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Abstract. Explainable Artificial Intelligence (XAI) systems have gained
importance with the increasing demand for understanding why and how
an artificial intelligence system makes decisions. Counterfactual expla-
nations, one of the rising trends of XAI, benefit from human counter-
factual thinking mechanisms and aim to follow a similar way of rea-
soning. In this paper, we create an eXplainable Case-Based Reasoning
system using counterfactual samples with a model-agnostic approach.
While CBR methodology allows us to use past experiences to create new
explanations, using counterfactuals helps to increase understandability.
The main idea of this paper is to generate an explanation when necessary.
The proposed method is sample-centric. Thus, an adaptive explanation
area is calculated for each data point in the dataset. We detect if there
is any existing counterfactual of the samples to increase the coverage
of the system, and we create explanation cases from detected sample-
counterfactual pairs. If a query case is in the explanation area, at least
one explanation case will be triggered, and a two-phase explanation will
be created using a text template and a bi-directional bar graph. In this
work, we will show (1) how explanation cases are created, (2) how the
nature of a dataset influences the explanation area, (3) how understand-
able explanations are created, and (4) how the proposed method works
on open datasets.

Keywords: Explainable AI · XCBR · Counterfactual · Model-Agnostic
Explanation Generation

1 Introduction

With the popularization of artificial intelligence (AI), AI models have become
a significant factor in many areas of life, like e-commerce, health, or banking.
It becomes more substantial to understand how and why decisions affect our
lives. For this reason, many studies have been conducted in the literature on
the understandability of models over time [9, 3, 14]. Several studies focused on
interpretable models [20, 4], while others concentrated on explainable models [18,
19, 17], especially in the more recent periods.



2 B. Bayrak and K. Bach

In this paper, we develop an eXplainable-CBR system using a counterfactual
approach and a model-agnostic Case-Based Reasoning (CBR) based methodol-
ogy. The counterfactuals improve comprehension, while the CBR methodology
enables us to draw on the past to develop new explanations. Our primary goal is
to create an explanation when one is required. The proposed method is sample-
centric and therefore an adaptive explanation area is calculated. We detect if
there is any existing counterfactual of the samples to increase the coverage of
the system, and we create explanation cases from detected sample-counterfactual
pairs. In the case where an explanation is required for a classification result a
two-phase explanation will be created using a text template and a bi-directional
bar graph.

Our work will demonstrate how to build explanation cases, show how char-
acteristics of datasets affect the explanation area, describe how to create un-
derstandable explanations, and present how the suggested method performs on
open datasets.

This paper is structured as follows: in Section 2 we provide a background
for paper and discuss relevant work in Section 3. In Section 4 we explain the
processes of the proposed method. Section 5 shows how open datasets perform
with the proposed method, and we discuss significant points. The last section
concludes the paper and gives directions for future works.

2 Background

Interpretability and explainability terms are frequently mentioned and discussed
in the literature [24, 2, 18]. However, the terms are often used interchangeably [2].
Briefly, interpretability is a feature of the model and represents the understand-
ability of the cause-effect relationship for the model. Explainability is an external
feature that is constituted by a process. In contrast to interpretability, parame-
ters such as target audience or disclosure scope are controllable and configurable
in the explainability feature. Earlier, the interpretability was higher due to the
lower complexity of the models used [2]. However, over time, the models devel-
oped and became more complex, and as models have become more complex,
interpretability decreased and opacity increased. Therefore, the interpretability-
performance trade-off discussion started [20, 15, 2].

As black-box models with high opacity are widely used in decision-making
systems in every division in life, explainability becomes a more important con-
cept, and studies on explainability begin to be conducted in the literature. Thus,
the concept of eXplainable Artificial Intelligence (XAI) came into existence, and
nowadays, it is known as a significant sub-topic of AI [5] which arose from in-
terpretable machine learning [27].

In the applications of XAI, creating explanations may hold many different
purposes and ways. Explanation types may be categorized based on many dif-
ferent views, Nunes and Jannach’s paper has one of the broadest views in the
literature [16]. The authors listed 17 different explanation types under four dif-
ferent categories. Also, they pointed out the importance of considering the aim of
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the explanation in the explanation generation process. From another view, which
is similar to the paper of Arrieta et al. [2], ways of creating explanations can
be discussed under two different concepts, model-dependent, and model-agnostic
explanation systems. In the first category, model-dependent explanation systems,
explanation mechanisms are designed depending on a specific model and its ca-
pability; the explanation mechanism can also be performed only on the model.
(e.g. [12, 29, 10]) In the second category, model-agnostic explanation systems,
explanation mechanisms are not designed depending on a specific model and its
capability; the explanation mechanism can perform on any model, notwithstand-
ing the model structure or complexity. (e.g. [17, 6, 7])

Another challenge in the applications of XAI is generating or selecting the
best explanation for a case. While creating explanations, there are many chal-
lenges to overcome. Some of the quality criteria for an explanation can be listed
as follows:

– Trustworthy: Explanation trustworthiness is about how accurately reflected
why the decision was made.

