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Aerosols are the main components of air pollutants, which are closely related to
haze, dust storm and air pollution. In this study, an aerosol data assimilation system
was developed using Gridpoint Statistical Interpolation (GSI) system to assimilate
the Aerosol Optical Depth (AOD) observations from FY4 and Himawari-8 for the
first time and applied in the heavy dust case over east Asia in March 2018. Three
parallel experiments assimilated AOD from FY4, Himawari-8 and both the FY4 and
Himawari-8 respectively and a control experiment which did not employ DA were
performed. The hourly aerosol analyses and forecasts are compared with the
assimilated FY-4 AOD, Himawari-8 AOD and independent AOD from Aerosol
Robotic Network (AERONET). The results showed that all forms of DA experiments
improved a low Bias and the RMSE reduced about 20%. The aerosol data
assimilation with observations from both the FY-4 and Himawari-8 satellites
substantially improved aerosol analyses and subsequent forecasts with more
abundant aerosol observation information, especially over the northwest of
China. This study indicates that the new generation geostationary
meteorological satellites have potential to dramatically contribute to air quality
forecasting.
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1 Introduction

With rapid economic growth and accelerated urbanization, subsequent air pollution is
becoming increasingly serious (Zhao et al., 2020). Aerosols are the main components of air
pollutants, are closely related to haze, dust storms, and air pollution, and are present in very
small amounts in the composition of the earth’s atmosphere. However, atmospheric aerosols
have a direct impact on climate, including the energy budget of atmospheric radiation,
changes in the microscopic and macroscopic characteristics of clouds, and indirect effects of
atmospheric chemical processes (Hansen et al., 1997; Koren et al., 2004; Rosenfeld et al.,
2008; Wilcox, 2012). Not only can they worsen air quality and reduce visibility, but they can
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also have an impact on human health, the environment, and climate
change (Tie et al., 2009; Chen et al., 2017; Sicard et al., 2017; Liu
et al., 2018; Zhao et al., 2018).

With continuous progress in satellite detection technology,
satellite remote sensing can play a vital role in the study of
atmospheric aerosols. Satellite observation can partly make up
for the deficiency of conventional observation. Many studies have
found that data assimilation can improve the level of model
prediction (e.g., Zhang and Reid, 2006; Shen et al., 2022; Xu
et al., 2022). Meteorological satellites are usually classified as
geostationary (in geosynchronous orbit) or polar-orbiting (in
sun-synchronous orbit) according to their orbits (Zou et al.,
2011; Xu et al., 2013; Yang et al., 2017; Wang et al., 2020).
Polar orbit meteorological satellites orbit the earth’s polar
regions at an altitude of about 1,000 km. They are low-orbit
satellites with an operating period of approximately 115 min.
Polar-orbit satellites can monitor the global atmosphere and
provide high-resolution products. However, they can only
observe the same area twice a day and thus may miss rapidly
developing dust storms. Conversely, geostationary satellites are
high-orbit satellites, with an operational height of at least
35,786 km. Geostationary satellites have a large monitoring
range and high temporal resolution, which are necessary for
monitoring the development of rapidly evolving weather
systems (Stengel et al., 2009; Yumimoto, 2013; Shen and Min,
2015; Li and Zou, 2017; Yang et al., 2017; Xia et al., 2019a). Many
studies have found that meteorological data from geostationary
satellites play an increasingly significant role in many weather
applications, including monitoring heavy rain, severe weather,
typhoons, and air pollution as a result of the high temporal
resolution (Stuhlmann et al., 2005; Schmit et al., 2008; Yu et al.,
2009; Goodman et al., 2012; Greenwald et al., 2016; Min et al.,
2017).

In recent years, geostationary satellite data have been
increasingly applied to air pollution and have had a positive
influence on aerosol prediction. Yumimoto et al. (2016), Dai
et al. (2019), and Xia et al. (2019b) presented data assimilation
experiments, including aerosol optical depth (AOD), from the
Himawari-8 satellite. Their results showed that data assimilation
with rapid-update Himawari-8 observations improves aerosol
analyses better than polar satellite observations. Niu et al. (2008)
used the three-dimensional variational method (3DVAR) to
assimilate the dust retrieval from the Fengyun-2 satellite (FY-2C).
The results found that the dust aerosol data assimilation system
could effectively improve the short-term prediction of dust weather.
Wang et al. (2004) and Lee et al. (2016) employed AOD from the
Goddard Earth Observing System-8 (GEOS-8) and the
Geostationary Ocean Color Imager (GOCI) into a data
assimilation (DA) system to evaluate efficiency, obtaining some
significantly positive results.

