

16

IJIO
(International Journal of Industrial Optimization)

ISSN 2723-3022 (online) | 2714-6006 (printed)
VOL 4, No. 1, 16-24

https://doi.org/10.12928/ijio.v4i1.6446

Using general-purpose integer programming software
to generate bounded solutions for the multiple
knapsack problem: a guide for or practitioners

Emre Shively-Ertas 1, Yun Lu 2, Myung Soon Song 2, Francis J. Vasko 2,*
1 Department of Computer Science and Information Technology, Kutztown University, USA
2 Department of Mathematics, Kutztown University, USA
*Corresponding Author: vasko@kutztown.edu

ARTICLE INFO

ABSTRACT

Article history
Received: August 10, 2022
Revised: September 13, 2022
Accepted: November 1, 2022

 An NP-Hard combinatorial optimization problem that has
significant industrial applications is the Multiple Knapsack
Problem. If approximate solution approaches are used to solve the
Multiple Knapsack Problem there are no guarantees on solution
quality and exact solution approaches can be intricate and
challenging to implement. This article demonstrates the iterative
use of general-purpose integer programming software (Gurobi) to
generate solutions for test problems that are available in the
literature. Using the software package Gurobi on a standard PC,
we generate in a relatively straightforward manner solutions to
these problems in an average of less than a minute that are
guaranteed to be within 0.16% of the optimum. This algorithm,
called the Simple Sequential Increasing Tolerance (SSIT)
algorithm, iteratively increases tolerances in Gurobi to generate a
solution that is guaranteed to be close to the optimum in a short
time. This solution strategy generates bounded solutions in a
timely manner without requiring the coding of a problem-specific
algorithm. This approach is attractive to management for solving
industrial problems because it is both cost and time effective and
guarantees the quality of the generated solutions. Finally,
comparing SSIT results for 480 large multiple knapsack problem
instances to results using published multiple knapsack problem
algorithms demonstrates that SSIT outperforms these specialized
algorithms.

This is an open access article under the CC–BY-SA license.

Keywords
Bounded Solutions;
Integer Programming;
Multiple Knapsack Problem;
Simple Sequential Increasing;
Tolerance (SSIT).

INTRODUCTION

We will use the description of the Multiple Knapsack Problem given in [1]. Specifically, given
a set of m containers (knapsacks) with capacity ci (i = 1,…,m) and a set of n objects (items) with
profit pj and weight wj (j = 1,…,n), the Multiple Knapsack Problem requires that items are to be
inserted into knapsacks such that the total weight of the items in a knapsack does not exceed
its capacity, and the overall profit of the selected items is a maximum. In the Operations
Research (OR) literature both the multidimensional knapsack problem (MKP) which involves
only one knapsack but multiple dimensional constraints and the multiple knapsack problem

http://creativecommons.org/licenses/by-sa/4.0/

IJIO Vol 4. No.1 February 2023 p. 16-24

17 10.12928/ijio.v4i1.6446

which is the focus of this article and involves multiple knapsacks are typically abbreviated as
MKP. However, in this article we will abbreviate the multiple knapsack problem as MKSP to
indicate that there are several knapsacks. In other words, MKSP will be used throughout this
article to stand for the multiple knapsack problem which requires that items must be inserted
into multiple knapsacks such that the knapsack capacities are not exceeded and that the total
profit of the inserted items is maximized.

The MKSP has important and varied applications in business and industry. A few examples
of applications that can be formulated as MKSPs include: Ketyko et al. [2] formulated a multi-
user computation offloading problem as a MKSP. To maximize the profit of user equipment, it
considers user equipment as items, requested CPU as weights, and CPU capacities of mobile
edge computing server as capacities of knapsacks. Labbe et al. [3] formulated a multiprocessor
scheduling problem as a MKSP, and Cappanera et al. formulated the placement of Virtual
Network Functions as an MKSP by [4]. Also, there are many cutting stock problems that can be
formulated as MKSPs. An example from the steel industry is given in [5]. Specifically, cutting
customer orders for structural products from long steel beams can be formulated as a MKSP
where the long steel beams are the knapsacks.