– Understandable: Explanation medium and content should be created ac-
cording to the target audience.

– Informative: Explanations should convey the proper arguments to the tar-
get audience.

– Sufficient: Explanations might not be complete but should be sufficient to
convey the main reasons.

– Unbiased: Explanations should not contain data that is discriminatory,
biased or emphasizing existential characteristics for humans and animals.

Many approaches from different fields meet the quality criteria mentioned above.
One of which is the Case-Based Reasoning (CBR) methodology which is a
problem-solving methodology with high interpretability, which has four differ-
ent steps and benefits from past experiences [1]. In the CBR approach, previous
cases are stored in the case base, and to solve a new problem, the following four
steps are applied:

– Retrieve: Retrieving similar cases to new problems from the case base.
– Reuse: Reuse a solution from retrieved similar cases.
– Revise: Adapt the solution according to the new problem if needed.
– Retain: Retain the new problem and solution (case) to solve upcoming

problems.

Sormø et al. [24] mentioned that CBR concentrates on open-ended, often
changing, uncertain and incomplete problems and underscored that the CBR
approach is flexible and can be applied to a large variety of problems through
its simplified problem-solving strategy.

Characteristics of the problems that CBR focused on are very similar to the
challenges of XAI, so the CBR methodology is often used to create explanations
for AI models; in this way, the concept of eXplainable Case-Based Reasoning
(XCBR) emerged. XCBR is categorized as a sub-field of XAI [22] and gains
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ground in XAI. Since the CBR methodology allows the reuse of experiences to
generate explanations for both model-agnostic and model-dependent explana-
tions in every kind of AI model and application, XCBR systems are flexible,
interpretable, sustainable, and evolved over time. These advantages enable cre-
ating local and understandable explanations, explanation systems adaptable to
data distribution changes, and trustworthy explanations with a small amount of
data.

Counterfactual explanations (CE) have been studied in different papers [8,
11, 28], and it is a rising trend of XAI. A counterfactual explanation provides
a causal situation with a contrastive argument, like “If you were younger than
59 years old, you would get the loan”. CE can be in different formats like text,
image, or graph, but the important thing is to follow the counterfactual thinking
method to increase the understandability. CE are not only for explaining the
decisions of the models but also for providing insights on how to change the
outcome. [28]

3 Related Work

An explanation is a concept dating back to the end of the 1940s [24]. Sormo
et al. [24] give a detailed recap of the explanation concept from the view of
philosophy and cognitive science societies. Using this perspective, the authors
described the transition of explanation concepts, and they discussed explanations
in expert systems and explanations in CBR systems. Furthermore, they clearly
stated common and diverse points of these concepts, challenging points, and
gaps in the fields.

XAI has developed into a popular topic over the past years, and XCBR is also
a pioneer sub-field of XAI that has its roots in the late 1980s with SWALE [21].
Arrieta et al. [2] Schoenborn et al. [22] provide one of the most complete perspec-
tives of concepts, taxonomies, open-ended questions, and challenges, respectively,
in XAI and XCBR fields. While categorizing the studies in the literature, they
both used a very similar approach to our work.

Explanations on Smart Stores paper [9], provides a view on how to apply
XCBR in daily life. The authors proposed an explanation system for un-staffed
smart stores by taking advantage of the CBR methodology. This paper is a
good example of creating understandable explanations with template tables and
representing cases from real-life data for the target audience. The explanation
template is divided into header, body, and footer: these parts are used for pa-
rameters to define the case, text explanation, and similarity score, respectively.

Ribeiro et al. published a paper in 2016 [19], one of the famed XAI studies,
proposed a model-agnostic explanation technique named LIME (Local Inter-
pretable Model-agnostic Explanations) for classifiers. It claims that the LIME
technique is interpretable, faithful, and flexible. This technique derives an ex-
planation for a new case by using random local cases and weighting them by
distance. Afterward, many studies in the literature have been built on this pa-
per. (i.e. [23, 30, 17, 26]) The CBR-LIME work [17] pointed out a problem in
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LIME: the configuration of parameters. The paper proposes a CBR solution
to the problem for an image classifier. In the presented system, the case base
reflects the human perception of the explanation qualities for different LIME
configurations. Using CBR methodology, they use human knowledge to create
more proper explanations.