The Fengyun-4 satellite (FY-4), which was successfully launched
on 11 December 2016, is a new generation of geostationary orbit
meteorological satellites for quantitative application to China. FY-4
is the realization of the upgrading and technological leap forward of
China’s geostationary orbit (GEO) meteorological satellites, with an
overall performance reaching an internationally advanced level. FY-
4 carries an advanced geosynchronous radiation imager (AGRI), a
geostationary interferometric infrared sounder (GIIRS), and a

lightning mapping imager (LMI) that can provide full-disk
images for 14 spectral bands, with a temporal resolution of 15-
min intervals and a spatial resolution of 0.5–4.0 km (Zhang et al.,
2015; Min et al., 2017; Wang et al., 2019). The Japanese Himawari-8,
a next-generation GEO satellite, was successfully launched in
October 2014. In comparison with conventional geostationary
satellites, the advanced Himawari imager (AHI) carried by
Himawari-8 can provide more frequent observations and more
aerosol-detectable channels (Bessho et al., 2016; Zhuge et al.,
2017; Wang et al., 2018). Both FY-4 and the Himawari-8 belong
to a new generation of advanced meteorological weather satellites.
The effect of the Himawari-8 aerosol data assimilation system has
been reported as mentioned previously. However, in regions such as
northwest China, where Himawari-8 has little data coverage, it is
necessary to assimilate both FY-4 and Himawari-8 aerosol data and
conduct full research and analysis to improve the capability of air
quality prediction.

In this study, we constructed a rapid-update aerosol data
assimilation system to assimilate both FY-4 and Himawari-8
aerosol observations. This study is the first attempt to assimilate
both these satellites’ aerosol observations using Gridpoint Statistical
Interpolation (GSI).

This study used the three-dimensional variational method
(3DVAR) within a GSI system as a follow-up to the work of Liu
et al. (2011), who assimilated the MODIS AOD observations with
the GSI system; the impact of MODIS AOD data assimilation was
demonstrated by its application to a dust storm of 17–24 March
2010 over East Asia. Yumimoto et al. (2016) showed the first
application of AOD derived from Himawari-8 data to aerosol
data assimilation that targeted transboundary pollutants and
dust outflows over East Asia over 14–17 April 2011. Wang
et al. (2012) presented a new method for the combined use of
satellite-measured radiances and inverse modeling to spatially
constrain the amount and location of dust emissions. The
technique was illustrated by a case study in May 2008. As
shown in the work of Peng et al. (2018), an ensemble Kalman
filter data assimilation (DA) system was developed to improve air
quality forecasts. This DA system was applied to simultaneously
adjust the chemical initial conditions (ICs) during an extreme
haze episode that occurred in early October 2014 over East Asia.
Their results showed the positive impact of their assimilation
approach on air quality prediction through its application to one
dust event. In this study, the added value of assimilating AHI and
AGRI aerosol data was applied to a severe dust case over East Asia
in March 2018 to assess the effectiveness of analysis and
prediction.

The remaining sections of this article are arranged as follows.
The AOD data used in this study are introduced in the following
section. Section 3 presents the dust storm case, the details of the
aerosol DA system, the experimental design, and the background
error covariance. The results are discussed in Section 4. The
summary and discussion are given in Section 5.

2 Observation data

FY-4 was successfully launched on 11 December 2016 by the
Satellite Meteorological Center of China Meteorological Agency.
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FY-4 has realized the upgrading and technological leap forward
of China’s GEO meteorological satellites. It can provide
geostationary images over a large area from 24.1°E to 174.7°W
between 80.6°N and 80.6°S. FY-4 is equipped with four optical
instruments: an advanced geosynchronous radiation imager
(AGRI), a geostationary interferometric infrared sounder
(GIIRS), a lightning mapping imager (LMI), and a Solar
X-EUV Imaging Telescope (SXEIT). The highly improved
AGRI onboard FY-4 has 14 spectral bands from visible to
infrared and provides full-disk images with a temporal
resolution of 15-min intervals and spatial resolutions of 1 km
for nadir channels, 2 km for near-infrared channels, and 4 km for
the rest of the infrared channels (Zhang et al., 2015; Min et al.,
2017; Yang et al., 2017).

