
Branching execution symmetry in Jeopardy by
available implicit arguments analysis

Joachim Kristensen1[0000−0002−1619−5944], Robin
Kaarsgaard2[0000−0002−7672−799X], and Michael Kirkedal

Thomsen1,3[0000−0003−0922−3609]

1 University of Oslo, Oslo, Norway
2 University of Edinburgh, Edinburgh, United Kingdom

3 University of Copenhagen, Copenhagen, Denmark

Abstract. When the inverse of an algorithm is well-defined – that is,
when its output can be deterministically transformed into the input pro-
ducing it – we say that the algorithm is invertible. While one can describe
an invertible algorithm using a general-purpose programming language,
it is generally not possible to guarantee that its inverse is well-defined
without additional argument. Reversible languages enforce determinis-
tic inverse interpretation at the cost of expressibility, by restricting the
building blocks from which an algorithm may be constructed.
Jeopardy is a functional programming language designed for writing in-
vertible algorithms without the syntactic restrictions of reversible pro-
gramming. In particular, Jeopardy allows the limited use of locally non-
invertible operations, provided that they are used in a way that can be
statically determined to be globally invertible. However, guaranteeing
invertibility in Jeopardy is not obvious.
One of the central problems in guaranteeing invertibility is that of de-
ciding whether a program is symmetric in the face of branching control
flow. In this paper, we show how Jeopardy can solve this problem, us-
ing a program analysis called available implicit arguments analysis, to
approximate branching symmetries.

Keywords: Program analysis, functional programming, invertible lan-
guages

1 Introduction

The interest in programs that can recover the inputs from a computed out-
put have long existed: from McCarthy’s generate-and-test method [13] to the
numerous inversion techniques associated with the reversible model of computa-
tion [1, 6, 11]. Many languages have been designed to guarantee that programs
describe reversible algorithms, often by restricting which programs are allowed.
A notable such language is Janus [12,19], a reversible imperative language which
guarantees partial reversibility4 by restricting programs to be sequences of lo-
4 Often (as in Janus) local invertibility only guarantees invertibility of partial func-

tions. This comes from the fact that control structures (like conditional and loops)
require assertion of specific values, and because procedures may fail to terminate.



2 Kristensen, Kaarsgaard, and Thomsen

cally invertible statements. Furthermore, Theseus [8] restricts programs to be
a composition of locally invertible surjective functions. Finally, RFun [16, 18]
imposes constraints that enforce function invertibility by enforcing a bidirec-
tional first-match policy on choice points (at runtime), and requiring programs
to be linear in their arguments. Doing so, is sufficient to guarantee invertible
algorithms while not restricting computational power beyond R-Turing com-
pleteness5. Both of these constraints can clearly be checked statically: for the
former, we may require the programmer to unroll their program until input and
output patterns are syntactically orthogonal, and the latter can be enforced by
linear typing [3, 17] as has been shown for CoreFun [7], a simple typed version
of RFun.

However, writing algorithms in a way that makes their reversibility evident
can be difficult, as it corresponds, in a certain way, to asking the programmer
to prove this property as they are writing the program. Writing programs in
these reversible languages requires some experience, and can in some cases be
notoriously hard. The first attempts to this approach, was McCarthy’s generate-
and-test algorithm [13]. As this method is often infeasible in practice, later
research approached the problem using program inversion [4, 5] or even semi-
inversion [9,14]. Since these methods all build on the conventional programming
model, they may fail in cases where a deterministic inverse does not exist.

The language Jeopardy [10] has been designed with inversion in mind. It can
be seen as a combination of the above two approaches: restricting the syntax
enough to be able to give static inversion guarantees, but relaxing the execution
model enough to make programming as natural as possible. It has a syntactic re-
semblance to your garden variety functional programming language and exhibits
the expected semantics for programs running in the conventional direction.