When OR practitioners are faced with the need to solve and implement solutions to
industrial or business applications that can be formulated as MKSPs, the expense in terms of
the personnel time commitment on algorithm development, computer code generation and
testing, and solution implementation can be significant and costly. Because numerous industrial
applications can be mathematically formulated as MKSPs, OR practitioners need simple,
effective, and efficient solution approaches to solve these problems and to implement the
solutions in a cost-effective manner. Additionally, an important management goal is that the
solutions generated are guaranteed to be close to the optimums.

The purpose of this article is to present a viable alternative for OR practitioners that need
to solve MKSPs. Specifically, the main contribution of this article is to demonstrate a strategy
for solving MKSPs that does not require problem-specific logic and computer coding but
executes quickly and provides solutions that are guaranteed to be close to the optimums thus
making it very attractive for industrial use. Instead of using either approximate or exact solution
approaches that require algorithm-specific computer coding for the MKSP, the major benefit of
this approach is that it iteratively makes use of general-purpose integer programming software.
MKSP solutions that are guaranteed to be very close to the optimums will be quickly generated
using this procedure, called the Simple Sequential Increasing Tolerance (SSIT) algorithm. In
fact, when compared to published algorithms specifically designed to solve MKSPs, SSIT will
outperform these methods when tested on 480 large and difficult MKSP instances.

Statistical analyses will demonstrate that this iterative approach provides the same high-
quality solutions compared to when Gurobi is executed in a default mode but SSIT requires
much less execution time.

1. Mathematical Formulation

 We will use the formulation given in [6]. Let the binary decision variable 𝑥𝑖𝑗 be 1 if item

𝑗 is placed in container 𝑖, and 0 otherwise. Note 𝑝𝑗 , 𝑤𝑖 and 𝑐𝑖 are defined in Section 1. Then the

0-1 MKSP can be formulated as the integer program below, where constraint (2) encodes the
capacity constraint for each container, and constraint (3) ensures that each item is assigned to
at most one container. In other words, the goal of an MKSP is to insert items into knapsacks
such that the total profit of the items inserted is maximized.

Maximize Σ𝑖 Σ𝑗 𝑝𝑗 𝑥𝑖𝑗 (1)

Subject to Σ𝑖 𝑤𝑗 𝑥𝑖𝑗 ≤ 𝑐𝑖 𝑖 = 1, … . , 𝑚 (2)

Σ𝑖 𝑥𝑖𝑗 ≤ 1 𝑗 = 1, … , 𝑛 (3)

𝑥𝑖𝑗 ∈ {0,1} 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗 (4)

https://doi.org/10.26555/ijish.v3i2.2222

IJIO Vol 4. No.1 February 2023 p. 16-24

Using General-Purpose … (Shively-Ertas et al.) 18

2. Overview of Existing Work

The existing literature on the MKSP is extensive. This includes two chapters in the two
books [7] and [8]. Below we will briefly mention some of the most recent articles and suggest
the reader consult [1] and [9] for more details.

A classic exact algorithm for the MKSP is Martello and Toth’s [7] branch-and-bound
algorithm MTM which includes surrogate relaxation and lower bounds. Another classic branch-
and-bound based algorithm is due to Pisinger [10] called MULKNAP which employs surrogate
relaxation for upper bounds, and the subset-sum problem for lower bounds. Martello and Toth
[7] proposed MTHM which is composed of a greedy mapping, rearrangement using reordering,
swapping items between two knapsacks, and replacing one item with a subset of unassigned
items. Dell’Amico et al. [1] developed a hybrid exact algorithm which combines MULKNAP with
decomposition methods.

