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ABSTRACT 
This research work develops the modelling of a parallel hybrid electric vehicle (HEV) 
using a fully automated friction clutch connecting the combustion engine and the main 
electric motor to switch between the pure electric driving mode and the combustion 
engine driving mode. A new scheme of model predictive control (MPC) with softened 
constraints for this HEV is developed and applied to control the vehicle speed and 
torque of the motor and the combustion engine. The MPC scheme with softened 
constraints can provide better drivability and stability for the hybrid vehicle tracking on 
desired speeds and needed torques. This MPC can also change the driving modes with 
fast and smooth clutch engagement. The HEV can track better and faster along the 
desired speeds and torques amid the dynamic constraints imposed on the states, inputs 
and outputs. MPC with softened constraints can improve considerably the control 
system stability and robustness. 
 
Keywords: Parallel hybrid electric vehicle; model predictive control with softened 
constraints; clutch engagement; tracking speed setpoints and torque; high 
comfortability; low jerk. 
 
1. INTRODUCTION 

In parallel hybrid electric vehicle, both combustion engine and main electric motor are 
installed in parallel and work in independent configuration. The vehicle can run and 
switch in four driving modes: pure main electric motor (EV1) at low speed and low 
load; pure combustion engine (EV2) at high speed and high load; both main electric 
motor and combustion engine (EV3) at very high and very high load; and all main 
electric motor, generator motor, and combustion engine (EV4) at extreme high load. In 
2021, Hyundai has been introducing a new version of Sonata Hybrid series in [1], this 
middle size family passenger HEV combining update technologies for parallel electric 
vehicle as shown in Figure 1.  
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Figure 1. 2021 Hyundai Parallel HEV 

 

This parallel HEV consists of one internal combustion engine (ICE) with four 
cylinders with multiple point injection, volume of 2.4 litters, max power of 156 kW at 
6000 rpm, and the peak torque of 265 Nm; one electric motor starter (EM2) with max 
power of 8 kW and max torque of 43 Nm; the main electric motor (EM1) with max 
power of 35 kW and max torque of 205 Nm; the battery HEV Li-ion with capacity of 
6.1 Ah; the transmission gear box with fully automated 6 speed and the friction clutch 
engagement. The vehicle curb weight is 1569 kg. This Sonata Hybrid vehicle is used to 
simulate our system modelling and test the new MPC scheme with softened constraints. 

Controllers design for the HEV powertrains and speeds can be including model-free 
or model-based. Model-free controllers are mostly used with heuristic, fuzzy, neuro, AI, 
or human virtual and augmented reality. The use of model-free methods will be 
presented in the next part of this study. Model-based controllers can be used with 
conventional adaptive PID or H2 or H∞ or sliding mode control. But all conventional 
control methods cannot include the real-time dynamic constraints of the vehicle 
physical limits, the surrounding obstacles, and the environment (road and weather) 
conditions. Therefore, MPC with horizon and open loop control prediction subject to 
dynamic constraints are mainly used to control as real-time the HEV speeds and 
torques. Due to the limit size of this paper, we are reviewing some most recent research 
of MPC applications for HEV. 

A recent modelling and control of dual clutch transmission for HEV are presented in 
[2] where a new controller is designed for synchronizing the dual clutch transmission 
(DCT) with higher performance and lower fuel consumption. Another MPC for 
autonomous driving vehicle is developed in [3] where the MPC is used to drive the 
HEV to track exactly given feasible trajectories. Also, a controller for hybrid dual-
clutch transmission powertrain for HEV is introduced in [4] where the ICE and EM are 
driven by a DCT powertrain. A MPC for HEV with linear parameter and varying model 
is presented in [5] where the MPC controller is designed to improve the fuel economy 
of the power split HEV. 