However, not all algorithms describe bijective functions, and the problem of
deciding whether an algorithm is invertible is undecidable in general following
from Rice’s Theorem. This means that the static analysis needed to guarantee
inversion of even simple Jeopardy programs is not straightforward. In this work,
we investigate the approach of approximating global program invertibility by
developing a data flow analysis that infers the information necessary to make
the approximation.

To be precise, in Section 2 we outline the problem by providing an instruc-
tive program example. In Section 3 we briefly outline the syntax and semantics
of the Jeopardy programming language; a more formal introduction to the lan-
guage was presented at IFL 2022 [10]. In Section 4 we detail the meaning of
implicit arguments to functions that are inversely interpreted. In Section 5 we
provide an algorithm for performing implicitly available arguments analysis on
Jeopardy programs. Furthermore, in Section 6 we run the algorithm on the pro-
gram example, and in Section 7 we discuss the implications of the result. Finally,
in Section 8 we conclude on the results.

5 R-Turing completeness is Turing completeness restricted to programming languages
(and hence Turing machines) defining only reversible programs.



Available implicit arguments analysis 3

A Haskell implementation of available implicit arguments analysis for Jeop-
ardy can be found at:

https://github.com/jtkristensen/Jeopardy/blob/main/src/Analysis/ImplicitArguments.hs

2 Branching symmetries and invertibility

The extensional behavior of a program can be reasonably thought of as a function
mapping inputs to outputs [2]. In this perspective, the existence of an inverse
program is analogous to the existence of an inverse function. That is, a program
f : A → B is invertible when a deterministic inverse program f−1 : B → A
exists, such that the functions they describe satisfy f−1 ◦ f = idA and f ◦ f−1 =
idB .

At the extensional abstraction of mathematical functions, we cannot infer
any more about a function’s behavior than that which may be derived from the
premises given by the function’s provider. However, when we are presented with
a program, we can perform program analysis that inspect it to gain insight into
its properties.

One such analysis, called available expressions analysis [15], produces a set of
expressions per program point that has already been computed when the point
is reached at runtime. One purpose to perform this particular analysis can be to
transform programs into equivalent programs that do not recompute expressions
when it is not necessary.

In Jeopardy we wish to decide the set of available expressions that could
have been implicitly provided as function arguments at particular call sites in
a program. Providing extra arguments to functions do not necessarily make
those programs run more efficiently, but it allows us to infer more precise things
about branching inside function calls ahead of runtime. For instance, consider
the program given in Figure 1.
The main function of the program fibonacci takes a natural number n as its
argument, and produces a pair containing the n’th Fibonacci number together
with n itself. It does so by projecting from the function fibonacci_pair that
produces a pair containing the n’th Fibonacci number together with its succes-
sor. The pair is computed by recursively applying the fibber function, which
transforms a pair of Fibonacci numbers into the next pair. As dictated by the
definition of the Fibonacci sequence, fibber finds the next number in the se-
quence by summing the two previous numbers.

Starting from the top, the function sum, which computes sums of pairs of
natural numbers, is not invertible. To be precise, the solution 4 does not have a
unique corresponding problem. In particular, it can be the sum of 1 and 3, or it
can be the sum of 0 and 4. In the latter case, sum would simply return the 4 by
taking the first branch of the case statement, and in the former case, it would
take the second branch and call itself recursively.

However, the output of sum is still uniquely determined by the input, and so,
inferring which branch was taken in each call to sum, is sufficient for uniquely
determining its input. For instance, in the function fibber we never call sum

https://github.com/jtkristensen/Jeopardy/blob/main/src/Analysis/ImplicitArguments.hs


4 Kristensen, Kaarsgaard, and Thomsen

data natural_number = [zero] [successor natural_number].

sum (m, n) =
case m of
; [zero] -> n
; [successor k] -> sum (k, [successor n]).

fibber (m, n) = (sum (m, n), m).

fibonacci_pair n =
case n of
; [zero] -> ([successor [zero]], [successor [zero]])
; [successor k] -> fibber (fibonacci_pair k).

fibonacci n =
case fibbonacci_pair n of
; (_, nth_fibonacci_number) -> (nth_fibonacci_number, n).

main fibonacci.

