure 3.2 shows the first three training steps of a self-organizing map. Figure
3.2a shows the initial random weights. Figure 3.2b shows how the weights are
updated after the left-most of the inputs in Figure 3.2e is used for the training. One
of the random nodes has a slightly higher similarity to the input. The weights of this
node are then updated (based on Equation 3.2) to better resemble the input, along
with the weights of its neighbors. The same happens in Figures 3.2c and 3.2d for the
second and third inputs.

During the training phase, for each of the points in the dataset, the distance from
each node of the grid is computed. For a square Q×Q grid, MQ2 operations are
performed over the entire training set. This sets an upper bound to the maximum
size of the SOM, for a fixed time budget. Since having a larger number of nodes in
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(a) Step 0 (random initialization) (b) Step 1

(c) Step 2 (d) Step 3

(e) Inputs

Fig. 3.2 First three weight updates during the training of an 8×8 SOM. In (e) are depicted
the 3 inputs used for the 3 training steps.



3.2 Fast Self-Organizing Maps Training 35

a SOM helps better represent a dataset (and build more meaningful clusters), this
limitation hinders the potential adoption of SOMs for processing very large datasets.

3.2.2 2-Step Training Approach

To reduce the time complexity of SOM training, we propose to split the training
phase in two steps. The first consists in training a smaller SOM, to produce a “coarse”
grid with a low number of nodes that represents an approximate topology of the
dataset. As a second step, this grid is extended to the final SOM size (with a larger
number of nodes), to capture local topologies (e.g., sub-clusters that form within
any of the coarse clusters). Hence, the initial effort of converging from the entire
N-dimensional input space to its meaningful portions is done on a smaller number of
nodes, thus requiring a significantly lower computational effort.

To achieve this model expansion for a Q×Q map, a single P×P (where Q =

nP,n ∈ N) SOM has been trained with a fraction η of the original dataset (Figure
3.3a shows one SOM with P = 8). Then, the trained nodes are replicated n2 times
in their locality, thus building a Q×Q SOM (as shown in Figure 3.3b, where n = 2
and the replicated nodes are the ones from Figure 3.3a). This SOM is then trained
with the remaining 1−η portion of the dataset. This fine-tuning process is shown in
Figure 3.3c. With this 2-step training, only a fraction of the training requires working
on Q2 nodes.

In this work, we only consider a single training epoch (i.e. each data point is only
seen once). This is a necessary constraint for online learning. For smaller datasets
the training can span multiple epochs. The proposed methodology can be easily
adapted to this scenario, by taking η as being the fraction of the total iterations used
for the training of the coarse SOM.

Another assumption made during this work, as explained above, is that n ∈ N,
i.e. the side of the larger SOM is a multiple of the side of the small SOM. This
does not necessarily have to be the case, but it does simplify the notation used when
explaining the algorithm. In the general case, we could pick any n with the constraint
that Q = nP ∈ N. In that case, the replication process that occurs after the first
training step requires some minor adaptation when choosing where to propagate
each of the original nodes. Alternatively, the replicated nodes could be obtained as a
combination of neighboring nodes (e.g. as with SMOTE [53]).
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(a) An 8×8 SOM. (b) A 16× 16 SOM with replicated nodes from
Figure (a). In red are the 4 nodes replicated from
the single node highlighted in red in Figure (a)

(c) A 16× 16 SOM after the fine-tuning of the
SOM from Figure (b)
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The complexity of training a single Q×Q SOM, as already stated, is ∝ MQ2.
Instead, building a single P×P map with a fraction η of the dataset is ∝ ηMP2. If
the small SOM is then replicated n2 times to build a Q×Q SOM (with Q = nP) and
the resulting grid is trained with the remainder of the dataset (i.e. 1−η), the required
time is ∝ (1−η)Mn2P2, resulting in a total training time ∝ (η(1−n2)+n2)MP2.
In terms of complexity, both approaches are O(MP2), but the proposed approach
reduces the training time by a factor ρ , defined as:

ρ(n,η) =
n2

η +n2(1−η)
(3.3)

Thus, it is evident that η = 0 is a special case in which the entire dataset is used
to train the large SOM and none of it is used to train the small one. In this case
ρ(n,0) = 1, which is equivalent to training a SOM with the standard approach. The
opposite edge case, η = 1, is the one where the entire dataset is used to train the
smaller SOM, resulting in a time gain of n2. In this case, no fine-tuning is done on
the large SOM. In terms of performance (including training time), the resulting SOM
is identical to a P×P one.

Additionally, for a fixed Q, a larger value of n implies a smaller P, thus leading
to a faster training of the smaller SOM. The following limit holds:

lim
n→+∞

ρ(n,η) =
1

1−η
(3.4)

This introduces a boundary on the training time reduction that can be achieved with
the proposed approach. This boundary corresponds to the time gain that can be
obtained by only training the larger SOM on the smaller fraction of data (i.e., a
scenario in which the training time of the smaller SOM is negligible).

3.2.3 Parallel computing considerations

Differently from other pre-training methods presented in the related works, the 2-step
approach is based on the training of two standard self-organizing maps, without
other time-consuming operations involved. This means that existing works on the
parallelized training of SOMs (e.g. [51]) can be applied to the training of the two
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SOMs of our approach for a further training time reduction. This reduction is
proportional to the number of parallel workers.

We argue that, even when trained on a single worker, the proposed method can
achieve competitive training time when compared to other distributed methodologies.
In [51], assuming that the training of a Q×Q SOM is distributed onto m2 parallel
workers, the training time for the entire SOM will be ∝ MQ2/m2, since m2 smaller
SOMs are being trained simultaneously. This reduces the training time of a large
SOM down to the time needed to train a SOM that is 1/m2 of the original one.

The only additional time the 2-step approach (with n = m) requires, compared
to the distributed approach, is the time it takes to train a large SOM with a small
(20%, for η = 0.8) fraction of the dataset. Hence the 2-step approach, which runs on
a single worker, may reach comparable training times with respect to the distributed
approach in [51] requiring m2 workers.

3.3 Experimental results

In this section, standard SOMs (which will be considered as being the baseline) are
compared to self-organizing maps trained with the proposed 2-step approach. The
comparisons are based on the following metrics:

• Training time: while Equation 3.3 already defines the theoretical time im-
provement, the actual training time is experimentally measured to verify its
accordance with the expected result.

• Quantization error: SOMs can be used to quantize a set of points with the
trained nodes. Given a dataset X , the quantization error qe is defined as:

qe =
1
|X | ∑

x∈X
∥x−wc∥ (3.5)

This is an indication of how well the map can represent a given dataset with a
limited number of “buckets”.

• Accuracy: given a labelled dataset, the trained SOM can be used as a classifier.
After training, each (labelled) input in the training set is assigned to a node
(the winning one for the given point). Each node is then assigned a class label
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based on the labels of the points that have been assigned to it (with majority
voting). Next, new points can be assigned the label of the node that is closest
to them. For this classifier, its accuracy (i.e., the fraction of correctly classified
elements) can be computed. We note that other metrics could be used for
the evaluation of a cluster assignment based on a known ground truth, for
example the Rand index [54]. The Rand index works by identifying all pairs of
points that belong to both the same cluster and the same class, or that belong
both to different clusters and different classes. However, SOMs can produce
multiple clusters (nodes) that all map to the same class (for example, multiple
nodes represent each digit in Figure 3.1). Because of this, the Rand index (and
metrics that work similarly) would fail to capture the quality of the clustering.

Both quantization error and accuracy have been computed on a separate test set.

For each experiment, three different SOMs have been built: a baseline (i.e. the
“standard” SOM) and two SOMs built with the proposed technique, respectively with
n = 2 and n = 7.

The experiments have been performed on a machine running Ubuntu 16.04,
equipped with an Intel Xeon X5650 (6 cores, 12 threads) @ 2.66 GHz and 32 GB of
memory. The source code has been developed using Python 3.5, with the MiniSom
library [55] for the implementation of self-organizing maps and scikit-learn [56]
for the comparisons with k-means (an implementation of the optimized algorithm
presented in [57] has been used, unless otherwise stated). The main dataset used is
MNIST [58], which is comprised of 28×28 hand-written digits from 0 to 9, divided
into a training set of 60,000 entries and a test set of 10,000.

The presented experiments will cover various aspects of the proposed approach.
First, analyses of the performance as η and Q vary are presented in Subsections
3.3.1 and 3.3.2. Then, Subsection 3.3.3 explores scenarios with smaller datasets.
The baseline and the proposed approach are then compared to another clustering
technique, k-means, in Subsection 3.3.4. Datasets other than MNIST are used in
Subsection 3.3.5 as a validation of the proposed approach and finally, in Subsection
3.3.6, the algorithms are run on larger datasets to assess their scalability.
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3.3.1 Effect of varying η

η is the fraction of dataset used to build the small SOM. Hence, 1−η is used to
train the larger SOM.

Two special cases are given:

• η = 0. In this case, the entire dataset is used to build the large SOM. The
training time is expected to be the same as the one for the baseline case.

• η = 1. In this case, the entire dataset is used to build the small SOM. The
training time should be reduced by a factor of n2 (as only the small SOM is
trained). The performance in terms of accuracy and quantization error are
expected to be the most degraded, since this corresponds to reducing the SOM
size by a factor of n2 (the final SOM will still have the expected number of
nodes, but they will be repeated in groups of n2).

The performance for 0 < η < 1 are expected to be in between these two edge
cases. Indeed, Figures 3.4a, 3.4b and 3.4c show this behavior for 28× 28 SOMs
(this size has been chosen as it presents satisfactory results when trained with the
baseline approach, as well as being suitable for n ∈ {2,7}).

In terms of training time, the results behave as expected. The case n = 7 is faster
than n = 2. The ratio of the time curves is also in accordance with Equation 3.3,
when computing ρ(7,η)/ρ(2,η) (i.e., the expected ratio of the training times for
the two values of n, as a function of η).

In terms of accuracy and quantization error on the test set, a significant degrada-
tion occurs for η > 0.8. This happens because of the insufficient data for the training
of the larger SOM. For this reason, the study of the performance as Q changes have
been performed for η = 0.8 (in this case, based on Equation 3.4, the maximum time
gain possible should be 5x).

3.3.2 Effect of varying Q

Varying Q alters the shape of the final SOM. It drives the time complexity with a
squared factor, making the problem intractable for large values.
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In this analysis Q ranges between 5 and 60. The selection of this range is based
on the heuristics adopted in literature, recommending a number of nodes ≈ 5

√
M (M

being the cardinality of the dataset) [59]. For MNIST, it corresponds, approximately,
to a square map with Q = 35. Considering that, as mentioned in [60], a “trial-and-
error” approach – if feasible – may identify the best size for the SOM, the range
5÷60 has been used for more exhaustive results.

The most significant result is related to training time, as shown in Figure 3.5a.
The reduction in time with the proposed technique is in accordance with the one
expected from Equation 3.3. In particular, ρ(2,0.8) = 2.5, and the experimental
training time gain is approximately 3x, while ρ(7,0.8)≈ 4.6, the same as the rounded
experimental result.

The second significant result involves quantization error (Figure 3.5b) and accu-
racy (Figure 3.5c). As expected, as Q grows, the quantization error reduces and the
accuracy increases. It is particularly interesting, though, that the degradation of the
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performance for the proposed SOMs is particularly limited, if not negligible in some
cases (on average, the degradation is smaller than 1% of the baseline). Hence, this
effect, combined with the lowered training time, yields similar performance with
a much lower computational cost or, with the same cost, it allows achieving better
performance, by training a larger SOM.

3.3.3 Behavior with low-cardinality datasets

Intuitively, the 2-step approach leverages a large portion of data to “identify” the
regions of the high-dimensional space where the data is distributed, displacing the
centroids of the small SOM there. Then, the centroids are replicated and fine-tuned
with the remainder of the data. An argument could be made that the proposed 2-step
approach only works because the fraction 1−η of data used for the final fine-tuning
is large enough to learn the “large” model in its entirety, and that the training of the
smaller SOM may not be beneficial to the overall training.

As such, an important scenario to be studied is the one where only limited data is
available. To further explore this case, a new kind of experiment has been devised.
Here, Q and η have been fixed (to 28 and 0.8 respectively). Then, subsets of the
entire dataset have been used to (1) train a standard SOM and (2) apply the proposed
2-step approach. These subsets used are fractions of the original dataset X , ranging
from 0% (i.e. an “empty” training set) to 100% (i.e. the entire dataset) of X . Let ζ

be the used fraction of X . Then, the proposed approach exploits a fraction ζ η of the
dataset for the training of the small SOM, and ζ (1−η) for the large SOM.

The expected result in terms of training time is the same one as before, where
the training of the 2-step approach is significantly faster than the baseline approach.
In this case, since n and η are fixed, the training time is only linearly dependent on
ζ . Indeed, Figure 3.6a shows this linear dependence.

In terms of accuracy and quantization error, the performance of the baseline
and of the proposed approach are expected to be similar as ζ varies. A divergence
between the curves would imply that the 2-step model only provides satisfactory
results because the fraction 1−η of data used for the final fine-tuning is still sufficient
to learn a model from scratch (thus making the proposed approach no better than a
random initialization). As shown in Figures 3.6b and 3.6c, though, there only is a
slight, constant performance degradation between the two models. This is evidence
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of the fact that there is indeed an advantage in using the 2-step approach that is not
only due to the dataset size.

3.3.4 Comparison with k-means

To understand how the proposed SOM approach fares in absolute terms, a perfor-
mance comparison with other state-of-the-art unsupervised techniques is needed. Of
the many unsupervised algorithms, k-means [61] is one of the most relevant for this
comparison, because of the many traits it shares with self-organizing maps. Indeed,
both algorithms rely on the definition of the number of clusters to be identified (k for
k-means, Q2 for SOMs) and both introduce an iterative approach where centroids are
identified by repeated adjustments. The two models differ in that k-means does not
allow for online training, since it requires the entire dataset to compute the centroids
at each iteration.

Self-organizing maps have an advantage over other clustering algorithms: The
output of SOMs is a 2-dimensional grid in which nodes are distributed based on
the similarity among one another. This is not the case with k-means, which instead
provides points in a (possibly) high-dimensional space, with no relationships between
one another. The output of self-organizing maps proves particularly useful when
used in combination with visualization techniques for interpreting the results (instead
of reducing the dimensionality of the results through other typically computationally
expensive algorithms, such as PCA or t-SNE), or as a pre-processing step where
the points are distributed into buckets that have a concept of neighborhood and of
distance (e.g. Manhattan) in a low-dimensional space.