MPC for HEV is not only to control the torque and speed but also to control the gas 
emission and to improve the fuel economy. Authors in [6] develop a MPC with multi-
objective function for HEVs for fuel economy, exhaust emission and collision detection 
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as well as to optimize the vehicle speed and engine torque. A new MPC design for HEV 
with adaptive cruise of autonomous electric vehicles is presented in [7]. A Hybrid MPC 
to optimize the HEV mode selection is introduced in [8] where the vehicle thermal 
management is controlled by this MPC subject to decision-making algorithms. Fuel 
economy and lower emission are also controlled by MPC with outer approximation and 
semi-convex cut generation and presented in [9].  

Due to the recent world commitment to limit the increasement in global warming and 
to stop using fossil fuels, the plug-in and the pure electric vehicles are now expanding. 
MPC algorithms are also developed to control the plug-in hybrid vehicle (PHEV) as 
shown in [10]. In this study, a non-linear MPC is designed to control the torque-split 
and to optimize the fuel management. Authors in [11] also present a data-based scenario 
MPC framework to optimize the power consumption. 

Nonlinear model predictive control (NMPC) has been widely used thank to the rapid 
increasement of computer capacity and speed. The computer now can calculate as real-
time directly solution from very complex nonlinear functions. Therefore, authors in [12] 
provide MPC for nonlinear energy management of the power split HEV. Energy 
efficiency management for HEV is now also extended in communication among 
vehicles [13], in which, a MPC framework is proposed to generate the optimal torque 
and velocity by connecting the communication from vehicle-to-vehicle.  

Authors in [14] review latest controllers from model-based in market on improving 
the energy management for HEV, where the MPC is used to calculate the optimal 
energy, torque and speed. Since MPC is one of the model-based algorithms, difficulty 
will be arising when there are existing mismatches between the model and the plant or 
the plant uncertainties. These mismatches and uncertainties may lead to the instability 
of the controller. Robust model predictive control (RMPC) algorithms are therefore, 
developed to deal to these uncertainties. Authors in [15] present a new method using 
matrix inequalities based RMPC for HEV considering external disturbances, time 
varying delays and model uncertainties. Authors in [16] introduce a real-time NMPC for 
the energy management of HEV using the sequential quadratic programming.  

The use of MPC for pure electric vehicle is also referred in [17] for full battery 
consumption and road slope condition. Authors in [18] present a decentralized MPC of 
plug-in electric vehicles charging based on the alternative direction method of 
multipliers. Real-time MPC for HEV longitudinal tracking, jaw movement, dual-mode 
power split, and minimizing energy are presented in [19-22]. However, none of recent 
MPC methods is dealt with MPC with softened constraints. MPC is always subject to 
many strict constraints on states, outputs and inputs, therefore, it may not find out a 
feasible solution and it may become unstable. Since the MPC is a real-time optimizer, 
any failure solution cannot be tolerated. We propose to converse some physical strict 
constraints into softened constraints by adding some large penalty values into the 
objective function. This way can increase the stability and the robustness of the system 
dealing with uncertainties and initial conditions, that may that lead the outputs to violate 
constraints. Update new MPC calculations and advanced control techniques are referred 
to in references [23-32]. 

The layout of this paper is as followings: part 2 presents the modelling of parallel 
HEV; part 3 introduces the design of MPC; part 4 develops the MPC algorithms with 
softened constraints; part 5 illustrates simulations of MPC for HEV; and part 6 is 
conclusion. 
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2. MODELLING OF PARALLEL HEV 

Schematic architecture of the 2021 Hyundai Sonata Hybrid in Figure 1 can be modelled 
with a simple drivetrain and shown in Figure 2. The first part of this mechanical 
structure consists of combustion engine ICE and the electric starter/generator motor 
EM2 can be grouped into one inertia  including the left clutch disk, the shaft 1, EM2 
and ICE.  is modelled as one rigid inertia.  and   are the torques on ICE and 
EM2.  and  are the angular position and velocity of shaft 1. Similarly,  is 
modelled as the lumped rigid inertia of the main electric motor EM1 and the right clutch 
disk,   and  are the angular position and velocity of shaft 2. The third powertrain 
part connecting the gearbox and the vehicle driven wheels can be modelled by a gear 
ratio  via a damper with , , and  as the position, velocity, and acceleration 
damping coefficient. This third part consists of the lumped inertia  of the rest of the 
vehicle including gearbox, differential gear, shaft 3 and the driven wheels.   and  
are the angular position and velocity of shaft 3. And  is the vehicle wheel rolling 
radius.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Simplified structure of parallel HEV 
 