Fig. 1. Example program, computing fibonacci numbers.

without also returning the first of its arguments as well. Thus, in the inverse
interpretation of sum, if the first argument is 0, we are done. Otherwise, the first
argument is the successor of some natural smaller number k, and we can inverse
interpret the sum function recursively.

Similarly, it is not trivial that fibonacci_pair is an invertible algorithm,
since you need to know that the second branch of the case-statement will always
be syntactically orthogonal to a pair of ones. However, as the argument for
fibbonacci_pair is directly available in the output of fibonacci, it is clearly
invertible in the context of inverse interpreting the fibonacci function.

To summarize, obtaining the inverse of the entire fibbonacci program cor-
responds to writing a program that takes as argument a pair containing the n’th
Fibonacci number together with n itself and merely gives back the n. The right
projection is insufficient in terms of correctly determining the problem for this
solution, because its interpretation in the conventional direction does not com-
pose to an identity. However, recovering information about branching is sufficient
for inverse interpretation. Reversible programming languages that enforce local
invertibility, such as RFun and CoreFun [7,18] simply throw an error at runtime
if branching does not comply with a symmetric first match policy for pattern
matching, and Theseus [8] requires the programmer to account for branching
structure syntactically.

However, as we have seen in the fibonacci program example, realistic pro-
grams often exhibit inter-procedural information that allows us to recover the
branching structure. It remains to show how this information may be obtained



Available implicit arguments analysis 5

systematically. In the remainder of this article, we concern ourselves with doing
just that.

3 The Jeopardy Programming Language

Jeopardy is a carefully designed first order functional language aimed at express-
ing invertible algorithms while enabling concise program analysis and dissemi-
nation. The main features are user-definable algebraic data types and explicit
function level program inversion. The full grammar can be found in Figure 2.

x ∈ Name (Well-formed variable names).
c ∈ Name (Well-formed constructor names).
τ ∈ Name (Well-formed datatype names).
f ∈ Name (Well-formed function names).
p ::= [c pi] | x (Patterns).
v ::= [c vi] (Values).
∆ ::= f (p : τp) : τt = t . ∆ (Function definition).

| data τ = [c τi]j . ∆ (Data type definition).
| main g . (Main function declaration).

g ::= f | (invert g) (Inversion).
t ::= p (Patterns in terms).
| g p (First order function application).
| case t : τ of pi → ti (Case statement).

Fig. 2. The syntax of Jeopardy.

Running a program corresponds to calling the declared main function on a
value provided by the caller in the empty context. Similarly, running a program
backwards corresponds to calling the main function’s inverse on a value pro-
vided by the caller in the empty context as well. Since an application is a term,
reasoning about inversion of terms is the same as reasoning about inversion of
programs.

The syntax of terms has been designed with the goal of providing program
analysis at the cost of making programs harder to read and write. In the interest
of writing intuitive program examples, we have therefore equipped Jeopardy
with a set of derived syntactic connectives that we have shown in Figure 3.
Additionally, we may choose to omit type annotations whenever these are not
necessary, and use literal syntax for natural numbers (0, 1, . . . ) to mean their
data representations ([zero], [successor [zero]], . . . ).



6 Kristensen, Kaarsgaard, and Thomsen

J[c ti]K∆[data τ=[cτi]j ] := case ti : τi of pi → [c pi]

J(t1, t2)K∆ := J[pair t1 t2]K∆
Jt1 : t2K∆ := J[cons t1 t2]K∆

J[]K∆ := [nil]

Jf tK∆[f(·:τ):·=·] := case t : τ of p → f p

Jlet p : τ = t in t′K∆ := case t : τ of p → t′

Jt′K∆[f(pi:τp):τt=ti.] := Jt′K∆[f(x:τp):τt=case x:τp of pi→ti]

Fig. 3. Disambiguation of syntactic sugar.