In XAI applications, the understandability of explanations plays an essential
role in the explanation quality. There shall be various ways to create under-
standable explanations; as an example, in the paper, we discussed above Huer-
tos et al. [9] use a table template. Furthermore, Lamy et al. proposed a visual
explanation system that does not require domain knowledge to understand ex-
planations [13]. They provide a model-agnostic visual explanation system using
the simplicity of CBR methodology; in the explanation part, they show both
quantitative (a radar plot - displays similarity) and qualitative (rainbow boxes
- displays common features) approaches. Another real-life concentrated paper is
about predicting and explaining running-related injuries from Strava 1 marathon
training histories [7]. The paper described the case representation, prediction,
and explanation processes; the explanation creation technique benefits from both
cases and their counterfactual cases. Besides feature analysis and visualizations,
the authors stated that using different types of explanations, like text templates
with statistical information, will increase the understandability of the explana-
tion.

Keane and Smyth published a paper about exploring and generating coun-
terfactuals for explanation systems [11]. According to the authors, a good coun-
terfactual is the nearest unlike neighbor to the case with at most two feature
differences. In the first part, the authors discussed the exploration of good coun-
terfactuals, while in the second part they conducted experiments on 20 differ-
ent UCI datasets, and mentioned that good counterfactuals are not frequently
encountered in datasets. To observe the salience points of the model for expla-
nations, the second part of the paper proposes synthetic counterfactual creation
from existing cases. Although successful inferences are made with the CBR ap-
proach, using created explanations with synthetic data on fields that might affect
humans, animals, and nature may be open to dispute.

4 Development of an XCBR System

The creation of an XCBR system includes many steps; in this part, we describe
our proposed method in the following three subsections. Also, in Section 4.4, we
show the details of how the proposed method works with a dataset.

4.1 When Do We Need Explanation?

In real-life applications, there is usually no need to explain ordinary situations,
but an explanation is needed for an unexpected result or in uncertain situations.

1 https://www.strava.com/
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For example, in a system where obesity diagnosis is made from people’s height,
weight, sex, age, and activity level, if the patient data is not close to obesity,
there is no need to explain. However, if the patient is pretty close to having
obesity, explaining why there is a risk is crucial to avoid obesity and warn the
patient. Therefore, we follow the idea of explaining AI model decisions when
necessary by detecting samples around decision boundaries. When there is a
data distribution, as in Figure 1a, selecting the samples in the explanation area
is fairly easy because the distributions of the classes are separate. An imaginary
decision boundary can be drawn, and uncertain situations exist around this
boundary. However, almost no dataset has such clear decision boundaries.

Fig. 1. (a) Imaginary decision boundary in a two dimensional dataset, (b,c) Sample-
centric pair detection, highlighted areas are detected as explanation area.

One of the critical points in this paper is detecting the explanation area
to decide in which areas samples need explanations. As mentioned above, we
consider uncertain cases to explain. The cases with at least one counterfactual
in a determined distance are identified in the explanation area and added to the
case base as explained in the following section.

4.2 Case Base Elicitation

A primary case base must be provided for a CBR system to solve problems.
The case base elicitation process is adapting and representing existing previous
knowledge as cases. Algorithm-1 shows the flow of case base elicitation process.

In Algorithm-1, the case base elicitation process, X and y are the require-
ments for the first step. X is the list of data points and xi is a data point with
m features.

X = [x1, x2, ..., xn], xi = ⟨f1, f2, ..., fm⟩ where i ≤ n (1)

and y is the list of target values for the data points:

y = [y1, y2, ..., yn], yi ∈ 0, 1 where i ≤ n. (2)
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The pre-processing step applies one-hot encoding for categorical features. Stan-
dard scaling is applied for numerical features of X ensuring unbiased measure-
ments of the distance between cases.

After the pre-processing step, the global variables k and avgr are initialized. k
is the best performing neighbour when training the kNN classifier for the dataset.
The classifier is optimized using the accuracy running a cross-validation using
grid search. Every sample has a r value, where r is the mean distance between
the sample and the k nearest neighbours. avgr is the average of r values of all
samples; therefore, it is named as global r.

To detect explanation areas, a sample-centric approach is used. Namely, a
radius (r) is calculated for a sample and if there is at least one counterfactual
in the sample’s circle, this area will be considered as explanation area. Also,
detected pairs will be added to the case base.