Comparisons between various unsupervised algorithms have already been done
extensively in literature. One study in particular [62] is focused on comparing self-
organizing maps and k-means. The results presented in that work highlight how, on
the datasets used for the study, k-means has a slight performance advantage when
compared to SOMs. As such, we expect this to also be the case for the proposed
2-step SOM.

The performance of the three algorithms (k-means, standard and 2-step SOM) are
compared in terms of training time, quantization error and accuracy. As expected, k-
means performs better than either SOMs in terms of quantization error and accuracy,
as shown in Figures 3.7b and 3.7c. In particular, k-means is approximately a constant
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2-3% more accurate than SOMs for larger values of Q, completely in accordance
with the results presented in [62].

In terms of training time, instead, two important clarifications needs to be made.

• Most implementations of k-means are executed multiple times, each with a
different initialization. This is done to help reduce the impact of local minima
solutions. To present a fair comparison, the k-means results presented are
all based on a single initialization. The results in terms of accuracy and
quantization error do not vary significantly when using multiple initializations,
but the training time for T initializations is obviously T times that of a single
initialization.

• The adopted k-means implementation parallelizes part of the workload, by
distributing it across 12 concurrent workers1. The adopted SOM library, on

1Because of the 12 cores used for the experiments.
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the other hand, runs a single worker. Running k-means without parallelization
leads to heavily slower training times when compared to self-organizing maps
(so much so that a comparison between the them would be meaningless).
Hence, only the parallel training times are reported for k-means.

Figure 3.7a shows the training time for the different algorithms. It is particularly
interesting that, with a standard implementation, self-organizing maps are slower than
the parallelized version of k-means. This, paired with the slight underperformance
in terms of other metrics, made SOMs not competitive with other unsupervised
algorithms.

The proposed 2-step approach, on the other hand, is faster than k-means. Ad-
ditionally, as already mentioned, SOMs introduce a level of interpretability that is
missing from k-means and other unsupervised techniques. While this interpretability
comes with a slight degradation in performance, this trade-off is still useful for those
domains where data mining techniques are used in human-in-the-loop scenarios.

3.3.5 Additional datasets

To validate the proposed technique, the 2-step training approach has been also applied
to the following datasets (in addition to MNIST):

• Fashion-MNIST [63]. A dataset of fashion items (e.g. shirts, trousers, bags)
that maintains the same image size (28× 28 grayscale), the same train-test
splits (60,000 training points, 10,000 test points) and the same number of
classes (ten) as MNIST. This is intended as a more challenging alternative to
MNIST.

• CIFAR-10 [64]. A collection of 32×32 color images divided into 10 categories,
with a training set of 50,000 samples and a test set of 10,000.

• Character Trajectories [65]. A UCI dataset that contains a collection of multi-
ple labelled samples of pen tip trajectories recorded while writing individual
characters. For each character, three time series are collected: the pen tip
velocity for the x and y axes, and the pressure applied to the pen tip. The
dataset is available in a normalized form, but with various time series lengths
(depending on how long it took to draw the character). For uniformity, all
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signals have been upsampled to match the longest time series available (205
samples). The training/test split ratio has been set to 6/1 (i.e. the same used
for MNIST). The dataset contains the data for 2,858 hand-written characters,
each belonging to one of 20 classes. Given the low number of rows for this
datasets, all algorithms have iterated 10 times over the training set.

The results obtained and the SOM configurations are displayed in Table 3.1. The
results obtained on these additional datasets are consistent with the ones presented
for MNIST. A significant (up to 8x for (η ,n) = (0.9,7)) training time speed-up
occurs for the 2-step approach, at the cost of a slight degradation in performance.
In terms of accuracy, this degradation is ≈ 1% for all cases, with the exception of
Character Trajectories. For that dataset, the performance degradation is slightly
more impactful – 2 to 4% less than the baseline case. Considering that the test set
for this dataset is comprised of only 409 samples, every misprediction has a more
significant impact on the performance degradation compared to the other datasets.
Similar considerations can be made in terms of quantization error.

3.3.6 Algorithm scalability

To assess the time gain of the proposed approach on larger scales, two synthetic
dataset have been used. These have been generated by sampling various Gaussian
distributions in a high-dimensional space. Dataset 500k includes 500,000 entries,
each in a 500-dimensional space, with a total of 50 separate clusters. Dataset 1M,
instead, contains 1,000,000 entries in a 1,000-dimensional space, with 100 clusters.

The training times have been measured for Q ∈ {50,100} for the baseline ap-
proach, for k-means and for the 2-step approach with (η ,n) = (0.8,5). Considering
that all models successfully identified the clusters in the datasets (i.e. all accuracies
are 100%), only the results in terms of training time are proposed in Table 3.2.

All 2-step versions have a training speed-up in accordance with ρ(5,0.8)≈ 4.3
(on average, the experimental factor is of 4.5, with a standard deviation of 0.1).
For both datasets, the version of k-means that implements [57] runs out of memory
before completion. Hence, the version based on [61] has been used instead. This
introduces an impactful increase in training time. This makes k-means even slower
than standard self-organizing maps: for Dataset 1M and Q = 100, the execution of
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Dataset Method Q ηηη n Training time (s) Quantization error Accuracy (%)

MNIST

baseline 28 - - 323.13 1232.71 90.29
k-means 28 - - 202.92 1162.21 94.17
2-step 28 0.7 2 136.16 1242.02 89.71
2-step 28 0.8 2 116.49 1247.04 88.96
2-step 28 0.9 2 87.95 1262.59 89.02
2-step 28 0.7 7 103.79 1243.75 89.57
2-step 28 0.8 7 73.58 1245.86 89.39
2-step 28 0.9 7 41.38 1263.18 89.07

Fashion-MNIST

baseline 28 - - 312.01 1031.78 77.93
k-means 28 - - 178.32 976.97 80.21
2-step 28 0.7 2 139.05 1037.45 77.75
2-step 28 0.8 2 111.13 1042.90 77.51
2-step 28 0.9 2 87.79 1053.60 77.20
2-step 28 0.7 7 102.89 1039.47 77.50
2-step 28 0.8 7 72.62 1044.39 77.98
2-step 28 0.9 7 41.71 1053.46 77.32

CIFAR-10

baseline 28 - - 1464.72 2394.83 32.88
k-means 28 - - 568.33 2335.88 35.16
2-step 28 0.7 2 640.77 2402.47 32.20
2-step 28 0.8 2 516.65 2407.27 32.12
2-step 28 0.9 2 373.68 2418.99 31.56
2-step 28 0.7 7 474.76 2403.36 32.12
2-step 28 0.8 7 322.18 2406.28 32.19
2-step 28 0.9 7 171.98 2421.23 31.94

Character Trajectories

baseline 28 - - 92.45 5.51 94.87
k-means 28 - - 38.20 5.45 97.56
2-step 28 0.7 2 42.81 5.93 92.67
2-step 28 0.8 2 35.44 6.25 91.20
2-step 28 0.9 2 28.28 6.68 90.71
2-step 28 0.7 7 30.84 5.94 92.67
2-step 28 0.8 7 22.36 6.27 92.42
2-step 28 0.9 7 13.10 6.73 90.22

Table 3.1 Performance on various datasets, for the baseline model (SOM), k-means and the
proposed 2-step approach, trained with various configurations of Q, η , n.
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Dataset Method Q ηηη n Training time
(hh:mm:ss)

Dataset 500k
baseline 50 - - 01:50:58
k-means 50 - - 04:25:36
2-step 50 0.8 5 00:25:14

Dataset 500k
baseline 100 - - 08:47:22
k-means 100 - - 16:52:35
2-step 100 0.8 5 01:54:45

Dataset 1M
baseline 50 - - 07:30:49
k-means 50 - - 23:54:43
2-step 50 0.8 5 01:40:46

Dataset 1M
baseline 100 - - 34:27:02
k-means 100 - - Stopped after 72h
2-step 100 0.8 5 07:26:50

Table 3.2 Performance on Dataset 500k and Dataset 1M, for the baseline model (SOM),
k-means and the proposed 2-step approach. A maximum budget of 72 hours of computation
has been provided.

k-means was stopped after 3 days, while the baseline SOM finishes in less than 35
hours and the 2-step approach in less than 8. This makes SOMs (and particularly
with the proposed approach) an attractive alternative for very large datasets.

3.4 Discussion

As already argued at the beginning of the chapter, self-organizing maps have the great
advantage of being linear in the input data size. Since it is a clustering algorithm,
no labels are necessary, which implies that large quantities of data may be easily
available (since no labelling overhead is introduced). Having a model that can handle
large quantities of data – and can do so incrementally – can often be an important
enough advantage to balance the lower performance that is typically obtained with
SOMs w.r.t. other techniques. The work proposed in this chapter goes toward the
direction of building a more efficient learning algorithm for handling unlabelled data:
the proposed approach has slightly worse performance (in terms of accuracy and
quantization error) when compared to a standard self-organizing map, but that comes
at a significant reduction in training time – 2x to 8x, w.r.t. the standard (baseline)
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approach. Larger datasets have been adopted to demonstrate how the 2-step training
can make larger problems tractable.

We additionally argue that SOMs offer a more interpretable result w.r.t. other
clustering algorithms, e.g. k-means. The interpretability of SOMs stems from the
fact that points are projected to a 2D grid, where similar points are placed in an
orderly manner. If the inputs are themselves easily understandable (e.g. images, such
as MNIST digits), the SOM can be easily adopted to produce useful explanations.

The main limitation of self-organizing maps is due to the simple representations
that can be built. However, there have been recent advancements in the topic, with
the introduction of deep self-organizing maps [66] [67]. We find these approaches
to be an interesting contribution worth investigating, to assess the extent to which
optimized training approaches can be used for those models.

We conclude this chapter with a final consideration. It is often the case that
machine learning problems are addressed by “throwing resources” at them: in other
words, significant computational power is used instead of performing more calibrated
operations. This leads to the adoption of many unsupervised algorithms that have
a significant computational cost – at times even O(n2) and higher. SOMs already
address this complexity by having a training cost linear in the number of data points
available, and allowing to build an incremental model as new data becomes available.
With the work discussed in this chapter, we would like to encourage a return to a
more reasonable application of machine learning algorithms. Instead of applying
algorithms “at all costs”, we believe that each tool should have its own range of
applications, and we show that – with some adaptations – the range of applications
of many algorithms can be extended. Given the significant impact that machine
learning can have on the environment (e.g. in terms of carbon footprint [68]), we
hope that this direction will be, with time, shared more sistematically across the
entire field.



Chapter 4

Explicit confidence-based
pseudo-labelling

The core focus of this thesis it the study of the topic of learning from limited labelled
data. In previous chapters we explored how the learning can occur with no labels
at all, or with labels from adjacent domains. We instead focus this chapter on semi-
supervised learning. The main assumption of semi-supervised learning is that there is
a limited amount of labelled data available, but a large amount of unlabelled data can
also be utilized for learning. This scenario is often encountered in practice, where the
limited availability of labelled data is due to a shortage of human annotators, rather
than a lack of raw data. Therefore, the goal of semi-supervised learning is to use the
unlabelled data to improve the learning of the underlying data distribution, and then
use the labelled data to iteratively propagate label information to new samples.

A recent approach called FixMatch [69] has been proposed for semi-supervised
learning. FixMatch leverages both weak and strong data augmentations through con-
sistency regularization, as well as the production of pseudo-labels for unsupervised
samples that the model is confident in labelling correctly. This approach effectively
combines the use of labelled and unlabelled data to improve the learning of the
underlying data distribution.

FixMatch has demonstrated state-of-the-art performance on various datasets,
including in situations where only a small number of labels are available. For
instance, on the CIFAR10 dataset, FixMatch achieves 88.61% accuracy with only 40
labelled points, which amounts to 4 points per class.
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In this chapter, we present a description of FixMatch and propose an alternative
approach called ConFixMatch, which builds upon the strengths of FixMatch by
further improving the confidence estimate used to produce pseudo-labels for the
unlabelled data. The results presented in this chapter are preliminary and have not
yet been published at the time of writing.

4.1 Related works

This work is an extension of FixMatch [69], which has been shown to achieve
state-of-the-art performance on various semi-supervised learning tasks.

FixMatch exploits elements from both consistency regularization and pseudo-
label assignment. Consistency regularization [70] [71] is a key element in recent
state-of-the-art semi-supervised algorithms. The main idea behind it is that a robust
model should produce similar outputs when provided with slightly perturbed versions
of the same input. Pseudo-labels are assigned by a model based on what it has
already learned. Because of this, pseudo-labels cannot be considered as having the
same reliability as exact labels; since exact labels are typically human-assigned or
anyway derived from a reliable source. Nonetheless, it has been shown that a semi-
supervised model can benefit from being trained from both labels and pseudo-labels
[72]. Pseudo-labels are typically used when the level of confidence that the model
has in the prediction is high. In other words, if the model is unsure as to what the
label should be for a given input, that input is not assigned a pseudo-label. The topic
of model confidence will be explored in further detail in the rest of this work.

FixMatch is trained on a loss function that accounts for both a supervised and an
unsupervised part. The supervised part of the loss function is a term that evaluates
the quality of the prediction (e.g. in terms of cross entropy) of a weakly-perturbed
input. These weak perturbations are applied to labelled inputs. Since the target
class is known for that input, the cross-entropy can be computed easily. The second
component of the loss function is an unsupervised one. Given an unlabelled input,
the model first computes the predicted class for a weakly perturbed version of the
input. Then, if the model prediction is “confident enough”, the predicted label is
used as a pseudo-label for computing the cross-entropy with the prediction over a
strongly-perturbed version of the same input. Examples of strong perturbations are
shown in Figure 4.1.
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Fig. 4.1 Examples of weak and strong data augmentations on images. From left to right:
the original input image (from CIFAR10), a weakly augmented version of the same image
(simple operations are applied that preserve the main features of the image), a strongly
augmented version (more significant operations are applied that affect the core contents of
the image).