In this paper, vehicle dynamic formulas and constraints are referred to the technical 
book in [23]. The vehicle resistant torque is the approximation of the air density , air 
drag coefficient  , the vehicle crossing area , the wheel rolling radius , vehicle 
friction resistant coefficient , natural gravity , vehicle mass , and the polynomial 
coefficients of , , and , correspondingly. The vehicle rolling resistance torque  
can be calculated as: 

 

 (1) 
 

In equation (1), the additional road conditions such as the road dynamics and the 
road increasement and other environment conditions can be added as the disturbances 
leading to some reduction or increasement to the vehicle rolling resistance torque. 
Changes of vehicle velocity depending on the road conditions as well as the vehicle 
dynamic constraints between the vehicle speed and the vehicle steering wheel are 
referred in [23]. 

At low speed of less than 40 km/h, the clutch is open, only the main electric motor 
EM1 propels the HEV. The contribution of some other exponential coefficients is small 
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and can be ignored. The vehicle rolling resistance torque at low speed can be simplified 
as: 

 (2) 

where  is the initial resistance constant of air drag and rolling friction,  is a 
linear coefficient depending on the gear ratio. 

On the first part, the torque applied is: 
 

 (3) 
 

This torque can be calculated as: 
 

 (4) 
 

where  is the torque from ICE, is the torque from motor ME2, and  is 
the torque from clutch.  

When the clutch is locked, the clutch torque  is the maximum static friction,  
 

 (6) 
 

where  is the clutch radius,  is the normal force, and  is the clutch friction 
coefficient. 

When the clutch is moving in transitional engagement, , the clutch 
torque is: 

 

 (7) 
 

where is the clutch slipping coefficient. 
On the second part, the torque applied on the main motor ME1 is: 
 

 
(8) 

  The sum of inertias 
 

 (9) 
 

And the torque velocity: 
 

 
(10) 

 

The balance of torque  is: 
 

 (11) 
 

with  is the transmission efficiency of the gearbox and the differential gear. 

The angular acceleration of the shaft 1: 
 

 
(12) 

where is the shaft 1 friction coefficient. 

1 1 1oM J w= !
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The angular acceleration of the shaft 2: 
 

 
(13) 

 

where is the shaft 2 friction coefficient. 

And finally, the angular acceleration of the shaft 3 is: 
 

 
(14) 

 

where is the shaft 3 friction coefficient. 

The jerk on the drivetrain is: 
 

 
 (15) 

 

 The torque generated on the main motor is: 

  (16) 

where  is the main motor torque,   is the motor constant,  

(Nm/A);  is the electromotive force (EMF) constant, ,  is the resistance,  
is the voltage supply, and  is the angular velocity. 

Now we process and transform all above equations into a first order linear system as: 

        (17) 

                    (18) 
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  (23) 
 

 

If we put the space vector , and the input 
vector as  for the torque on the combustion engine 
ICE, the input voltage for motor EM1 and EM2, torque on clutch, and the initial air-
drag load, a linear space state of the vehicle dynamics system can be formed as: 
 

 

(24) 

 

The linear first order state space model in (24) can be used to create the MPC 
algorithms in the next part. System in (24) is including the acceleration  and jerk , 
which can be used to simulate and regulate the HEV driving comfortability. 

When the HEV runs in low speed less than 40km/h, only the main motor EM1 is 
working. The inputs of , , . The state variables of , 

. Then, the above linear system can be simplified as: 
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,  

; 
 

(25) 

 

where the states  , inputs , outputs 
. The output  is the unmeasured torque at shaft 3. In this 

equation,  is the torsional rigidity, , and  is the twist angle, 

.  is the rigidity modulus.  is the shaft length. And  is the lumped inertia 

moment, . 

