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Abstract - Motivated by the recent advancements in nanotechnology and the discovery
of new laboratory techniques using the Watson-Crick complementary properties of DNA
strands, formal graph theory has recently become useful in the study of self-assembling
DNA complexes. Construction methods based on graph theory have resulted in significantly
increased efficiency. We present the results of applying graph theoretical and linear algebra
techniques for constructing crossed-prism graphs, crown graphs, book graphs, stacked book
graphs, and helm graphs, along with kite, cricket, and moth graphs. In particular, we explore
various design strategies for these graph families in two sets of laboratory constraints.

Keywords : graph theory; self-assembling DNA; tiling; nanotechnology; bipartite graphs

Mathematics Subject Classification (2020) : 05C90

1 Introduction

Recent advancements in micro-biology and nanotechnology have motivated many fields of
research including those outside of the practical laboratory environment. One such field,
and that which this paper pertains to, is graph theory. In the setting of this research, we
seek to build nanostructures out of strands of DNA while representing these structures
graphically. As micro-biology and nanotechnology continue to advance, the structures
they develop continually get smaller and smaller and it can become difficult to produce
the target structure. To resolve this, laboratories are studying ways to create nano-parts
from synthetic DNA which utilize the Watson-Crick complementary properties of DNA
strands to self-assemble into the targeted nanostructure [9, 15]. This provides motivation
for the application of graph theory in the area of research since many of the nanostructures
exhibit graphical characteristics. The hope is to design self-assembling DNA structures
that, when mixed together, can create the graphs in question. Applications for this
are continuously being developed and include targeted drug delivery, DNA splicing, and
more (see [1, 6, 5, 7, 10, 11, 12, 13, 14, 21, 22]). The goal of this research is to design
nanostructures, efficiently using the minimum number of molecules.
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Figure 1: Complete vs Incomplete Complex

2 Research Methods

In this research we will use the flexible-tile model as described in [3] and use the graph
theoretical formalism of [4] and [8] to help build targeted structures from self-assembling
DNA. We define a tile to be a vertex with n-half edges, where n is the degree of the vertex
that the tile is representing. The half edges of this tile represent one half of a strand of
DNA that wants to bond to its complementary half. For the purposes of generality, we
label these “sticky-ends” or “cohesive-ends” of partial single strands of DNA, with a letter,
such as a, and their complement with a hatted letter, such as â. When complementary
cohesive-ends bond together we refer to this as a bond-edge, and we call the letter
labels bond-edge types. We also proceed under the assumption that our DNA-arms
are flexible, and can bend in any way to also form our target structures. Thus, we can
represent a tile as a set of sticky ends, such as the degree-3 tile {a, a, â}, which can also
be denoted as {a2, â} or {a2â}. We define a pot, P , as a set of tiles that can realize, or
create, a graph. Theoretically, we assume that once a tile type is made, a pot with that
tile type can have “infinitely many” of those tile types. Once we have a pot, those tiles
are able to self-assemble into complexes either complete or incomplete as seen in Figure
1. Labs generally want to create complete complexes. The formal definition for tiles and
pots are repeated here for the convenience of the reader.

Definition 2.1 A k-armed branched junction molecule is a molecule whose arms
are formed from strands of DNA, possibly multiple strands. At the end of each of these
arms is a region of unsatisfied bases, forming a cohesive-end. Arms with complementary
cohesive-ends can bond via Watson-Crick base pairing.

Definition 2.2 A tile tn is a vertex of degree k with k incident half-edges which we use
to mathematically represent a k-armed branched junction molecule. Examples of these can
be seen in Figure 2.

Definition 2.3 A pot is a set of tiles such that if a cohesive-end type appears in the
multi-set of any tile in the pot, its complement also appears on some tile in the pot. A
pot P with tiles t1, ..., tn is written P = {t1, ..., tn}.

Definition 2.4 We say a pot P realizes a graph G if the collection of tiles constructs
the same structure as G.
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Figure 2: A pot containing 4 tiles.

Scenario Can Create Smaller Can Create Non-
Order Graphs? isomorphic Graphs?

1 Yes Yes
2 No Yes
3 No No

Table 1: Table summarizing Scenarios 1, 2, and 3

Figure 3: An example of a tile (left) and a realized graph from pot {t1, t2, t3} (right).

Figure 3 displays a graph which is realized by a pot of 3 tiles. The tiles from the pot
that realized this graph are t1 = {a, â2}, t2 = {a, ĉ}, and t3 = {â, c2}. In order to realize
this graph, we used one t1, two t2, and one t3. The goal of this research is to produce
pots which realize graphs in as few bond types and as few tile types as possible.

There are three laboratory constraints under which these pots are produced, referred
to as Scenarios 1, 2, and 3. Under Scenario 1, a pot of tiles can realize a graph of smaller
order than the target graph and not isomorphic to our target graph. Under Scenario
2, the pot can not realize a graph of smaller order than that of the target graph, but
non-isomorphic graphs of the same order are still acceptable. Scenario 3 dictates that
the pot cannot realize any smaller ordered graph and cannot realize any non-isomorphic
graph of the same order as our target graph. Table 1 summarizes these restrictions. We
denote the number of tile types and bond-edge types needed to tile graph G in Scenario
m as Tm(G) and Bm(G) respectively.

This particular research focuses on constructing crossed-prism graphs, crown graphs,
book graphs, stacked book graphs, and helm graphs, along with kite, cricket, and moth
graphs. When we refer to a target graph, we will be generally speaking about a member
of an arbitrary size of one of these families (except for kite, cricket, and moth of which
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there is only one graph type).

3 Preexisting Results

We will begin by reviewing some common graph theory notation and definitions used in
this research followed by a series of useful results from [5].

3.1 Graph Theory Notation and Definitions

For the purpose of our research, we will use standard graph theory definitions. We will
define a graph G to be a set of vertices V (G) and a set of edges E(G). We say a ∈ V (G)
and b ∈ V (G) are adjacent if and only if the {a, b} ∈ E(G). Each vertex has a valency
or degree associated to it, which is equal to the number of edges which are connected
to it. The valency sequence of a graph is then the set of valencies or degrees, of each
vertex in G. We denote the number of distinct degrees in the valency sequence of G
as av(G). ov(G) and ev(G) denote the number of distinct odd and even degrees in the
valency sequence of G respectively. We provide an example of a kite graph with a tail of
length 1, pictured in Figure 4. The av(G) = |{1, 2, 3}| = 3, the ev(G) = |{2}| = 1, and
the ov(G) = |{1, 3}| = 2.