Thus, FixMatch exploits the confidence of the model in its predictions to improve
the quality of the unsupervised part of the loss. The confidence of the model thus
plays an essential role in understanding what should or should not be used for
the training. Since a softmax activation function is applied to the output layer
of FixMatch (much like it happen for virtually all neural network-based multi-
class classifiers), the confidence used is the probability p(yi|x). In particular, the
confidence c of a prediction for a point x is quantified as maxi p(yi|x). It follows that
c ∈ [0,1]. A larger value corresponds to a larger confidence.

However, it has been shown in literature that neural networks are typically poorly
calibrated in terms of confidence [73]. In particular, models are shown to be overly
confident even for meaningless inputs [74], allowing for adversarial examples to
be misclassified with high confidence [75]. This in turn affects the quality of what
FixMatch decides to learn. In this thesis we explore an alternative way of computing
the confidence of a classifier model and assess how that decision can affect the results
achieved by FixMatch.

4.2 ConFixMatch

We thus present ConFixMatch (Confidence-based FixMatch), a semi-supervised
learning algorithm which builds on top of FixMatch , adding a stronger estimation
of the model’s confidence to improve the overall performance. Instead of relying on
the estimation of the confidence as the output of the softmax function, ConFixMatch
produces a separate output, which explicitly states the confidence of the model itself
in the prediction.
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A similar approach is used in a different context in [76]. In that work, this novel
definition of the confidence of a model is used to decide whether a data point is in-
or out-of-distribution. We apply the same principle in ConFixMatch, as explained
below.

Much like FixMatch, ConFixMatch receives an input and produces a probability
distribution over all possible classes. For supervised samples, the input will be
obtained as a weak perturbation of a point in the original dataset. For images,
such perturbation may be rotations, flips, crops. For unsupervised samples, both a
weakly augmented and a strongly augmented sample are produced from a single
input. ConFixMatch produces, for the weakly perturbed input, both a prediction
(probability distribution over all classes) and a confidence score.

If the confidence score provided by the model is large enough (i.e. if the model is
confident enough in its prediction), the cross-entropy loss is computed between the
strongly perturbed input and the pseudo-label predicted on the weakly augmented
version of the same input. We note that the main difference with FixMatch is in the
way in which the confidence score is computed: instead of being inferred from the
output of the softmax, ConFixMatch now autonomously produces a separate output.

When the model makes a prediction having low confidence, ConFixMatch pro-
vides “aid” to the computation of the model’s final output. We assume that p̂(x) is
the original output of ConFixMatch, c(x) is the estimated confidence and y is the
ground truth class for sample x. We compute the final output of the model as:

p(x) = c(x)p̂(x)+(1− c(x))y (4.1)

In this way, the aid is provided in the form of a “push” toward predicting the
correct class: for the classification case, this amounts to increasing the predicted
probability for the correct class, and lowering the predicted probabilities for all
others.

ConFixMatch can thus now receive help in making the right predictions. Without
the right incentive, ConFixMatch could collapse to a model always predicting an
output with low confidence, thus receiving significant help and achieving good
performance in terms of cross-entropy. We provide the incentive not to abuse the
external help (i.e. to only use a low confidence when strictly necessary) by adding a
penalty term on the prediction of large confidences.
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Fig. 4.2 ConFixMatch pipeline for an supervised sample. The weakly augmented sample is
classified by the model. Differently from FixMatch, the model also produces a confidence
score, which is used to adjust the final prediction.

Thus, if we refer to the original supervised FixMatch loss as ℓs, the loss for
ConFixMatch will be ℓs −λcon f log c(x). In this loss, the term λcon f represents a
penalty coefficient for using a low confidence. If λcon f is too small, the model will
receive close to no penalty when abusing the provided help, thus collapsing to a
useless model. If too large, the model does not have any incentive in requesting help.

In practical terms, the confidence is implemented as a linear combination of the
output of the second to last layer of the model, passed through a sigmoid function
to produce an output in the range [0,1]. The work in [76] instead computes the
confidence from a linear combination of the logits predicted by the model. We
choose to instead use the output of an earlier layer to leverage a richer representation
(i.e. a representation that has not already been reduced to unnormalized probabilities).

Figure 4.2 represents a diagram of ConFixMatch, when applied on a supervised
sample. The confidence is produced separately from the class prediction. Two loss
terms are extracted, to enforce the quality of the model and to produce meaningful
confidences.

When the model is used with unsupervised inputs, it will still produce a con-
fidence score for each point. In this case, no aid is provided when computing the
cross-entropy: no ground truth is known for unsupervised inputs, making it impossi-
ble to provide any kind of help. The rest of the training occurs as with FixMatch: if
the confidence is above a certain threshold, the corresponding strongly augmented
sample is used for the unsupervised training (i.e. the cross-entropy is computed
using as target the corresponding pseudo-label). Figure 4.3 represents a diagram for
this situation.
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Fig. 4.3 ConFixMatch pipeline for an unsupervised sample. The weakly augmented sample
is classified by the model. If the confidence predicted by the model is above a threshold, a
pseudo-label is produced and used to train the model, with the strongly augmented sample as
input.

Thus, the final loss function used is defined as follows:

ℓ=
1
B

B

∑
b=1

H(pb, p(y|ω(xb)))−
λcon f

B

B

∑
b=1

log c(ω(xb))+

λu

µB

µB

∑
b=1

1(c(ω(xb))≥ τ)H(argmax p(y|ω(xb)),σ(xb))

(4.2)

Where B is the batch size, µ represents the ratio between unsupervised and
supervised samples in each batch. pb represents the ground truth for point b, whereas
p(y|xb) represents the model’s prediction. ω(·) and σ(·) represent respectively the
weak and strong augmentation functions. H(·) is the per-sample loss function: in
this study, the cross-entropy function is used, but it can be generalized to others,
for different problems. τ is the threshold set on the confidence for an unsupervised
sampled to be used for the training. Finally, λu and λcon f are the two penalty terms
for the unsupervised and the confidence portions of the loss, as already discussed.
Their values can be set during the tuning of the hyperparameters.

We can expect the more significant benefits of using ConFixMatch to be obtained
at early stages of training. The model can quickly learn to leverage a low confidence
to receive the help needed to produce the final output. In this way, the predictions
that will be made will have low confidence: a reasonable assumption given the
early stages of training. Because of this, only few samples will be used for the
unsupervised learning. By contrast, the confidence mechanism adopted by FixMatch
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does not have an incentive to produce low confidence outputs at early stages, thus
possibly introducing noise in the unsupervised learning process.

At later stages of the learning process we instead expect the confidence levels
of the two approaches to stabilize. For longer training operation, thus, we do not
expect to find significant differences between the two methods. However, given the
importance of producing actionable models at early stages of training, we still find
ConFixMatch to be a useful contribution.

4.3 Experimental results

In this section we present some preliminary results obtained at early training stages.
In particular, we focus on a commonly used dataset in the field of image classification:
CIFAR10 [64]. It contains 60,000 RGB images with a resolution of 32×32 pixels,
belonging to one of 10 classes. The dataset is divided into a training set containing
50,000 images and a test set with 10,000 images. In this semi-supervised learning,
we only adopt a fraction of training samples as supervised (labelled) ones, whereas
the rest is used in an unsupervised manner.

Tables 4.1 and 4.2 show the top-1 and top-5 accuracies after 1,000 and 2,000
training iterations respectively, for various subsets of labelled data points (40, 250,
4,000). We mainly focus on early stages of training, where the benefit of an improved
confidence approach is more evident. After 1k iterations, the benefits obtained with
ConFixMatch are the most significant. The only situation where FixMatch appears
to obtain better performance is in terms of top-1 accuracy, with 250 labelled samples.
We note, however, that the 95% confidence intervals between the two methodologies
overlap – thus making the difference less meaningful. For all other cases – and in
particular with 4,000 labelled samples – ConFixMatch achieves significantly better
accuracy performance.

We still observe this behavior after 2,000 training iterations. We note, however,
that the difference in performance between the two methodologies reduces. This
is in accordance with what was expected: as the two models improve in terms
of performance, their confidence in the produced predictions will improve – thus
both increasing the quantity of unsupervised samples used for training (i.e. above
threshold) and their quality – with better pseudo-labels.
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Method 40 labels 250 labels 4000 labels
Top-1 top-5 top-1 top-5 top-1 top-5

FixMatch 18.94±1.16 67.21±1.44 33.75±1.58∗ 84.70±0.81 29.98±1.78 84.40±2.17
ConFixMatch 23.51±1.06 72.61±1.60 31.79±1.69∗ 87.02±0.69 43.70±3.18 92.11±1.56

Table 4.1 Comparison in terms of top-1 and top-5 accuracy between FixMatch and ConFix-
Match, after 1,000 training iterations on CIFAR10. All results are computed on 5 separate
experiments. In bold is the best performing algorithm. Starred results (∗) show that the 95%
confidence intervals overlap.

Method 40 labels 250 labels 4000 labels
top-1 top-5 top-1 top-5 top-1 top-5

FixMatch 23.34±1.01∗ 69.59±1.16 45.26±0.82 90.53±0.49 67.00±0.95 97.56±0.16∗

ConFixMatch 25.43±1.14∗ 73.64±1.87 47.28±1.01 92.12±0.34 69.15±0.76 97.71±0.27∗

Table 4.2 Comparison in terms of top-1 and top-5 accuracy between FixMatch and ConFix-
Match, after 2,000 training iterations on CIFAR10. All results are computed on 5 separate
experiments. In bold is the best performing algorithm. Starred results (∗) show that the 95%
confidence intervals overlap.

4.3.1 Confidence assessment

The main focus of this part of the thesis is on improving an existing semi-supervised
methodology by changing the confidence mechanism used. We have shown that
the first empirical results appear to be promising, with a significant improvement in
performance at early training stages.

We additionally study the behavior of the confidence estimation at early training
stages, i.e. when the model first learns how to estimate the confidence. These are
the crucial moments where a better confidence estimation can better bootstrap the
learning process.

The main driver of the confidence is given by λcon f , the regularization parameter
that prevents the model from abusing the confidence as a way to obtain low cross-
entropy scores. As already discussed, a larger λcon f will result in a model that is
penalized more when requesting “help”. We study how the model estimates the
confidence throughout the first learning stages.

In particular, Figure 4.4 shows the average confidence for the first 1,000 training
batches, for various values of λcon f . As expected, a larger penalty term results in a
model that starts producing larger confidences, so as to avoid an excessive penalty.
For comparison, the confidence used by FixMatch is reported as well. Since the
threshold τ can be adjusted, a comparison in terms of values obtained by the various



60 Explicit confidence-based pseudo-labelling

0 200 400 600 800 1000
Batch

0.2

0.4

0.6

0.8

1.0

Co
nf
id
en

ce

FixMatch 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

co
nf

Fig. 4.4 Evolution of the average confidence score for each batch, as λcon f changes, for
a model trained with 4,000 labelled samples. In transparency are the actual mean values
(confidence intervals not reported for graphical reasons). The overlaid line represents the
exponential moving average of the mean values. In gray is the confidence for FixMatch’s
default configuration.

algorithms is not particularly meaningful. What is interesting is instead the fact
that FixMatch has a slower transitory, whereas ConFixMatch quickly converges to a
stable confidence.

While this plot provides an interesting insight in terms of behavior of the con-
fidence throughout training, it does not help with the identification of the best-
performing value for λcon f . We note that, as already mentioned, the effect of λcon f

on the model is also guided by the choice of threshold τ . Figure 4.4 shows that the
confidence converges to various asymptotic values based on λcon f . Although it could
be reasonable to tune both τ and λcon f , we instead decide to fix τ and find the λcon f

for which the best performance is achieved. Through a preliminary tuning phase we
identify the best-performing model (in terms of top-1 accuracy on a validation set)
for a value of λcon f = 0.6. The results in Tables 4.1 and 4.2 have been obtained with
this choice.
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4.4 Discussion

In this chapter we presented preliminary results for ConFixMatch, a novel version
of the popular FixMatch semi-supervised approach. These initial results show a
promising new direction that appears to be worth investigating. By introducing an
explicit prediction of the confidence level of the classification made, ConFixMatch
is able to better choose the unsupervised samples for which the pseudo-label can be
used.

This chapter only covers initial results, additional experiments will be needed to
be able to assess the extent to which a novel definition of the confidence can affect
the performance of semi-supervised techniques. These initial results also seem to
indicate that one of the problems of the original confidence is in its slow convergence.
Because of this, it may also be interesting to study several variations of the original
FixMatch algorithm with various confidence convergence properties enforced. We
additionally note that other policies to guarantee a reasonable confidence may be
enforced: in this work, we focused on a reward in terms of cross-entropy. We may
additionally consider reducing the penalty on the cross-entropy for low-confidence
predictions (e.g. by weighting the cross-entropy with the predicted confidence). In
this way, confidently incorrect predictions will significantly affect the overall loss,
whereas incorrect predictions with low confidence will have a reduced penalty.

The results presented in this work only focus on one dataset (CIFAR10) and
only at early training stages. The natural extension is to focus the future research
to exploring the extent to which the proposed confidence approach generalizes to
other datasets, and the impact that it has on training time. The initial hypothesis that
we advance in this thesis, and that will require additional testing, is that this novel
approach to confidence is beneficial especially at early training steps. We can expect
the original methodology to catch up with ConFixMatch at a later time, when the
model produces more reliable (i.e. high confidence) pseudo-labels. Nonetheless, the
goal of producing models that reach convergence faster is an important one, both
from a learning perspective (all else being equal, the model that reaches convergence
faster is the one with the most efficient learning process) and from an environmental
one (shorter training implies a lower carbon footprint [77], as already argued in
Chapter 3).



Chapter 5

Limited labelled data: a case study

In this chapter, we present a case study where data is scarcely available and, for
what little is available, it is unclear how it should be labelled. This is far from the
well-defined tasks that are typically identified within an academic setting. However,
it is a rather recurring occurrence in industry.

In particular, we will discuss a predictive maintenance (or prognostics) scenario,
carried out in collaboration with General Motors. In this predictive maintenance
task, we need to identify situations where a sensor drifts from its nominal behavior,
and notify this change before this malfunctioning causes undesirable behaviors. The
task, however, is problematic for different reasons. First, the goal of the prediction is
ill-defined: as we will see, it is unclear how the problem should be framed and, even
so, how to obtain meaningful supervision (as none is explicitly provided). Second,
the amount of data available is limited, both in cardinality and in variability.