Fukunaga [11] and Fukunaga and Tazoe [12] presented several genetic algorithm (GA)
approaches and tested them on instances with up to 300 items and 100 knapsacks. They
obtained consistent improvement in terms of solution quality with respect to MTHM, although at
the expense of much larger execution times. Sur et al. [9] used a deep reinforcement learning-
based scheme in which the deep neural networks (DNN) model is extensively trained with
various combinations of random items and knapsacks. The trained DNN model has the
capability of solving diversified MKSPs with untrained instance sets of items and knapsacks.

It is important to note that all of the solution methods mentioned above require problem-
specific logic and computer coding. In contrast, this article will demonstrate that SSIT can quickly
provide solutions that are guaranteed to be close to the optimums and does not require problem-
specific logic and computer coding. The rest of this article is organized as follows. In Section 2
we give an overview of the simple sequential increasing tolerance method. In Section 3 we
analyze the results of using SSIT to solve MKSPs available in the literature. Finally, Section 4
summarizes our results and suggests future work.

METHOD

Trying to have the best of two worlds (a method that is both fast and guarantees solution
quality) is the motivation [13] behind the SSIT algorithm. More benefits of SSIT are detailed in
[19]. Successful applications of SSIT to solve several binary integer programs (BIP) have been
documented in the literature [14-19]. For these applications, SSIT typically generates solutions
guaranteed to be within 0.1% of the optimums in about 60 seconds on standard PCs.

Although the SSIT applications mentioned above have been successful at quickly
generating solutions guaranteed to be close to the optimums for a number of generalizations of
the classic knapsack problem, it does not follow that SSIT will necessarily perform well on all
knapsack generalizations. For example, preliminary analyses by the authors have indicated
that SSIT performs poorly for large instances of the multiple knapsack assignment problem.
Hence, one cannot assume that SSIT works well for all generalizations of the knapsack problem.

SSIT can be considered a multi-pass algorithm in which the program terminates if the goal
tolerance is met. If it is not met, then the tolerance is “loosened” and the current best solution
is used as input for the next step in the solution process.

The pseudo code below summarizes the SSIT algorithm for a generic COP. More details
about SSIT can be found in McNally et al. [14].
SSIT Algorithm [14]
1. Begin
2. Input the number of phases 𝑁
3. Input tolerance 𝑇_𝑖 and maximum execution time 𝑡_𝑗 for phases 𝑖 = 1, . . . , 𝑁
4. Input COP details
5. Run integer programming software program to solve COP
6. For 1 ≤ 𝑖 ≤ 𝑁 − 1
7. IF integer programming software running time in phase 𝑖 is less than 𝑡_𝑖 or 𝑖 = 𝑁, FINISH

IJIO Vol 4. No.1 February 2023 p. 16-24

19 10.12928/ijio.v4i1.6446

8. ELSE
9. Take best solution obtained from phase 𝑖 and save it as 𝑆𝑂𝐿_𝑖 SOL_i

10. Run integer programming software program with 𝑆𝑂𝐿_𝑗 as the warm start and tolerance
𝑇_{𝑖 + 1} and maximum execution time 𝑡_{𝑖 + 1}

11. 𝑖 = 𝑖 + 1
12. LOOP through step 7-11 until FINISH

It is important to note that there is no need to “optimize” either the number of tolerances

used or their values as well as the execution times for each tolerance. These values are both
user and problem specific and can be easily adjusted to meet the users’ needs.

RESULTS AND DISCUSSION

 To test how well SSIT could in a timely manner generate solutions for MKSPs guaranteed
to be close to the optimums, we made use of 342 of the 2100 MKSP instances discussed in [1].
To our knowledge these are the most comprehensive and largest MKSP instances available to
researchers. Dell’Amico et al. [1] used these 2100 MKSP instances to test the performance of
the algorithms discussed in [1]. In particular, Dell’Amico et al. [1] were testing the performance
of their exact method Hybrid MKP (Hy-MKP). This method involves the following components:
instance reduction, capacity lifting, item dominance, knapsack-based decomposition, and
reflect-model decomposition. Hy-MKP provided the best solutions compared to the other
algorithms tested by Dell’Amico et al. [1] on these 2100 MKSP instances. Please see [1] for
more details. These 2100 MKSP instances are contained in five data sets: called SMALL (180
instances), FK1, FK2, FK3, and FK4 each containing 480 instances. SMALL contains 18 subsets
of 10 instances each and each FK data set contains 24 subsets of 20 instances each. Summary
information for these five data sets is given in Table 1.