In this study, AOD observations from FY-4 were selected for
the newly developed data assimilation system. The FY-4 AOD
products are provided by the National Satellite Meteorological
Center with 4 km resolution and were then refined to the same
resolution as the initial grid of the model—25km. The total
observation error for AOD was suggested by Zhang et al.
(2008), in which observation errors were estimated to be the
retrieval uncertainty attached to the FY-4A AOD products plus
a standard deviation calculated as the representative error in the
re-gridding. The assimilation time window is 1 h, and all the
observation data in the assimilation time window are included
in the assimilation system. Furthermore, only FY-4 AOD marked
as the best quality control flag with values less than 2.5 could be
assimilated, as suggested by Saide et al. (2014).

The latest version of the Himawari-8 AOD (Kikuchi et al., 2018;
Yoshida, et al., 2018; Dai et al., 2019) was used for comparison in this
study; it can be downloaded free from the internet (http://www.eorc.
jaxa.jp/ptree/index.html) and was then processed to the same
resolution as our model. Furthermore, the AErosol RObotic
NETwork (AERONET) AOD observations were used for the
validation; these are freely available at the website (http://aeronet.

gsfc.nasa.gov/) (Holben et al., 1998). The locations of AERONET
sites employed in this study are presented in Figure 1.

3 Aerosol data assimilation system and
experimental setup

3.1 The severe dust storm case

A dust storm affecting most regions of East Asia during
26–30 March 2018 was selected for this study. On 26 March
2018, a severe dust storm arrived in northeast Asia, with sand-
blowing and flowing-dust weather appearing in central and eastern
Inner Mongolia, northern Shanxi, central and northern Hebei,
Beijing, Tianjin, and northeast China. The dust storm covered
large regions, appeared in a concentrated time, and caused
serious air pollution—visibility in the Beijing area was less than
400 m, accompanied by strong winds.

3.2 Aerosol data assimilation system

NCEP’s Gridpoint Statistical Interpolation (GSI) 3DVAR DA
system—explained by Wu et al. (2002) and Kleist et al. (2009)—was
expanded to assimilate FY-4A and Himawari-8 aerosol
observations. The AOD observation operator was described by
Liu et al. (2011). In this study, we added a new interface for the
AOD observations from FY-4A and Himawari-8 to the GSI system
as a follow-up to Liu et al. (2011) and Schwartz et al. (2012).
Generally, the 3DVAR algorithm obtains an optimal analysis
field by minimizing the deviation between the background and
the observations. It constantly adjusts the weight ratio between the
background and the observation by minimizing the given cost
function so that the analysis field reaches optimal fit. The
3DVAR method is a problem of minimizing the cost function,

FIGURE 1
Experimental domain. Blue labeling indicates the locations of six AERONET sites used in this study.
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and expression of the 3DVAR cost function J(x) could be expressed
as follows (Lorenc, 1986; Ide et al., 1997; Chin, et al., 2000; Lorenc
et al., 2000):

J(x) � 1
2
(x − xb)TB−1(x − xb) + 1

2
y −H x( )[ ]

TR−1 y −H x( )[ ],

(1)
where x represents the n-dimensional analysis vector to minimize
the cost function J(x), H is the m-dimensional observation
operation, xb denotes the n-dimensional background variable
vector, B is the background error covariance matrix of
dimensions n × n, and R denotes the observation error
covariance matrix of dimensions m × m.

In this study, the WRF-Chem model was selected for aerosol
transport prediction. The gaseous chemical mechanismwas produced
by the Goddard Chemistry Aerosol Radiation and Transport
(GOCART) aerosol scheme (Ginoux et al., 2001; Chin et al., 2002),
which simulated 14 aerosol types, including sulfate, dust, organic
carbon (OC) hydrophobic and hydrophilic, black carbon (BC), and
sea salt. The static background error covariance (BEC) matrix of
aerosol variables is constructed by using the National Meteorological
Center (NMC) method (Parrish and Derber, 2002). At present, this
method is widely used for statistical analysis of model background
error covariance. We took the differences of 24 and 12 h WRF-Chem
forecasts of the aerosol species valid at the common time for 62 pairs
valid from 25 February to 25 March 2018.