As it will be shown, we propose an approach to build pseudo-labels for the
target problem (low, medium, high risk) based on externally available data and a
semi-supervised process. In this way, we can apply commonly adopted classification
techniques without the additional overhead of requiring human-assigned labels for
all points in the dataset.

In the introduction of this chapter we provide the context surrounding the problem.
Next, we explore how the problem is framed and how it might be approached by
addressing all aspects from data acquisition to model evaluation.
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With the Internet of Things paradigm, data collected from vehicles (e.g. cars,
trucks) can be collected locally and sent to a remote storage location for later analyses
with tools other than the limited computing available on-board. Hence, automotive
manufacturers can leverage the data collected by their own on-board systems to offer
additional value to their customers. This value can be defined in terms of additional
services and features – thus improving the convenience for the customer.

One of the additional services that can be offered is predictive maintenance.
Predictive maintenance aims at the identification of possible malfunctions ahead of
time, allowing a prompt intervention before the actual failure. Both manufacturers
and customers can benefit from this kind of prediction. The former can issue recalls
only when actually needed and before irreversible damage occurs, the latter will
not experience unexpected vehicle malfunctions. For these reasons, automotive
companies are actively interested in predictive maintenance.

General Motors (GM) has been a leader in the application of automotive prog-
nostics, which is marketed in the US since 2015 under the name of OnStar Proactive
Alerts. The proactive alerts presently cover the vehicle starting system on millions
of production vehicles. However, these alerts all follow the model-based (or physics
based) approach, whereas this work is focused entirely on a data-driven one.

In this work of thesis we focus on studying predictive maintenance solutions for
the oxygen sensor (also known as lambda sensor). This sensor, placed on the exhaust
system of combustion engines, measures the fraction of oxygen in the output gases.
This information allows the ECU (Engine Control Unit) to optimally regulate the
ratio of fuel and combustion air for the catalyst, reduce the emission of pollutants,
and optimize the injection system’s performance.

Due to the imperfect burning of the combustion, the engine ejects some soot,
which accumulates and clogs the oxygen sensor. As a result of clogging, slower and
incorrect oxygen measurements cause a sub-optimal performance of the injection
system and increase harmful emissions. Some engine operations can clean the
oxygen sensor. These could be triggered periodically or when a pre-alarm status
is identified. If not correctly handled, the oxygen sensor gets too clogged, and the
ECU turns the check engine light on, forcing the driver to go to the service for costly
maintenance operations.

Hence, the early prediction of the pre-alarm status of the oxygen sensor clogging
is fundamental to trigger the cleaning operations. Unfortunately, measuring or
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predicting the oxygen sensor status is a complex task due to the many factors that
drive the soot accumulation process, including driving style, engine age, vehicle
load, fuel quality, weather conditions, etc.

In this work of thesis we describe PREPIPE a data-driven framework that, given
a large number of time series collected from a vehicle’s ECU, builds a model to
predict if the sensor is currently unclogged, almost clogged (since the clogging of
the sensor happens gradually), or clogged.

The aspects of interest of this work from an industrial perspective have already
been argued. From a research standpoint, the main contributions to this thesis are:

• Building and end-to-end pipeline, that starts from raw data and produces
actionable results, and that is validated in multiple ways to guarantee the
quality of the results obtained,

• Producing a semi-supervised labelling technique, which leverages a hybrid
domain- and data-driven approach to produce useful labels that relieves the
human from taking part in an intensive labelling process,

• Proposing an unsupervised signal selection algorithm, that can be applied to
other contexts (supervised or not) and that produces comparable performance
with other fully supervised approaches.

The work presented in this chapter also offers additional contributions of interest.
While not specifically relevant to the topics of this thesis, we still believe them to be
particularly useful and will be presented, for the sake of completeness.

The major contribution reported in this thesis have been published in [16] and
[17]. Additionally, a patent has been filed by General Motors regarding the main
aspects of interest of the proposed approach [78].

5.1 Related works

This section outlines related predictive maintenance works in the automotive do-
main, highlighting common challenges of the field and the proposed solutions. We
additionally analyze works carried out using deep learning approaches, which have
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gained significant momentum in recent years. Finally, we analyze specific studies
facing the oxygen sensor diagnosis.

As already discussed, in this work a main aspect of interest is the transformation
of the problem at hand into a supervised one. We do so by assigning pseudo-
labels to the available data. For thoroughness, we explore both unsupervised and
supervised techniques that have been proposed in the literature for tackling predictive
maintenance tasks.

Predictive Maintenance in the automotive field. The increasing capability to collect
vehicles data has fostered many studies to monitor, detect, and define predictive
maintenance operations in the automotive industry. The authors of [79] present a
complete overview of prognostics and health management in transportation and the
automotive industry.

Due to the ECU’s limited memory, modest computational capability, and band-
width constraints, a common trend is that of leveraging data dimensionality reduction
techniques. Similarly to our proposed pipeline, some works focus on the feature
selection step for machine learning techniques using approaches such as multiway
partial least squares [80], common factor analysis [81], a combination of domain
expertise and PCA [82], wrapper feature selection, and filter methods based on
the Kolmogorov-Smirnov test [83], or minimum redundancy maximum relevance
algorithms [84]. Differently from these works, in this thesis we tackle the problem
of feature engineering by integrating and evaluating a wide range of signal selec-
tion, feature extraction, and feature selection approaches, thus producing a general
solution that can be applied to different scenarios as needed. Compared to previous
works, we aim to offer interpretable results to the domain experts, who supervised
the entire process and gained useful insights on the phenomenon under study.

To complete the predictive maintenance pipeline, we rely on well-established
machine learning algorithms commonly used in the predictive maintenance con-
text [85].

Deep learning-based predictive maintenance. Recently, deep learning models have
been getting popular for fault diagnosis and prognostics. Such shift is driven by
the generally superior predictive performance and their capability of handling high-
dimensional data in predictive maintenance and health management scenarios [86–
88]. These approaches directly work on the raw input data with very little need for
any feature engineering.
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Restricting to automotive applications, the authors of [89] propose a data-driven
deep learning diagnostic approach based on a combination of convolutional (CNN)
and long short-term memory (LSTM) neural networks. They use ECU data to
detect pre-ignition, i.e., ignitions before the spark plug fires. The authors in [90],
instead, introduce a combination of the dual-tree complex wavelet transform, coupled
again with CNN and LSTM, to monitor the health status of a vehicle suspension.
Given the need for domain experts to understand both the prediction process and
the phenomenon characteristics, we prefer to follow a well-designed predictive
maintenance pipeline. We show it offers performance comparable with state-of-art
deep learning architectures while satisfying the interpretability requirements.

In terms of unsupervised learning, autoencoders are a commonly adopted tech-
nique for anomaly detection in predictive maintenance [91]. Autoencoders are used
to build dense representations of a piece of data, i.e. with a lower dimensionality
w.r.t. the original one: for example, the signals read from an engine are projected
to a low-dimensional space that contains the most salient features of such signals.
The original data is then reconstructed. Outliers are identified as those situations
where the reconstruction error is particularly large (e.g. above a given threshold):
this occurs because the piece of data to be reconstructed is typically sampled from a
different distribution than the “nominal” data – and as such should be considered as
an outlier.

While autoencoders have produced meaningful results in completely unsuper-
vised scenarios, we observe that even weakly supervised techniques typically produce
much better results for outlier detection tasks, as shown in [92].

Oxygen sensor diagnosis. The oxygen sensor plays a vital role in reducing exhaust
emissions, and it is crucial to monitor and diagnose its status and detect and predict
faults. To this extent, different works focus on the predictive maintenance of such
key elements. For instance, authors of [93] propose a model-based solution and use
the exhaust pressure pulsation to detect deterioration of oxygen sensor dynamics
caused by sensor clogging. Similarly, the authors of [94] leverage data collected by
a UEGO (universal exhaust-gas oxygen) sensor in a controlled environment, apply
a PCA to identify the most relevant signals and a feed-forward neural network to
detect if the oxygen sensor is faulty.

We instead propose a full pipeline that covers all steps from data acquisition to
model predictions in significant more depth.
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5.2 The oxygen sensor case study

The oxygen sensor is a device used to measure the proportion of oxygen in the
exhaust gases of an internal combustion engine. This information is fundamental
to lower the exhaust gas pollutants and optimize the performance of the injectors’
fueling system and engine in general.

Due to the accumulation of the unburnt hydrocarbon-based soot contained in the
exhaust gases, the oxygen sensor is subject to clogging. When the sensor is clogged,
slower and incorrect oxygen measurements cause a sub-optimal combustion effi-
ciency resulting in more harmful emissions released into the environment. Currently,
the ECU can only diagnose when very slow oxygen measurements occur, i.e., when
the oxygen sensor has reached a critical state, and its readings are unreliable. When
this situation occurs, the ECU turns the check engine light on, and the driver has
to go to the service for the required maintenance operations, i.e., a costly manual
sensor cleaning operation.

While the clogging process is a known problem, its non-linear and non-monotone
trend makes its prediction a complex task. Indeed, while it is well known that the
clogging increases slowly over time due to the soot accumulation, driving conditions,
fuel quality, and driving styles affect this process. For instance, sudden abrupt
accelerations, vibrations, or specific engine operations like active regeneration [95]
can partially clean the sensor by burning or detaching some soot from the oxygen
sensor. Some of these operations can be triggered by the ECU to clean the sensor
before it reaches a critical status. As such, an early prediction of the oxygen sensor’s
clogging status is fundamental to run these specific engine operations and clean the
sensor to avoid malfunctioning.

5.2.1 Dataset

We adopt data collected in a test bench where an actual diesel engine equipped with
the standard on-board and some additional external sensors. The testbed lets us
simulate real driving conditions with different vehicle loads and conditions. In detail,
in each experiment, called cycle, the simulator follows a “driving pattern”, i.e., a
predefined sequence of gas pedal presses and releases coupled with different engine
loads to reproduce different driving situations (e.g., urban, extra-urban, highway).
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Fig. 5.1 Acceleration pedal signal, recorded with both Program A (in blue) and Program B
(in red).

For our experiments, we follow the driving cycle derived from the Real Driving
Emissions (RDE) test procedures [96]. We focus on the RDE procedures as, currently,
they are used to create the standard homologation cycles for testing particles and
exhaust emissions in real traffic and environmental conditions. They are designed to
represent real driving situations as closely as possible.

We employ two different data loggers to monitor the engine under test, namely
Program A and Program B (names redacted under request of GM). These programs
have different characteristics, and we leverage them for similar – yet complementary
– purposes. Program A monitors the engine during the entire cycle as in a real
on-board scenario. It records a set X of 50 signals related to on-board and bench
sensors. Each signal xi is a time series where samples xi(t) are collected with a
frequency of 1 Hz.

Program B, instead, monitors only the final 5-minute period of each cycle when a
specific input sequence is imposed (described later) and provides more details about
the engine and oxygen sensor behavior by collecting hundreds of bench signals at
a higher frequency (320 Hz). As we will discuss, the data collected from Program
B (which is not available for deployed vehicles because of the nature of the sensors
used) will be leveraged to apply the pseudo-labels.

Figure 5.1 depicts the trace of the gas pedal position during the entire cycle
highlighting in red the part monitored by both programs. Each cycle last 62.5
minutes (3750 seconds). In total we obtain a dataset D with 388 cycles. Table 5.1
reports the main characteristics of these programs.

As already briefly mentioned, the data from Program B can only be collected
in a test bench, due to two reasons: the high sampling frequency used and the fact
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Program A Program B
Duration 3750 s 300 s

Sampling frequency 1 Hz 320 Hz
Number of signals 50 440
Number of cycles 388 388

Table 5.1 Program A and Program B characteristics.

that Program B makes use of external sensors added for the data collection phase.
We thus only use the data from Program B to assign pseudo-labels to the cycles, as
discussed in Section 5.4. The rest of the work is instead focused on working with
the data collected from Program A, since the same data can also be collected from
real vehicles.

Only a subset of the 50 signals recorded by Program A are useful to predict
the clogging status of the oxygen sensor. As such, we perform a preliminary data
selection procedure to remove all the test bench signals that are not available on real
vehicles. Then we discard signals unrelated to the problem with the support of the
domain experts that properly consider the informativeness of the signals. Next, we
discard signals with constant values (e.g., alarms) that carry no information. Finally,
we keep only one among possible sets of strongly correlated signals (i.e. having a
Pearson correlation of ±1).

For part of this study, we additionally remove the signal obtained from the oxygen
sensor, since we are interested in identifying other behaviors within the engine that
correlate with the oxygen sensor behavior. We will re-introduce the oxygen signal to
draw some useful conclusions in Section 5.9.

As a result of this a-priori data selection procedure, we obtain a set X̂ ⊂ X of 30
signals.

5.3 Predictive maintenance pipeline

We designed the PREPIPE early PREdiction PIPEline for the oxygen sensor clog-
ging represented in Figure 5.2. In this section we summarize each step of the
PREPIPE pipeline, while a detailed description is provided in Sections 5.4 and 5.5.



70 Limited labelled data: a case study

Program A
data

Program B
data

Signal 
selection Windowing Feature 

extraction
Feature 
selection Historicization

Model training

Response time 
measurement Labelling Smoothing

Labels

Dataset

Final
model

Preprocessing

Cycles labelling

Fig. 5.2 The PREPIPE predictive maintenance framework. The top pipeline represents
a classic supervised problem. The bottom pipeline represents the semi-automated label
extraction process. The final model training combines the results from the two pipelines.

Signal selection. The input to the pipeline is the set of signals recorded in each
engine cycle by the on-board sensors. Given the large number of available signals,
we evaluate different supervised and unsupervised learning algorithms to select the
best subset of signals describing the oxygen sensor status.

Windowing. We determine the correct size of the time window to be used for
the monitored signals. The window size should allow an accurate evaluation of the
oxygen sensor status.

Feature extraction. Signals are recorded as time series representing the variable
values during the time window. Signals are transformed into features by means of
different feature extraction strategies. These features allow us to represent character-
istics of the time series that would not be visible in a “sample-based” representation.

Feature selection. Several features represent each signal, some of them possibly
redundant or uncorrelated with the target variable. We reduce the number of these
features through a supervised feature selection stage.