Vertex Valency
a 2
b 3
c 3
d 3
e 1

Figure 4: A kite graph and a table containing the valency of each vertex

3.2 Scenario 1

Much is already known about how graphs are tiled in Scenario 1. Theorems 3.1 and 3.2
from [5] establish a relation from the degree sequence of any graph G to its tiling, relying
on the size of the set of all valencies av of G and the sizes of the even valency set ev and
the odd valency set ov of G. We also know from [5] and Lemma 1 from [2], that all graphs
can be tiled under Scenario 1 using 1 bond-edge type.

Theorem 3.1 For any graph G, av(G) ≤ T1(G) ≤ ev(G) + 2ov(G).

Theorem 3.2 For any graph G, B1(G) = 1.
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Another useful theorem from [5] is a result regarding k-regular graphs. A k-regular
graph is a graph in which all vertices of the graph have exactly degree k.

Theorem 3.3 If G is a k−regular graph, T1(G) is 1 if k is even and 2 if k is odd.

3.3 Scenario 2

The most relevant general Scenario 2 result we use in this research is the following theorem
from [5], which relates the number of necessary bond-edge types to the number of tiles in
Scenario 2.

Theorem 3.4 Given a graph G, B2(G) + 1 ≤ T2(G).

As described in [5], the proportions of the tiles necessary to represent a graph G can
be expressed as a system of equations. Using these equations we can check the viability
of our pots in Scenario 2. However, this method is only able to provide information on
whether or not the specified tiles can successfully realize a graph of the target order or
smaller; it does not reveal if the target graph can be realized in fewer tiles. The system
of equations can be represented by something called the construction matrix which is
defined below.

Definition 3.5 Let P = {t1, ..., tp} be a pot and let zi,j denote the net number of cohesive-
ends of type ai on tile tj, where un-hatted cohesive-ends are counted positively and hatted
cohesive-ends are counted negatively. Then the following system of equations must be
satisfied by any graph in any complete complex :

z1,1r1 + z1,2r2 + ...+ z1,prp = 0
...

zm,1r1 + zm,2r2 + ...+ zm,prp = 0

r1 + r2 + ...+ rp = 1

The construction matrix of P , denoted M(P ), is the corresponding augmented
matrix:

M(P ) =


z1,1 z1,2 z1,3 . . . z1,n 0
...

...
...

...
...

zm,1 zm,2 zm,3 . . . zm,n 0
1 1 1 . . . 1 1


The construction matrix is formulated by allocating each tile to a separate column and

each letter used, such as a or b, to a different row. The unhatted letters are assigned a value
of 1, while the hatted letters are assigned a value of −1. In each entry of the matrix, the
numerical values are calculated based on the sum of the aforementioned weights assigned
to the letters used for the particular tile. Thus, for example, the entry z1,1 (the entry in
the first row and first column) is equal to the sum of the a’s and â’s on the first tile. In
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Figure 5, the value z1,2 is -1 as the second tile in the pots which this matrix represents
must have 2 â’s and 1 a, because it is the first row and −2 + 1 = −1.

We use the construction matrix to solve a system of linear equations where all of
the equations except for the last equation gives an equation for the net total hatted
and unhatted letters for each graph. Recall these letters represent the bond-edge types.
In a realized graph, the number of hatted cohesive-end types must equal the number of
unhatted cohesive-end types, so each equation should equal zero (save the last row). Since
each column of the matrix represents the sum of the unhatted and hatted letters of that
bond type in the tile, the last equation is all 1’s because the sum of the proportions of
each tile type should add up to 100%.

The construction matrix is used primarily to determine whether a given pot satisfies
the restrictions of Scenario 2 for a desired target graph. WhenM(P ) has a unique solution
< r1, ..., rp >, the smallest order of a graph that can be constructed from the given pot
of tiles is the least common denominator of the ri’s. [5] gives the following result relating
to the construction matrix.

Proposition 3.6 Let P = {t1, . . . , tp} be a pot. Then:

1. If a graph G of order n is realized by P using Rj tiles of type tj, then
1
n
⟨R1, . . . , Rp⟩

is a solution of the construction matrix M(P ).

2. If ⟨r1, . . . , rp⟩ is a solution of the construction matrix M(P ), and n is a positive
integer such that nrj ∈ Z≥0 for all j, then there is a graph of order n that is realized
by using nrj tiles of type tj.

3. The smallest order of graphs realized by a pot P is given by mP = min{lcm{bj|rj ̸=
0 and rj = aj/bj}}, where ⟨r1, . . . , rp⟩ is in the solution space of the construction
matrix of a pot P , and where the minimum is taken over all solutions to M(P ) such
that rj ≥ 0 and aj/bj is in reduced form for all j.

Sometimes, the construction matrix yields infinitely many solutions. Given the specific
requirements of the assembly process and special form of the construction matrix, [2]
outlines a Maple program which solves the Integer Linear Programming problem in the
case of only a few degrees of freedom. This program is used in some of the results of this
paper.

Figure 5 shows the construction matrix in its reduced form for the tiling of the complete
graph on four vertices, denoted K4. The solution confirms that the smallest graph which
can be produced by this pot is a graph of order four.

M(K4) =

(
3 −1 0
1 1 1

)
M(K4) =

(
1 0 1

4

0 1 3
4

)
Figure 5: The construction matrix of K4 which can be tiled with the pot, P = {t1 =
{a3}, t2 = {a, â2}} and its row reduced form (right)
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As can be seen in the matrices, K4 can be tiled using just two tiles in Scenario 2,
t1 = a3, denoted by the entry labeled 3 in the (1, 1) entry of the matrix on the left, and
t2 = {a, â2} as denoted by the −1 in the (1, 2) spot in the matrix on the left. After row
reduction, we find that our pot can produce a graph with 4 vertices and not any graph
of smaller order, as seen in the denominators of the right hand matrix, requiring one t1
and three t2 as seen in the value of the numerators.

4 Results

4.1 Book Graph Results

We start with our results from the book graph family. This family gets its name from the
way its member graphs can be visualized in three dimensional space. Formally defined
below, we will use some colloquial terms to assist in talking about the parts of the graph.
In the book graphs, the vertices which have a degree greater than two are the “top” and
“bottom” of the “spine.” The degree-2 vertices which are attached to these vertices form
the “pages” of which there are m of in a book graph BKm. Note that sometimes book
graphs are denoted using Bm, but we are using BKM since we use the notation Bn to
denote the minimum number of bond-edge types for a graph in Scenario n.

