
Technical Disclosure Commons Technical Disclosure Commons 

Defensive Publications Series 

March 2023 

Automated Testing of Software with Adequate Coverage of Input Automated Testing of Software with Adequate Coverage of Input 

Space Space 

Matt Kenison 

Justin Bagwell 

Mike Meade 

Follow this and additional works at: https://www.tdcommons.org/dpubs_series 

Recommended Citation Recommended Citation 
Kenison, Matt; Bagwell, Justin; and Meade, Mike, "Automated Testing of Software with Adequate 
Coverage of Input Space", Technical Disclosure Commons, (March 20, 2023) 
https://www.tdcommons.org/dpubs_series/5747 

This work is licensed under a Creative Commons Attribution 4.0 License. 
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for 
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons. 

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F5747&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/5747?utm_source=www.tdcommons.org%2Fdpubs_series%2F5747&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US


Automated Testing of Software with Adequate Coverage of Input Space 

ABSTRACT 

Some software products have large input spaces, with potentially an exponentially large 

number of parameter combinations. It is infeasible to exhaustively test such software products. 

This disclosure describes techniques to automatically generate input space coverage for a 

software product by generating test cases from a rules grammar while maintaining coverage over 

the lifetime of the product. The various components include a grammar for describing the input 

space; a test engine to accept workloads and input parameters and to generate test cases that run 

workloads against input parameters; a software module that computes the number of interacting 

parameters to test and efficient combinations thereof to make a tractable number of test inputs; 

etc. 

KEYWORDS

● Software testing 

● t-way testing 

● Combinatorial testing 

● Test coverage 

● Covering array 

● Test case generation

BACKGROUND 

Some software products have large input spaces, with potentially an exponentially large 

number of parameter combinations. It is infeasible to exhaustively test such software products. A 

fixed subset of parameters is insufficient for comprehensive coverage of a software product, 

especially one under active development, since the input space changes as the product features 

2

Kenison et al.: Automated Testing of Software with Adequate Coverage of Input Spa

Published by Technical Disclosure Commons, 2023



change. Randomly parameterizing tests can enable a higher degree of combinatorial coverage but 

does not do so deterministically. Also, randomly parameterized tests do not guarantee 

comprehensive coverage. 

Existing techniques, e.g., t-way parametrization, iterative sieves, etc., largely focus on 

algorithmic parameterization, optimizing permutations, and reducing the number of test cases 

needed to cover an input space. There is no comprehensive solution for automatically generating 

input space coverage or maintaining it over the lifetime of a software product. 

DESCRIPTION 

This disclosure describes techniques to automatically generate input space coverage for a 

software product by generating test cases from a rules grammar while maintaining coverage over 

the lifetime of the product.  

The various components of the architecture are described below. 

● A grammar for describing the input space of a software product or module. The terminal 

symbols of the grammar are dimension values. The non-terminal symbols are dimension 

subsets. Subsets can be statically defined, generated from data, or computed from lambda 

functions. 

● A test engine, which 

○ accepts test workloads for one or more dimensions; 

○ accepts a set of dimensional values as input parameters; 

○ defines a test oracle for each workload; and 

○ generates a test case that runs each workload against input parameters and 

validates rules using the test oracle. 

● A software module, which: 

3

Defensive Publications Series, Art. 5747 [2023]

https://www.tdcommons.org/dpubs_series/5747



○ specifies the number t of interacting parameters to test and a desired confidence 

level of the results; 

○ defines a language using the grammar to derive the possible dimensional values 

for each parameter; 

○ computes efficient combinations of the t dimensional values into a tractable 

number of test inputs; 

○ runs, for each combination of dimensional values, each test case, passing the 

combination of values as input to the test engine;  

○ statistically processes failing tests to produce new combinations of the input 

parameters and repeats tests until the desired confidence level is achieved; and  

○ reports test results that correlate test failures to particular combinations of 

dimensional values with which those tests were run. 

Fig. 1 illustrates an architecture for automated testing of software. 

 

Fig. 1: Architecture for automated testing of software  

4

Kenison et al.: Automated Testing of Software with Adequate Coverage of Input Spa

Published by Technical Disclosure Commons, 2023



 Fig. 1 illustrates an example architecture for automated testing of software input. A 

software tool (102) (e.g., as described in greater detail in [1] or similar), defines input rules or 

dimensions, and gathers and verifies test coverage. A t-way tester and test-case generator (104) 

can generate test cases from a rules grammar. It includes: 

● t-way generator (106): A module that generates a covering array of all valid t-way 

combinations of parameters defined in the configuration of the software tool (102). The t-

way generator can be based on, for example, open source software (e.g., as described in 

[6]) proven in life-critical applications such as medical safety, aviation, etc. Alternatively, 

the t-way generator can be written from custom software based on covering-array 

generators (e.g., as described in [7]). The t-way generator writes the generated 

combinations to a covering array database (108) that can be queried by a separate test 

runner.  