Historicization. Each time window describes the current status of the oxygen
sensor, and it does not include any historical information about previous windows.
Hence, we add historical features related to the past cycles evaluating the benefit (if
any) of including past observations.

Response time measurement. Since labels are not directly available for the
cycles, we use some of the properties of the cycles, as measured with Program B, in
addition to some domain expertise, to extract a response time from the signals. This
quantity will later be used for the extraction of a class label.
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Labelling. At this step, the response time (a continuous variable) is discretized
into one of three classes. The discretization process is automated and based on the
identification of thresholds, through the application of a 1-dimensional k-means
clustering approach. The thresholds are later validated by the domain experts.

Smoothing. The automated extraction of class (pseudo-)labels is necessarily a
noisy operation (if it was not, the problem would have been trivial). We introduce an
assumption of continuity in the observed phenomenon. This allows us to smooth the
behavior of the response time, thus producing more consistent class labels.

Model training To model the clogging status we adopt an artificial neural
network model [97]. Given the cumulative nature of the clogging phenomenon, we
use two validation strategies to determine whether the temporal order plays a crucial
role in the prediction of the oxygen sensor status or each sensor status decision is
independent.

At each step, we select the best option and the parameter setting through a
wrapping approach [98] in which a classifier is used to identify the best choice by
comparing the predictive performance with the variation of the step configurations.
In short, we run the complete pipeline from the signal selection to the model training,
tuning and validation, by sequentially optimizing one step at a time. Initially, we
assign default values at each step to identify a baseline of the performance. Then, we
independently optimize the parameters following the natural sequence of the steps in
the proposed pipeline.

5.4 Cycles labelling

The available cycles have been collected by General Motorsfor a purpose other than
predicting the oxygen sensor status. The data collection phase is a time-consuming
and expensive operation: it involves allocating a testing room for possibly several
weeks, with an engine running 24/7 and dedicated personnel. For this reason, data
may be collected for one goal and repurposed afterwards, as is the case with this
work. This project stems from an attempt to use that same data for a different
approach.

In other scenarios, an experiment may be devised specifically for the collection of
the data of interest. In that case, the “label” (i.e. the engine status) may be enforced



72 Limited labelled data: a case study

by the designers of the experiment. It is, for example, the case in [84], where we
approached another predictive maintenance task with GM: in this case, the data
collection phase was explicitly designed to address a High-Pressure Fuel System
failure, by systematically inducing any desired engine condition.

Since the available data was collected for a different purpose, there is no clear
label that can help us quantify the degree to which the oxygen sensor is clogged.

However, with an intuition that comes from the domain experts, we can devise a
labelling procedure that can help us automatically label points (cycles). In particular,
we know that when the oxygen sensor is clogged, the readings of the sensor will be
slower, all else being equal. We additionally know that all cycles follow the same
“track” (i.e. the same sequence of operations on the gas pedal). This reduces the
variability of the collected data – which may problematic when trying to generalize
to unseen data – but it provides a great advantage: we can identify a sequence of
operations that will be executed in the same way across all cycles. If this sequence
of operations can be found in the final part of the cycle (i.e. the one also measured
with Program B, at a higher sampling frequency), we can accurately measure the
variation in measured oxygen concentration and infer which cycles have a slower
response. We take this intuition and further elaborate it in the following subsections.
More specifically, there are three main steps to be taken for this semi-supervised
labelling process:

• Response time measurement: the target sequence of operations is identified
and we define a standard approach to quantifying the responsiveness of the
oxygen sensor. We call this quantity the “response time”.

• Labelling: we approach this predictive maintenance problem from a classifica-
tion perspective, as such, we define some classes of behaviors of interest and
discretize the response time accordingly.

• Smoothing: due to the semi-supervised nature of the process, the labels ob-
tained contain some noise. By making some additional assumptions on the
nature of the problem under study, we try to reduce the resulting noise through
a smoothing procedure.
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Response time measurement

The oxygen in the exhaust gases (i.e. the oxygen measured by the sensor) is directly
influenced by the state of the gas pedal, since it drives the load on the engine: when
the combustion occurs at a faster rate, more oxygen will be burned, thus resulting in
less oxygen being found in the exhaust gases.

Because of this, if we identify a situation where a significant change in the state
of the gas pedal occurs during the final portion of the cycle (because of the higher
sampling rate of Program B), we can quantify the rate of change of the oxygen
measurement. Through visual inspection, we can identify one such pattern, where
the gas pedal is first kept at a steady level for a prolonged period of time, only to
be completely released. This operation, which will be referred to as a “cut-off”, is
shown in Figure 5.3.

The oxygen level passes from an initial oxygen level, O2start , which depends on
the gas pedal position (close to 9% for the adopted track), to a final value O2end ≈ 21%
(close to the oxygen concentration in the atmosphere). This transition occurs for all
cycles in the same way, since it is a response to the same step input applied to the
gas pedal. Because of this, the only variable that can affect the measured duration of
the transitory is the extent to which the oxygen sensor is clogged: a longer measured
duration implies a more clogged sensor.

The time constant of a system is defined as the time necessary for a system to
reach ≈ 63% (1−1/e) of the final value, in response to a step input. We use this
definition to identify the response time of the engine, for each cycle, as shown in
Equation 5.1. Figure 5.3 provides a visual representation of the response time.

tr = t(O2 =

(
1− 1

e

)
· (O2end −O2start ))− t(O2 = O2start ) (5.1)

The trend of the response times measured on Program B across cycles is shown
in Figure 5.4. It is immediately clear that the response time varies in a range of
values between 1 and 2 seconds. As such, measuring the response time with Program
A (at a sampling rate of 1 Hz) would not have provided a meaningful result. For this
reason, the data from Program B is particularly useful, even if only available in the
test bench.
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Labelling

The response time represents a pseudo-target we can work with in a supervised
manner. However, the final output of the model should be discrete, i.e. the level
of “alert” that should be issued. We decided to identify three levels of warning:
green for a nominal behavior, yellow for a behavior that has drifted from nominal
but not problematic, and red for situations that significantly differ from the expected
behavior. To preserve the pipeline automation, we use an unsupervised approach
to identify these three classes. More specifically, we apply 1-dimensional k-means
clustering [99] to produce three classes.

For 1D k-means, cluster centroids can be ordered: assuming that centroids
cgreen, cyellow, cred are identified, we can alternatively define 2 thresholds, (cgreen +

cyellow)/2 and (cyellow + cred)/2, which can be similarly used to define the bins for
the discretization of the response time. These thresholds are shown as horizontal
red lines in Figure 5.4. Figure 5.5 shows the distribution of response times based on
these newly defined thresholds. The only human interaction in this process comes at
the end of this labelling process, where the domain experts manually validate the
quality of the identified thresholds, and can optionally introduce minor changes to
them if deemed necessary. This is in contrast with the significant effort that would be
required to either (i) design and execute a data collection process aimed at collecting
the relevant data, or (ii) manually label each of the already available 388 cycles.

Smoothing

As already discussed, Figure 5.4 illustrates the response time evolution throughout
the cycles of the experiment. Due to the automatic label extraction process, we note
that the response times observed have a noisy component – as highlighted by the
spiky profile of the curve. We operate under the assumption that the soot cumulation
process that results in the clogging of the sensor has a behavior that is continuous in
nature.

Based on this, we introduce an additional step to help improve the quality of the
pseudo-labels assigned: a low-pass filter in the form of a moving average is applied
to each response time in the sequence. We study how this affects the assigned labels
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as the window size changes. We consider averaging each point with the previous w
and the following w values, for a window size of 2w+1.

The desired behavior is that only a limited number of “label switches” occur
close to the threshold values. Higher values of w render the response times curve
smoother, thus reducing the total number of switches, as shown in Figure 5.6. The
knee of the curve indicates an acceptable value.

Based on this curve, we notice that a value for w = 2 may be reasonable. We use
a visual inspection of the profile of the smoothed curve with this value to understand
whether the resulting alteration in values is acceptable or not. Figure 5.7 shows the
results for 4 different values of w (0 through 3): the vertical bands are colored based
on the assigned label for each cycle. In general, the profile of the curve for w = 2
has been deemed acceptable from this perspective as well.

From the smoothed values, the labels can be assigned to each Program B cycle:
the cardinalities for the three classes are reported in Table 5.2. From this table, we
observe that the red class, which is the one of most interest, is also the minority one.
This is to be expected, given that anomalous behaviors are typically a minority w.r.t.
nominal ones. This will require additional considerations when building the rest of
the pipeline. Although the pseudo-label is inferred on the final portion of each cycle,
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Fig. 5.7 Response time trend smoothed with different w values
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Class Cardinality
Green 164
Yellow 163

Red 61

Table 5.2 Cardinalities for the three identified classes

it is reasonable to assume (given the slowly changing nature of the phenomenon) that
the label can be propagated to the entire cycle (i.e. the engine is assumed to be having
the same condition throughout the entire duration of the cycle – approximately 1
hour).

With the proposed semi-supervised labelling approach described, we are able to
introduce supervision through the generation of pseudo-labels. These pseudo-labels
are obtained from a process that only has weak human supervision and effectively
allows us to repurpose data collected for a different objective. For the rest of this
chapter, we will typically refer to the pseudo-labels obtained in this way as labels,
with the implied meaning that they are not human-assigned and so subject to possible
noise. The rest of the chapter presents the rest of the proposed pipeline, that is
supervised in nature for most aspects.

5.5 Preprocessing

The initial steps of the processing pipeline address all the tasks required to prepare
the data of a given cycle for the model training, tuning and validation steps.

Signal selection

The first step consists of selecting the best subset of signals to feed the classifier.
This brings several advantages: (i) improved data collection on the field by reducing
the costs required for the on-board hardware and the bandwidth needed for the data
transmission to a centralized server, and (ii) a more concise representation of each
cycle, which lowers the dimensionality of the problem, thus simplifying the rest of
the pipeline.
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For the signal selection step, we aim at discarding entire signals that are not
deemed useful. For this, we test different unsupervised and supervised learning
algorithms. These algorithms either produce a ranked list of signals, from the most
to the least important one, or already produce a curated list of signals to be preserved,
and a list of signals to be discarded. In the end, starting from the set X̂ we aim to get
the best possible subset X̄ ⊂ X̂ .

In addition to testing various existing supervised and unsupervised technique, we
propose CORR-FS (Correlation-based Feature Selection), an unsupervised algorithm
that iteratively identifies the most representative signals among a set, and discards
redundant ones.

To discover redundant signals CORR-FS analyses the correlation among them.
Given any two signals, the Pearson correlation coefficient between the two sequences
can be used as an indication of how related the two variables are. For each pair of
signals (i, j), CORR-FS computes the correlation coefficient through the Pearson
correlation defined as ρi, j =

cov(i, j)
σiσ j

, where cov(i, j) is the covariance between i and
j, σi is the standard deviation of i and analogously σ j for j. Figure 5.8 shows the
correlation matrix plotted as a heatmap of the correlation coefficients computed for
each pair of variables for one of the available cycles. At a glance, the plot shows that
significant redundancy exists within the available signals.

To properly handle the data redundancy and iteratively extract the most repre-
sentative signals from the initial pool of available ones, CORR-FS identifies a list of
independent signals (where “independent” can be defined in terms of correlation)
ordered by descending degree of representativeness of the other signals. Specifically,
CORR-FS requires a single parameter rmin to be selected. This parameter represents
the minimum correlation coefficient below which two signals are considered as not
strongly correlated. The value for the rmin parameter has been defined empirically
(see Subsection 5.7 for more details). CORR-FS performs the following steps:

1. For each pair of signals i and j, their overall correlation coefficient ri j = r ji is
computed as correlation coefficient between the samples collected from the
two signals, across all cycles.

2. The set of “remaining signals” L(t), which will be updated at each iteration t
of the algorithm, is initialized with all the signals available (L(0) = X̂)
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replaced with numbers for visualization’s sake

3. The set of “representative signals” R is initially defined as an empty set (R =

{}); it will contains the final set of signals considered representative of the
entire set X̂ (i.e. X̄ with the previously adopted notation).

4. The set of “discarded signals” D is initially defined as an empty set (D = {});
it will contain the set of signals that have been discarded during the signal
selection process.

5. For each signal i in L(t), the sum of squared correlation coefficients si is
computed: si = ∑

j∈L(t)
r2

i j.

6. The signal b = argmaxi∈L(t) si is chosen from L(t) as the most representative
of the signals left: R = R∪{b}.

7. The set of signals C(t) = {v ∈ L(t) : |rvb| ≥ rmin} contains all signals in L(t)

that have a correlation with b larger than rmin. These signals are removed
from L(t+1), since they are well represented by b: L(t+1) = L(t) \C(t). We
additionally store the discarded signals in D = D∪C(t) \{b}.

8. If L(t+1) is empty the algorithm terminates, otherwise it continues with Step 5.
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The algorithm is guaranteed to converge: the set C(t) is guaranteed to be non-
empty, since it always contains at least {b} – as such, we are always removing at
least one element from L(t+1), when starting from L(t).

It can be easily shown that the following two properties hold for CORR-FS:

• All selected signals in R will have correlation, among one another, smaller
than rmin in absolute value (i.e. there is limited redundancy in the signals kept).
In fact, for any pair of signals a,b ∈ R added at times ta and tb (assuming
ta < tb without losing on generality), if |rab| ≥ rmin, by construction b ∈C(ta),
which implies that signal b will be discarded from L(ta+1). It follows that b
can no longer be selected to be added to R.

• All discarded signals in D have a correlation greater than rmin with at least
one signal in L (i.e. each discarded signal is “represented” by at least one of
the signals kept). In fact, if a ∈ D, it means that a time tb exists where a ∈C(tb).
By construction of C(tb) there exists a signal b, chosen at time tb, such that
b ∈ R and |rab| ≥ rmin.

All comparisons made against the minimum threshold rmin are done in absolute
value to also consider negative correlations (which represent strong correlations
nonetheless). The value rmin is the only hyperparameter of the proposed algorithm:
it is a value in the range [0,1] can be easily tuned through either a grid search, or
based on the domain-driven constraints that may be in place. The sum of squared
correlation coefficients is used when computing si (Step 5) to reduce the influence of
correlations close to 0 (alternatively, the absolute values could have been summed
instead, if more weight was meant to be assigned to small correlations).