Definition 4.1 The m-book graph, denoted BKm, is defined as the graph Cartesian
product (denoted by □) BKm = Sm□P2 where Sm is a star graph and P2 is the path graph
on two vertices. Members of this family are seen in Figure 6.

Figure 6: Book graph family (pictures from [16]), note Bm notation is used instead of
BKm notation.

The results for Scenario 1 in this family follow directly from Theorem 3.1 and Theorem
3.2.

Theorem 4.2 Given a book graph BKm, B1(BKm) = 1 and T1(BKm) = 2 if m is odd
and T1(BKm) = 3 if m is even.

Proof. It follows from Theorem 3.2 that B1(BKm) = 1.
Case 1: Suppose BKm is a book graph where m is odd. Note that av(BKm) =

|{2,m+ 1}| = 2. The following pot realizes BKm: P = {t1 = {am+1
2 , â

m+1
2 }, t2 = {a, â}}.

P is therefore the minimum sized pot which realizes G in Scenario 1 by Theorem 3.1.
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Figure 7: BK3 tiled under Scenario 1

Case 2: Suppose BKm is a book graph where m is even. Note that av(BKm) =
|{2,m + 1}| = 2. Assume T1(BKm) = 2. This would imply that both of the vertices of
BKm with degree-(m+ 1) would need the same tile. Furthermore, we need the following
equation to be satisfied: 2n+2mk = 0 where n = {±1,±3, ...,±(m+1)} and k = {0,±2}
(the possible net a’s for the tile of degree m + 1 and 2 respectively). If k = 0, since n
is odd, no possible value for n will satisfy the equation. If k = ±2, n = ∓2m which
is not possible since n is odd and m is even. Thus, T1(G) ≥ 3. The following pot
P = {t1 = {am+1}, t2 = {âm+1}, t3 = {a, â}} realizes G and therefore T1(BKm) = 3.

2

Figure 7 shows a book graph drawn in its planar form tiled under Scenario 1.

Lemma 4.3 Given a book graph BKm, B2(BKm) ≥ 2 for all m.

Proof. We proceed by contradiction. Assume B2(BKm) = 1. Since the degree-2 vertices
are adjacent, if we want to repeat the tile for each degree-2 vertex, each tile should have
one a and one â. Unfortunately, this makes a graph of one vertex. If we allow for two
different tile types for our degree-2 vertices, then we must use t1 = {a2} and t2 = {â2}
which will create a graph of order two. Thus B2(BKm) > 1. 2

Theorem 4.4 Given book graph BKm, where m is even, B2(BKm) = 2, T2(BKm) = 3.

Proof. From Lemma 4.3, B2(BKm) ≥ 2. The following pot constructs BKm when m is
even. P = {t1 = {a2}, t2 = {â, b}, t3 = {âm, b}, t4 = {b̂m+1}}. The general construction
matrix for BKm when m is even is

M(P ) =

2 −1 −m 0 0
0 1 1 −(m+ 1) 0
1 1 1 1 1

 . (1)

Using a Maple program from [2] and given the restrictions on the free variable within
this application of the construction matrix, we found the solution set of this pot to be
{( m

2(m+1)
, m
2(m+1)

, 1
2(m+1)

, 1
2(m+1)

)}. Thus, B2(BKm) = 2 and T2(BKm) = 3 for BKm and
m is even. Note the number of tiles is minimal from Theorem 3.4. 2
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Theorem 4.5 Given book graph BKm, where m is odd, B2(BKm) > 2.

Proof. Suppose BKm is a book graph where m is odd. Recall that the distinct degrees
in the degree sequence of BKm are {2,m + 1}. We proceed by contradiction. Suppose
B2(BKm) = 2. As was the case in Lemma 4.3, we know that the degree-2 vertices require
two different tiles which have at least two different bond-edge types. Thus, without loss
of generality, we have the following cases for our two degree-2 tiles.

Case 1: Suppose, without loss of generality, our pot includes t1 = {a, b} and t2 =
{a, b̂}. Since the degree-(m+1) vertices are adjacent and each degree-2 vertex is adjacent
to another degree-2 vertex (through the b and b̂ ends) we cannot use the same tile for
the degree-(m + 1) vertices. In this case, they must be without loss of generality either
t3 = {âm, b} and t4 = {âm, b̂} or t3 = {a, âm} and t4 = {âm+1}. Both cases create smaller
graphs. The former can create a graph of order (m+ 1) using one t3,

m−1
2

number of t1s,
and m+1

2
number of t2 (among other smaller graphs). The latter can construct a graph of

order m using one t3 and
m−1
2

number of t1 tiles and
m−1
2

number of t2 tiles (among other
smaller graphs).

Case 2: Suppose our pot includes, without loss of generality, t1 = {a, b} and t2 =
{â, b̂}. This forms a graph of order two and thus these tile types cannot be in our pot.

Case 3: Suppose our pot includes, without loss of generality, t1 = {a2}. Since the
degree-2 vertices are adjacent, this means our second two branched tile must have exactly
one â. We can’t have two â’s since this would cause a graph of order two. Thus without
loss of generality, suppose we have t2 = {â, b}. In total we have eight possible two
branch tiles which can be considered in Scenario 2 (since {a, â} is not a valid option):
{a2}, {b2}, {a, b}, {a, b̂}, {b, â}, {b̂, â}, {â2}, and {b̂2}. If our graph is using t1 = {a2} and
t2 = {â, b}, we can’t use {b̂, â} since this tile along with {a2} and {â, b} will create a graph
of order three. We can’t use {b̂2} since that tile along with {a2} and {â, b} will create a
graph of order four. We can’t use {b2} because we would need a degree-2 vertex with b̂
because our degree-2 vertices are adjacent. Thus the only possible additional option we
can use for an additional degree-2 vertex is {a, b}.

First we will assume our pot does not use {a, b} and only uses two types of tiles for
the degree-2 vertices: t1 = {a2} and t2 = {â, b}. We now have the following cases for our
degree-(m+1) vertices: t3 = {âm, ∗} and t4 = {b̂m, ∗̂} or t3 = {âk, b̂j, ∗} and t4 = {âj b̂k, ∗̂}
where k + j = m.

Case 3a: Suppose t3 = {âm, ∗} and t4 = {b̂m, ∗̂}. We now goes through the cases for
* and show that we will always be able to construct a smaller graph.

