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Abstract. The Fibonacci numbers are familiar to all of us. They appear
unexpectedly often in mathematics, so much there is an entire journal
and a sequence of conferences dedicated to their study. However, there is
also another sequence of numbers associated with Fibonacci. In The On-
Line Encyclopedia of Integer Sequences, a sequence of numbers which is
an approximation to the real root of the cubic polynomial. Fibonacci gave
the first few numbers in the sequence in the manuscript Flos from around
1215. Fibonacci stated an error in the last number and based on this
error we try, in this paper to reconstruct the method used by Fibonacci.
Fibonacci gave no indication on how he determined the numbers and the
problem of identifying possible methods was raised already the year after
the first transcribed version of the manuscript was published in 1854.
There are three possible methods available to Fibonacci to solve the
cubic equation; two of the methods have been shown to give Fibonacci’s
result. In this paper we show that also the third method gives the same
result and we argue that this is the most likely method.

1 Introduction

The Fibonacci numbers 1, 2, 3, 5, 8, 13, 21, 34, . . . are well known [12].
They are generated from the recurrence relation fi+2 = fi+1 + fi, i =
1, 2, 3 . . . where f1 = 1, f2 = 2. But there is another sequence of num-
bers associated with Fibonacci, namely 1, 22, 07, 42, 33, 04, 38, 30, 50 . . ..
This sequence of numbers forms an approximation to the real root of the
cubic polynomial x3 + 2x2 + 10x − 20 written in sexagesimal (base 60)
notation. Fibonacci gave the numbers 1, 22, 7, 42, 33, 4, 40 where the last
sexagesimal digit is not correct.

Consider the cubic equation

x3 + 2x2 + 10x = 20. (1)

From Cardano’s formula, the only real solution can be found to be

3
√
a+ b− 3

√
a− b− 2

3

where a = 2
√

3930/9 and b = 352/27 [27, p.21].
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In Flos from around 1215 Fibonacci gives the numeric value in sexagesi-
mal representation1 unum et minuta XXII et se cunda VII et tertia XLII
et quarta XXX2 et quinta IIII et sexta XL or in a classical sexagesimal
notation

1◦ 22′ 7′′ 42′′′ 33IV 4V 40V I (2)

or

1 + 22/60 + 7/602+ 42/603 + 33/604 + 4/605 + 40/606 ≈
1.36880810785322371

Fibonacci (or Leonardo of Pisa) was born sometime in the 1170s in
Pisa, and died there sometime after 1240. However, the existence of the
manuscript Flos was not known until Baldassarre Boncompagni pub-
lished, a transcription in the original Latin language, in 1854 [4]. An alge-
braic version, using mathematical notation, was done by Angelo Genoc-
chi in 1855 [13]. Ettore Picutti gave a modern Italian translation with
comments in 1983 [26].
The cubic equation (1) was known at the time of Fibonacci and is found
in the work by Omar Khayyam (1048–1131)3.
Woepcke [41] in 1854 writes that the degree of accuracy of Fibonacci’s ap-
proximate value is very remarkable, and the knowledge of which method(s)
used is of interest for the history of science. There are basically three
types of methods Fibonacci with some certainty can have used. The first
type of methods is secant type methods, the second type is Newton–
Raphson type methods and the third type is based on digit–by–digit
computation.
In a letter to Balthasar Boncompagni, Victor-Amédée Lebesgue (1791-
1875) in 1855 argues that the method used by Fibonacci must have been
a digit–by–digit method (the method of Viète)4. Terquem in 1856 [36]
states that Lebesgue advocates Viète’s method. Genocchi in 1855 deter-
mines one digit at the time in the sexagesimal (base 60) digit. However,
it is done by determining the decimal representation of each sexagesimal
digit which means up to two decimal digits for each sexagesimal digit.
Genocchi concludes that this is too labouriously and suggests that Fi-
bonacci must have used the golden rule of Cardano [13, p.161-168] which
is a secant type method.
Hankel in 1874 [16] discusses a method for solving the cubic equation
Px = x3 +Q where x3∗ is small compared to P/Q which is the case here
where x∗ = sin(1)5. The method is a digit–by–digit method and Hankel