Table 1. Characteristics of the 5 sets of instances

Set n/m Item weights Correlation between profits and weights

SMALL
{20/10, 40/10, 60/10, 20/20,

40/20, 60/20}
[1-1000] Uncorrelated, weakly, strongly

FK1
{60/30, 45/15, 48/12, 75/15,

60/10, 100/10}
[10-1000] Uncorrelated, weakly, strongly, subset-sum

FK2
{120/60, 90/30, 96/24,

150/340, 120/20, 200/20}
[10-1000] Uncorrelated, weakly, strongly, subset-sum

FK3
{180/90, 135/45, 144/36,
225/45, 180/30, 300/30}

[10-1000] Uncorrelated, weakly, strongly, subset-sum

FK4
{300/150, 225/75, 240/60,
375/75, 300/50, 500/50}

[10-1000] Uncorrelated, weakly, strongly, subset-sum

In order to determine if SSIT could be used effectively to quickly generate bounded solutions

for MKSPs, we did not feel the need to solve all 2100 instances. Instead from each of the 18
sets in SMALL that contained 10 instances each, we randomly chose 3 for test purposes. In
each of the 24 sets in FK1 to FK4, that contained 20 instances each, we randomly chose 3 for
test purposes. This gives a total of 18x3 + 4x24x3 = 342 MKSPs for empirical testing. So, we
have 3 instances from each of the 114 categories that are composed of 6 different n/m ratios (2,
3, 4, 5, 6, and 10) and either 3 or 4 correlation classes. For more details on how these instances
were generated plus details on the correlation classes, we recommend the reader consult [1].
The largest instances are in FK4 with 300 items and 150 knapsacks for a total of 45,000 binary
variables.

1. SSIT Results for the 342 MKSP Instances

In order to use SSIT to solve MKSPs, a sequence of increasing tolerances and
corresponding maximum execution times must be specified for Gurobi. Based on limited
empirical experimentation, the authors decided to try two different SSIT sequences both with

https://doi.org/10.26555/ijish.v3i2.2222

IJIO Vol 4. No.1 February 2023 p. 16-24

Using General-Purpose … (Shively-Ertas et al.) 20

total maximum execution time of 600 seconds. The first SSIT scenario (SSIT1) favored faster
execution times with the following four tolerances and maximum times per tolerance: 0.001 for
60 seconds, 0.005 for 180 seconds, 0.01 for 180 seconds, and 0.02 for 180 seconds. SSIT2
favored tighter bounds on the solutions with the following four tolerances and maximum times
per tolerance: 0.0001 for 60 seconds, 0.0005 for 180 seconds, 0.001 for 180 seconds, and 0.005
for 180 seconds. Although the maximum possible execution time is 600 seconds, the actual
average execution time was 38.5 seconds for SSIT1 and 192.1 seconds for SSIT2. These
tolerances and execution times are very reasonable for most industrial applications. However,
the user can adjust the number of tolerances as well as their values. Also, the user determines
the maximum execution times at each tolerance and they may be different by tolerance. To
demonstrate the benefit of using SSIT instead of just executing Gurobi at the default tolerance
of 0.0001, these 342 MKSPs were solved with Gurobi for a maximum of 1200 seconds at the
default tolerance of 0.0001 (referred to as the BASE CASE).