• If t3 = {âm+1}, then t4 = {a, b̂m} and several smaller graphs can be made. One such
example is a graph of order (3m+1

2
) with (m−1

2
) number of {a2} tiles, m number of

{â, b} tiles, and 1 t4 tile.

• If t3 = {âm, a}, then t4 = {â, b̂m} and several smaller graphs can be made. One
such example is a graph of order (2(m+1)− m+1

2
) with (m+1

2
) number of {a2} tiles,

m number of {â, b} tiles, and one t4 tile.
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• If t3 = {âm, b}, then t4 = {b̂m+1} and t4 can connect with (m+ 1) number of {â, b}
tiles and m+1

2
number of {a2} tiles to create a graph of order (m+1

2
+m+ 2) which

is less than the order of BKm.

• If t3 = {âm, b̂}, then t4 = {b̂m, b} and t4 can connect with (m− 1) number of {â, b}
tiles and m−1

2
number of {a2} tiles to create a graph of order m−1

2
+m which is less

than the order of BKm.

Case 3b: Suppose t3 = {âk, b̂j, ∗} and t4 = {âj b̂k, ∗̂} where k + j = m. We now goes
through the cases for * and show that we will always be able to construct a smaller graph.
We will have analogous proofs for when ∗ is b of b̂ so we will only consider when ∗ is a
or â. If ∗ is â, then t3 = {âk+1, b̂j} and t4 = {a, âj, b̂k}. If ∗ is a then t3 = {a, âk, b̂j}
and t4 = {âj+1, b̂k}. Notice that we will always have a case in which we have a tile of
the form {âl, b̂p} where l + p = k + j + 1. Thus, without loss of generality, suppose that
t3 = {âk+1, b̂j}, then t4 = {a, âj, b̂k}. We can construct a smaller graph in the follow way.
For every pair of â half-edges of t3, use a t1. This will require ⌊k+1

2
⌋ number of t1’s.

• If k+1 is even, then j is even since k+ j+1 = m+1 is even. Then we can use one
t3 tile, j number of t2 tiles, and

k+1+j
2

number of t1 tiles to create a smaller graph of

order j + k+1+j
2

+ 1 which is less than the target graph of 2(m+ 1) or 2(j + k + 1).

• If k+1 is odd, then j is odd since k+ j+1 = m+1 is even. Then we can use one t3
tile, j − 1 number of t2 tiles, and k+j−1

2
number of t1 tiles along with an additional

t1 and t2 (used to close the remaining â half edge and b̂ half edge). This creates a
smaller graph of order k+j−1

2
+ j +2 which is less than the target graph of 2(m+1)

or 2(j + k + 1).

Thus we can create a graph of order less than the target graph. Note if we added the tile
{a, b} to our pot, it would only be able to replace some of the {a2} tiles in the construction
of our book graphs because our degree-2 vertices are adjacent and must be connected by
a and â (the latter which only comes from {â, b}). As such our pot would still have
t1 = {a2}, t2 = {â, b} and at least one tile of the form {âl, b̂p} where l+ p = k+ j+1 and
we would still be able to construct a smaller graph in the method described above. 2

Corollary 4.6 For BKm where m is odd, B2(BKm) = 3 and T2(BKm) = 4.

Proof. By Theorem 4.5, B2(BKm) ≥ 3. The pot P = {t1 = {am, c}, t2 = {am, ĉ}, t3 =
{â, b}, t4 = {â, b̂}} will successfully realize any book graph under Scenario 2. Thus
B2(BKm) = 3 and by Theorem 3.4, T2(BKm) = 4. The general construction matrix
for BKm is

M(P ) =


m m −1 −1 0
0 0 1 −1 0
1 −1 0 0 0
1 1 1 1 1

 . (2)

with solution set {( 1
2(m+1)

, 1
2(m+1)

, m
2(m+1)

, m
2(m+1)

)}. 2
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4.2 Stacked Book Graphs

Having thus addressed book graphs under Scenarios 1 and 2, we move on to stacked book
graphs, formally defined in Definition 4.7. As the name of the family implies, the stacked
book graphs are an extension of book graphs and appear as if several book graphs are
stacked on top of each other. As such we will refer to many of the same terms we used
with book graphs with stacked book graphs.

BK(3,3) BK(4,4) BK(3,5)

Figure 8: Stacked book family (pictures from [20])

Definition 4.7 The stacked book graph of order (m,n), BKm,n, is defined as the graph
Cartesian product Sm+1□Pn for m ≥ 0 and n ≥ 1, where Sm+1 is a star graph and Pn is
the path graph on n nodes. It is therefore the graph corresponding to the edges of n − 1
copies of an m-page “book” stacked one on top of another and is a generalization of the
book graph.

Something of note with the Stacked Book Family is that when there are more than
two books with at least two pages, no matter how many books are stacked on top of each
other, nor how many pages are added to the book, the distinct degrees in the sequence
will always be {2, 3,m+ 1,m+ 2}. Note that for stacked book graphs of order (0, n) are
path graphs, (1, n) are ladder graphs, (2, n) are grid graphs, (m, 1) are star graphs, and
(m, 2) are book graphs. Thus the smallest stacked book graph we will consider will have
at least two books of three pages (n ≥ 3 and m ≥ 3).

Theorem 4.8 Given stacked book graph BKm,n with m,n ≥ 3, T1(BKm,n) ≤ 5 .

Proof. Suppose G is a stacked book graph, BKm,n such that m,n ≥ 3. One possible
pot for G is P = {t1 = {a2}, t2 = {a, â2}, t3 = {âm+1}, t4 = {am+1, â}, t5 = {a2, âm}},
and thus T1(G) ≤ 5. 2

Theorem 4.9 Given stacked book graph BKm,n such that n = 3 and m ≥ 3, T1(BKm,n) =
4.

Proof. Suppose G is a stacked book graph, BKm,n, such that n = 3 and m ≥ 3. Note
that av(G) = |{2, 3,m+ 1,m+ 2}| = 4. The pot P = {t1 = {â2}, t2 = {a3}, t3 = {âm+2},
t4 = {am+1}} realizes G. Thus for m ≥ 3, T1(G) = 4 = av(G) and thus P is an optimal
pot which can construct BKm,n with n = 3 and m ≥ 3 under Scenario 1 by Theorem 3.1.
2
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Theorem 4.10 Given stacked book graph BKm,n such that n ≥ 4 and m is an odd number
greater than or equal to 3, T1(BKm,n) = 4.