1 In the Latin transcription by Baldassarre Boncompagni [4] from 1854
2 F.Woepcke [41] pointed out that the fourth sexagesimal digit should be XXXIII and

that the copyist has done similar errors in copying the manuscript.
3 A transcription and French translation in 1851 [20, p.78], to English in 1931 [18,

p.110,p.114] and German in 2012 [21, p.155] based on different manuscripts.
4 Extract from the letter in Annanli di scienza matematiche e fisiche compilati da

Barnaba Tortolini, Volume 6, 1855, p.155-160.
5 According to the arabian mathematicians Mīram Čeleb̄ı (1475-1525) who described

several methods for computing sin(1) known in Arabian world at the time of Fi-
bonacci.
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suggests that Fibonacci is using a similar method for (1) [16, p.293]. This
is further explored in Section 2.
Cantor, in his lectures on the history of mathematics from 1892, sug-
gests in addition to a digit–by–digit computation, that Cardano’s golden
method is a likely method to be used [7, p.42–44]. Cardano’s golden
method is a secant type method. In the second edition from 1900 Cantor
also discusses the approach taken by J.P Gram [8, p.46-48] which is a
Newton–Raphson type method.
Zeuthen [44] discusses possible methods Fibonacci may have used known
at the time of Fibonacci and argues that Fibonacci may have used
Newton-Raphson.
Gram [15] shows four iterations with Newton-Raphson in sexagesimal
arithmetic. Gram introduces truncation/rounding in the arithmetic and
shows that this will give exactly Fibonacci’s result 1◦ 22′ 7′′ 42′′′ 33IV 4V 40V I .
The last sexagesimal digit is supposed to be 38V I . The correct solution
continues6

1◦ 22′ 7′′ 42′′′ 33IV 4V 38V I 30V II 50V III 15IX 43X 13XI .

Cassina in 1924 computes 38V I 30V II 50V III 15IX but incorrectly states
the tenth and eleventh sexagesimal digits [9].
Al-Biruni (973 – after 1050) states the equation x3 = 3x + 1 and gives
the solution [37, p.506] and [11, p.150].

1◦ 52′ 45′′ 47′′′ 13IV

The correct solution is 1◦ 52′ 45′′ 47′′′ 12IV 43V 50V I . Al-Biruni result
is an overestimate similar to the overestimate made by Fibonacci in (1).
It might be argued that since 43V > 30V the fourth fractional digit is
correctly rounded. The solution is x∗ = 2 cos(π/9) [3].
David Eugene Smith [33, p.471-472] writes in 1925 and 1958 on Fi-
bonacci’s approximation:

No indication is given of the computational procedure to get
this approximate solution. How this result was obtained no one
knows, but the fact that numerical equations of this kind were
being solved in China at this time, and that intercourse with the
East was possible, leads to the belief that Fibonacci had learned
of the solution in his travels, had contributed what he could to
the theory, and had then given the result as it had come to him.

David Eugene Smith is one of the founders of the fields of mathematics
education and history of mathematics.
Glushkov in 1976 examines all works by Fibonacci and finds seven places
where approximation methods are used [14]. Glushkov argues that Fi-
bonacci has used iterated linear interpolation to compute square and
cube roots in Liber abaci Chapter 14 and suggests that Fibonacci made
use of iterated linear interpolation also for (1). He shows that starting
with the two points 1 and 2 and using 18 iterations and truncation will
give Fibonacci’s numbers (2). More recent interest in trying to explain
the error in Fibonacci’s approximation using two likely algorithms to
solve the problem are in [5, 23] from 2008 and 2009.