FIGURE 2
Time series of (A) bias in the FY DA system; (B) RMSE in the FY DA system; (C) bias in the Hima DA system; (D) RMSE in the Hima DA system; (E) bias in
the FY + Hima DA system; (F) RMSE in the FY + Hima DA system during the period 26–30 March 2018.
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3.3 Model and experimental design

In this study, the WRF-Chem model was selected for aerosol
transport prediction over the domain spanning east Asia (Figure 1)
with a 25-km horizontal grid spacing. There were 250 × 160 grid
points and 40 vertical levels. The top pressure was 50 hPa. The
physical parameterizations were concluded in this study: the rapid
radiative transfer model longwave radiation scheme (Mlawer et al.,
1997), the Dudhia shortwave radiation scheme (Dudhia, 1989), the
Mellor–Yamada–Janjic (MYJ) boundary layer scheme, the Noah
land surface model, and the Yonsei University (YSU) planetary
boundary layer scheme (Hong and Lim, 2006).

The data assimilation system to assimilate the FY-4A and
Himawari-8 aerosol observations was constructed within the GSI.

We designed four parallel experiments to assess the performance of
the newly developed data assimilation system for this severe dust
storm case of 26–30 March 2018 over East Asia. The WRF-Chem
settings and physical parameterizations were uniform in all
experiments and were the same as those introduced in the
previous section. One experiment (CNT) did not employ any DA,
while AOD DA was performed in the other three experiments. The
other three experiments were all performed based on theGSI using the
3DVAR DA system, but they assimilated different satellite AOD
observations: one assimilating FY-4A AOD (FY DA), another
assimilating Himawari-8 AOD (Hima DA), and the last
assimilating both FY-4A and Himawari-8 AOD (FY + Hima DA).
As in Houtekamer et al. (2005), Pagowski et al. (2010), Schwartz et al.
(2012), and Pang et al. (2018), the first 5 days’ aerosol forecast was

TABLE 1 Statistical analysis of the simulated and observed AOD in experiments 26 March 2018.

Date FY DA Hima DA FY+Hima DA

Bb Ba Rb Ra Bb Ba Rb Ra Bb Ba Rb Ra

032,601 −0.426 −0.409 0.562 0.503 −0.453 −0.429 0.564 0.535 −0.456 −0.413 0.576 0.538

032,602 −0.482 −0.443 0.579 0.539 −0.462 −0.403 0.573 0.545 −0.459 −0.418 0.541 0.503

032,603 −0.531 −0.495 0.581 0.537 −0.480 −0.421 0.578 0.549 −0.533 −0.509 0.546 0.504

032,604 −0.466 −0.514 0.532 0.572 −0.558 −0.526 0.580 0.546 −0.566 −0.517 0.512 0.471

032,605 −0.395 −0.421 0.538 0.581 −0.465 −0.403 0.562 0.538 −0.477 −0.409 0.548 0.502

032,606 −0.404 −0.507 0.546 0.588 −0.463 −0.421 0.561 0.536 −0.520 −0.471 0.540 0.501

032,607 −0.365 −0.403 0.554 0.604 −0.402 −0.382 0.593 0.559 −0.406 −0.367 0.578 0.537

032,608 −0.379 −0.423 0.531 0.582 −0.403 −0.397 0.592 0.554 −0.455 −0.418 0.572 0.554

032,609 −0.396 −0.451 0.527 0.553 −0.463 −0.421 0.578 0.541 −0.452 −0.411 0.548 0.501

032,610 −0.407 −0.471 0.509 0.546 −0.402 −0.382 0.543 0.514 −0.401 −0.361 0.523 0.497

032,611 −0.392 −0.447 0.482 0.516 −0.411 −0.398 0.535 0.508 −0.424 −0.381 0.531 0.502

TABLE 2 Statistical analysis of simulated and observed AOD in experiments 27 March 2018.