Proof. Suppose G is a stacked book graph, BKm,n, such that n ≥ 4 and m is an
odd number greater than or equal to 3. av(G) = |{2, 3,m + 1,m + 2}| = 4. The pot

P = {t1 = {a, â}, t2 = {a2, â}, t3 = {a, âm+1}, t4 = {am+1
2 , â

m+1
2 }} realizes G. Thus

T1(G) = 4 and P is an optimal pot which can construct BKm,n with odd m and n ≥ 4
under Scenario 1 by Theorem 3.1. 2

Theorem 4.11 Given stacked book graph BKm,n such that n is odd and greater than or
equal to 5, m is an even number greater than 3, and (m − n + 1) is divisible by (n − 2),
T1(BKm,n) = 4.

Proof. Suppose G is a stacked book graph, BKm,n, such that n is odd and greater than
or equal to 5 and m is an even number greater than 3 such that (m− n + 1) is divisible
by (n− 2). av(G) = |{2, 3,m+1,m+2}| = 4. The pot P = {t1 = {â2}, t2 = {a2, â}, t3 =
{am+1}, t4 = {a

m+1−n
n−2

+2, âm−m+1−n
n−2 } realizes G. Thus T1(G) = 4 and P is an optimal pot

which can construct BKm,n such that n is odd and greater than or equal to 5, m is an
even number greater than 3, and (m− n+ 1) is divisible by (n− 2) under Scenario 1 by
Theorem 3.1. 2

Figure 9 provides an example tiling for BK4,5 and demonstrates the pattern between
the a’s and â’s. Note in Figure 9, the arrows point from a to â, and for simplicity, the â’s
are represented by the heads of the arrows. It is an open problem whether or not other
divisibility relationships yield similar results, but we are able to find an upper bound for
graphs BKm,n such that n is odd and greater than or equal to 5, m is an even number
greater than 3, and (m− n+ 1) is not divisible by (n− 2) as stated below.

4.3 Crossed-prism Results

We now provide our results for the crossed-prism graph family.

Definition 4.12 An n-crossed-prism graph for a positive even n, CPn, is a graph ob-
tained by taking two disjoint cycle graphs Cn and adding edges (vk,vk+1) and (vk+1,vk) for
k = 1, 3, 5, ..., (n − 1). This definition assumes that the vertices vn and vn+1 are on the
same cross for both the inner and outer cycles for all vn ∈ V . See Figure 10.

Theorem 4.13 Given a crossed-prism graph, CPn, T1(CPn) = 2 and B1(CPn) = 1 for
all n.

Proof. Suppose we have a crossed-prism graph CPn. Since CPn is 3 regular by Theorems
3.3 and 3.2, T1(CPn) = 2 and B1(CPn) = 1. A pot which satisfies the requirements of
Scenario 1 for CPn is P = {t1 = {a, â2}, t2 = {a2, â}}. 2

Lemma 4.14 Given a crossed-prism graph, CPn, B2(CPn) ≥ 2 for all n.
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Figure 9: Example Tiling for BK4,5 in Scenario 1. The arrows point from a to â and for
simplicity, the â’s are represented by the heads of the arrows.

Proof. Assume B2(CPn) = 1. We cannot use the pot P = {t1 = {a, â2}, t2 = {a2â}}
from Theorem 4.13 as it creates a graph of order two. Without loss of generality, the
other option for a potential pot would be P = {t1 = {a2, â}, t2 = {â3}} which creates a
K4, the complete graph of four vertices (shown in Figure 12). Thus B2(CPn) ≥ 2. 2

Corollary 4.15 For crossed-prism graph, CP4, B2(CP4) = 2 and T2(CP4) = 3.

Proof. From the previous Lemma, we know B2(CP4) ≥ 2. A pot that realizes CP4 in
Scenario 2 is P = {t1 = {a2, â}, t2 = {â2, b}, t3 = {â, b̂2}} (or P = {t1 = {a, â2}, t2 =
{a2, b}, t3 = {a, b̂2}} as shown in Figure 13) with solution set S(P ) = {(5

8
, 1
4
, 1
8
)}. By

Theorem 3.4, since T2(G) = B2(G) + 1, the number of tile types is minimal. 2

Corollary 4.16 Given a crossed-prism graph, CPn, B2(CPn) ≤ n
2
and T2(CPn) ≤ n

2
+1,

for all n. Note 2n is equal to the order of CPn.

Proof.
A general pot for CPn in Scenario 2 is given by P = {t1 = {a21, â1}, t2 = {â12, a2}, t3 =

{â1,â2, a3}, t4 = {â1, â3, a4}, t5 = {â1, â4, a5}, ..., tm+1 = {â1, âm, am+1}, tm+2 =
{â1, ˆam+1, am+2},..., tn

2
= {â1, ân

2
−1, an

2
}, tn

2
+1 = {â1, â2n

2
}} with spectrum
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CP4 CP6 CP8

Figure 10: Crossed-Prism Family (Pictures from [17])

Figure 11: Size 8 crossed-prism graph

S(P ) = {(n+1
2n

, 1
n
, 1
n
, ..., 1

n
, 1
2n
)} and thus no graphs of order less than 2n are made. Thus

B2(CPn) ≤ n
2
and T2(CPn) ≤ n

2
+ 1. 2

Example: The pot for a CP6 in Scenario 2 is given by P = {t1 = {a2, â}, t2 =
{â2, b}, t3 = {â, b̂, c}, t4 = {â, ĉ2}} with spectrum S(P ) = {( 7

12
, 1
6
, 1
6
, 1
12
)} as shown in

Figure 14. The pot for CP8 is P = {t1 = {a2, â}, t2 = {â2, b}, t3 = {â, b̂, c}, t4 =
{â, ĉ, d}, t5 = {â, d̂2}} with spectrum S(P ) = {( 9

16
, 1
8
, 1
8
, 1
8
, 1
16
)}. The pot for CP10 is

P = {t1 = {a2, â}, t2 = {â2, b}, t3 = {â, b̂, c}, t4 = {â, ĉ, d}, t5 = {â, d̂, e}, t6 = {â, ê2}}
with solution set S(P ) = {(11

20
, 1
10
, 1
10
, 1
10
, 1
10
, 1
20
)}. Note that the pot stays the same as the

crossed-prism graph grows except for the last two tiles.