In addition to the tolerances and execution times as specified above, the execution was
restricted to four software threads. All other software parameters had their default settings. The
computer used for all executions of Gurobi had the following specifications: an AMD Ryzen 7
3700X 8-Core Processor and 16 GB RAM on Windows 11 Home 64-bit. The results of executing
SSIT to solve the 342 MKSP instances are summarized in Tables 2.

Table 2. Average performance of Gurobi on MKSP

Problems Base Case SSIT1 SSIT2

 Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%)

90 uncorrelated 712.5 0.112% 44.8 0.184% 245.2 0.132%
90 weakly
correlated

763.5 0.142% 64.4 0.232% 263.9 0.166%

90 strongly
correlated

813.3 0.060% 32.7 0.121% 187.8 0.073%

72 subset-sum 183.5 0.011% 4.9 0.074% 40.4 0.013%
342 total 642.2 0.085% 38.5 0.157% 192.1 0.100%

In Table 2, the 342 MKSPs were partitioned by correlation class. Historically [20], when the
weights and profits are strongly correlated the execution time increases. It is important to note
that the Gap (%) column gives the farthest away the solutions can be without knowing the exact
value of the optimums. Except for the SSIT1 results for the 90 weakly correlated MKSPs
(0.232%), all deviations from the optimums were under 0.2%. In all three cases, Gurobi solved
the subset-sum instances much quicker and with very tight bounds compared to the other
correlation classes. In fact, for the 72 subset-sum instances, in the BASE CASE, Gurobi found
the proven optimums (within 0.01% tolerance) for 64 instances. Simply executing Gurobi (BASE
CASE) for up to 1200 seconds at the default tolerance of 0.0001 resulted in an average
execution time of 642.2 seconds with a maximum deviation from the optimum of 0.085%.
However, the maximum deviations for SSIT1 and SSIT2 are very close at 0.157% and 0.100%,
but only require 6% and 30% of the execution time of the BASE CASE respectively. In Section
3.4, statistical analyses will demonstrate, regardless of correlation class, that there is no
statistically significant difference between the BASE CASE results and the SSIT2 results. Thus,
SSIT2 provides the same quality results with only 30% of the execution time. The fact that both
the solutions are guaranteed to be very close to the optimums and the short execution times
makes the SSIT algorithm very advantageous for solving industrial problems.
 Table 3 show the distributions of the tolerances at which SSIT1 and SSIT2 terminate. From
Table 3 we see that for SSIT1 97.4% of the 342 MKSPs terminated with a tolerance less than
0.005. For SSIT2 99.1% of the 342 MKSPs terminated with a tolerance less than 0.005. Hence,
the vast majority of the 342 MKSPs have solutions very close to the optimums.

IJIO Vol 4. No.1 February 2023 p. 16-24

21 10.12928/ijio.v4i1.6446

Table 3. Tolerance termination of Gurobi on MKSP

 SSIT1 Tolerances/time

Problems 0.001
60s

0.005
180s

0.01
180s

0.02
180s

90 uncorrelated 37 51 2 0
90 weakly
correlated

 33 51 6 0

90 strongly
correlated

 56 33 0 1

72 subset-sum 71 1 0 0
342 total 197 136 8 1

Percentage 57.6% 39.8% 2.3% 0.3%

 SSIT2 Tolerances/time

Problems
0.0001

60s

0.000
5

180s

0.001
180s

0.005
180s

Greater
than
0.005

90 uncorrelated 35 3 3 48 1
90 weakly
correlated

29 4 6 50 1

90 strongly
correlated

28 15 28 18 1

72 subset-sum 54 14 4 0 0
342 total 146 36 41 116 3

Percentage 42.7% 10.5% 12.0% 33.9% 0.9%

In Subsection 3, statistical analyses will be used to show the relationship among the BASE

CASE, SSIT1, and SSIT2 results based on objective function values.