● Covering-array database (108): A database that stores individual t-way combinations. 

It can store more combinations than are used in testing without side effects, and can 

generate combinations for varying levels of t. The expected coverage can be directly 

calculated from this data without running tests, so if 100% coverage is not required, an 

informed risk tradeoff can be made. 

● Test engine (110): A module that generates and runs tests to provide test coverage. For 

each combination of parameters, the test engine creates a workflow by selecting 

applicable test targets, applies the specified combinatorial values, and schedules the test 

workflow. Tests can take advantage of generic workflow scheduling and throttling to 

ensure reliability. Test targets can vary based on selected parameters. 

5

Defensive Publications Series, Art. 5747 [2023]

https://www.tdcommons.org/dpubs_series/5747



● Visualization: A dashboard (112) that graphically displays coverage results and enables 

the user to deep-dive into failures. The dashboard can show the relative coverage of all N-

way combinations (including the case N > t, which enables the making of an informed 

decision about the appropriate value for t). 

The t-way tester and test-case generator can interact with an external database (114) that 

enables users to query aspects of testing and coverage. The dashboard and the other components 

(t-way generator, covering-array database, test engine) are minimally coupled to each other and 

have no external dependencies. The techniques generally apply to the testing of software 

products with a combinatorial number of input possibilities, e.g., virtual machine configurations 

for cloud computing, etc. 

CONCLUSION 

This disclosure describes techniques to automatically generate input space coverage for a 

software product by generating test cases from a rules grammar while maintaining coverage over 

the lifetime of the product. The various components include a grammar for describing the input 

space; a test engine to accept workloads and input parameters and to generate test cases that run 

workloads against input parameters; a software module that computes the number of interacting 

parameters to test and efficient combinations thereof to make a tractable number of test inputs; 

etc. 

  

6

Kenison et al.: Automated Testing of Software with Adequate Coverage of Input Spa

Published by Technical Disclosure Commons, 2023



REFERENCES 

[1] Kenison, Matt; Bagwell, Justin; Sampson, Tylor; and Meade, Mike. “Validating software 

functionality across combinations of runtime configurations,” Technical Disclosure Commons, 

(December 12, 2022) available online at https://www.tdcommons.org/dpubs_series/5568 

[2] D.R. Kuhn, I. Dominguez, R.N. Kacker and Y. Lei. “Measuring test quality with 

combinatorial coverage,” available online at https://csrc.nist.gov/Projects/automated-

combinatorial-testing-for-software/combinatorial-coverage-measurement/coverage-measurement 

accessed Mar. 12, 2023. 

[3] Bonn, Joshua, Konrad Fögen, and Horst Lichter. “A framework for automated combinatorial 

test generation, execution, and fault characterization.” In 2019 IEEE International Conference on 

Software Testing, Verification and Validation Workshops (ICSTW), pp. 224-233. IEEE, 2019. 

[4] Grindal, Mats, and Jeff Offcutt. “Input parameter modeling for combination strategies,” 

available online at https://cs.gmu.edu/~offutt/rsrch/papers/ipmmodel.pdf accessed Mar. 12, 2023. 

[5] D.R. Kuhn, R.N. Kacker, and Y. Lei. “Practical combinatorial testing,” available online at 

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-142.pdf accessed Mar. 12, 

2023. 

[6] “USNISTGOV/combinatorial-testing-tools,” available online at 

https://github.com/usnistgov/combinatorial-testing-tools accessed Mar. 12, 2023. 

[7] Wagner, Michael, Kristoffer Kleine, Dimitris E. Simos, Rick Kuhn, and Raghu Kacker. 

“CAGEN: A fast combinatorial test generation tool with support for constraints and higher-index 

arrays.” In 2020 IEEE International Conference on Software Testing, Verification and 

Validation Workshops (ICSTW), pp. 191-200. IEEE, 2020. 

7

Defensive Publications Series, Art. 5747 [2023]

https://www.tdcommons.org/dpubs_series/5747

https://www.tdcommons.org/dpubs_series/5568
https://csrc.nist.gov/Projects/automated-combinatorial-testing-for-software/combinatorial-coverage-measurement/coverage-measurement
https://csrc.nist.gov/Projects/automated-combinatorial-testing-for-software/combinatorial-coverage-measurement/coverage-measurement
https://cs.gmu.edu/~offutt/rsrch/papers/ipmmodel.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-142.pdf
https://github.com/usnistgov/combinatorial-testing-tools

	Automated Testing of Software with Adequate Coverage of Input Space
	Recommended Citation

	tmp.1679315480.pdf.4wIzs

