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Background: Anterior cruciate ligament reconstruction (ACLR) is a common
treatment for anterior cruciate ligament (ACL) injury. However, after ACLR, a
significant proportion of patients do not return to pre-injury levels. Research on
muscle function during movement has important implications in rehabilitation.

Methods: Sixty patients with unilateral ACL injury were recruited for this study and
assigned into three groups: group A, individuals with an ACL injury before
6 months; group B, individuals with ACLR from 6months to 1 year; and group
C, individuals with ACLR 1 year later. Surface electromyography (SEMG) signals
were collected from the bilateral rectus femoris (RF), vastus medialis (VM), vastus
lateralis (VL), biceps femoris (BF), and semitendinosus (ST). The tasks performed
during the experiment included straight leg raising (SLR) training at 30°, SLR
training at 60°, ankle dorsiflexion, walking, and fast walking.

Results: In themaximummuscle strength test, the affected side of the BF in group
A (199.4 ± 177.12) was significantly larger than in group B (53.91 ± 36.61, p = 0.02)
and group C (75.08 ± 59.7, p = 0.023). In the walking test, the contralateral side of
the RF in group B (347.53 ± 518.88) was significantly greater than that in group C
(139.28 ± 173.78, p = 0.029). In the SLR training (60°) test, the contralateral side of
the RF in group C (165.37 ± 183.06) was significantly larger than that in group A
(115.09 ± 62.47, p = 0.023) and smaller than that in group B (226.21 ± 237.17, p =
0.046); In the ankle dorsiflexion training test, the contralateral side of the RF in
group B (80.37 ± 87.9) was significantly larger than that in group C (45.61 ± 37.93,
p = 0.046).

Conclusion: This study showed the EMG characteristics of patients with ACL injury
helped to determine which muscle requires more training and which exercise
model would be best suited for intervention.
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1 Introduction

Anterior cruciate ligament reconstruction (ACLR) is a common
treatment option for patients with anterior cruciate ligament (ACL)
injuries (Van Melick et al., 2016). It is estimated that up to
200,000 ACLRs are performed annually in the United States
(Fryer et al., 2019). Patient success rate for primary ACLR is
approximately 75%–97% (Kim et al., 2018). However, after
ACLR, a significant proportion of patients do not return to their
pre-injury levels. A systematic review and meta-analysis by Ardern
et al. showed that 69 studies found 81% of individuals reported
returning to sports after ACLR. In contrast, only 65% reported
returning to the pre-injury level of sports participation (Ardern
et al., 2014). Recent research shows that 35% of athletes do not
return to the pre-injury sports level within 2 years after ACLR, and
half reported their ACL injury as the primary reason for a lower
activity level (Ardern et al., 2011; Ardern et al., 2012; Ardern et al.,
2014). The prevalence of these adverse outcomes underscores the
importance of rehabilitation after ACLR, so further research is
warranted on how to improve the effectiveness of rehabilitation.

In addition to restoring joint stability, ACLR surgery aims to restore
knee joint function and muscle strength (Kim et al., 2015). An
appropriate rehabilitation program was incorporated into routine
preoperative and postoperative care to maximize surgical outcomes
and improve functional recovery. Impaired knee function associated
with ACL injury includes instability in dynamic movements and
weakness of the quadriceps (Kim et al., 2018). Quadriceps muscle
weakness, critical to dynamic joint stability, eventually leads to

decreased knee function and poor exercise performance and can
contribute to the early onset of osteoarthritis (Muaidi et al., 2007).
Thus, the function of the muscles around the knee joint, especially the
quadriceps femoris (QF), is the main training target and serves as an
indicator for monitoring functional recovery after ACLR surgery
(Slemenda et al., 1997). After ACLR, most patients have lower
extremity muscle strength deficits on the affected and contralateral
sides. Specifically, between-limb QF muscle strength symmetry is
recommended as an important clinical benchmark to determine
whether an athlete is ready for sports after ACLR (Logerstedt et al.,
2017).