4.4 Crown Graphs

The final family of bipartite graphs examined in this research is the family of crown
graphs. Crown graphs are similar to complete bipartite graphs which have two columns
with the same number of vertices that connect to every vertex in their opposite column.
However in a crown graph, a given vertex does not connect its corresponding vertex in

the pump journal of undergraduate research 6 (2023), 124–150 137



a

b c

d

Figure 12: K4.

Figure 13: Crossed-prism graph

the opposite column. Figure 15 gives an example of crown graphs ranging from order 6
to order 12.

Definition 4.17 An n-crown graph, Crn, is Crn = Kn□K2, the complement of the
Cartesian direct product of the complete graph of order n and the complete graph of order
2.

Lemma 4.18 For crown graph Crn, B1(Crn) = 1 and T1(Crn) = 1 for odd n and
T1(Crn) = 2 for even n.

Proof. It follows from Theorem 3.2 that B1(Crn) = 1. Note that crown graphs are regular
and all vertices are of degree (n− 1). When n is odd, (n− 1) will be even. Therefore, by
Theorem 3.3 T1(Crn) = 1. When n is even, (n − 1) will be odd. Therefore by Theorem
3.3, T1(Crn) = 2. 2

Lemma 4.19 For crown graph Crn, T2(Crn) ≥ 2 for all n.

Proof. Let Crn be a crown graph. If n is even, then 2 = T1(Crn) ≤ T2(Crn). Suppose
n is odd, then the only possible way to tile Crn with one tile, would be to use t1 =
{an−1

2 , â
n−1
2 } which creates a graph of order one. Thus T2(Crn) ≥ 2. 2
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Figure 14: CP6 Crossed-prism graph

Figure 15: Crown graph family (picture from [18])

Theorem 4.20 For crown graph Crn, B2(Crn) > 1 for all n.

Proof. Assume B2(Crn) = 1.
Since crown graphs are (n − 1)-regular, the only possible values for the net sum of

a’s and â’s on each vertex, dn−1, are dn−1 ∈ {±1,±2, ...,±(n− 1)}. Note when n is odd,
dn−1 ̸= 0 since this will create a graph of order 1 (with each a half edge connecting to one
of the â half edges). When n is even, then n− 1 is odd and 0 is not a possible value for
dn−1. The construction matrix for p ≤ 2n is given by

M(P ) =

(
z1,1 z1,2 ... z1,p 0
1 1 1 1 1

)
. (3)

Since the number of a and â must be equivalent, without loss of generality, assume
z1,1 > 0 and z1,2 < 0. Thus M(P ) is row equivalent to(

1 0 −−z1,3+z1,2
z1,1−z1,2

... −−z1,p+z1,2
z1,1−z1,2

− z1,2
z1,1−z1,2

0 1 z1,1−z1,3
z1,1−z1,2

... z1,1−z1,p
z1,1−z1,2

z1,1
z1,1−z1,2

)
. (4)

which has a solution of the form ( −z1,2
z1,1−z1,2

, z1,1
z1,1−z1,2

, 0, ..., 0). Let m = z1,1 − z1,2. Since

z1,1 > 0 and z1,2 < 0, and due the constraints on dn−1, we have m ≤ 2(n− 1) < 2n. Thus
a graph of order less than 2n can be made.

2

Lemma 4.21 B2(Cr3) = 3.
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Proof. By Lemma 4.20, B2(Cr3) ≥ 2. Assume B2(Cr3) = 2. First we show that
we cannot use tiles with two different bond-edge types for each vertex. Without loss of
generality, Assume we have t1 = {a, b} and t2 = {â, b}. This requires t3 = {â, b̂} or
t3 = {a, b̂}. Both options produce graphs of order 2.

We now continue with the assumption that we use at least one tile with a repeated
letter. Without loss of generality, let t1 = {a2}, t2 = {â, b}. This means we need a tile,
say t3, which uses b̂. Since t3 cannot use b as this will create a graph of order 1, we have
the following other choices for the second edge of t3 : a, â, or b̂.

Case 1: Suppose t1 = {a2}, t2 = {â, b}, and t3 = {a, b̂}. This creates a graph of order
2 using t2 and t3.

Case 2: Suppose t1 = {a2}, t2 = {â, b}, and t3 = {â, b̂}. This creates a graph of order
3 using each tile once.

Case 3: Suppose t1 = {a2}, t2 = {â, b}, and t3 = {b̂2}. This creates a graph of order
4 using one t1, one t3, and two t2’s.

Therefore B2(Cr3) ≥ 3. The pot P = {t1 = {a2}, t2 = {b2}, t3 = {â, c}, t4 = {b̂, ĉ}}
realizes Cr3. The Spectrum for the construction matrix associated with this pot is S(P ) =
{(1

6
, 1
6
, 2
6
, 2
6
)} and thus no smaller graphs can be made and so T2(C3) = 4. 2

Lemma 4.22 B2(Cr4) = 2, T2(Cr4) = 3.

Note that Cr4 isomorphic to the cube and CP4 so our pot in Corollary 4.15 works for this.
The following pot realizes the cube/Cr4: P = {t1 = {a, b2}, t2 = {a2, b̂}, t3 = {a, â2}}.
See Figure 16.

Figure 16: Cube/CP4/Cr4 in Scenario 2

We were able to find upper bounds for the optimal number of bond-edge types and
titles for crown graphs.

Lemma 4.23 For crown graph Crn, B2(Crn) ≤ 3 and 3 ≤ T2(Crn) ≤ 4 for all n.

Proof. By Theorem 3.4, we know T2(Crn) ≥ 3. The following pot realizes Crn for any
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n: P = {{an−1}, {bn−1}, {â, cn−2}, {b̂, ĉn−2}. The general construction matrix for P is

M(P ) =


n− 1 0 −1 0 0
0 n− 1 0 −1 0
0 0 n− 2 2− n 0
1 1 1 1 1


with solution set S = { 1

2n
, 1
2n
, n−1

2n
.n−1
2n

} and thus no smaller graphs can be made. Therefore
B2(Crn) ≤ 3 and T2(Crn) ≤ 4. 2

4.5 Other Graphs

We also explored various other graphs which are not bipartite graphs.

4.5.1 Helm Graphs

A helm graph, Hn, is obtained using the base of an n-order wheel graph and adding a
pendant edge to each outer vertex [19]. Helm graphs have an order of 2n+1 and size 3n.
Examples of helm graphs are shown in Figure 17.

Figure 17: Helm graph family (picture from [19])

Theorem 4.24 For helm graph, Hn, T1(Hn) = 3 for all n.