6 Sequence A159990 in The On-Line Encyclopedia of Integer Sequences R©(OEIS R©)



4 Trond Steihaug

In Section 2 we first show the state of art of digit–by–digit computation
in the mid–17th century by discussing Newton’s annotation of Vietè’s
book. We demonstrate the computation with sexagesimal arithmetic and
rounding and show that Fibonacci’s number (2) is a very likely result.
Zeuthen [44] argues that with the iterative methods available for Fi-
bonacci, the Newton–Raphson method is very likely. In Section 3 we
discuss some published variations.
Most historians of mathematics argues that iterated linear interpolation
is a plausible method used by Fibonacci to solve (1). This is discussed
in Section 4.
In Section 5 we briefly state two geometric solution techniques known at
the time Fibonacci and show that the two sexagesimal digits may easily
be found from the geometric construction.

2 Digit–by–digit

To illustrate the ideas behind the digit–by-digit computations we choose
an example of depressed cubic polynomials (without the second order
term) from a manuscript by Isaac Newton. In this unpublished note from
1664(?) reproduced in [40, p. 63–71] Newton annotates Viète’s Opera
Mathematica from 1646 using the simplified notation in Oughtred’s Clavis
Mathematicæ from 1648. Newton gives 7 examples computing the root
digit–by–digit. This unpublished note represents the ’state of the art’ in
mid–17th century. The problems are on the form x3+cx = d where c and
d are positive real numbers. Define p(x) = x3 + cx− d. Assume that the
root is on the form x = α2102 +α110 +α0 +α−1/10. A meta description
of the algorithm is:
– Step 1: Determine the first digit α2: Choose the largest 0 < α2 ≤ 9

so that
p(α2102) ≤ 0 and let x1 = α2102.

– Step 2: Determine the second digit α1: Choose the largest 0 ≤ α1 ≤ 9
so that

p(x1 + α110) ≤ 0 and let x2 = x1 + α110.

– Step 3: Determine the digit α0: Choose the largest 0 ≤ α0 ≤ 9 so
that

p(x2 + α0) ≤ 0 and let x3 = x2 + α0.

– Step 4: Determine the first digit in the fractional part α−1: Choose
the largest 0 ≤ α−1 ≤ 9 so that

p(x3 +
α−1

10
) ≤ 0 and let x4 = x3 +

α−1

10
.

The convergence of this technique follows from the observation that this
is a bracketing process where the root will be in an interval on the form
[·, ·) (the right end is open) and the monotonicity of x3 + cx in the
interval. The first interval will be [α2102, (α2 + 1)102), then [α2102 +
α110, α2102 + (α1 + 1)10).
Stevin in 1585 suggests testing 0, 1, 2, 3, . . . to find the largest αi [35].
Vietè in 1600 [39] found an upper bound on αi which would reduce
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the number of tests needed for find the largest αi. In the following few
paragraphs, we show how to get an upper bound on the digits αi.

Consider p(x+h) = 0 for given x > 0 where p(x) < 0 and monotonically
increasing. Then there exists unknown h > 0

p(x+ h) = p(x) + h(3x2 + 3xh+ h2 + c) = 0.

Let h ≥ h ≥ 0 be a lower bound on h, then an upper bound on h will be

h ≤ −p(x)

3x2 + 3xh+ c
= ĥ, (3)

provided c is not too negative, −3x2 − 3xh < c. Let k be the number of
digits in the integer part of the root. To determine digit number j > 1,
αk−j , consider

xj =

k−1∑
i=k−j

10iαi = xj−1 + 10k−jαk−j .

Define hj = 10k−j then from (3)

αk−j10k−j ≤ −p(xj−1)

3x2j−1 + 3xj−1hj + c
(4)

and we have

αk−j ≤
⌊

10j−k −p(xj−1)

3x2j−1 + 3xj−1hj + c

⌋
. (5)

The lower bound on h to determine αk−j is in the case of Viète 10k−j

while Holdred and Horner choose 0.