4 Implicit Arguments

Recall from Section 2 that sum was not injective, and thus its inverse was not
well-defined. A naïve solution to this problem is to automatically injectivise
the program using, e.g., Bennett’s method [1]: that is, we keep a computation
history of our program, copy its result, and uncompute the history to be left
with the input and a copy of the result. However, this is a very inefficient way of
doing invertible computing and would constantly generate extra unwanted data.
In many cases we can do better by first determining which inputs are needed
for uniquely deciding branching information bidirectionally. For example, if we
want to make sum invertible it suffices to copy one of its inputs to the outputs
as follows:

sum_and_copy_first (m, n) =
case m of
; [zero] -> (m, n)
; [successor k] ->

case sum_and_copy_first (k, [successor n]) of
; (k, k+suc_n) -> (m, k+suc_n).

sum_and_copy_second (m, n) =
case m of
; [zero] -> (n, n)
; [successor k] ->

case sum_and_copy_second (k, [successor n]) of
; (k+suc_n, [successor n]) -> (n, k+suc_n).

To convince the reader that the branching symmetry is recoverable from the
transformed program, in sum_and_copy_first we are matching on m, and m
is embedded directly in the output. To see that branching is symmetric in
sum_and_copy_second, we need to show that k+suc_n and n are different in
the last branch, which we can by co-induction since the recursive call returns a
pair of successors of n, or some larger structure that contains n from previous



Available implicit arguments analysis 7

calls. Regardless of our choice of injectivisation of sum, we need to store infor-
mation from the previous call in order to make branching symmetry decidable
for the next, effectively by supplying a function (in this case the inverse to sum)
with extra arguments.

By producing specialised functions that take extra arguments in this way,
we can transform programs that contain the original functions into equivalent
programs that call the specialised function whenever the extra arguments are
available. For instance, we might rewrite fibber from Figure 1 as follows:

fibber_specialized_for_sum_and_copy_first (m, n) =
case sum_and_copy_first (m, n) of
; (m, m+n) -> (m+n, m).

This transformation depends on knowing which specialised versions of a partic-
ular function it can use, and in turn, it depends heavily on knowing what terms
are available, or can be made available in the program point at which the call
happens. Because Jeopardy is a pure functional language, this is simply all terms
that appear in all paths to the program point in a call graph with the programs
main function as its entry point, and we already know how to construct such a
graph [15].

In fact, we can do a little better, since we only need to require that a term
appears on every path that allows us to apply specialisation; though not neces-
sarily the same specialisation in every path. In this way, the goal of our algorithm
is as follows: for every function application in a program, for every distinct path
to that application from the main function, compute what terms are available
to be provided as implicit (extra) arguments.

5 The Algorithm

To avoid having to deal with names, our algorithm performs an initial annotation
of the input program, where each program point is assigned a unique integer
label, as will be demonstrated for Figure 1 in Section 6. Furthermore, to make
things more concrete, we specify what it means to be a call-configuration, as
specified in Definition 1.

Definition 1. A call-configuration is a 4-tuple (c, f, A, I) , containing the name
“c” of the function in which the call occurred, the (possibly inverted) function “f”
being called, a set “A” containing the labels of the arguments to the function, a
set “I” of available implicit arguments from previous calls in which the program
is running at the time of the call.

Now, achieving the goal presented in Section 4, is equivalent to answering
the question: for each call in a program, what are the possible configurations of
the call?

We answer this question by solving a set of equations. Each equation, have
a fixed program-of-interest ∆. We give the name F to the set of function names



8 Kristensen, Kaarsgaard, and Thomsen

defined in ∆; The superset of F that includes inversions (function names occur-
ring under the keyword invert), we call I. Furthermore, we assign the name L
to the set of labels of ∆, and finally, we give the name C ⊆ (F × I × L × L) to
the set of possible call-configurations.