2. MKSP SSIT results compared to other metaheuristics

As OR practitioners, the authors appreciate the guaranteed bounds (0.16% averaged over
342 MKSP instances for SSIT1), the short execution times, and the ease of implementation that
requires no algorithm specific computer coding that are associated with SSIT. However, there
may be readers that are interested in seeing how the SSIT solutions obtained in the last section
compare to MKSP solution methods published in the literature. To achieve this comparison, we
decided to use SSIT1 and SSIT2 to solve all 480 MKSP instances in FK4 (previously only 72 FK4
instances were solved by SSIT1 and SSIT2). There was no need to include the BASE CASE
because SSIT2 has been shown to generate similar solutions in only 30% of the time. FK4 was
chosen because Dell’Amico et al. [1] state that the instances in FK4 appear to be “much more
difficult” than the instances in SMALL, FK1, FK2, and FK3. In Table 6 of Dell’ Amico et al. [1],
they report results for the six most competitive methods for FK4 instances. However, three of
the methods, Arc-flow model, Reflect model+priority, and Reflect-based decomposition, were
not included in our comparison because all three of these methods were unable to solve 80 FK4
instances in the maximum allowed time of 1200 seconds. The three methods that we did
compare SSIT1 and SSIT2 to were Pisinger’s MULKNAP, the Classical model, and the hybrid
Hy-MKP model because these methods were able to solve all 480 FK4 instances. Details of
these methods are given in [1]. Table 4 summarizes the performance of SSIT1, SSIT2 and
these three state-of-the-art methods specifically designed to solve MKSPs.

Table 4. Comparison of SSIT1 and SSIT2 with competitive MKSP solution methods

 averaged over all 480 FK4 instances

Solution method Gap (%) Comparable Time (s)***

SSIT1* 0.236% 60.2
SSIT2* 0.161% 264.2

Pisinger’s MULKNAP** 0.285% 354.2
Classical method** 0.388% 751.5

Hy-MKP** 8.193% 215.2

https://doi.org/10.26555/ijish.v3i2.2222

IJIO Vol 4. No.1 February 2023 p. 16-24

Using General-Purpose … (Shively-Ertas et al.) 22

*Computer specifications: All executions of Gurobi were on a computer with the following specifications:
an AMD Ryzen 7 3700X 8-Core Processor and 16 GB RAM on Windows 10 Home 64-bit.
**Computer specifications: Intel Xeon E5530, 2.4 GHz with 24 GB of memory, running under a Linus
Ubuntu 14.04 LTS 64-bit, using a single core.
***to make the PC execution times approximately comparable, the original Dell’Amico et al. [1] times
were multiplied by 0.75.

Table 4 shows that both SSIT1 and SSIT2 outperformed these three solution methods
specifically designed to solve MKSPs. Although it is difficult to give a good comparable time
estimate, given how many factors can affect the speed of these computations, we believe a
conservative estimate is achieved by multiplying Dell’ Amico et al. [1] times by 0.75. In this case,
only Hy-MKP is slightly faster than SSIT2 (SSIT1 is by far the fastest), but Hy-MKP has a much
larger gap.

3. Statistical Analyses

In this section, the 342 MKSP instances (90 uncorrelated instances, 90 weakly correlated’
instances, 90 strongly correlated instances, and 72 submit-sum instances) are used for
statistical analyses. The two SSIT methods (SSIT1 and SSIT2) are compared to the BASE
CASE method in terms of the objective function.

Since significant differences among the three methods are detected from the repeated
measures ANOVA model, Tukey’s pairwise comparison is conducted for each correlation class
as a follow-up test. (Tukey [21]) In every correlation class, there is no statistically significant
difference between the BASE CASE and SSIT2, but there is a statistically significant difference
between the BASE CASE (or SSIT2) and SSIT1. This means SSIT1 objective function values
are statistically less than the BASE CASE (or SSIT2) objective function values in average with
the 99% confidence.

Figure 1 illustrates the summary of Tukey’s comparison in the uncorrelated class. Note that
the objective function is getting smaller in order of A and B, and methods that do not share a
letter are significantly different. All other three correlation classes (weakly correlated, strongly
correlated, and submit-sum) show similar results.