We note that CORR-FS is completely unsupervised: as such, it is suitable for
identifying useful signals regardless of the final target. This is particularly valuable
since it makes the selection process independent of any labels that may either not
be available, may be available in scarce quantities, or may be unreliable. For these
reasons we find the algorithm to be a valuable contribution to this work of thesis.
To assess the quality of the proposed signal selection approach, CORR-FS will be
compared to various supervised and unsupervised signal selection techniques that
are presented below. We do not consider techniques that compute new signals (e.g.
linear combinations of existing signals) due to the constraint imposed by the domain
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experts on the preservation of the original signals, to not hinder their understanding
of the process.

Unsupervised approaches

Unsupervised signal selection algorithms find the best subset of signals by analyzing
the hidden structure in unlabelled data [100]. These algorithms exploit solutions that
leverage the correlation or similarity among signals [101] to reduce redundancy in the
data, or data transformations (e.g. PFA [102], PCA [103]) to identify combinations
of signals that primarily represent the phenomenon under study. For this thesis,
we compare two approaches that we briefly describe below, plus the previously
introduced CORR-FS.

Feature Similarity (FSFS) [101] uses a metric called maximal information com-
pression index to reduce redundancy in the dataset. This algorithm requires a single
parameter k representing the desired reduction. For each value of k, the algorithm
returns a different subset of signals. In short, it produces the optimal subset of signals
whose amount of information is k time lower than the original complete dataset.
We identify the best subset of signals by searching which value of k maximizes the
Representation Entropy [101]. This metric represents how equally the information is
distributed among the signals.

Principal Feature Analysis (PFA) [102] exploits an algorithm based on the Prin-
cipal Component Analysis (PCA) [104] and the k-means clustering algorithm [105]
to identify the subset of signals retaining most of the dataset information. This
algorithm requires two parameters: p, the number of components used by the PCA to
represent each signal xi, and k, the desired number of clusters computed by k-means.
The algorithm selects only one signal for each cluster; hence, k also represents the
number of signals selected at the end of the selection process. We identify the best
value of p by evaluating the knee point between the number of components used
by the PCA and the cumulative explained variance, i.e. the total amount of dataset
variance represented by those components. Then, we find the best value of k by
optimizing the clustering quality metrics, i.e. optimizing the SSE (sum of squared
errors) or the silhouette index [106] which quantify the cohesion of points within
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each cluster at the end of the clustering process (as well as how separated clusters
are, for the silhouette).

Supervised approaches

Supervised signal selection differs from the above approaches since we use a clas-
sification algorithm to select the subset of the most important signals. In short,
we train different classifiers, providing a different subset of the signals. The main
advantage of these solutions is that they evaluate the combined predictive capabilities
of the input variables and optimize the choice for each classifier. However these
approaches are typically more computationally intensive, given the need to build a
complete pipeline. Additionally, they produce choices based on the specific task at
hand. Changing tasks implies extracting possibly different sets of signals.

To use these algorithms, we transform each signal xi ∈ X̂ into a set Fi of n features,
such that Fi ∈Rn. We provide details about the transformation in the next subsection.
Then, each algorithm can provide information about the importance of each feature
separately, i.e., allowing us to rank signals. We use this information to reconstruct
the importance of each signal and use this importance to select the subset of the most
important signals. Here we consider the following classifiers:

Random Forest (RF) [107] exploits a ranking algorithm based on how useful
each feature is within the trees learned by the forest. These feature importances
(FI) can be computed for each feature based on the total contribution in terms of
impurity decrease that the specific feature as brought, throughout all trees. To extract
it, we build a model by using all cycles D and all features Fi derived from xi ∈ X̂ .
Since multiple features Fi are extracted from each signal xi, we compute the signal
importance (SI) as the sum of all the feature importances of the signal’s features as
SI(xi) = ∑

n
j=1 FI(Fi( j)).

Finally, we rank the signals according to their SI and select the best subset of
signals by using the knee point identification proposed by [108].

Random Forest - Recursive Feature Elimination (RF-RFE) [109] is based
again on the signal importance but recursively eliminates the least important signals
considered during the training phase. We start from a set of signals S(0) = X̂ . Then,
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we iteratively train a model by using all cycles and features Fi of all signals xi ∈ S(t).
At the end of the training phase, we record the classification performance of the
tth model. For each signal in S(t) we compute the signal importance as described
before, and discard a subset D(t) ⊂ S(t), identified as the least important signals
(|D(t)|= ⌈η |S(t)|⌉, η ∈ (0,1) represents the fraction of discarded signals). The new
set of signals is computed as S(t+1) = S(t) \D(t). We build a new model and iterate
until the remaining set of features is empty. We use the out-of-bag (OOB) error to
quantify the quality of each subset of signals. We select the set of signals having the
lowest OOB error.

SVM - Recursive Feature Elimination (SVM-RFE) [110] instead leverages a
Support Vector Machine (SVM) classifier. Similarly to random forests, SVM returns
at the end of the learning process the importance of each feature utilizing the feature
weights learned. A similar process to the one used for random forests is set in place
for the iterative feature elimination process.

Windowing

Each signal belonging to each cycle is a time series that assumes continuous values.
The length of each time series corresponds to the length of the entire cycle, i.e. 3750
seconds. However, we may be interested in studying smaller time windows: it is
unclear, from a data-driven perspective only, whether it would be more reasonable
to have longer or shorter windows. Arguments can be made for both situations:
longer windows imply having more data to make decisions off of, whereas shorter
windows may allow detecting local trends that may get lost when considering longer
sequences (as can be the case with all memory-based approaches, e.g. Recurrent
Neural Networks).

Because of this, we consider the option of splitting each cycle into multiple non-
overlapping sub-cycles of duration ∆T . The length of ∆T is one of the additional
hyperparmeters to be tuned since, as already argued, there is no unambiguous choice
for it.
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Feature extraction

Given a window of length ∆T and the set of selected signals X̄ , we consider different
strategies to extract a set of features Fi for each signal xi ∈ barX . We consider well-
established methods for time series, and propose a specific methodology specifically
tailored to the characteristics of our problem.

Time Series Feature Extraction (TSFEL) [111] extracts more than 60 features
from the original time series, including the statistical, temporal and spectral charac-
teristics of each signal.

Automatic Feature Engineering for Forecasting (VEST) [112] employs several
steps to extract features out of time series data: it groups observations in batches,
summarizes each batch with statistical characteristics, and then returns the most
relevant features according to a ranking criteria.

Tsfresh [113] offers 63 time series characterization methods, including continuous
wavelet analysis, fast Fourier transform, time series length, mean, max, and median,
etc., to extract up to 794 time series features out of each time series.

Ad-hoc Guided by the rationale that the clogging process is very slow, and that
we are willing to compute simple features that could be computed on board, we
define an ad-hoc strategy that summarizes each signal xi using statistics of samples
belonging to a time window. More specifically, we compute:

• Mean value, since the clogging of the oxygen sensor may introduce an offset
on a signal which is proportional to clogging;

• Standard deviation, since the clogging of the oxygen sensor may affect the
variability in recorded signals;

• Percentiles: the percentiles summarize the cumulative distribution function
(CDF) of the signal values over time. They allow the system to identify those
phenomena that change the signal values distribution.
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To preserve information about the behavior of signals in time, we compute
the same features for the discrete derivative x′i(t) = xi(t)− xi(t −1) of each signal
xi. This allows us to capture the variability of the signal over short time intervals,
providing useful information about how quickly the signals change. By considering
both the distribution of the signal values and the variability of the derivative, we can
gain a more complete understanding of the signals.

Feature selection

After the feature extraction process, each signal is represented by f features: since
these features are extracted from the same signals, it may happen that some features
could be highly correlated, despite the initial signal selection process. For example,
mean and 50th percentile may convey very similar information for symmetrical
distributions. This redundancy results in a dimensionality of the problem that is
possibly larger than then one strictly needed.

To mitigate the curse of dimensionality problem [114] and improve the predictive
performance of the proposed pipeline we perform the following feature selection
process. All features are sorted according to their feature importance in a random
forest model. We iteratively train classifiers by adding a new feature to the pool of
available ones, and evaluate the classifiers based on commonly adopted metrics (e.g.
F1 score, accuracy). We repeat the process until all features have been added. We
choose as the final set of features the one for which any further addition does not
prove to be beneficial in terms of improvement in performance.

The initial order used to sort the features is a heuristic that we introduced to
significantly limit the number of sets of features to be tested. In this way, we only
need to assess |F | features (F being the set of all available features). This is in
contrast with 2|F |, the total number of sets that could potentially be obtained from the
original F features, which is obviously intractable for any F outside of toy examples.

Historicization

The intuition suggests that we may improve the performance of the final model by
considering not only the information of the current window, but also of previous
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time windows. Therefore, we consider adding to the pool of features the features
extracted from the past h0 windows.

While historicization can improve the model’s performance, it also increases
the number of features to consider, thus falling back to a problem where high
redundancy may be present. We thus use an additional feature selection step (as
previously described) to identify the most important features for model training after
the past windows are included.

5.6 Model training

There are many different classifiers in the literature, each with its own strengths
and weaknesses. Based on the preliminary results shown in [115], we identify a
fully-connected neural network (or multi-layer perceptrons - MLPs) [116] as being a
reasonable model for the task at hand. We have additionally considered other models,
e.g. decision trees [117], random forests [118], and support vector machines [119].
The overall performance of these models was lower w.r.t. that of MLPs and will not
be reported in this thesis for brevity. However, some considerations will be made for
the decision tree in Section 5.9.

To find the combination of hyperparameters that maximizes performance for
the proposed classifiers, we use an extensive grid search that builds and assesses
the performance of multiple models, each trained and evaluated on a separate set
of hyperparameters. By doing this, we are able to identify the combination of
hyperparameters that yields the best results on unseen data.

Model Validation

In this study, we consider two techniques for validating our predictive maintenance
pipeline: traditional k-fold cross validation and time series cross validation.

k-fold cross validation is a commonly-used technique, particularly when only
limited amounts of data are available, as is the case here. It consists in splitting
the dataset into separate partitions, or folds, and iteratively use all but one of them
for training, and the remaining one for validation. However, this kind of approach
assumes that the collected data points are all independent of one another. This
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Fig. 5.9 Time series cross-validation: training and test sets change through time. Test data
always follows training data in time to prevent data leakage. The data in gray is left unused
for the specific step.

may not necessarily be the case for this problem for two reasons: the windows
extracted from the same cycle share the same pseudo-label, and adjacent cycles may
possibly share the same label, due to the assumption of continuity of the observed
phenomenon. Therefore, having window/cycle i in the test set and window/cycle
i+1 in the training set may be seen as a case of data leakage. We can easily address
the “windows-in-cycle” problem by guaranteeing that all windows belonging to a
cycle fall within the same fold. However, the inter-cycle relationships cannot be
easily solved, since the temporal relationship is embedded in the problem we are
handling.

Because of this, we additionally use a time series cross validation, which is
designed to specifically address this problem. In this technique, we use a given
sequence of cycles for training and the following ones for testing. We then move
along time changing training and test data, as exemplified in Figure 5.9.

While this approach is more rigorous, our data-scarce scenario makes this ap-
proach wasteful: a large fraction of available data is not used for training nor testing.
On top of being wasteful, the models learned will be trained with lower amounts of
data than theoretically possible: we can expect those models to generalize poorly
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due to plausible overfitting. The alternative time series validation option consists
in iteratively increasing the training set size with each iteration (i.e. the left-most
data in Figure 5.9 becomes part of the training set). This partially addresses the
aforementioned problems, but without fully solving them and creating new ones: for
example, different models would now be trained on training sets of different sizes,
thus making comparisons even harder.

Because of these problems, we adopt a hybrid approach that uses both k-fold
(making an assumption of independence) and time series cross validations. We
perform the harmonic means of the performance metrics extracted to obtain a single
value that represents the overall model behavior. We expect an under-estimate of
the performance from the time series validation and an over-estimate for the k-fold
validation. The harmonic mean is thus expected to balance these two quantities.

For k-fold cross validation we use a number of folds k = 10, whereas for time
series cross validation the train and test sizes are set to 100 cycles, with a step of 3
cycles.

The following metrics are used for the evaluation of the model:

• Accuracy: this provides an overview of the overall performance of the model.
While not our main metric of interest, it offers a valid “sanity check” metric,
to guarantee that the model is not overly degraded when trying to optimize its
behavior for the class of most interest (i.e. the red class).

• F1 score for the red class: we are mainly interested in studying the performance
of the model in terms of the red class, i.e. the class that, when detected,
will produce the most important alert. Since both high precision and recall
are desired, the F1 score is considered as the main metric of interest. For
completeness, precision and recall will also be reported.

5.7 Experimental results

Experimental validation has been carried out to assess PREPIPE’s performance in
terms of predicting capabilities and to offer support to the identification of the best
hyperparameters for the pipeline.
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Algorithm Input Optimization # Selected
Parameter Signals

U
ns

up
er

-
vi

se
d

CORR-FS rmin Knee Point 13
FSFS k Representation Entropy 5
PFA-SSE p, q Knee Point 12
PFA-Silhouette p, q Silhouette 10

Su
pe

r-
vi

se
d RF RF-Config Knee Point 9

RFE-RF RF-Config OOB Error 2
RFE-SVM SVM-Config F1 score (red) 4

Table 5.3 Signal Selection.

The unlabelled dataset resulting from the process described in Section 5.5 and
the labels identified by the process in Section 5.4 are merged together to create the
final, labelled dataset. As already explained, the class pseudo-label assigned to each
cycle is either one of the labels “red”, “yellow” or “green” based on the PREPIPE’s
labelling process.

PREPIPE has currently been implemented in Python, using scikit-learn [56].
Most experiments have been performed on a dedicated server running Ubuntu
16.04, with 12 cores at 2.67 GHz and 32 GB of main memory. To speed-up the
hyperparameter selection process, we parallelized the grid search on a larger cluster
comprised of 36 nodes. The code is available at [120].

Impact of signal selection

In this section, we compare the various signal selection approaches considered in
terms of classification performance. We consider both unsupervised and supervised
approaches to identify the optimal subset of signals for modeling the clogging status
of the oxygen sensor. The details of each algorithm, including the parameters and
optimization criteria, are summarized in Table 5.3. The number of selected signals
at the end of the process is also reported.