To produce all the possible configurations, we declare a function that com-
putes the closure of the call-configurations that are reachable from two initial
configurations6:

configuration : ∆ → P(C)

Its corresponding definition can be found in Figure 4, where ∆ has been extended
with a special top level function ⊤ and two special labels “input” and “output”
for the arguments that should be provided by the entity that runs the program.
The equation, and the computations it depends, on are all defined in this section.

configurations(∆[main g.]) = {(⊤, g, {input}, ∅), (⊤, (invert g), {output}, ∅)}

∪

 ⋃
c∈configurations(∆)

call(c)∆



Fig. 4. The reachable call configurations from main.

In the last part of the definition of configurations, a function:

call : C → P(C)

takes as argument, a configuration and returns all the possible configurations
that are reachable by calling the (possibly inverted) function f from that con-
figuration, as defined in figure 5

call((c, f, A, I))∆[fp=t.] =

{
term ↓ (f, (I ∪A) \ (labels(p, t)), t) : dir(f) =↓
π1(term ↑ (f, (I ∪A) \ (labels(p, t)), t)∆) : otherwise

Fig. 5. The reachable configurations from a given configuration.

Depending on the direction of execution, the reachable definitions are defined
by a inspecting the terms that constitute the terms and patterns that define the
6 forward and backward from main.



Available implicit arguments analysis 9

body and argument of a function. We give the name T for such terms, and
further declare two functions:

term ↓: (F , I, T ) → P(C)
and term ↑: (F , I, T ) → P(C × L)

that compute the reachable configurations depending on said direction dir(f) in
which the call is to be interpreted. We define these functions in Figure 6. They
both return the set of configurations reachable from their argument term t. How-
ever, the function interpreting calls against the conventional direction returns
the labels of available expressions from “the future” as a means of definitional
convenience.

In the case for patterns, both functions yield an empty set of call-configurations
since a pattern cannot contain an application. That is, terms in patterns are syn-
tactic sugar that we disambiguated in Figure 3. The cases for function application
yield the configurations reachable as defined by the function “call”. Regarding
case-statements, both functions return the collection of configurations reachable
in each branch.

term ↓ (f, I, JpK) = ∅
term ↓ (f, I, Jg pK) = {(f, g, labels(p), I,direction(g))}

term ↓ (f, I, Jcase t of pj → tjKj∈J) = term ↓ (f, I, t)

∪ (
⋃
j∈J

(term ↓ ((f, I ∪ (labels(t) ∪ labels(pj)), ti))))

term ↑ (f, I, JpK)∆ = {(∅, I ∪ labels(p))}

term ↑ (f, I, Jg pKl1)∆[gq=tl0 ] = {((f, g, {l0}, I, op(dir(g))), {l1})∥c ∈ call((f, g, }

term ↑ (f, I, Jcase t of pj → tjKlj∈J) =⋃
j∈J

{(Lh, {l}Lt)∥(Ls, Lj) ∈ term ↑ (f, I, tj)

(Lh, Lt) ∈ term ↑ (f, Lj ∪ labels(pj), t)}

Fig. 6. Call configurations, reachable in terms for each direction of interpretation.

The direction dir, and the opposite direction op, of a function call are defined
by their corresponding functions in Figure 7, and with that we are done defining
the algorithm.

Computing the set of possible reachable call configurations in a program ∆
now, corresponds to calling the function configurations on ∆. It does so by
finding the least fixed point of the function call from two initial configurations.
And, we know that this least fixed point always exists (and thus the algorithm
is well defined), from observing that configurations can be given the structure of



10 Kristensen, Kaarsgaard, and Thomsen

dir(g) =

{
op(dir(f)) : g = (invert f)

↓ : otherwise

op(↓) = ↑
op(↑) = ↓

Fig. 7. Definition, the direction of a function call and its opposite direction.

a complete lattice by (c, f, A, I) ⊑ (c′, f ′, A′, I ′) iff c = c′, f = f ′, A = A′, and
I ⊆ I ′, with joins and meets of configurations (with the same name, function,
and label set) given by unions and intersections of available implicit arguments.
Further, it can be shown that the functions in Figures 4, 5 and 6 are all monotone
with respect to this order, so it follows by Tarski’s fixed point theorem that the
least fixed point we are looking for always exists. Furthermore, since a program
contains only finitely many labels, it follows additionally that the analysis always
terminates.