In Table 1 shows the actual computation of the digits in the solution.
In the table the magnitude of the root, k = 3, and the first digit, 2, are
known. Consider finding root x∗ of x3 + 30x − 14356197. The number

x3 + 30x− 14356197
k = 3 x∗ = 243

j = 2 j = 3

xj−1 200 240

−p(xj−1) 6350197 524997

h 10 1

3x2j−1 + 3xj−1h+ c 126030 173550

ĥ 50.4 3.03

αk−j 4 3

Table 1. Equation x3 + 30x− 14356197 = 0. Number of digits in integral part of the
positive root is k = 3 and the first decimal digit is 2, j = 1 using Viète’s bound h.
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of digits in x∗, if (x∗)
3 >> 30x∗ > 0, will be the number of digits in

3
√

14 356 197 which is 3 and the leading digit will be α2 = 2. To find the
next digit of x∗ use (3) with x = 200 and h = 10. An upper bound of
α1 ≤ b5.04c = 5. However, 5 is too large, p(250) > 0, and the second
digit is found to be 4, p(240) < 0, and x2 = 240.
Newton’s transcripts of Viète’s solution of x3 + 30x = 14356197 is found
in [40, p.66] and reproduced in [43, p.534]. The notebook (MS Add. 4000)
with transcripts is available online7.
Let p(x) = x3 +2x2 +10x−20. Binomial expansion up to the third order
was known at the time of Fibonacci [10, 42] so we may write

p(x+ h) = p(x) + h(3x2 + 4x+ 10) + h2(3x+ 2) + h3 (6)

The function p(x) (for real x) is strictly monotone so if p(x+h) ≤ 0 and
for x ≥ 3/2 and 0 ≤ h ≤ h we have an upper bound on h

h ≤ −p(x)

3x2 + 4x+ 10 + h(3x+ 2) + h2 (7)

This gives rise to four different divisors in (7)

1. Holdred and Horner–Ruffini: 3x2 + 4x+ 10
2. Vietè: 3x2 + 4x+ 10 + h(3x+ 2)
3. Wallis: 3x2 + 4x+ 10 + h(3x+ 2) + h2

4. Hankel: A constant

Note that the first divisor is p′(x), the second is p′(x) + h
2
p′′(x) and the

third is p′(x) + h
2
p′′(x) + h

3!
p′′′(x).

Fibonacci knew that a solution of (1) was between 1 and 2 so the first
sexagesimal digit would be 1(= 1◦). To determine the next sexagesimal
digit, the first in the fractional part, α1, using the first divisor in the list:

α1 ≤
⌊

60
−p(1)

3 · 12 + 4 · 1 + 10

⌋
= 24

using (7) for h = α1/60. However, the largest α1 so that p(1+α1/60) ≤ 0
is 22 so the second sexagesimal digit is 22(= 22′). For the next digit
x2 = 1 + 22/60 and h = α2/602

α2 ≤
⌊

602−p(x2)

p′(x2)

⌋
= 7

and the approximation is 1◦22′ 7′′. Assuming that we have computed
x = 1◦ 22′ 7′′ 42′′′ 33IV 4V and want to compute α6 (let x5 = 1 +
22/60 + 7/602 + 42/603 + 33/604 + 4/605)

a6 ≤
⌊

606−p(x5)

p′(x5)

⌋
= 38.

If we do the computation by hand and using sexagesimal digits a possible
rounding will be

−p(x5) = 13V 32V I ≤ 14V ,

7 https://cudl.lib.cam.ac.uk/view/MS-ADD-04000/1. Checked 01.04.2022.
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and
p′(x5) = 21◦ 5′ 46′′ 6′′′ 5IV 42V 28V I ≥ 21◦.

Then

α6 ≤ 606 14V

21◦
= 40.