Unsupervised approaches

We can exploit the full dataset D for the unsupervised algorithms since we do not
need to run the whole pipeline with these algorithms. In the following, we describe
how we proceed with each algorithm.
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Fig. 5.10 Identification of the best number of signals with unsupervised algorithms.

Correlation-Based Feature Selection (CORR-FS). As already argued, the CORR-
FS algorithm for the unsupervised signal selection procedure identifies one main
hyperparameter of interest, rmin. Since the CORR-FS algorithm takes the absolute
value of each correlation coefficient (because negative correlations are correlations
nonetheless), it makes sense to only analyze values for rmin ∈ [0,1]. Intuitively,
rmin = 0 implies that the lowest number of signals is selected (possibly only 1), given
that each selected signal represents all others. By contrast, setting rmin = 1 results in
the largest number of signals selected, as each selected signal only covers for the
completely correlated ones.

The selection of this value requires finding a trade-off between the number of
selected signals and their ability to represent the discarded variables well. The
value can be selected either by setting an a priori constraint on the desired repre-
sentativeness of the selected signals, or by studying the evolution of the number of
selected signals as the coefficient changes. We adopt the latter approach to preserve
domain-agnosticity. The value for rmin is found by identifying the knee point of the
rmin vs number of selected signals plot (Figure 5.10a). We identify rmin = 0.8 as
being the most suitable value, for a total of 13 signals being selected.
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Fig. 5.11 Identification of the best number of signals with unsupervised algorithms.

Feature Similarity (FSFS). Based on the implementation proposed in [121], we
run the selection algorithm by concatenating all cycles into a single, longer one,
then varying the parameter k. For each value of k, we extract the respective subset
of signals and compute the representation entropy (RE), as suggested in [101].
Figure 5.10b shows the RE value as k increases. From this plot, we identify the
maximum RE when k = 25, corresponding to the selection of 5 signals.

Principal Feature Analysis (PFA). Similarly to the FSFS algorithm, we concate-
nate all signal cycles to obtain a single time series for each signal, which is then
normalized to have zero mean and unit variance. Finally, we run the PFA algorithm
to identify the best number of components p representing the dataset. Figure 5.10c
reports the cumulative explained variance as the number of components increases.
We find 6 as the optimal number of dimensions to represent the majority of the
dataset information, based on the knee point of the curve. As the last step, we run
the k-means clustering algorithm to select the subset of signals. We choose k by
optimizing either the SSE or Silhouette scores. Figure 5.10d and Figure 5.10e reports
the trend of the SSE and Silhouette scores, respectively. We find two suggested
signal subsets composed of 12 and 10 signals, respectively.

Supervised approaches

In this subsection we assess the performance obtained for the previously presented
supervised signal selection approaches.
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Random Forest (RF). We train a Random Forest configured with hyperparameters
as suggested in [107]. We train it using the whole dataset and extract all features
mentioned in Subsection 5.5 for all 30 signals. At the end of the training, we
compute the signal importance for each signal. Figure 5.11a reports the signals
ordered by their SI and the value of the cumulative signal importance. The knee
point identification suggests selecting the first 9 signals as a possible subset.

Random Forest - Recursive Feature Elimination - RFR-RF. In this case, a
separate random forest is trained at each iteration by using the full dataset and all
features from the signals available in the current set (initially all of them). We use
2,000 estimators, as suggested in [109]. At each iteration, we discard the 20% least
important signals according to their signal importance. Figure 5.11b reports the
value of the out-of-bag error for the number of remaining signals. Here we select the
subset having the lowest error (which amounts, in this case, to a selected subset of
just 2 signals).

SVM - Recursive Feature Elimination - RFE-SVM. Similarly to the previous
algorithm, we remove 20% of the least important signals according to the signal
weight at each iteration. At each iteration, we evaluate the classification performance
of each model with a standard 10-fold cross validation by using all cycles available
and the features derived from the retained signals. Figure 5.11c reports the trend of
the best F1 score for the red class with a different number of signals. The performance
is maximized when a subset of 4 signals is considered.

Benefits of Signal Selection

To assess the quality of each signal selection alternative, we build a full pipeline
(all other parameters are set to some default values). We assess the quality in terms
of accuracy and F1 score computed using both k-fold and time series validation
(reporting the harmonic mean between the two quantities, as already discussed).

Figure 5.12 shows the results for each signal selection technique, as well as for
the baseline solution of not using any signal selection process. It can be observed
that most of the proposed approaches do not result in a particular benefit in the
overall pipeline w.r.t. not discarding any signal. CORR-FS and RF are the only
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Fig. 5.12 Performance on a multi-layer perceptron for various signal selection techniques.
The metrics reported are the harmonic means across 10-fold and time series validation.
Dashed lines represents results without signal selection.

approaches for which some benefit occurs. Among these, only CORR-FS results in
an improvement of both metrics, although RF achieves the largest overall F1 score
for the red class. We choose CORR-FS in that it presents the most consistent results
across the two metrics. Additionally, the algorithm’s unsupervised nature makes it
more suitable for a wider set of situations.

Windowing

In this section, we investigate the impact of various windowing policies by varying
the ∆T parameter. To do this, we divide each cycle, which is approximately 60
minutes long, into independent (i.e. non-overlapping) time windows of varying
duration ∆T . These windows range from 60 minutes (one window per cycle) to 2
minutes (30 windows per cycle). We label each window with the pseudo-label of
the cycle to which the window belongs: this makes the implicit assumption that the
clogging status is consistent throughout the entire cycle, as already discussed.
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Fig. 5.13 Performance obtained with various window sizes.

Figure 5.13 reports the MLP classifier performance using, as usual, the harmonic
means of F1 score and accuracy as the window size changes.

A clear trend emerges: the shorter the cycle, the worse the performance. This
trend is particularly evident for the F1 score of the red class, which degrades signifi-
cantly when using shorter time windows to extract features. The accuracy, on the
other hand, has a small degradation in performance but plateaus for windows smaller
than 12 minutes.

For this specific case, the best course of action is to monitor the clogging status
every 60 minutes, indicating that the clogging phenomenon is better observed on
longer time scales.

This result is also beneficial for deployment, as it allows the ECU to transmit
less data and reduces the number of classification decisions that need to be made in
the cloud.

Feature Extraction

In the next step, we move on to feature extraction. Starting from the 13 signals
collected with a ∆T = 60 minutes, we extract one set of features for tsfresh, a second
set for VEST, four sets for TSFEL, and one set for Ad-hoc. For TSFEL, we consider
(i) All the possible features, (ii) All-corr all those features that are not strongly
correlated, (iii) Statistical features only, and (iv) Temporal features only.

Table 5.4 reports the number of features extracted by each strategy. Since the
tsfresh library returns more than 10,000 features, we discard those results due to the
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small number of experiments available, which would make the convergence of the
training complicated.

Figure 5.14 summarizes the performance obtained by each strategy using a MLP
classifier after grid search. Interestingly, the variety of features provided by the
Vest and TSFEL packages does not help to describe the clogging phenomenon. The
higher the number of features, the lower the performance compared to the Ad-hoc
features, which consistently outperform the other strategies. We therefore consider
the Ad-hoc feature extraction strategy in the following analyses.

Approach #Features
Ad-hoc 286
Tsfresh 10231
VEST 640

T
SF

E
L

All 5070
All-corr 3964
Statistical 468
Temporal 234

Table 5.4 Number of
features per feature ex-
traction strategy.
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Fig. 5.14 Performance per feature extraction strategy.

Feature Selection

Figure 5.15 reports the performance achieved by a multi-layer perceptron network
when trained on each subset of features, obtained according to the process explained
in Section 5.5.
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Fig. 5.15 Performance improvement due to feature selection.

It comes to no surprise that a low number of features results in poor model
performance. However, the performance rapidly increase as new features are added:
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Fig. 5.16 Performance improvement brought by historicization.

this sharp increase is partially due to the ordering policy used, which chooses
important features (as computed through a random forest) first.

We obtain the best performance on the red class with ≈ 85-95 features. A
larger number of features results in a loss in performance in terms of F1 score and
no additional benefit in terms of accuracy. We thus select the number of featuers
∈ [85,95] that maximizes the accuracy: 91. This brings the number of features to
one third of the original number (286).

Historicization

Finally, we evaluate the impact of including past information. For this, we enrich
each time window with features from the previous h0 time windows. We next run
an additional feature selection step to remove any newly added redundancy. We
train, tune and validate a MLP model to find the best possible performance for each
historicization window.

Figure 5.16 reports the observed results. We observe minor changes in the F1

score when increasing h0 whereas the accuracy varies inconsistently: it decrease as
h0 grows to 5, to then increase again. Despite the slight increase in performance in F1

score, the behavior in terms of accuracy is significant of the fact the performance on
the other classes deteriorates. Introducing additional input data is thus not beneficial
to the proposed pipeline – we therefore decided to use h0 = 0 (i.e. no historicization
is used).



98 Limited labelled data: a case study

Classifier Parameter Values

MLP

Input layer |F |
1st hidden layer {2,5,11,17,19,23,27,40,46,54}
2nd hidden layer {2,5,11,17,19,23,27,40,46,54}

Out put layer 3
Activation {logistic, tanh}

Solver Adam
Tolerance 10−4

Table 5.5 Grid Search hyperparameter configuration.

Step F1 sscore AccuracyGreen Yellow Red
Original 0.78 0.62 0.75 0.72
Signal selection 0.82 0.72 0.79 0.78
Windowing 0.82 0.72 0.79 0.78
Feature extraction 0.82 0.72 0.79 0.78
Feature selection 0.83 0.81 0.91 0.83
Historicization 0.83 0.81 0.91 0.83

Table 5.6 Recap of the best performance found at each optimization step.

Model training and tuning

As already discussed, we focus our study on the identification of a fully-connected
neural network (or MLP) as the main model of interest. For the identification of
the best hyperparameters we focus on the works presented in [122, 123]. Table 5.5
details the ranges we used for each of the main hyperparameters under study.

Overall performance

To summarize the contribution of each step in the optimization pipeline, Table 5.6
presents the results obtained throughout the pipeline by training a multi-layer percep-
tron classifier. We additionally include the F1 score for the green and yellow classes.
The two steps that bring the highest benefit to the pipeline are the signal and feature
selection steps.

We do not observe any degradation in performance for the other classes: this
implies that the choices made are not overly fit on the red class. This is useful in
terms of identifying early symptoms of potential upcoming problems.
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5.8 Comparison with deep learning methodologies

In the last decade, deep learning (DL) methodologies have gained momentum,
thanks to the increase in computing capabilities and data availability, and have led
to breakthroughs in many machine learning tasks [124]. Indeed, deep learning
methodologies have been helpful in several fields such as image classification [125,
126], time-series prediction [127], and prognostics as well [128, 1]. Such increase in
popularity is driven by the capability of deep learning solutions to abstract the data
without complex manual feature engineering [124], and their good performance, e.g.,
high accuracy in classification problems.

Due to the heavily preprocessing-oriented nature of this work, we believe that
the most useful comparison should be against deep learning techniques, to automate
most of the work done this far.

We start from the initial set of 34 signals, i.e. the 30 signals that have been
retained after the domain-driven selection, plus an additional 4 that were removed in
the proposed pipeline because correlated with a coefficient of 1 with other signals. We
decide to keep all 34 signals, and not just 30, to assess how well DL methodologies
behave off the shelf, with as little feature engineering/selection as possible. We apply
a light preprocessing step to normalize the signals using a z-score normalization and
split our data following two alternative approaches:

• Training on whole cycles (Whole): we use each of the 388 cycles as a separate
input for the model, i.e., we train the model using the entire cycle at each step.

• Time windows (Windowing): as in Sec. 5.5, we divide each experiment into
independent time windows, setting ∆T = 100 seconds, resulting in 14,356
inputs. Then, we feed each window separately to the model. Each window
is labelled with the same cycle label it belongs to (with the previously made
assumptions).

Finally, we validate the pipeline following the same approach adopted for the
proposed methodology. Next we propose the two models used for this comparison,
namely Convolutional Neural Networks [58] and LSTMs [129].



100 Limited labelled data: a case study

dr
op

ou
t

fu
lly

 c
on

ne
ct

ed

input output
probabilities

sig
na

ls

time

Re
LU

1d
 c

on
v 

(1
0@

3)

Re
LU

1d
 c

on
v 

(1
0@

3)

Re
LU

1d
 c

on
v 

(1
0@

3)

Re
LU

1d
 c

on
v 

(1
0@

3)

1d
 c

on
v 

(1
@

3)

so
ftm

ax

Fig. 5.17 Convolutional neural network architecture based on [1].

Classifier Parameter Values

CNN

# of conv layers 5
kernel size (all conv layers) 3

stride (all conv layers) 1
output channels (conv layers 1-4) 10

output channels (conv layer 5) 1
dropout probability 0.5

LSTM
hidden state dimensionality 32

# of recurrent layers 1

Table 5.7 Configuration used for the proposed deep learning architectures.

Convolutional Neural Network

In the prognostics field, authors in [1] proposed to use a Convolutional Neural
Network (CNN) architecture to approach a remaining useful life (RUL) task for a
turbofan engine degradation problem. Here we use it as a first state-of-art archi-
tecture. Figure 5.17 reports the complete DL architecture we used, inspired from
[1]. Table 5.7 highlights the main hyperparameters used for the training of the
model. Since we tackle a classification problem instead of a regression one, we
insert a fully-connected network with a softmax activation function as the head of
the network.

Long Short-Term Memory

For the Recurrent neural networks (RNN), we use a different state-of-art architecture,
i.e., a bidirectional long short-term memory (LSTM) [130] model, which introduces
a gating mechanism for retaining and discarding information. The bidirectionality
of the LSTM implies that two LSTMs are trained simultaneously, using the signal
in positive and negative time directions [130]. This has been shown to provide
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Architecture Preprocess F1-Score AccuracyGreen Yellow Red
CNN Whole 0.792 0.571 0.587 0.680
CNN Windowing 0.846 0.784 0.562 0.791

LSTM Whole 0.775 0.526 0.360 0.654
LSTM Windowing 0.861 0.812 0.817 0.836

Table 5.8 Wrap-up of the performance based on preprocessing methodology and deep
learning architecture.

better results in both regression and classification problems. Table 5.7 lists the
hyperparameters used for the proposed LSTM model.