6 Instructive Example

On a less theoretical note, let us look at an example, namely that of finding
the available implicit arguments at all call sites in the Jeopardy example from
Figure 1. This is the same as finding a minimal fixed point for the equation for
“configurations(∆)”, where

∆ =
(data natural_number = [zero] [successor natural_number].

sum (m1, n2)0 =
(case m4 of
; [zero]5 -> n6

; [successor k8]7 -> (sum (k10, [successor n12]11))9)3.

fibber (m14, n15)13 = ((sum (m19, n20)18)17, m21)16.

fibonacci_pair n22 =
(case n24 of
; [zero]25 -> ([successor [zero]28]27, [successor [zero]30]29)26

; [successor k32]31 -> (fibber (fibonacci_pair k35)34)33)23.

fibonacci n36 =
(case (fibbonacci_pair n39)38 of
; (_41, nth_fibonacci_number42)40 -> (nth_fibonacci_number44, n45)43)37.

main fibonacci46.)



Available implicit arguments analysis 11

As the main function is fibbonaci we immediately get:

configurations(∆[main fibbonaci.])

= {(⊤, fibbonaci, {input}, ∅), (⊤, (invert fibbonaci), {output}, ∅)}

∪

 ⋃
c∈configurations(∆)

call(c)∆



And, if we focus on the last term, and unfold it one step, we get: ⋃
c∈configurations(∆)

call(c)∆

 = call((⊤, fibbonaci, {input}, ∅))∆ ∪

 ⋃
c∈configurations(∆)

call(c)∆


If we again restrict our attention to the “call” part, the result is:

call((⊤,fibbonaci, {input}, ∅))∆[fibbonaci n36=t]

= term ↓ (fibbonaci, {input} \ {36}, t)
= term ↓ (fibbonaci, {input}, Jcase t38 of p40i → t43i K)

= term ↓ (fibbonacci, {input}, t38)
∪ term ↓ (fibbonacci, {input} ∪ labels(t38) ∪ labels(p40i ), t43i )

= {(fibbonacci, fibbonacci_pair, {39}, {input})} ∪ ∅

Finally, we get

configurations(∆[main fibbonaci.])

= {(⊤, fibbonaci, {input}, ∅),
(⊤, (invert fibbonaci), {output}, ∅),
(fibbonacci, fibbonacci_pair, {39}, {input})}

∪

 ⋃
c∈configurations(∆)

call(c)∆


= {(⊤, fibbonaci, {input}, ∅),

(⊤, (invert fibbonaci), {output}, ∅),
(fibbonacci, fibbonacci_pair, {39}, {input}),
(fibbonacci_pair, fibber_pair, {35}, {input, 39, 22, 23, 24, 31, 32}),
(fibbonacci_pair, fibber, {34}, {input, 39, 22, 23, 24, 31, 32})}

∪

 ⋃
c∈configurations(∆)

call(c)∆


= {(⊤, fibbonaci, {input}, ∅),



12 Kristensen, Kaarsgaard, and Thomsen

(⊤, (invert fibbonaci), {output}, ∅),
(fibbonacci, fibbonacci_pair, {39}, {input}),
(fibbonacci_pair, fibber_pair, {35}, {input, 39, 22, 23, 24, 31, 32}),
(fibbonacci_pair, fibber, {34}, {input, 39, 22, 23, 24, 31, 32}),
(fibber, sum, {18, 19, 20}, {input, 39, 22, 23, 24, 31, 32, 13, 14, 15, 21}),
(sum, sum, {10, 11, 12}, {0, 1, 2, 4, 7, 8})}

∪

 ⋃
c∈configurations(∆)

call(c)∆



Here the additional call-configurations in the last part are derived in a similar
fashion to that which we did when we focussed on the equation for “call” in the
conventional direction, and in the interest of saving space in the paper, deriving
the call configurations for (invert fibbonacci) is left as an exercise for the
reader.