This may explain why the last digit in Fibonacci’s approximation is 40.
One might conjecture that Fibonacci just avoided the effort to calculate
the value of p(x5 + k/606)) for k = 38 or 39.
A change of variable x+ 2

3
in (1) gives the depressed cubic equation

x3 +
26

3
x =

704

27
(8)

which is considered by Hankel [16] and Gram [15]. Hankel’s [16] digit-
by-digit computation is probably best explained by defining p(x) = x3 +
cx − d, the form of cubic polynomials Newton is using. Again, if x > 0
and h > 0 then

p(x+ h) = p(x) + h(3x2 + 3xh+ h2 + c) > p(x) + h(3x2 + c)

and if the root is small, we can use the divisor c. Since the value of x in
the digit-by-digit computation is increasing and we know the first digit
(hence x1 is known) the constant divisor can be 3x21 + c and

h ≤ −p(x)

3x21 + c
for x ≥ x1.

For the depressed cubic (8) let pd(x) = x3 + 26
3
x− 704/27, x1 = 2◦ and

3x21 + 8◦ 20′ = 20◦ 20′ > 20◦. The constant used by Vetter to approx-
imate the derivative in Newton-Raphson [38] is 20◦. This simplifies the
computation and assuming the first 5 sexagesimal digits are computed,

x5 = 2◦ 2′ 7′′ 42′′′ 33IV 4V

then

a6 ≤
⌊

606−pd(x5)

20

⌋
= 40.

Again, the approach taken by Hankel to use a constant divisor can ex-
plain that the 6th sexagesimal digit is 40 (and not 38).
One might also conjecture that Fibonacci calculated only p(x5 + k/606)
for k = 36 and k = 40, the less complex cases concerning sexagesimal
fractional arithmetic8? p(xk + 36/606) ≈ −1.113673 10−7 and p(x5 +
40/606) ≈ +6.719323 10−10. The latter result looks precise enough and
can explain and justify Leonardo’s ’rounding’.
Cassina [9] uses Horner-Ruffino’s scheme and digit–by–digit to compute
14 decimal places. However, Cassina incorrectly states the sexagesimal
digits 42X 45XI [9]. The historian of mathematics Roland Calinger con-
jectures that Horner’s method (a digit–by–digit method) was used [6,
p.369] by Fibonacci.

8 Reinhard Zumkeller, May 01 2009 in the web-page of The On-Line Encyclopedia of
Integer Sequences. Sequence A159990
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2.1 Other sources of error in the last digit

When computation became more documented in algebra books like in
the 17th century [39, 17, 24], the new value of the polynomial is shown to
be computed iteratively p(x+ h) = p(x) + (p(x+ h)− p(x)). In general,
the denominator in (5) and the difference p(x+ h)− p(x) and will have
common terms saving some arithmetic operations [34]. Limited accuracy
in p(x) will thus propagate to the next p(x + h). We know from New-
ton’s manuscripts that only the number of digits needed are computed
[43] and the most common way to terminate arithmetic operations is by
truncating. The value of p(x) must be reevaluated close to the end of the
iteration sequence.

3 Newton–Raphson Approaches

Jørgen Pedersen Gram [15, p.18-28] shows that Fibonacci’s result can be
obtained by Newton–Raphson. Gram considers the depressed cubic (8)
in sexagesimal notation

x3 + 8◦40′x = 26◦4′ 26′′ 40′′′.

Starting with x0 = 2◦ and truncate the correction 2′, the first iterate is
x1 = 2◦2′. Truncating the next correction 8′′ and the second iteration is
x2 = 2◦2′ 8′′. Increasing the accuracy in the computation and computing
the third correction −17′′′ 27IV 35V and x3 = 2◦2′ 7′′ 42′′′ 32IV 25V . The
denominator (the derivative) can be replaced by 21◦5′ and the correction
is 39V 40V I . The final approximation is then

x4 − 40′ = 2◦ 2′ 7′′ 42′′′ 33IV 4V 40V I − 40′

= 1◦ 22′ 7′′ 42′′′ 33IV 4V 40V I

which is Fibonacci’s approximation.
Gram shows that it is possible to get Fibonacci’s result by approximating
function and derivative values and truncate the computation.
Vetter [38] in 1928 replaces the denominator in the Newton–Raphson
approach by the constant 20. However, Vetter advocates that the number
of sexagesimal digits should not increase (in the approximate root) with
more than one digit in each iteration. This will reduce the computational
cost of doing calculation by hand. However, more than one sexagesimal
digit can change from one iteration to the next. Figure 1 shows the
sexagesimal digits in the approximation in nine iterations