Results and discussion

Table 5.8 reports the results for each DL architecture and preprocessing approach.
The CNN does not provide satisfactory results on the red class with either pre-
processing approach. On the LSTM architecture we instead observe performance
comparable to those obtained with our pipeline. The best results are obtained when
the signals are windowed: it is well known that the backpropagation through time
leads to problems (e.g. exploding or vanishing gradients) over longer sequences.
Although LSTMs mitigate this problem, they do not necessarily solve it, as we can
empirically observe on the longer sequences.

We believe that the low amount of available data is the main cause for the
underperformance of the deep learning methodologies w.r.t. the proposed one.
Additionally, the available data has very low variability (i.e. all cycles are piloted
with the same track), thus preventing DL models to observe a wide range of scenarios
and extract useful and generalizable features from them. Thus, in limited data
scenarios, we can still observe an improvement in performance driven by significant
manual preprocessing and feature engineering.

However, it should be noted that a much lower effort has been put toward building
the LSTM model than the full PREPIPE pipeline. An important takeaway here
is that a small price in terms of performance may be paid in exchange for a much
simpler process that requires little domain expertise.
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5.9 Oxygen signal features

As previously discussed, the oxygen signal has been removed from the set of available
ones. The choice was made as a way to explore the relationships among other signals
with the problem analyzed: in other words, the domain experts deemed interesting
exploring how the rest of the engine is affected by a faulty oxygen sensor.

From a data-driven perspective it is instead interesting to explore whether the
oxygen sensor collected from Program A can be of any use when predicting the
target label.

We already know that, by construction, a part of the oxygen signal collected with
Program B can be – and is – used to predict the clogginess of the engine. However,
Program B is sampled a 320 times the sampling frequency of the oxygen signal from
Program A. Measuring the response time from Program A does not produce useful
results: the sampling frequency of 1 Hz makes the uncertainty of a measurement of
values between 1 and 2 seconds (i.e. the range of values for the response time) too
large.

However, it may be be the case that the oxygen signal across the entire cycle, al-
though sampled at a lower frequency, may still carry information about the clogginess
of the sensor.

We thus build a decision tree model to predict the target class, given as input
all 13 signals plus the oxygen one (the rest of the pipeline is applied as already
described). This very simple model achieves an accuracy of 0.80 and an F1 score
of 0.83 for the red class. These results are worse than the ones observed for the
multi-layer perceptron but, considering the simplicity of the model, we can intuitively
understand that the oxygen signal does carry useful information.

While we will not analyze the resulting decision tree in detail, we observe that
the root node (i.e. the node where the “best” split on the overall dataset is identified)
contains one of the percentiles (the 90th) computed on the distribution of values of
the derivative of the oxygen signal.

We thus additionally study the distribution of the 90th percentile of the derivative
of the oxygen signal. We show this result in Figure 5.18, for the 3 classes sepa-
rately. This very clearly shows that red (clogged) cycles are characterized by lower
derivatives (i.e. slower signals). The opposite is true for green cycles.
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Fig. 5.18 Distribution of the 90th percentile of the derivative of the oxygen variable, by class.
The vertical blue line represents the splitting value identified by the decision tree.
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We thus conclude that, while a lower sampling frequency prevents us from accu-
rately measuring specific parameters (e.g. the response time), the overall distribution
of values is still very helpful in addressing the sensor clogging problem. It should be
noted that this conclusion can be easily achieved with the “right” feature engineering
process. The raw signals would not have been as meaningful in quantifying this kind
of behavior without the proper preprocessing.

5.10 Discussion

Part of this work of thesis has been focused on studying real scenarios that are
affected by a lack of supervised data. To this end we presented PREPIPE, a pipeline
aimed at addressing the oxygen clogging detection problem.

The pipeline is built on top of the proposed semi-supervised labelling technique:
instead of relying on human annotations, we proposed extracting less reliable labels
without any human effort. We reduce the noise in the assigned labels by studying
their evolution through time.

The rest of the pipeline processes a large number of time series containing the
sensors’ data collected by the engine: we extensively evaluate each preprocessing
step to optimize the predictive performance of the framework. Our results show how
domain experts can take advantage of our framework to select the best subset of
signals and features to predict the status of the system under analysis.

The other important contribution to this work of thesis is a correlation-based
signal selection algorithm. This algorithm can be used to identify correlations among
time series with no supervision required. This makes this approach relevant when
labels are scarce, unreliable or missing.

Although not entirely aligned with the core goals of this thesis, we additionally
covered other aspects of interest for this work. Among them, there are:

• The handling of time series data: we empirically assessed how a well-crafted
feature engineering step can produce meaningful representations that can
outperform those learned through feature learning (e.g. via LSTMs). We
acknowledge that this fact is significantly related to the core problem of
interest, and the results may vary for different kinds of tasks.
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• The careful steps taken to guarantee that only a limited set of features is
extracted and used. Since the final goal of this project is to deploy the system as
a cloud-based service, communication between vehicle and servers is necessary.
In a “default” scenario, all signals would have to be transmitted in near real-
time. We instead identify a solution that allows only for a few features to be
extracted and sent “in batches” (time windows): instead of sending 180,000
samples each hour (50 signals sampled at 1 Hz), we reduce the number of
features necessary to 1̃00 (or ≈ 99.9% less data). All feature extraction steps
are computationally inexpensive and can be computed on-board with little
computing power.

The currently proposed pipeline has been developed using data collected in a test
bench. The track used is meant to reproduce behaviors that are found in different
settings (e.g. driving on a highway or in a city). However, the fact that the same
track is used for all cycles implies that the variance observed is rather low. As a next
step, we will consider collecting data from real vehicles driving in various conditions.
With that data, it will be possible to understand the extent to which a model trained
on test bench data can generalize to real driving conditions.

Being able to generalize a model to a different domain is, as already argued
in the introduction, an effective way of handling label scarce scenarios: if enough
data can be collected in a test bench and that data can be used to train a model that
generalizes to different data distributions (e.g. people driving real vehicles), then the
data collection cost is significantly reduced.

In a separate work carried out along with GM, we studied one such scenario,
where the problem to be addressed was one about the conditions of the High-Pressure
Fuel (HPF) system [18]. The adopted pipeline resembles the one proposed in this
work on the oxygen sensor. However, the data was collected specifically for this
study. As such, the ground truth was more easily enforced by the domain experts at
data collection time.

This makes the entire pipeline a fully supervised one. The results obtained reflect
this. Additionally, a second phase was carried out with data being collected from
real vehicles being driven in different settings. Collecting this kind of data is even
more expensive than collecting data in a test bench, given the necessity of having a
human actually driving the vehicle the entire time (as opposed to programmatically
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controlling the engine and its response). For this reason, the only data collected was
used for validation, rather than for retraining.

The results obtained for that experiment show that a model trained on the standard
cycles generalizes well to data collected on real vehicles. With cautious optimism,
we can thus find it reasonable to expect that the same generalizability should also
apply for the oxygen sensor problem.



Chapter 6

Conclusions

This work of thesis has been focused on the exploration of the field of machine
learning in those situations where labelled data is scarcely available. We have
already discussed many of the implications and future directions that could be
pursued for each of the works presented thus far. In this chapter, we first reiterate the
main reasons that have led to focusing this work of thesis on the topic of limited label
learning. Then, we additionally summarize the main aspects of interest highlighted
throughout the thesis and we identify some potential topics that may be worth
investigating in the future.

6.1 Learning in label-scarce scenarios

It is a well-established fact that machine learning algorithms need significant amounts
of supervision to achieve performance on par with that of humans. Achieving
performance comparable with that of humans is obviously a tremendous effort.
However, to get close to this target, large amounts of data are required: a popular
example is the one given by ImageNet [131]. Human-comparable performance has
been achieved relatively soon [132], but it should be noted that these models are
trained on a million images, 1,000 for each class. As humans, we are typically able
to learn from much smaller sets of data and can generalize significantly better than
algorithms can. For this reason, the pursue of a label-scarce approach to machine
learning is the next logical step to be taken.
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A learning process that is closer to that of humans however is not the only reason
why label-scarce learning is a task of interest. Limits in label availability are often
dictated by the context where machine learning techniques are applied. As already
argued throughout the thesis, acquiring human-labelled data is expensive. Thus,
being able to produce well-performing models with very limited data available is
also beneficial for practitioners, not only researchers.

6.2 A recap of the main contributions

In this thesis we covered topics that span various stages of the spectrum of label
unavailability. From situations where labels are completely unavailable, to situations
where labels are available but in a domain that differs from the one of interest, to
situations where only a small subset of available data is labelled, with large amounts
of unlabelled data to be additionally exploited.

The unsupervised setting is easily the hardest among all scenarios we have
considered in this thesis. If no supervision whatsoever is available, the only task
that can be defined is one of pattern identification, e.g. by clustering points based on
shared properties. The validation of such patterns is non-trivial, given the lack of
supervision. In some cases, this kind of validation has been referred to as a “black
art” [133]. On top of this esoteric endeavor, another classical problem of clustering is
given by the typical computational complexity that comes with it. We discussed how
the majority of clustering techniques are either superlinear, non-incremental, or both.
Among the few exceptions we identify self-organizing maps. We present in Chapter
3 an approach for making the training of self-organizing maps faster. This is done by
first building a smaller model (i.e. a model with less representational capacity), then
propagating it to a larger one, which is finally fine-tuned. We show the theoretical
improvement in training time that such a technique can obtain over the traditional
self-organizing map training, and we show that we indeed observe this improvement
experimentally. Although it is non-trivial to formalize the degradation that the
proposed approach has in terms of performance, we run extensive experiments to
empirically assess this factor. The conclusions that we have reached is that, although
there is a slight degradation in performance, it is typically an acceptable one, when
balanced by the reduced computational effort required.
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For domain adaptation, i.e. the task of learning from adjacent domains, we
worked within the field of NLP. Starting from knowledge available in English (a
typically resource-rich language), we aimed at propagating the available knowledge
to a language where no prior knowledge was available. We do so by exploiting align-
ments of word embeddings that allow to find mappings between the two domains.
After the mappings are found they are encoded as graphs: a gradient descent-based
optimization is then used for the final knowledge propagation on the graph. We
showed that this approach consistently outperforms techniques that are based on a
fixed mapping between the source and target domain. We additionally noted that
these fixed mappings between domains are also typically hard to obtain, especially
for low-resource domains, which are the focus of this work. We drew some consider-
ations based on the generalizability of the proposed method to scenarios outside of
NLP: in short, the proposed propagation technique may be used in other scenarios
where the same entities can be found across different domains (e.g. users in different
social networks).

We additionally covered the topic of semi-supervised learning, where models are
trained both on labelled and unlabelled data. A common trend in semi-supervised
learning is that of building soft labels (or pseudo-labels) for unlabelled samples,
especially for those for which the model has high confidence in its capability of
assigning the correct class label. In this case, we focus on improving the confidence
mechanism used by a state-of-the-art semi-supervised technique (FixMatch). Instead
of using the implicit confidence that can be extracted from the predicted probability
distribution, we introduce an explicit confidence output. We provide initial empirical
evidence that the proposed confidence approach can improve the quality of the
learned model, especially at early stages. However, we acknowledge that these
results are still preliminary and that further investigations are required before more
conclusive considerations can be drawn.

Finally, we thoroughly cover an applied case study. The setting is in the field of
predictive maintenance, with the goal of predicting the clogging status of an oxygen
sensor. We consider this case study of interest due to the scarce supervision that is
provided: the available data is repurposed from a different experiment and thus lacks
proper labels. We propose an approach to assign labels in a semi-supervised manner
by exploiting domain knowledge, additional available data and some assumptions
made on the distribution of the data. On top of that, we adopt a signal selection
algorithm that is unsupervised in nature. This is particularly useful considering
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that (i) the labelling is noisy and may thus prove to be unreliable and (ii) since the
approach is unsupervised, it can be used in different settings with little changes. For
the sake of completeness, we covered the entire data science pipeline introduced,
although some aspects of it may not be completely aligned with the goals of this
work of thesis.

6.3 Future directions

Overall, the research presented in this thesis has highlighted the potential of machine
learning to address the challenge of label scarcity and has demonstrated the effec-
tiveness of unsupervised, domain transfer, and semi-supervised learning approaches
in this context.

However, there are still many open research questions and opportunities for
further development in this area. One promising direction is to investigate the
integration of multiple approaches, such as combining domain transfer and semi-
supervised learning to address situations where only few labels are available, and
only in an adjacent domain. In the field of NLP, for example, we may want to
propagate information across languages, when little information is available even
in the source language. This is, for example, applicable when we want to work on
closely related and relatively unknown languages. A very relevant example is given
by the Italian language and the over 30 languages within Italy that are currently
endangered, according to Unesco [134]. Within this context, there has been recent
interest in addressing the variety of Italian languages with NLP-based technique
[135]. We believe this to be a worthwhile task, which we will consider addressing in
the near future.

A different direction that has not been the focus of this thesis, but that is a valid
and very relevant option, is the topic of active learning, in which the model actively
selects which examples to label in order to maximize its learning efficiency. This
could be particularly useful in scenarios where the cost of obtaining labels is high,
as it allows the model to prioritize the most informative examples for labelling. In
pool-based active learning (where a pool of all unlabelled points is available), the
focus of the model is on identifying the samples for which acquiring a label would
be most beneficial for the learning process [136]. A possible selection policy would
be requesting labels for points for which the model produces the least confident
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predictions: because of this, the discussion about confidence estimation made in
Chapter 4 is also very relevant in this field. The main difference with semi-supervised
learning would be that, instead of inferring the pseudo-labels for points that are most
confidently predicted, with active learning the model would be able to request new
labels for the points of least confidence.

Another interesting direction for future research is to explore the use of meta-
learning to improve the learning conditions when labels are scarce. Meta-learning
is concerned with the topic of “learning to learn”, or adapting the learning process
itself to a new task or domain. This could potentially enable models to adapt more
quickly and effectively to new label-scarce scenarios, by leveraging their previous
learning experiences to guide their learning strategy.

In conclusion, the research presented in this thesis is just a small contribution
to the extremely large and complex field that is machine learning with limited label
availability. We considered the problem from various angles and addressed it with
several approaches. By continuing to investigate and refine these approaches, as well
as by exploring new directions such as meta- and active learning, we aim at further
improving the boundaries of what can currently be achieved in these scenarios that
are so limiting and yet so ubiquitous.
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