When the HEV runs in high speed greater than 40 km/h, the starter motor EM2 
activates the combustion engine ICE while the friction clutch is still open, the state 
equations of the first part can be written as: 

 

 (26) 

 
(27) 

 

where  is the additional coefficient for starting motor EM2 as a compensation load 
for the starting period. The linear state space system in the first part is: 

 

 

; ; ; 

 

(28) 

 

where  , , . The output 
 is the unmeasured torque at shaft 1. 

 

3. MODEL PREDICTIVE CONTROL FOR HEV 

MPC is an open loop, infinite horizon prediction and optimization controller subject to 
dynamic constraints. The continuous first order linear space state equation in (24) can 
be discretized into time interval with discrete  and ,  is the computer 
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scanning speed or the time sampling interval. Now the continuous time form in (24) can 
be discretized into:  
 

 (29) 
 

Subject to the states, inputs, outputs and the inputs increasement constraints 
 

, , , and  (30) 
 

MPC calculates the open loop input and output prediction horizon, for the calculation 
simplicity, we assume the input prediction length is always equal to the output 
prediction length or . The objective function of the MPC for HEV is: 

 

 
 (31) 

 

subject to (30) as , and , , for 
, , and , for , 

, and , for , ,  
, , , 

where  is the state variables,  is the solution of predictive 
input from k to Nu. And Ny is the predictive output ,  is the desired speed 
setpoints;  is the input predictive increments, ; 

, and  are the weighting matrices for the outputs and the inputs, 
respectively.  

By substituting , equation (31) can be 
transformed as 

 

, (32) 

 

subject to the linear matrices’ inequality, , where the column vector 
 is the optimization vector, , and H, 

F, Y, G, W, E are obtained from Q, R and in (31) as only the optimizer vector U is 
needed, the term involving Y is usually removed from (32). The optimization problem 
(31) is a quadratic program (QP). The MPC optimizer will calculate the optimal input 
vector  subject to the dynamic constraints of the inputs, 
, and ; of the outputs , and ; and of the 
input increments . But only the first input increment, , is 
inserted into the implementation. Then, the optimizer will update the outputs and states 
variables and repeat the calculation.  

A diagram of the MPC for HEV is drawn in Figure 3. 

 

1t t tu u u -D = - ÎDU
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Figure 3. MPC diagram system 
 

The MPC scheme for HEV in Figure 3 calculates the real-time optimal control 
action, , and feeds into the vehicle dynamic equations and update the current 
states, inputs and outputs. The update states, inputs and outputs will feedback and 
compare to the reference desired trajectory data for generating the next optimal control 
action  in the next interval. 

When the system is nonlinear and has the general derivative nonlinear from as: 
 

 (33) 
 

where x is the state variables and u is the inputs. The nonlinear equation in (33) can 
be approximated in a Taylor series at referenced positions of  for 

, that: 
 

 (34) 

 

in which,  and  are the Jacobean function of  and , moving around the 
referenced positions . 

Subtraction (34) for , we can obtain an approximation linear form in 
continuous time : 

 

 (35) 

The linearized system in (35) can be used as the linear system in (24) for the MPC 
calculation. However, the MPC real-time optimal control action  must be fed into 
the original nonlinear system in (33) for the update states, outputs, and inputs. 
 

4. MPC WITH SOFTENED CONSTRAINTS FOR HEV 

The conventional MPC objective function in (31) subject to the constraints in (30) on 
states, outputs, inputs and input increasement may deal with so many hard constraints. 
The MPC optimizer may not find out solution satisfying all constraints. So that we now 
consider to widen the MPC feasibility by converting some possible hard constraints 
from (30) into softened constraints to increase the possibility to find out solution. The 
new MPC scheme subject to softened constraints has the following form: 

MPC Vehicle Dynamics 
Model 

Referenced HEV Data 

	
 = 

+ 

 
	
 

Update outputs and inputs 
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(36) 

subject to 

 

 

(37) 

where  is assigned as big values as a weighting factor ( ), and  is the 
constraints penalty terms ( ) added into the MPC objective function.  and  are 
the corresponding matrix of the hard constraints. 