4 Iterated linear interpolation

Fibonacci was confident in his problem-solving abilities, and Chapter
13 of Liber abaci, titled Here Begins chapter Thirteen on the Method
Elchataym and How with It Nearly All Problems of Mathematics Are
Solved. In this chapter Fibonacci explains the method regulis elchatayn
(after al-khat.ā’ayn) that Fibonacci had learned from Arab sources [31,
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Fig. 1. Sexagesimal computation of the approximation
1◦ 22′ 7′′ 42′′′ 33IV 4V 38V I 33V II of the real root of x3 + 2x2 + 10x − 20 = 0
in [38] using Newton-Raphson with a limit of at most one new digit in each iteration.

29]. The Arabic al-khata’ayn is literally, “the two errors”, which is trans-
lated as the method of Double False Position or Regula Falsi. A compre-
hensive history of the secant method/regula falsi/iterated linear interpo-
lation is found in [25]. If a and b bracket a root of a concave polynomial
p(x) (as is the case of p(x) = x3 + 2x2 + 10x − 20 for a = 1(= x−1)
and b = 2(= x0)) the new value, x1, based on linear interpolation will
be an underestimate of the root. This is repeated, x1 and x0 bracket-
ing the root. Fractional sexagesimal computation using a fixed number
of six digits in the fractional part of the sexagesimal numbers yields an
underestimate of the solution. Using x−1 = 1 and x0 = 2, iterated linear
interpolation (the point 2 will remain fixed) with 6 fractional sexagesi-
mal digits and 14 iterations give 1◦ 22′ 7′′ 42′′′ 33IV 4V 38V I and not
the sexagesimal digit 40V I . The number of iterations corresponds to im-
plementation with 64 bits floating point arithmetic. Based on this slow
convergence Maruszewski claims that it is unlikely that Fibonacci used
iterated linear interpolation and suggests a fixed point iteration [23].

Computer simulation with linear interpolation and sexagesimal compu-
tation using a fixed number of digits in the fractional part of the sexa-
gesimal numbers in the formula for linear interpolation does not support
the use of linear interpolation where the iterates brackets the solution.

However, working with a dynamic number of digits in the fractional part
Glushkov [14] shows using the secant method:

– Step 1 x−1 = 1 < x0 = 2. Computing the new point x1 with one
fractional sexagesimal digit x1 = 1◦ 18′(< x∗)
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– Step 2 x1 < x0. Computing the new point x2 with one fractional
sexagesimal digit x2 = 1◦ 20′(< x∗)

– Step 3 x1 < x2. Computing the new point x3 with one more frac-
tional sexagesimal digit x3 = 1◦ 22′ 58′′(> x∗) (x1 and x2 is not
bracketing the solution)

– Step 4 x2 < x3. Computing the new point x4 with two fractional
sexagesimal digits x4 = 1◦ 21′ 13′′(< x∗)

– Step 5 x4 < x3. Computing the new point x5 with one more frac-
tional sexagesimal digit x5 = 1◦ 22′ 06′′ 32′′′(< x∗)

After 18 iterations Glushkov9 gets Fibonacci’s result (2). In the secant
method we do not restrict the points to bracket the solution. The con-
vergence rate of the secant method is around 1.62 compared to 2 for
the Newton-Raphson method. The rounding performed in Glushkov’s
implementation of the secant method impedes the rate of convergence
compared to Gram’s implementation of the Newton-Raphson method.