Date FY DA Hima DA FY+Hima DA

Bb Ba Rb Ra Bb Ba Rb Ra Bb Ba Rb Ra

032,701 −0.481 −0.416 0.552 0.521 −0.471 −0.419 0.569 0.525 −0.454 −0.419 0.539 0.505

032,702 −0.497 −0.432 0.537 0.504 −0.411 −0.373 0.531 0.509 −0.404 −0.366 0.537 0.494

032,703 −0.508 −0.455 0.549 0.519 −0.433 −0.397 0.556 0.526 −0.446 −0.401 0.535 0.506

032,704 −0.529 −0.480 0.553 0.523 −0.585 −0.534 0.569 0.528 −0.553 −0.519 0.562 0.518

032,705 −0.488 −0.443 0.557 0.526 −0.533 −0.518 0.563 0.548 −0.539 −0.495 0.528 0.495

032,706 −0.479 −0.428 0.522 0.519 −0.489 −0.421 0.521 0.502 −0.468 −0.417 0.523 0.506

032,707 −0.448 −0.393 0.581 0.566 −0.464 −0.426 0.548 0.521 −0.452 −0.416 0.554 0.511

032,708 −0.477 −0.412 0.563 0.552 −0.442 −0.418 0.563 0.523 −0.457 −0.414 0.548 0.512

032,709 −0.481 −0.443 0.557 0.541 −0.493 −0.448 0.569 0.538 −0.489 −0.442 0.563 0.523

032,710 −0.514 −0.474 0.558 0.545 −0.523 −0.476 0.546 0.515 −0.388 −0.359 0.526 0.507

032,711 −0.446 −0.483 0.539 0.532 −0.506 −0.461 0.528 0.506 −0.455 −0.369 0.541 0.493
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used for spin-up, and then, the four experiments began with the same
initial fields. In each experiment, a new aerosol forecast simulated by
WRF-Chemwas initialized at 1-h intervals from 00UTC on 26March
to 12 UTC on 30 March 2018. For every initialization, the
meteorological fields were updated by inserting the final reanalysis
data (FNL) analysis into the research domain as a background in all
experiments. For the three experiments that employed DA, the
observations within each assimilation time window (±0.5) were
assimilated. The 1-h prediction initiated by the previous periodic
analysis was the background, and the analysis results were then
updated hourly. Note that Himawari-8 AODs were only present
during the daytime, for 11–12 h data available in East Asia
(Yumimoto et al., 2016); therefore, the DA experiments only
cycled during daylight hours when the aerosol data were available.

4 Results

In this section, the evaluations of aerosol analysis and prediction
of all four experiments by comparing to AOD observations from FY-
4, Himawari-8, and independent AERONET are presented.

4.1 Comparison to Himawari AOD and FY-
4 AOD

The root-mean-square error (RMSE) and mean bias, as
statistical indicators which were calculated from models and
observations, were used to evaluate the effectiveness of the
assimilation systems. Figure 2 presents the distribution of bias

TABLE 3 Statistical analysis of simulated and observed AOD in experiments 28 March 2018.

Date FY DA Hima DA FY+Hima DA

Bb Ba Rb Ra Bb Ba Rb Ra Bb Ba Rb Ra

032,801 −0.392 −0.347 0.518 0.500 −0.395 −0.376 0.522 0.503 −0.402 −0.364 0.517 0.504

032,802 −0.496 −0.409 0.569 0.561 −0.467 −0.417 0.577 0.551 −0.393 −0.353 0.539 0.523

032,803 −0.491 −0.444 0.527 0.514 −0.492 −0.432 0.528 0.503 −0.434 −0.395 0.525 0.502

032,804 −0.503 −0.447 0.544 0.537 −0.505 −0.461 0.546 0.539 −0.506 −0.469 0.534 0.528

032,805 −0.442 −0.396 0.528 0.503 −0.436 −0.409 0.528 0.506 −0.439 −0.406 0.534 0.505

032,806 −0.451 −0.395 0.521 0.513 −0.431 −0.408 0.523 0.509 −0.432 −0.407 0.523 0.505

032,807 −0.462 −0.404 0.515 0.494 −0.467 −0.436 0.515 0.497 −0.466 −0.422 0.507 0.489

032,808 −0.503 −0.471 0.552 0.539 −0.527 −0.556 0.539 0.523 −0.542 −0.509 0.532 0.508

032,809 −0.472 −0.439 0.538 0.509 −0.466 −0.509 0.532 0.503 −0.463 −0.421 0.519 0.502

032,810 −0.494 −0.462 0.516 0.496 −0.472 −0.509 0.518 0.474 −0.455 −0.417 0.503 0.466

032,811 −0.435 −0.382 0.536 0.524 −0.403 −0.431 0.542 0.516 −0.419 −0.399 0.525 0.489

TABLE 4 Statistical analysis of simulated and observed AOD in experiments 29 March 2018.