For each sample (s), we calculate r as the mean of the k nearest neighbours
distance to s. k nn is a list of k nearest neighbours of s.

s = ⟨f1, f2, ..., fm, y⟩ (3)

r =

n∑
i=1

dist(s, k nni)

n
(4)

The r value can become large for samples that are outliers. Such outliers
may cause the detection of irrelevant counterfactual samples. To avoid detecting
irrelevant counterfactuals, we update r with avgr if r is larger than avgr.

r ← min(find r(), avgr) (5)

cfs is the list of counterfactual samples that it is empty when the algorithm is
initialized. The counterfactual detection process detects all existing counterfac-
tuals within maximum r distance from s (See Figure 1b,c) and adds them to the
cfs list.

cfsi = ⟨f1, f2, ..., fm,¬ y⟩ where i ∈ 1, 2, ..., n , dist(s, cfsi) < r (6)

Algorithm 1 Case base elicitation

Require: : X, y, cf
1: X = preprocessing(X)
2: k ← find k()
3: avgr ← find avg r()
4: for all s in X do
5: r ← min(find r(), avgr)
6: cfs ← k nearest counterfactual sample
7: Filter(dist(s, cfs) < r)
8: if cfs is not empty then
9: cf [′sample′].append(s)
10: cf [′cf list′].append(cfs)
11: end if
12: end for
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To create explanation cases, explanation pairs can be derived from the sample
and its counterfactuals. An explanation case (expsi) is defined as:

expsi = ⟨s, cfsi⟩ where i ∈ 1, 2, ..., n (7)

All possible pairs are created and used to generate cases. Figure 2 shows the
explanation case format in which s represents aSample and expsi represents one
Counterfactual in an explanation case.

Fig. 2. Case representation

After the explanation cases are created and added to the case base, the
similarity functions are modelled using the method described in Verma et al. [25].
Hereby, our CBR system is ready to create explanations for new cases.

4.3 Generating Explanations

This section describes how the information provided by an explanation case is
used to create an explanation for a user. A new sample (snew) and the prediction
result (snew y) from the black-box model bb model of the sample are needed as
input for the explanation process.

snew = ⟨f1, f2, ..., fn⟩ (8)

snew y = bb model.predict(snew) (9)

In the next step, we retrieve the four most similar explanation cases with a higher
global similarity score than the threshold for which an explanation should be
generated. The threshold is determined according to data distribution. As part
of the explanation method, we show which classes the neighboring cases belong
to and compare those classes with the prediction of the incoming query using
the black-box model. Given the information from the existing and query cases,
we can explore how decisions change depending on the feature values in similar
cases.

Showing the retrieved explanation cases can be enough to explain a new case.
However, one of the most critical requirements of an explanation is understand-
ability. Therefore, we create a two-phase explanation instead of showing the pure
explanation cases. Firstly, a textual explanation that describes how many similar
cases are in the same class and situations in which the prediction result might
change. Secondly, a visual explanation that describes how the counterfactuals’
features differ from the samples’ features using a bi-directional bar graph.
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4.4 Application on Artificially Generated Dataset

We use a generated dataset with two features f1, f2 and 1000 samples (see Fig-
ure 4a) to explain the steps of our proposed method. The generated dataset has
mixed and separated areas, as shown in Figure 3. The distribution allows us to
test the proposed method in different situations.

Fig. 3. Generated two feature dataset

Firstly, we apply all steps described in Section 4.2. For the given 1000 sam-
ples, the best k value is calculated as four, and the explanation area is detected
using the r values. 502 samples were detected in the explanation area, and 8350
explanation pairs were created from those 502 samples. The instances of the
created explanation sample-counterfactual pairs are shown in Figure 4b. After
adding the generated explanation pairs to the CBR system and modeling their
similarities, the CBR system is ready to query new cases and propose explana-
tions. As described in Section 4.3, we need a new sample and its classification
result as input to create an explanation. To test our explanation system, we
trained a Gradient Boosting Classifier, which has accuracy of 0.975.

Fig. 4. (a) Samples of randomly generated dataset (b) Created explanation pairs

As an example, for a query sample s the predicted class is ’1’.

s = {f1 : −2.547, f2 : 1.854, class : 1} (10)
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s queried in the case base and four most similar samples, with at a global simi-
larity of at least 0.6 is retrieved with their counterfactuals (see Figure 5).

Fig. 5. Retrieved four explanation cases for s

To meet the understandable and informative explanation requirement, the
textual explanation template created as follows:

” The prediction result is the same with 4 out of 4 closest samples.
However, the sample is at risk; in similar cases, when the f1 feature
increases by 0.14 and f2 decreases by 0.05, decisions change. ”

This explanation format showed that the black-box classifier made the same
prediction as the closest samples, but it may flip the class with slight differences,
which means the sample is close to a decision boundary. This is an informative
and quantitative way to warn the user about the decision boundaries and risks.