Figure 1. Comparison of the three methods (BASE CASE, SSIT1, and SSIT2)

CONCLUSION

The primary contribution of this article is it demonstrated that the SSIT algorithm that
iteratively uses commercial integer programming software with no algorithm-specific code
effectively solved a total of 750 (480 + 342 – 72) MKSP instances from the literature. The
solutions generated by SSIT are guaranteed to be within tight bounds of the optimums.
Furthermore, the particular application and users’ needs determine what SSIT strategy to use.
To illustrate, in this article two SSIT strategies were defined—one that favored shorter execution
times (SSIT1) and one that favored tighter bounds on the solution (SSIT2). For the 342 MKSP
test instances initially discussed, on average, SSIT1 generated solutions within 0.16% of the

IJIO Vol 4. No.1 February 2023 p. 16-24

23 10.12928/ijio.v4i1.6446

optimums in 39 seconds on a standard PC and SSIT2 generated solutions within 0.10% of the
optimums in 192 seconds on the same standard PC. The user would need to determine which
strategy was more appropriate for the application at hand. Additionally, in order to make a fair
comparison among SSIT1and SSIT2 and three MKSP solution methods in the literature, all 480
of the difficult FK4 MKSP instances were solved by both SSIT1 and SSIT2 (72 had been solved
initially as part of the 342 instances). Both SSIT1 and SSIT2 outperformed these solution
methods specifically designed to solve the MKSP.

OR practitioners can quickly develop integer programming models using default software
parameter values and templates with no need for problem-specific algorithms. An added benefit
is that newer versions of the software will “automatically” improve the performance of the
application.

The authors believe that significant evidence has been presented to indicate that SSIT
provides a viable alternative both in terms of solution quality and execution time required for OR
practitioners that need to solve MKSPs for an industrial application. Based on this successful
application of SSIT and other SSIT successes reported in the literature, the authors plan to test
the performance of SSIT for solving other difficult-to-solve combinatorial optimization problems
to provide additional evidence of when SSIT should be used to solve COP. However, as will be
illustrated in future articles, there are COP that SSIT has difficulty solving.

REFERENCES

[1] M. Dell’Amico, M. Delorme, M. Lori, S. Martello, “Mathematical Models and Decomposition
Methods for the Multiple Knapsack Problem”, Eur. J. Oper. Res, vol. 274, 886–899, 2019.

[2] I. Ketykó, L. Kecskés, C. Nemes, C. L. Farkas, “Multi-user Computation Offloading as
Multiple Knapsack Problem for 5G Mobile Edge Computing”, European Conference on
Networks and Communications (EuCNC), Athens, Greece, pp. 225–229, 27–30 June
2016.

[3] M. Labbe, G. Laporte, and S. Martello, “Upper Bounds and Algorithms for the Maximum
Cardinality Bin Packing Problem”, Eur. J. Oper. Res., vol. 149, pp. 490–498, 2003.

[4] P. Cappanera, F. Paganelli, F. Paradiso, “VNF Placement for Service Chaining in a
Distributed Cloud Environment with Multiple Stakeholders”, Comput. Commun. vol. 133,
pp. 24–40, 2019.

[5] F. J. Vasko, D. D. Newhart, K. L. Stott,” A Hierarchical Approach for One-dimensional
Cutting Stock Problems in the Steel Industry that Maximizes Yield and Minimizes
Overgrading”, Eur. J. Oper. Res, vol. 114, no. 1, pp. 72-82, 1999.

[6] A. S. Fukunaga, “A Branch-and-bound Algorithm for Hard Multiple Knapsack Problems”,
Annals of Operations Research, vol. 184, no. 1, pp. 97–119, 2011.

[7] S. Martello, P. Toth, Knapsack Problems: Algorithms and Computer Implementations.
John Wiley & Sons, Chichester, 1990. (available online at www.or.deis.unibo.it).