Proof. We have two cases since we have a different number of degree types when n = 4
due to the structure of helm graphs.

Case 1: For Hn where n ̸= 4, since av(H4) = 3, it follows from Theorem 3.1 that
T1(Hn) ≥ 3. The following pot realizes Hn graphs in Scenario 1: P = {t1 = {a}, t2 =
{a2, â2}, t3 = {ân}}. An example of the tiling can be found in Figure 18.

Case 2: For H4 av(Hn) = 2, ev(H4) = 1, and ov(H4) = 1. Thus it follows from
Theorem 3.1 that 2 ≤ T1(Hn) ≤ 3. Assume T1(H4) = 2 and there exists a pot P ′ which
uses only 2 tiles to realize H4 in Scenario 1. Without loss of generality, assume t1 = {a}.
We then have three cases for the choice of t2. Recall, d1 and d4 denote the net total of a
and â’s for t1 and t2 respectively. Since the net number of a’s and â must be equivalent
we must satisfy the following equation:

4d1 + 5d4 = 0 (5)

Since d1 = 1, this equation reduces to 4 + 5d4 = 0 and thus d4 = −4
5

and thus has
no integer solutions and thus T1(H4) > 2. The following pot P realizes H4 in Scenario 1:
P = {t1 = {a}, t2 = {a2, â2}, t3 = {â4}}. 2
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Figure 18: Tiling of the H5 in Scenario 1

Theorem 4.25 For helm graph Hn, B2(Hn) ≥ 2 for all n.

Proof. Assume B2(Hn) = 1. We will consider the possible options for our degree 4 tile
which we will denote as t1.

Case 1: If t1 = {a2, â2}, this will create a graph of order 1.
Case 2: If t1 = {a4}, since our degree 4 vertex is adjacent to the degree 1 vertex, this

means our degree 1 vertex must be {â}. And thus we can create a graph of order 5 which
is less than the order of any helm graph.

Case 3: Without loss of generality, suppose t1 = {a, â3} (note if t1 = {a3, â}, the
argument is analogous). To satisfy the requirement that the total number of hatted and
unhatted cohesive end types must be equal and because our degree 4 vertices are adjacent
(and thus requiring them to connect their half edges with a’s and â’s), our other tiles are
forced to be t2 = {a} and t3 = {an}. Thus we have the pot P ′ = {t1 = {a, â3}, t2 =
{a}, t3 = {an}}. Unfortunately, this pot realizes graphs of smaller order since we can use
one t1 and two t2 to make a graph of order 3.

Therefore B2(Hn) ≥ 2.
2

Corollary 4.26 For helm graph Hn, B2(Hn) = 2 and T2(Hn) = 3 for all n.

Proof. By Theorem 4.25, B2(Hn) ≥ 2. The following pot realizes Hn graphs in Scenario
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Figure 19: Tiling of the H5 in Scenario 2

2: P = {t1 = {ân}, t2 = {a2, â, b̂}, t3 = {b}}. The construction matrix for this pot is

M(P ) =

−n 1 0 0
0 −1 1 0
1 1 1 1


which gives the solution set S = { 1

2n+1
, n
2n+1

, n
2n+1

}. Therefore no smaller graphs can be
realized and B2(Hn) = 2. By Theorem 3.4, since B2(G) + 1 ≤ T2(G), T2(Hn) = 3.

2

4.5.2 Moth, Cricket, and Kite Graphs

In this section, we share our results for the moth graph, M , cricket graph, C, and kite
graph, K. Several of these graphs have interesting properties. For example, the moth
graph’s Scenario includes a free variable and the kite graph is an example in which we
found two different pots to minimize bond-edge types and tile types.

The moth graph is the 6-vertex graph as shown in Figure 20.

Theorem 4.27 For the moth graph, M , T1(M) = 4.

Proof. By Theorem 3.1, 4 ≤ T1(M) ≤ 7. The moth graph can be realized by the pot
P = {t1 = {a2}, t2 = {a, â2}, t3 = {a}, t4 = {â5}} and thus T1(M) = 4.

2
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Figure 20: Labeled moth graph in Scenario 1

Theorem 4.28 For the moth graph, M , T2(M) = 4.

Proof. T1(G) ≤ T2(G) for all graphs G [5]. Thus by the previous theorem, T2(M) ≥
T1(M) = 4. The moth graph can be realized with four tile types by the pot P = {t1 =
{a}, t2 = {a, b}, t3 = {b̂3}, t4 = {â4, b}}. We can use the construction matrix to show that
this pot does not realize smaller graphs.

M(P ) =

1 1 0 −4 0
0 1 −3 1 0
1 1 1 1 1

 .

Note that this construction matrix will have a free variable. Using a Maple program
from [2] and given the restrictions on the free variable within this application of the
construction matrix, we found the solution set of this pot to be S(P ) = {1

r
⟨−3r+20t, 3r−

16t, r− 5t, t⟩|r ∈ Z+, t ∈ (Z∩ [ 3r
20
, 3r
16
])}. Using the program from [2], it can be shown that

the order of the smallest graph which can be realized from this pot of tiles is 6 with r = 6
and t = 1 and the solution set gives {(1

3
, 1
3
, 1
6
, 1
6
)}, thus no graph with order less than 6

can be made.
2

Figure 21: Labeled moth graph in Scenario 2
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Lemma 4.29 Suppose G is a graph of order greater than 3. If B2(G) = 1 and G has
both a degree-2 tile and a degree-1 tile, then both tiles must be, without loss of generality,
{a2} and {a}.

Proof. Let G be a graph of order greater than three with at least one degree-2 vertex
and one degree-1 vertex and suppose B2(G) = 1. Without loss of generality, the degree-2
tile must be of the form {a2} since {a, â} creates a smaller graph. This forces our tiles
with one edge to also be tiled {a}, otherwise, these two tile types realize a smaller graph
of order three. 2

Theorem 4.30 For the moth graph, M , B2(M) = 2.

Proof. Assume B2(M) = 1. By Lemma 4.29, our degree-2 vertex must be tiled {a2} and
our degree-1 vertex must be tiled {a}. The tile with five edges now has four â’s because
of its connections to the other two tile types. The missing edge cannot be labeled with â
as this can create a graph of order four using two {a2}, one {a}, and one {â5}. We can
also not use a for this edge since it can create a graph of order three using one {a2} tiles,
one {a} tile, and one {a, â4} tile. Thus B2(M) ≥ 2. The pot in Theorem 4.28 gives a pot
that realizes the moth graph using only 2 bond-edge types. 2

4.5.3 Cricket Graph

The cricket graph, C, is a 5-vertex graph shown in Figure 22.