The father of the History of Science, George Sarton, claims that Fi-
bonacci must have used Regula Falsi (iterated linear interpolation) [30,
p.611]. Fibonacci demonstrates in Liber abaci the use of linear interpola-
tion on linear problems and Brown [5] concludes in 2008 that Fibonacci is
using iterated linear interpolation also for the nonlinear cubic equation.

5 Geometric solution

Let y = 2
√
10

x
and consider

x2(x2 + (y −
√

10)2 − 4) = (x3 + 2x2 + 10x− 20)(x− 2).

If x is a solution of (1) then (x, y) is the intersection of the circle x2 +
(y −

√
10)2 = 4 and hyperbola xy = 2

√
10. This is shown in Figure 2.

Omar Khayyam (1048–1131) is the first to give a general theory of cubic
equations and the first to geometrically solve every type of cubic equa-
tion for positive roots. Geometric solution of (8) is the intersection of a
parabola and a semicircle shown in Figure 3. For the geometric construc-
tion [20, 18, 2, 1, 22, 28, 21, 19, 32].

The work of Omar Khayyam was definitely known to Fibonacci and the
geometric solution will easily yield the first fractional sexagesimal digit.
This would shorten the computation using the digit–by–digit approach.

6 Concluding remarks

We claim that the algorithm used by Fibonacci most likely is a digit–
by–digit method. The method was well known at the time of Fibonacci,

9 With full accuracy in p(xi) there is a minor error in step 3. Correct values are
x3 = 1◦ 22′ 10, x4 = 1◦ 22′ 7′′, x5 = 1◦ 22′ 7′′ 42′′′, x6 = 1◦ 22′ 7′′ 42′′′ 33IV , and
x7 = 1◦ 22′ 7′′ 42′′′ 33IV 4V 38V I . If two truncated iterates are equal, an additional
digit is added.
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Fig. 2. Hyperbola xy = bc and semicircle (x− c−a
2

)2 + (y− b)2 =
(
a+c
2

)2
where a = 2,

b =
√

10 and c = 2. The intersection is the positive solution of x3 + ax2 + b2x = b2c or
x3 + 2x2 + 10x = 20.

however we do not have any manuscripts giving details of an implemen-
tation of the algorithm. We have also shown that it is possible to get Fi-
bonacci’s result using what today is called the Newton–Raphson method
with suitable truncation or rounding. The binomial theorem was known
at the time of Fibonacci and also the linear approximation/correction.
The Newton-Raphson method was described in the late 17th century
(1685 and 1690), but the linear approximation was used long before. We
have also shown that Fibonacci’s result can be obtained from iterated
linear interpolation. Linear interpolation is described by Fibonacci in
Liber abaci and thus well known. The single argument that Fibonacci
used digit–by–digit is that all arguments are indirect. However, it is the
method with the least number of arithmetic operations.

Plausible other methods exist. Maruszewski suggests a fixed–point iter-
ation based on Heron’s method [23].

In reproducing the method we also need to know the rounding used by
the mathematicians. Reproducing results published in scientific papers
or even textbooks may be a challenging exercise for college students and
teachers. In this paper we find four cited papers addressing Fibonacci’s
solution [5, 23] and Khayyam’s geometric solution of cubic equations [19,
22] suitable for college students.
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0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5
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2.5

3

Fig. 3. Parabola y = 1
b
x2 and semicircle with diameter c, (x− c

2
)2 + y2 =

(
c
2

)2
where

b =
√

26
3

and c = 352
117

. The intersection is the positive solution of x3 + b2x = b2c or

x3 + 26
3
x = 704

27
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1. A. R. Amir-Moèz. Khayyam’s solution of cubic equations. Mathe-
matics Magazine, 35(5):269–271, 1962.

2. A. R. Amir-Moèz. A paper of Omar Khayyam. Scripta Mathematica,
26(5):323–337, 1962.
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