7 Discussion

The transformation suggested in Section 2 requires us be able to infer a particular
set of call-configurations. We have designed and implemented an algorithm for
inferring said configurations. The algorithm works well for finding implicitly
available arguments in function calls, but is limited in scope, to the configurations
that do not reach beyond a single step of recursion in its search for implicit
arguments. However, a single step is not a theoretical limit. It is easy to imagine
a generalized algorithm that infers implicitly available arguments up to a fixed
depth, but less so for arbitrary depth recursion.

In Section 6, we have seen how to compute the implicitly available arguments
at each program point in an example program that computes the Fibonacci
numbers. The result of the analysis allows us to replace functions for which we
cannot decide branching symmetry with specialized variations for which we can.
For instance, at program point 17, fibber calls sum in a context where its first
argument m is implicitly available in both directions (from program point 21) as
witnessed, for the conventional direction, by the tuple

(fibber, sum, {. . . }, {. . . , 21, . . . })

And so, we can make fibber invertible by replacing the non-invertible function
call to sum with a call to the invertible specialization sum_and_copy_first from
Section 4, which in turn allows us to invert fibber, as demonstrated in the ex-
ample function fibber_specialized_for_sum_and_copy_first also in Section
4.

The problem with regards to recursion, is that the set of implicitly available
expressions’ labels I in a configuration, according to Definition 1, corresponds to



Available implicit arguments analysis 13

the terms that were “available from previous calls”. So, in a circular call structure
(like recursion) it is not possible to see the difference in I between a term bound
in this call, or the previous. In the example program from Section 2, this is not a
problem, because deciding if e.g. sum is symmetric with respect to branching, only
relies on implicit arguments either from the previous call to fibber or sum itself.
However, one could imagine a scenario, where a term actually exhibits branching
symmetry even though our analysis does not find sufficient information to say
so.

8 Conclusion

We have designed a program analysis for statically inferring the expressions that
are available as implicit arguments in function calls in the Jeopardy program-
ming language. The current formulation of the algorithm can be implemented
in about 200 lines of code in fairly readable and maintainable Haskell code. Our
implementation makes use of the nifty Reader-Writer-State monad, which turns
out to be suitable for threading around the program ∆, as well as keeping track
of termination conditions etc.

In the near future, we expect to develop a program transformation, that
rewrites Jeopardy programs where branching symmetry is not syntactically ap-
parent, into programs where it is. To give an intuition, we have provided an
example in Section 4, of applying such a transformation to the function fibber
from the program example in Section 2.

The reasons for wanting to design and implement such a transformation is
twofold. As mentioned earlier, the main motivation is to enable static analysis
for deterministic backwards branching execution inference. But such a transfor-
mation also has similar motivation to that of compiling programs rather than
interpreting them. That is, a jeopardy interpreter should not perform this anal-
ysis every time a function is called, or thread around the implicit arguments
at runtime, it should transform the program into an equivalent program where
implicit arguments have been explicitly provided when necessary.

Static program analysis is almost always an approximation, and cyclic call
structures is where you will find the limitations of the available implicit argu-
ments analysis. However, it is not hard to imagine a definition of call-configurations,
that include (finitely many) layers of cyclic references to previous calls. And, it
is unclear at the time of writing, if doing so will by useful in practice.

Acknowledgments The second author is supported by DFF–International
Postdoctoral Fellowship 0131-00025B.