Figure 22: Cricket graph

Theorem 4.31 For the cricket graph, C, T1(C) = 3.

Proof. By Theorem 3.1, 3 ≤ T1(C) ≤ 4. The cricket can be realized using three tile
types with the pot P = {t1 = {a}, t2 = {a, â3} t3 = {a, â}}. Note B1(C) = 1 by Theorem
3.2. 2

Lemma 4.32 In Scenario 2, adjacent degree-2 vertices cannot be repeated and require at
least two bond types.

Proof. Suppose we have two adjacent vertices both of degree two. Without loss of
generality, let one vertex be tiled with {a2}. Since the vertices are adjacent, the other
vertex must have a complement â. So we get two cases for the construction. Using the tile
{â, a} creates a graph of order one, and using the tile {â2} creates a graph of order two

the pump journal of undergraduate research 6 (2023), 124–150 145



when connecting with the original tile. Therefore we must introduce another bond-edge
type and the adjacent degree-2 vertices must be distinct. 2

Theorem 4.33 For the cricket graph, C, B2(C) = 2 and T2(C) = 4.

Proof. Since we have two adjacent vertices of degree two, by Lemma 4.32, we must use
more than one bond-edge type. Thus B2(C) ≥ 2.

T2(C) ≥ T1(C) = 3 [5]. Suppose T2(C) = 3. Lemma 4.32 states that we cannot repeat
the adjacent degree-2 tiles. Therefore the number of tiles used is at least four. The cricket
graph can be realized with four tile types with the pot P = {t1 = {a}, t2 = {a, b}, t3 =
{a, b̂}, t4 = {â4}}. The following is the construction matrix for this pot:

M(P ) =

1 1 1 −4 0
0 1 −1 0 0
1 1 1 1 1

 .

Note that this construction matrix will have a free variable. Using a Maple program from
[2], we found the solution set of this pot to be S(P ) = {(0, 2

5
, 2
5
, 1
5
), (4

5
, 0, 0, 1

5
), (2

5
, 1
5
, 1
5
, 1
5
)}

and thus no graphs of order less than 5 can be made. Therefore T2(C) = 4 and B2(C) = 2.
2

4.5.4 Kite Graph

The kite graph is a graph of order five which is shown in Figure 23.

Theorem 4.34 For the kite graph, K, T1(K) = 3.

Proof. By Theorem 3.1, 3 ≤ T1(K) ≤ 5. The kite graph can be realized using three tile
types with the pot P = {t1 = {a}, t2 = {a2}, t3 = {a, â2}} as shown in Figure 23. 2

Figure 23: Kite graph in Scenario 1

Theorem 4.35 For the kite graph, K, T2(K) = 4.

Proof. Assume T2(K) = 3. Since av(K) = 3, in order to optimize our tile types,
we must use the same tile for all degree-3 vertices. The kite graph has three adjacent
vertices of degree-3 which means that the tile {a3} cannot be used in the pot if we are
using the same repeated tile for the degree-3 vertices. Therefore we have four tile types
that can be used in the pot to create a graph with three adjacent degree-3 vertices,
{a2, â}, {a, â2}, {a, â, b}, {a, â, b̂}. However, the degree-1 tile that connects to one of the
degree-3 tiles will always create a smaller graph of order 2. Thus, T2(K) > 3. The kite
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graph can be realized in four tiles with the pot P = {t1 = {â, b}, t2 = {a, â, b̂}, t3 =
{a, b, ĉ}, t4 = {c}}. The following is the construction matrix for this pot:

M(P ) =


−1 0 1 0 0
1 −1 1 0 0
0 0 −1 1 0
1 1 1 1 1


with solution set S(P ) = {(1

5
, 2
5
, 1
5
, 1
5
)} and thus no graphs of order less than 5 can be

achieved. 2

Theorem 4.36 For the kite graph, K, B2(K) = 2.

Proof. Suppose B2(K) = 1. By Lemma 4.29, our single degree-2 vertex must be tiled
{a2} and our single degree-1 vertex must be tiled {a}. This means all three of our degree-3
tiles must have at least one â bond-edge label. Since these degree-3 vertices are adjacent,
without loss of generality, we will label the edge across the center of the kite (aâ) so one
degree-3 vertex has at least two â’s. Notice that we cannot use the tile {a, â2} because
it creates a graph of order two with the degree-1 vertex. Thus our degree-3 vertex with
at least two â’s must be {â3}. This forces the degree-3 vertex connected to the degree-1
vertex to have at least one a and one â. Since we can’t have a second â, this vertex must
be tiled using {a2â}, but this forces the remaining degree-3 vertex to be {a, â2} which
cannot be as it creates a graph of order two. Thus B2(K) ≥ 2. The following pot realizes
the kite graph: P = {t1 = {a3}, t2 = {â2}, t3 = {a, â, b}, t4 = {â, b̂2}, t5 = {b}}. The
following is the construction matrix for this pot:

M(P ) =

3 −2 0 −1 0 0
0 0 1 −2 1 0
1 1 1 1 1 1

 .

Note this construction matrix has a free variable. Using the software from [2], the possible
solutions of this pot are: S(P ) = {(1

5
, 1
5
, 1
5
, 1
5
, 1
5
), (1

5
, 1
5
, 0, 1

5
, 2
5
), (1

5
, 1
5
, 2
5
, 1
5
, 0), (3

5
, 2
5
, 0, 0, 0)}.

Thus no graphs of order less than 5 can be created and therefore B2(K) = 2. 2

5 Conclusion and Open Questions

We have proved optimal tiling strategies in Scenario 1 for the following bipartite graph
families: crossed-prism graphs, crown graphs, book graphs, and stacked book graphs. We
found optimal pots for book graphs in Scenario 2 and found upper bounds for design
strategies for crossed-prism graphs and crown graphs in Scenario 2. We also proved
optimal construction strategies in Scenarios 1 and 2 for non-bipartite graphs kite, cricket,
moth, and the helm graph families. Several of these graphs had interesting properties.
The moth and kite graph provided examples in which the construction matrix had a free
variable. Furthermore, the kite graph provides an example in which we found two different
pots to minimize bond-edge types and tile types. Since this research focused on design
strategies for Scenarios 1 and 2, Scenario 3 remains open for each of these graphs.
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