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Modelling the Container Yard as an 
Operational System in a Port:  
The Case Studies 
 

The paper presents the two Case Studies of the modelling process at the 

Container Yard (CY) as an Operational System based on a particular 

batch arrival multi-server cMM X //  queue described and analysed  in 

[4], where the batch size ( X ) has the shifted-Poisson and Poisson-like 

distributions. Using a more general formula for such queue models, here 

it is deduced the expressions for the specific cost ratio involving the state 

probabilities, the utilization factor, the mean and the variance of the group 

size. Applying this expression, the various results are presented when the 

number of yard cranes at container yard in port is 1, 2 or 3. 
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1. INTRODUCTION 
 

Our attentiom in the paper is fosused on solving or at 

least simplifying the problems concerning container yard 

(CY) in the port by applying cMM X // queue which is 

studied and analysed in [4]. The objective is to derived 

exact solution for specific cost ratio at the CY. 

We consider here batch arrivals of containers at a CY 

which is a multi-channel system with c yard cranes for 

the service. It is modelled as a multi-server cMM X //  

queue which the size X of arriving group is distributed by 

the shifted-Poisson and Poisson-like distributions. For 

this queue, we is deduced the explicit expressions for the 

specific cost ratio, Rc. Using these expressions, the 

various graphical results are presented. 

Notice that the derived expressions for specific cost 

ratio is closely related to the average number of 

containers at the CY. The obtained results are applied for 

determination of specific cost ratio in a port with 

3,2,1c . Related results show that the values of cR  

increase with respect to any of the following parameters 

of a considered queue model: the number of yard cranes, 

the utilization factor,   and the mean of batch size. Our 

analytical approach can be adopted for performance 

analysis of other container terminal subsystem with large 

number of shared resources. We confirm here the two 

special cases can be solved exactly, while some others 

have been done in [14]. 

This approach is also based to identifying specific 

knowledge by [1], [2], [6]-[8] and [11]. Also, some other 

approaches were given in [5], [11] and [12]. 

The CY operations are considered by Case Study I in 

Section 2, whilst Section 3 presents operations modelling 

at CY by Case Study II. The results with apprropriate 

discussions are presented in Section 4. Conclusions are 

presented in Section 5. 

 
2. THE CASE STUDY I 

 

We consider containers arrivals at a port container 

yard as a particular batch arrival multi-server queue 

cMM X //  described in [3], [4], [9] and [10], , where the 

batch size ( X ) has a shifted-Poisson distribution (cf. 

[14], where it was assumed that X  has a constant or a 

geometric distribution). A container yard is a single or 

multi-channel system with c  yard cranes for the service 

( )3,2,1c . The number of containers that arrive for 

service at the same time is a shifted-Poisson distribution 

X  given by (14) from [4] with mean 2a  or 5a . For 

related discussion it is supposed that the value of 

utilisation factor   varies from 0.2 to 0.8. Daily yard 

crane–container cost ratio is equal to 4.0cyr . 

For these purposes, by using the formulae (5) - (7), 

(14) and (18) from [4], here we express the formulae for 

the specific cost ratio cR with 3,2,1c  related to the 

cMM X //  queue in which a group of containers that 

arrive at yard has the shifted-Poisson distribution X  

given by (14) from [4].      
 

Case 1: 1c . Then from (4) we have 10P , which 

together with 11 A  putting into (5) with 1c  yields 

)1(1  P . Substituting these values for 0P  and 1P  

into (18) with 1c  yields    
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Case 2: 2c . Then from (4) [4] we have 

2/1 10 PP   , while from (5) - (7) [4] we have 

)1/(2 0101  aPAPP  . The previous two equalities 

yield 
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Substituting the values for 0P  and 1P  given by (2) into 

(18) [4] with 2c  gives     
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Case 3: 3c . Then from (4) [4] we have 

3/)2(1 210 PPP   , while from (5) - (7) and (14) 

[4] we have )1/(3 0101  aPAPP   and 

))1())(1(2/3())(2/( 1011202 PePaAPAPP a  

. The previous system of three linear equations in 

variables 0P , 1P  and 2P  has the following solution: 
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Substituting the values for 0P , 1P  and 2P  given by (4) - 

(6) into (18) from [4] with 3c  gives     
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3. THE CASE STUDY II 