The new items in (37) are softened constraints selected from hard constraints in 
, and , , for , 
, and , for , , and 

, for , , , 
, , where, , 

 and ; and  is the additional penalty matrix 
(generally  and assign to small values); In this new MPC scheme, the penalty 
term of softened constraints  is added into the objective 
function with positive definite and symmetric matrix ; This term penalizes violations 
of constraints and when possible, the free constrained solution will be returned.  

Now this MPC calculates the new optimization vector  and the new MPC 

computational algorithms will be: 

 
(38) 

subject to , 

where  is the new optimization 

input vector,  and , and matrices for inequality constraints H, 

F, G, W, and E are obtained from equation (38), 
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 with , 

 with , and  with . 

To illustrate the ability of this controller, we test the two MPC schemes in (31) and in 
(36) by the following simple example as considering the below nonlinear system: 

 

 

 
(39) 

 

It is assumed that the system in (39) is subjected to the hard state and input 

constraints  and . The linearized approximation of this system 

in (35) is: , in which,  and . The weighting matrices 

are chosen as . The weighting matrices for softened 

constraints are chosen as . It is assumed that the system 

is starting form an initial state position, . Figure 4 shows the performances 

of two NMPC schemes: This initial state position x0 does not lead to any violation of 

states and input (  and ). In this , the solutions of the two 

control schemes are always available. We can see that, the NMPC with softened state 
approaches the asymptotic point faster than the hard constraints. It means that, if we 
loosen somehow some constraints, the optimizer can generate easier optimal inputs and 
the system will be more stable. 

It is interesting to see in Figure 4 that, both schemes have  and 

, almost reach the hard constraint of . These states 

still have not violated the state constraints but if we select some other initial positions 
, that may lead to some state and input violations. 

Now, if we select , this initial condition will lead to the violations of the 

state and the input constraints as  and . These 
violations will make the RMPC with hard constraints infeasible. Meanwhile, the RMPC 
scheme with softened constraints is still running well and still easily to find out optimal 
input solutions as shown in Figure 5. And after a very short transitional period, the fully 
constrained solution is returned or there is no more constrained violation. 
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Figure 4. Performance of two NMPC schemes 

 
Figure 5. Softened Constraint NMPC 

 

The new MPC scheme with softened constraints for HEV will be further analysed 
and simulated in the next part. 



Trieu Minh Vu, Reza Moezzi, Klodian Dhoska 

1143 
 

 

5. MPC WITH SOFTENED CONSTRAINTS FOR HEV 

5.1 MPC for HEV in pure electrical drive 

The main motor ME1 is used to run the HEV in low speed. In this mode, the clutch is 
open. ICE and ME2 are off. We run the MPC in this mode with the discrete time 
interval of 0.05 second. ME1 has max power of 35 kW and max torque of 205 Nm, 
rigidity torque , inertia , constants , inertia , gear ratio 

, damping  and , resistance . 
Some softened constraints are converted as input constraints for the DC voltage 

applied for the vehicle is , . The output softened constraints 
are also set on the shaft with the shear strength for carbon steel of  MPa or 

N/mm². The output torque on the shaft 2 is constrained as , where the 

diameter . Then, the torque softened constraint on shaft 2 is . 

The MPC parameters are set up with the predictive horizon of , 

the weighting matrices are set at  and . The MPC performance with 

softened constraints is shown in Figure 6. 

 
Figure 6. MPC for HEV with and  

It is noted that, the weighting matrix for output Q and input R can be varied 
according to the desired variation on outputs or inputs. If we want to limit the errors or 
keep the output variation in small value, we have to pay for more input energy or 
increase the input variation. By this aim, we increase Q and reduce R. It means that any 
small variation in output will lead to a big penalty amount adding to the MPC objective 
function. Figure 7 shows the MPC for HEV performance with Q=100 and R=1. 
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Figure 7. MPC for HEV with , Q=100 and R=1 

As shown in Figure 6 and Figure 7, we set up softened constraint on the input voltage 
of  , the MPC allows a little bit input voltage violation at the starting time to 
insure the controller stability and feasibility. Then, after a very short transitional period, 
the solution is returned without constraint violation. In these cases, the MPC with hard 
constraints becomes infeasible and unstable. 