An increasing number of studies have focused on evaluating the
primary ACLR surgery method, joint stability, muscle strength, and
knee function (Muaidi et al., 2007; Kim et al., 2015). Jong et al. reported
that lower extremity muscle atrophy and weakness after ACLR
represent a difficult and unresolved problem (De Jong et al., 2007).
Unresolved post-operative muscle strength deficits might be associated
with knee osteoarthritis that is present years after surgery (Keays et al.,
2010). Investigators have also reported post-operative strength deficits
ranging from 5% to 40% for the quadriceps and from 9% to 27% for the
hamstrings (De Jong et al., 2007; Hiemstra et al., 2007; Karanikas et al.,
2009). However, limited studies have assessed muscle strength recovery
after revision ACLR surgery during different sports modes.

Limited recovery of lower extremity muscle function may be
related to the current rehabilitation program. Most studies have
described current time-based rehabilitation protocols that are
mainly based on the remodeling process of the graft (Czuppon
et al., 2014). However, there is still uncertainty regarding the
schedule of the human remodeling process, and more experts are
considering incorporating functional goal-based criteria into the
rehabilitation protocol (Howells et al., 2011). In addition, there were
individual differences in neuromotor learning and flexibility after
ACLR. These findings underscore the importance of a change from
time-based rehabilitation to goal-based rehabilitation with
neuromuscular goals and criteria to manage the rehabilitation
process. Österberg et al. (2013) suggested that these goals for
progression to the next phase and description of interventions
during each phase should be based on the International
Classification of Functioning, Disability, and Health, which may
be more suitable for the rehabilitation of patients. Among these
studies on rehabilitation after ACLR, few studies have focused on the
evaluation of quality of movement. However, the relevance of
focusing more on the quality of movement is underlined by the
fact that altered neuromuscular function and biomechanics after
ACLR could be risk factors for a second ACL injury (Hiemstra et al.,
2009).

Surface electromyography (SEMG) has the advantages of non-
invasion, real-time, and multitarget measurement, and is a method
that has received increasing attention due to its ability to quantitatively
analyze neuromuscular activity in static and dynamic motion states
(Rasool et al., 2017). SEMG has been used to assess normal and
abnormal muscle activation in some patients with ACL injury to
guide rehabilitation strategies (Zebis et al., 2019). Nevertheless, it is
rarely used to assessmuscle activation at different stages of rehabilitation.

After ACL injury and reconstruction, lower extremity muscle
strength has been reported to decrease not only in the quadriceps but
also in the hamstrings, usually continuing after the postoperative
rehabilitation period. In vigorous dynamic movements, coactivation

FIGURE 1
Electrode positions are shown in the Figure.
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of the hamstring tendons is important to provide dynamic stability
of the knee and prevent excessive shear forces of the ACL. Kim et al.
found that after an ACL injury and subsequent reconstruction,
deficits in quadriceps muscle strength were significant (Kim
et al., 2015). Bade et al. showed that in early high intensity and
low intensity rehabilitation after total knee, quadriceps and
hamstring strength and quadriceps activation improved beyond
baseline performance in both groups (Bade et al., 2017). Thus,
we performed this study to assess lower muscle functional

recovery before and after ACLR surgery at different periods using
different sports modes. We aimed to 1) compare the recovery of
knee extensor muscle function (rectus femoris [RF], vastus medialis
[VM], vastus lateralis [VL]) and flexor muscle (biceps femoris [BF]
and semitendinosus [ST]) before and after ACLR and 2) compare
the functional outcomes of different sports modes. We hypothesized
that patients with ACL injury would exhibit different characteristics
of SEMG in different rehabilitation phases and in different training
tasks.

TABLE 1 SEMG values of maximum muscle strength test between different groups.