 

 We consider containers arrivals at a port container 

yard as a particular batch arrival multi-server queue 

cMM X //  described in [3], [4], [9] and [10], where the 

batch size ( X ) has a Poisson-like distribution (cf. [14], 

where it was assumed that X  has a constant or a 

geometric distribution, and in [3], where it was supposed 

that X  has a shifted-Poisson distribution). A container 

yard is a single or multi-channel system with c  yard 

cranes for the service ( )3,2,1c . The number of 

containers that arrive for service at the same time is a 

Poisson-like distribution X  given by (20) from [4] with 

mean 2a  or 5a . For related discussion it is 

assumed that the value of utilization factor   varies 

between 0.2 to 0.8. It is assumed that daily yard crane–

container cost ratio is equal to 4.0cyr . For these 

purposes, by using the formulae (4) - (7), (20) and (22) 

from [4], here we deduce the expressions for the specific 

cost ratio cR with 3,2,1c  related to the cMM X //  

queue in which a group of containers that arrive at yard 

has the Poisson-like distribution X  defined by (20) from 

[4].      
 

Case 1: 1c . Then from (25) with 1c  we immediately 

have  

 

.
)1(2

)2(
1










a
rR cy

                                                    (8)

 

 

Case 2: 2c . Then from (4) [4] we have 

2/1 10 PP   , while from (5) - (7) [4] we have 

aPAPP /2 0101   . The previous two equalities yield 
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Substituting the the above values for 0P  and 1P  into (25) 

from [4] with 2c  gives     
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Case 3: 3c . Then from (4) [4] we have 

3/)2(1 210 PPP   , while from (5) - (7) and (20) 

[4] we find that aPAPP /3 0101    and 
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The previous system of three linear equations in variables 

0P , 1P  and 2P  has the following solutions: 
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Substituting the above values for 0P , 1P  and 2P  into 

(25) from [ ] with 3c  gives 
 

.
352

)33(2

)1(2

)2(
3

222

2

3









aaeeaea

aaeae

a
rR

aaa

aa

cy











                (10)

 

 
4. RESULTS AND DISSCUSIONS 

 

Applying the expressions (1), (3), (7), (8), (9) and (10), 

we obtain the graphical results given in Fig. 1 and Fig. 2, 

respectively, as well as in Fig A1, Appendix A. It can be 

seen from all figures that the values cR  (Specific Cost 

Ratio =Ttotal annual cost for queuing system with c  yard 

cranes / Total annual cost of containers) increase with 

respect to each of the variables (parameters) c  (the 

number of yard cranes) and   (the utilization factor). 

Moreover, the same fact is true with respect to the 

parameter a  ( a  is the mean of batch size) when 1a
. Accordingly, in order to decrease the total annual cost 

for queuing system with c  yard cranes with respect to the 

total annual cost of containers, it is necessary to decrease 

at least one of these three parameters.  
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a) 1c  

 
b) 2c  

 
c) 3c  

 
d) 1c  

 
e) 2c  

 
f) 3c  

Figure 1. Specific cost ratio 
cR  related to cMM X // queue 

with )!1/()( 1   iaeaiXP ia
i

, ,...2,1i  

 
a) 1c  

 
b) 2c  

 
c) 3c  

 
d) 1c  

 
e) 2c  

 
f) 3c  

Figure 2. Specific cost ratio 
cR  related to cMM X // queue 

with !)1/(()( ieaaiXP ai
i  , ,...2,1i  
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5. CONCLUSIONS 
 

We show that cMM X // queue applying to the 

analysis of specific cost ratio can be important for 

understanding various kinds of CY operations and 

determining the optimal values of their performances. 

One straightforward application of our modelling 

approach is sizing of arriving group is distributed by the 

shifted-Poisson and Poisson-like distributions based on 

the handling technology choice for a given throughput 

level of CY. 
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Appendix A 

 

Figure A1. 3D Graphics of functions 11 ),(),( RaRa   , 22 ),(),( RaRa   and 33 ),(),( RaRa   with 

)!1/()( 1   iaeaiXP ia
i

, ,...2,1i  for a), b) and c), and with !)1/(()( ieaaiXP ai
i  , ,...2,1i for d), e) and f) [3], [9] and [10] 

  