Date FY DA Hima DA FY+Hima DA

Bb Ba Rb Ra Bb Ba Rb Ra Bb Ba Rb Ra

032,901 −0.362 −0.309 0.462 0.457 −0.348 −0.314 0.488 0.476 −0.334 −0.306 0.491 0.473

032,902 −0.465 −0.402 0.517 0.508 −0.392 −0.37 0.482 0.471 −0.422 −0.385 0.497 0.479

032,903 −0.463 −0.434 0.520 0.505 −0.452 −0.41 0.533 0.512 −0.455 −0.419 0.516 0.508

032,904 −0.453 −0.424 0.559 0.521 −0.493 −0.439 0.540 0.531 −0.471 −0.426 0.541 0.526

032,905 −0.435 −0.386 0.496 0.477 −0.484 −0.451 0.504 0.486 −0.488 −0.448 0.498 0.475

032,906 −0.477 −0.424 0.535 0.512 −0.474 −0.424 0.547 0.542 −0.477 −0.432 0.547 0.536

032,907 −0.462 −0.417 0.557 0.521 −0.458 −0.418 0.558 0.526 −0.463 −0.423 0.554 0.513

032,908 −0.523 −0.481 0.535 0.519 −0.511 −0.471 0.537 0.483 −0.501 −0.469 0.538 0.493

032,909 −0.515 −0.476 0.499 0.486 −0.537 −0.494 0.507 0.482 −0.522 −0.483 0.493 0.481

032,910 −0.496 −0.436 0.541 0.502 −0.499 −0.443 0.522 0.504 −0.469 −0.437 0.522 0.503

032,911 −0.464 −0.407 0.504 0.482 −0.471 −0.421 0.508 0.497 −0.453 −0.419 0.502 0.487
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(Figures 2A, C, E) and RMSE (Figures 2B, D, E) of the simulation of
AOD compared to the satellite observations in the FY (Figures 2A,
B), Hima (Figures 2C, D), and FY + Hima DA systems (Figures 2E,
F) over 26–30 March 2018. These statistics were employed to
evaluate the effectiveness of the newly developed aerosol DA
system. The X-axis represents the month and day in March 2018,
and the Y-axis represents the value of averaged bias and RMSE. We

also display the statistical analysis of the comparisons between
simulation and observation AOD in the four experiments over
26–30 March 2018 in Tables 1, 2, 3, 4, and 5.

Figure 2 and Tables 1–5 show the results from the four
simulations performed. In general, after assimilating AOD, the
analysis results are more consistent with the observed AOD than
the background; the DA system has good calibration of aerosol

TABLE 5 Statistical analysis of simulated and observed AOD in experiments 30 March 2018.

Date FY DA Hima DA FY+Hima DA

Bb Ba Rb Ra Bb Ba Rb Ra Bb Ba Rb Ra

033,001 −0.397 −0.33 0.506 0.461 −0.376 −0.348 0.497 0.465 −0.411 −0.375 0.496 0.472

033,002 −0.475 −0.423 0.547 0.526 −0.407 −0.388 0.546 0.527 −0.447 −0.402 0.568 0.542

033,003 −0.53 −0.482 0.532 0.524 −0.458 −0.415 0.535 0.511 −0.488 −0.440 0.537 0.504

033,004 −0.568 −0.522 0.491 0.471 −0.511 −0.488 0.528 0.477 −0.593 −0.554 0.519 0.481

033,005 −0.482 −0.430 0.490 0.463 −0.503 −0.445 0.509 0.473 −0.488 −0.442 0.502 0.479

033,006 −0.477 −0.423 0.533 0.525 −0.491 −0.438 0.561 0.531 −0.461 −0.425 0.556 0.526