5.2 MPC for HEV in high speed with ICE 

When the HEV runs in high speed, the starter/generator ME2 starts the ICE. Depending 
on the required output torque, the ICE alone or the ICE and ME1 or all ICE, ME1 and 
ME2 will be running and together providing torque. 

At this mode, we assume that the vehicle is running at rpm, and the torque 
of the air drag resistance at this speed of Nm. Parameters of the starter motor 
EM2 are as constants , inertia , damping coefficient , 
resistance , compensation , the discrete time of 0.05 second. 

The softened constraints are imposed on input voltage constraints for the starter of 
,  and the output constrained torque on shaft 1 of 

. 
For the MPC parameters, we select the predictive horizon length of 

 and the weighting matrices  and . The 

MPC performance with starting EM2 is shown in Figure 8. 
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Figure 8. MPC for HEV with ICE and ME2 

Figure 8 shows that the EM2 starts in 1 second and the ICE is fully ignited and run in 
2.3 seconds, the ICE speed reaches the setpoints of 2000 rpm and steadily run at 6.2 kW 
providing the output torque of 31 Nm. 

In the next simulation, we will run the EM2 and the ICE for tracking the speed 
desired setpoints and ignite the clutch engagement. It is assumed that the main motor 
EM1 now running at 1500 rmp and the starter EM2 starts the ICE and engaged into the 
system. The clutch engagement must be taken place at  or  for 
the driving comfortability and low jerk. The ICE and ME2 must track on the EM1 speed 
at +5% offset. The fully engagement is fully done in 2.3 seconds and shown in Figure 9. 

  
 

Figure 9. MPC for HEV with ICE and ME2 

In Figure 9, we see ICE and ME2 tracking ME1 on desired setpoints in 1.9 seconds. 
In normal mode at speed higher than 40 km/h, the starter ME2 ignites the ICE and is 
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turned as a generator charging to battery. The main motor EM1 now is also turned off. 
Anh only the ICE propels the HEV. 

In Figure 10, the ME2 is turned off and becomes the generator after igniting the ICE. 
The main motor EM1 is also turned off and the ICE alone propels the HEV. The HEV 
reaches and tracks the desired speed setpoints after 3.5 seconds. 

  
 

Figure 10. MPC for HEV propelled by only ICE 

Finally, we compare the performances of MPC with hard constraints and MPC with 
softened constraints. We run the MPC with hard constraints in (31) and the MPC with 
softened constraints in (36) to track the desired speed setpoints in Figure 11.  

 

 

 

 

 

 

Figure 11. Two MPC performances comparison 

Figure 11 shows that the MPC with hard constraints generates smaller inputs and 
hence needs longer time to track into the speed setpoint. The MPC with hard constraints 
reaches the speed setpoint after 4.5 seconds while the MPC with softened constraints 
needs only 3.5 seconds to fully track into the speed setpoint. 
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6. CONCLUSION 

In this study, we have presented the modelling of HEV and the MPC algorithms for 
controlling HEV. In the HEV modelling, we have included the system acceleration and 
jerk into equations to investigate and compare the vehicle driving comfortability with 
different control parameters. The MPC scheme with softened constraints has proved its 
superiority over the MPC with only hard constraints. The control system now becomes 
more flexible, stable and robust against model uncertainties, time variant and constraint 
violations. The new MPC scheme can control the HEV with faster clutch engagement 
and lower jerk reduction. MPC with softened constraint still stable and robust while the 
MPC with only hard constraints becomes unstable and infeasible because of the 
constraint violations. In the next study, we will investigate the control of the HEV 
friction clutch for smooth and fast engagement with high comfortability and low jerk 
and apply these algorithms in the real HEV. 
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