References

1. Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and
Development 17(6), 525–532 (1973)



14 Kristensen, Kaarsgaard, and Thomsen

2. Danielsson, N., Hughes, J., Jansson, P., Gibbons, J.: Fast and loose reasoning is
morally correct. In: 33rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. pp. 206–217. POPL ’06, ACM (2006)

3. Girard, J.Y.: Linear logic. Theoretical Computer Science 50(1), 1–101 (1987)
4. Glück, R., Kawabe, M.: A method for automatic program inversion based on LR(0)

parsing. Fundamenta Informaticae 66(4), 367–395 (2005)
5. Hou, C., Quinlan, D., Jefferson, D., Fujimoto, R., Vuduc, R.: Synthesizing loops

for program inversion. In: Glück, R., Yokoyama, T. (eds.) Reversible Computa-
tion, Lecture Notes in Computer Science, vol. 7581, pp. 72–84. Springer Berlin
Heidelberg (2013)

6. Huffman, D.A.: Canonical forms for information-lossless finite-state logical ma-
chines. IRE Transactions on Information Theory 5(5), 41–59 (1959)

7. Jacobsen, P.A.H., Kaarsgaard, R., Thomsen, M.K.: CoreFun: A typed functional
reversible core language. In: Kari, J., Ulidowski, I. (eds.) Reversible Computation.
pp. 304–321. Springer International Publishing (2018)

8. James, R.P., Sabry, A.: Theseus: A high level language for reversible computing
(2014), work in progress paper at RC 2014. Available at www.cs.indiana.edu/
~sabry/papers/theseus.pdf

9. Kirkeby, M.H., Glück, R.: Semi-inversion of conditional constructor term rewriting
systems. In: Gabbrielli, M. (ed.) Logic-Based Program Synthesis and Transforma-
tion. pp. 243–259. Springer International Publishing (2020)

10. Kristensen, J.T., Kaarsgaard, R., Thomsen, M.K.: Jeopardy: An invertible func-
tional programming language (2022). https://doi.org/10.48550/ARXIV.2209.
02422, work-in-progress paper presented at 34th Symposium on Implementation
and Application of Functional Languages

11. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
Journal of Research and Development 5(3), 261–269 (1961)

12. Lutz, C., Derby, H.: Janus: A time-reversible language. A letter to R. Landauer
(1986), available at http://tetsuo.jp/ref/janus.pdf

13. McCarthy, J.: The inversion of functions defined by Turing machines. In: Shan-
non, C.E., McCarthy, J. (eds.) Automata studies. Annals of Mathematics Studies,
Princeton University Press (1956)

14. Mogensen, T.Æ.: Semi-inversion of functional parameters. In: Proceedings of the
2008 ACM SIGPLAN symposium on Partial Evaluation and Semantics-Based Pro-
gram Manipulation. pp. 21–29. PEPM ’08, ACM (2008)

15. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
Berlin / Heidelberg, Berlin, Heidelberg (2015)

16. Thomsen, M.K., Axelsen, H.B.: Interpretation and programming of the reversible
functional language. In: Symposium on the Implementation and Application of
Functional Programming Languages. pp. 8:1–8:13. IFL ’15, ACM (2016)

17. Wadler, P.: Linear types can change the world! In: IFIP TC 2 Working Conference
on Programming Concepts and Methods. pp. 347–359. North Holland (1990)

18. Yokoyama, T., Axelsen, H.B., Glück, R.: Towards a reversible functional language.
In: De Vos, A., Wille, R. (eds.) Reversible Computation, RC ’11. LNCS, vol. 7165,
pp. 14–29. Springer-Verlag (2012)

19. Yokoyama, T., Glück, R.: A reversible programming language and its invertible
self-interpreter. In: Partial Evaluation and Program Manipulation. PEPM ’07. pp.
144–153. ACM (2007)

www.cs.indiana.edu/~sabry/papers/theseus.pdf
www.cs.indiana.edu/~sabry/papers/theseus.pdf
https://doi.org/10.48550/ARXIV.2209.02422
https://doi.org/10.48550/ARXIV.2209.02422
https://doi.org/10.48550/ARXIV.2209.02422
https://doi.org/10.48550/ARXIV.2209.02422
http://tetsuo.jp/ref/janus.pdf

	Branching execution symmetry in Jeopardy by available implicit arguments analysis