033,007 −0.479 −0.423 0.506 0.521 −0.480 −0.426 0.535 0.515 −0.459 −0.418 0.537 0.518

033,008 −0.537 −0.493 0.552 0.537 −0.562 −0.514 0.563 0.543 −0.538 −0.506 0.559 0.524

033,009 −0.571 −0.532 0.505 0.482 −0.618 −0.568 0.511 0.494 −0.586 −0.549 0.508 0.476

033,010 −0.565 −0.524 0.494 0.471 −0.596 −0.527 0.482 0.462 −0.511 −0.461 0.499 0.458

033,011 −0.548 −0.503 0.516 0.503 −0.581 −0.511 0.496 0.482 −0.535 −0.499 0.502 0.461

Note. Bb and Ba denote the mean bias before and after assimilation, respectively. Rb and Ra denote RMSE, before and after assimilation for the experiments.

FIGURE 3
(A)Observations of 1-h DAwindows from FY4; (B) distributions of simulated AOD based on DA background fields; (C) analysis fields; (D) 1-h forecast
fields for the FY DA system, valid at 0600 UTC 26 March 2018.
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simulation, with the bias and RMSE reduced by about 20% in all
three DA experiments (Hong and Lim, 2006). The CNT experiment
did not perform very well, and the AOD was underpredicted (biases

of −0.4 to −0.6). After AODDA, the model low bias and RMSE were
dramatically reduced to near −0.1 and 0.2, respectively, indicating
that the assimilation of the AOD observations is beneficial for

FIGURE 4
(A)Observations of 1-h DA windows from Himawari-8; (B) distributions of simulated AOD based on DA background fields; (C) analysis fields; (D) the
1-h forecast fields for the Hima DA system, valid at 0600 UTC 26 March 2018.

FIGURE 5
(A)Observations of 1-h DA windows; (B) distributions of simulated AOD based on DA background fields; (C) analysis fields; (D) 1-h forecast fields for
the FY+Hima DA system, valid at 0600 UTC 26 March 2018.
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adjusting the background field. It is interesting that the assimilation
employing both FY-4 and Himawari-8 reduced more than the other
three DA experiments. This may mainly be because more abundant
observation information on the dust storm was involved, so the
assimilation analysis field was better adjusted to the background
field.

The analysis and forecast impacts were then separately
compared with the assimilated FY-4 and Himawari-8 AODs,
which can directly show the effects of different satellite aerosol
data assimilation on model simulation results (Benedetti et al.,
2009). In the FY4 DA experiment (Figure 3), the CNT
experiment (Figure 3C) failed to simulate the pollution, whereas
the DA analysis field successfully presented the pollution over
southern China (Figure 3B); however, very few adjustments were
provided around Beijing and northeast China—particularly due to a

lack of observations. The CNT experiment captured the main
features of the dust storm in southeastern China, but the value
was greatly underestimated, and then, the DA analysis reduced the
underestimation of the aerosol loadings. The results in AOD derived
from the Himawari-8 data assimilation system are displayed in
Figure 4. Like Figure 3, Himawari-8 AOD data assimilation
improved the low bias, and the analysis field was more consistent
with the observed AOD distribution than the background field,
which also verified the assimilation impact. Furthermore, the
analysis fields presented a more abundant dust storm over Inner
Mongolia and northeast China. However, little dust information was
provided for northwest China due to a lack of observation data. The
AOD derived from FY-4 and Himawari-8 were then included in the
last aerosol data assimilation. As shown in Figure 5, the simulation
of the dust storm in the CNT experiment was inadequate and the

FIGURE 6
Comparisons between AERONET retrievals andmodeled results in the four experiments 26–30March 2018 at the AERONET sites of (A) Anmyon, (B)
Beijing, (C) Hong_Kong, (D) Kanpur, (E) Thimphu, (F) Xuzhou, and (G) Xitun.
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DA simulation improved the AOD values, which were much closer
to the satellite observations. The analysis field contained many
details of the dust storm system, and the addition of observation
data strengthened the distribution of large AOD values in Beijing,
Inner Mongolia, and the northeast China region, and especially in
northwest China, can make up for the underestimation of CNT.