A visual explanation method, which includes qualitative features, is gen-
erated using a bi-directional bar graph to reinforce the textual explanation.
In Figure 6, every bar group implies a counterfactual, and every colour im-
plies a feature. A difference (y-axis) for a counterfactual indicates a deviation
between features. No difference means that the query and the counterfactual
match. Thereby the audience can easily understand which features can affect
the classification results.

Fig. 6. Visual explanation of s
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Figure 6 shows that f1 is more dominant than f2 in terms of changing
classification result for s. Also, while increasing f1 and decreasing f2 the decision
of the classifier can be changed.

5 Discussion

We proposed a model-agnostic XCBR system to explain the decisions of black-
box models. The proposed system uses sample-counterfactual pairs to create
a two-phase explanation, textual and visual. As mentioned in Section 1, ex-
planations must be created for the target audience and should be trustworthy,
understandable, informative, sufficient, and unbiased. In this paper, the textual
explanation provides a quantitative approach, while the visual explanation pro-
vides a qualitative approach. Therefore, generated explanations appeal to the
audience from all aspects, whether the audience is a domain expert or has no
idea about the domain. Also, the proposed method can be applied to every
domain.

Detection of the sample-counterfactual (explanation) pairs complies with the
dataset distribution. For example, in Algerian Forest Fires dataset (Figure 8a,
Table 1), there are 243 samples and k value calculated as 3. 137 pieces of samples
selected for creating the explanation pairs. The number of the explanation pairs
is 141. Meanwhile, in Cesarean dataset (Figure 7a, Table 1), from 80 samples
39 samples selected for creating the explanation pairs and 41 explanation cases
generated.

Table 1. Information about datasets

# samples # features k
# samples has
explanation

# exp. pairs

Cesarean 2 80 5 2 29 41
Algerian Forest Fires 3 243 11 3 137 141

In visual explanations, a color dominance based approach is used. The pro-
portion of the colors implies the features’ importance to flip classes. For instance,
in Figure 7b, only blue color exists, and blue implies ’age’ feature. There are no
other differences between samples and counterfactuals. It means, for queried
sample, ’age’ is the most crucial feature to flip the decision.

In some cases, overlapping points can exist and have different labels. These
points will be detected as explanation pairs, and when the visual explanations
are created, there will not be any bars because there is no difference between
a sample and a counterfactual. A prominent example of this can be shown in
Figure 8b, CF − 2 and CF − 4 are empty; to increase understandability, the

2 https://archive.ics.uci.edu/ml/datasets/Caesarian+Section+Classification+Dataset
3 https://archive.ics.uci.edu/ml/datasets/Algerian+Forest+Fires+Dataset++
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audience should be informed. Using textual and visual explanations together
helps in this situation.

Diversity is an essential requirement while detecting counterfactuals. The
proposed method considers diverse sample-counterfactual pairs. As evidence of
meeting the diversity requirement, in Figure 8b, CF − 1 and CF − 3 have the
same distance values from the sample. However, the difference vectors are not
the same because of counterfactuals located at different points, and our pair
detection method detected both.

Fig. 7. (a) Distribution of Cesarean dataset in two dimension (PCA), (b) Visual
explanation of a sample from Cesarean dataset

Fig. 8. (a) Distribution of Algerian Forest Fires dataset in two dimension (PCA), (b)
Visual explanation of a sample from Algerian Forest Fires dataset

This research, however, is subject to several limitations. One of these limi-
tations is the shortcomings introduced by the kNN algorithm. The problem of
sensitivity to dataset scale and irrelevant features has been partially overcome by
establishing a dynamic structure. Nevertheless, the shortcoming of dependence
on data quality is open to improvement. Also, the proposed approach is applied
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to binary-classification models on tabular data. However, there is room to im-
prove and generalize the presented method for future work, making it applicable
to different data types and tasks.

6 Conclusion

This paper aimed to create a model-agnostic XCBR system and present quali-
tative and quantitative explanations when necessary. We proposed methods for
creating explanation cases from counterfactuals that benefit from the human
counterfactual reasoning mechanism and presenting explanations in qualitative
and quantitative ways using text templates and bi-directional bar graphs. We
showed that the explanation system can be applied to various datasets and mod-
els through the interpretability and flexibility of the methods. We also discussed
how the nature of a dataset influences the explanation area and how the proposed
method works on open datasets.
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