[8] H. Kellerer, D. Pisinger, U. Pferschy, Knapsack Problems. Springer, Berlin, 2004.
[9] G. Sur, S. Y. Ryu, J. Kim, H. Lim, “A deep reinforcement learning-based scheme for

solving multiple knapsack problems”, Appl. Sci. vol. 12, pp. 3068, 2022. https://doi.org/
10.3390/app12063068

[10] D. Pisinger, “An Exact Algorithm for Large Multiple Knapsack Problems”, Eur. J. Oper.
Res. vol. 114, no. 3, pp. 528–541, 1999.

[11] A. S. Fukunaga, “A New Grouping Genetic Algorithm for the Multiple Knapsack Problem”,
Proceedings of the 2008 IEEE Congress on Evolutionary Computation, Hong Kong,
China, pp. 2225–22321, 6 June 2008.

[12] A. S. Fukunaga, S. Tazoe, “Combining Multiple Representations in a Genetic Algorithm
for the Multiple Knapsack Problem”, 2009 IEEE Congress on Evolutionary Computation,
pp. 2423–2430, 2009.

[13] B. McNally, A Simple Sequential Increasing Tolerance Metaheuristic that Generates
Bounded Solutions for Combinatorial Optimization Problems. Master’s Thesis, Kutztown
University of Pennsylvania, 2021.

https://doi.org/10.26555/ijish.v3i2.2222
http://www.or.deis.unibo.it/

IJIO Vol 4. No.1 February 2023 p. 16-24

Using General-Purpose … (Shively-Ertas et al.) 24

[14] B. McNally, Y. Lu, E. Shively-Ertas, M.S. Song, F. J. Vasko, “A Simple and Effective
Methodology for Generating Bounded Solutions for the Set K-covering and Set Variable
K-covering Problems: A Guide for OR Practitioners”, Review of Computer Engineering
Research, vol. 8, no. 2, pp. 76-95, 2021.

[15] Y. Lu, B. McNally, E. Shively-Ertas, F. J. Vasko, “A Simple and Efficient Technique to
Generate Bounded Solutions for the Multidimensional Knapsack Problem: a Guide for OR
Practitioners”, International Journal of Circuits, Systems, and Signal Processing, vol. 15,
pp. 1650-1656, 2021.

[16] A. Dellinger, Y. Lu, B. McNally, M. S. Song, F. J. Vasko,” A Simple and Efficient Technique
to Generate Bounded Solutions for the Generalized Assignment Problem: a Guide for OR
Practitioners”, Research Reports on Computer Science, pp. 13-34, 2021.

[17] M. S. Song, B. Emerick, Y. Lu, F. J. Vasko, “When to Use Integer Programming Software
to Solve Large Multi-Demand Multidimensional Knapsack Problems: A Guide for
Operations Research Practitioners,” Engrg. Optim vol. 54, no. 5, pp. 894-906, 2022.

[18] A. Dellinger, Y. Lu, M.S. Song, F. J. Vasko, “Generating Bounded Solutions for Multi-
demand Multidimensional Knapsack Problems: a Guide for Operations Research
Practitioners,” International Journal of Industrial Optimization, vol. 3, no. 1, pp. 1-21, 2022.

[19] A. Dellinger, Y. Lu, M. S. Song, F. J. Vasko, “Simple Strategies that Generate Bounded
Solutions for the Multiple-choice Multi-dimensional Knapsack Problem: A Guide for OR
Practitioners”, International Transactions in Operational Research, vol. 0, pp. 1-17, 2022.

[20] F. J. Vasko, “A Computational Note on the Martello-Toth Knapsack Algorithm”, European
Journal of Operational Research, vol. 73, no. 1, pp. 169-171, 1994.

[21] J. Tukey, “Comparing Individual Means in the Analysis of Variance”, Biometrics 1949, vol.
5, pp. 99-114, 1949.