In general, the results suggest that the newly rapid-update
aerosol data assimilation system which assimilates both the FY-4
and Himawari-8 aerosol observations in this study can significantly
improve the forecast field, especially in northwest China where
Himawari-8 has little data coverage. Data assimilation
complemented related aerosol information, which is more
conducive to accurately describing the formation and
development process of pollution events.

4.2 Comparison with AERONET AOD

AERONET is an aerosol monitoring network of hundreds of
solar photometers around the world, organized by the US
National Aeronautics and Space Administration (NASA) and
France’s National Center for Scientific Research (CNRS) (Holben
et al., 1998). The ground AOD data obtained from AERONET
were used to assess the impact of the assimilation results. This
plays an important role in the study of global and regional aerosol
optical properties, environmental and radiation effects,
validation and evaluation of satellite remote sensing, and
numerical model products (Schutgens et al., 2012). In this
section, AOD data retrieved by six AERONET sites (See
Figure 1) that were affected by the dust storm were selected
for comparison with the analysis fields in the four experiments.
As shown in Figure 6, the dust storm from 26 March to 30 March
2018 was detected by AERONET at the Anmyon, Beijing, Hong_
Kong, Kanpur, Thimphu, and Xuzhou sites. In general, AOD
values were underestimated in the control experiment (black
line), the data assimilation greatly adjusted the aerosol analysis
field, and the intensity is more consistent with AERONET
stations. At all sites, the improved effect of the AOD values in
the analysis was obvious after assimilating, and the overall
variation trend of AOD prediction is more consistent with the
ground AERONET data (Figures 6A, C, E, F). However, at the
Beijing site (Figure 6B), DA experiments sometimes led to
underpredictions, such as on 28 March. Moreover, at the
Kanpur site (Figure 6D), where observations were insufficient,
all DA experiments always underestimated the AOD values. At
the Anmyon and Beijing sites, the Hima DA experiment (blue
line) was more prominent, in which the simulated AOD values
were closer to AERONET observations than the FY-4 DA
experiment (green line). The FY-4 DA experiment performed
better than the Hima DA experiment over the Hong Kong and
Kanpur sites, likely because of the different coverage of satellite
observations. It is interesting to point out that the analysis results
in the assimilation experiment involving FY4 and Himawari-8
can better reflect the variation trend of AOD in the dust storm.
The AOD values from the FY + Hima DA experiment (purple
line) usually performed better than observations in the other
three experiments. During the middle of the dust storm period,
AOD values at the Beijing and Thimphu sites did not capture the

extreme event even with AOD DA, when the air pollution
reached a high level and the observed AOD value exceeded
1.0. In general, the assimilation achieved improvements at all
six sites and the results showed that aerosol data assimilation
could significantly improve the accuracy of forecasting dust
storm events.

5 Summary and discussion

This study used a GSI-3DVAR data assimilation system to
assimilate the hourly FY-4 and Himawari-8 AOD data. A dust
storm in March 2018 was selected as an application to access the
impact of the DA system. Three parallel experiments assimilated
AOD from FY-4, Himawari-8, both FY-4 and Himawari-8, and a
control experiment that did not employ DA. The results of
analysis and forecasting were evaluated against AOD
observations from FY-4, the Himawari-8 satellite, and the
AERONET. In general, the experiment without data
assimilation always underestimated the AOD values during the
dust storm. All forms of DA experiments improved a low bias,
and the RMSE was reduced by approximately 20%. Assimilation
of satellite AOD data improved the initial field of the model
obviously when compared with the control experiment and had
an especially positive effect on the analysis and forecast fields. It
is interesting to note that the assimilation employing both FY-4
and Himawari-8 provided the analysis field with more abundant
aerosol observation information and a more accurate description
of the model’s initial field and had much better consistency with
satellite observations than the other experiments. The
comparison with AOD retrieved from AERONET also proved
the ability of the newly developed data assimilation system to
improve aerosol prediction.

These results show the potential improvement of air quality
prediction systems through the assimilation of FY-4 and Himawari-
8 AOD data, which indicates that the new generation geostationary
meteorological satellites have the potential to greatly contribute to
air quality forecasting. Further improvements could be made in the
future by employing more advanced DA techniques and more
accurate estimations of emissions. These will be further
investigated in our future work.
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