Groups Mean ± SD Groups P-value

Affected side -RF A 329.98 ± 236.46 A B 0.515

B 210.03 ± 110.6 A C 0.924

C 314.63 ± 402.42 B C 0.518

Contralateral side -RF A 400.3 ± 326.11 A B 0.201

B 155.27 ± 122.3 A C 0.916

C 417.73 ± 381.76 B C 0.123

Affected side -VL A 531.33 ± 653.88 A B 0.074

B 134.77 ± 58.04 A C 0.176

C 272.36 ± 223.1 B C 0.465

Contralateral side -VL A 329.33 ± 130.88 A B 0.104

B 121.21 ± 92.71 A C 0.674

C 375.18 ± 277.15 B C 0.028

Affected side -VM A 182.3 ± 163.28 A B 0.347

B 122.5 ± 84.99 A C 0.798

C 168.13 ± 78.7 B C 0.413

Contralateral side -VM A 353.63 ± 299.69 A B 0.053

B 127.25 ± 81.33 A C 0.312

C 253.36 ± 155.73 B C 0.207

Affected side -BF A 199.4 ± 177.12 A B 0.02

B 53.91 ± 36.61 A C 0.023

C 75.08 ± 59.7 B C 0.681

Contralateral side -BF A 205.18 ± 201.7 A B 0.91

B 184.1 ± 260.93 A C 0.825

C 169.05 ± 384.54 B C 0.927

Affected side -ST A 446.4 ± 435.73 A B 0.014

B 93.25 ± 91.91 A C 0.003

C 59.07 ± 61.64 B C 0.77

Contralateral side -ST A 260.42 ± 243.44 A B 0.252

B 53.05 ± 49.4 A C 0.613

C 181.01 ± 393.31 B C 0.418

SEMG, surface electromyography; RF, rectus femoris; VM, vastus medialis; VL, vastus lateralis; BF, biceps femoris; ST, semitendinosus.

That the bold values indicates the statistical significance was established.
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FIGURE 2
SEMG values of maximummuscle strength test between different groups. (A), The affected side of RF; (B), The affected side of VL; (C), The affected
side of VM; (D), The affected side of BF; (E), The affected side of ST; (F), The contralateral side of RF; (G), The contralateral side of VL; (H), The contralateral
side of VM; (I), The contralateral side of BF; (J), The contralateral side of ST; SEMG, surface electromyography; RF, rectus femoris; VM, vastus medialis; VL,
vastus lateralis; BF, biceps femoris; ST, semitendinosus.

FIGURE 3
SEMG values of different groups during walking. (A), The affected side of RF; (B), The affected side of VL; (C), The affected side of VM; (D), The
affected side of BF; (E), The affected side of ST; (F), The contralateral side of RF; (G), The contralateral side of VL; (H), The contralateral side of VM; (I), The
contralateral side of BF; (J), The contralateral side of ST; SEMG, surface electromyography; RF, rectus femoris; VM, vastusmedialis; VL, vastus lateralis; BF,
biceps femoris; ST, semitendinosus.
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2 Methods

2.1 Recruitment of participants

In this study, based on literature reports and previous research
data, using G*Power software (3.1.9.7) calculated sample size, sixty
patients with unilateral ACL injuries were recruited. Patients who
met the following criteria were included: 1) age >18 years; 2)
diagnosed as ACL injury by magnetic resonance imaging and
clinical examination or had received ACLR surgery using the all-

soft tissue quadriceps tendon. The excluded criteria were the
following: 1) patients with previous ACLR surgery and
recurrence of ACL injury. 2) patients with cognitive impairment
unable to complete experimental procedures; 3) patients with a
history of other neurological diseases or disorders, lower extremity
surgery, or fracture. Patients eligible for enrolment were divided into
three groups according to the time of injury and the time to surgery.
All patients completed routine preoperative rehabilitation.
Individuals with ACL injury less than half a year were recruited
as Group A (16 men and 4 women, average age: 33.5 ± 11.77 years;

TABLE 2 SEMG values of different groups during walking.

Groups Mean ± SD Groups P-value

Affected side -RF A 162.16 ± 154.37 A B 0.527

B 120.09 ± 114.12 A C 0.416

C 114.09 ± 181.05 B C 0.906

Contralateral side -RF A 109.58 ± 82.28 A B 0.055

B 347.53 ± 518.88 A C 0.784

C 139.28 ± 173.78 B C 0.029

Affected Side -VL A 219.27 ± 166.07 A B 0.705

B 194.95 ± 152.2 A C 0.062

C 111.09 ± 155.7 B C 0.093

Contralateral side -VL A 145.72 ± 126.89 A B 0.423

B 109.09 ± 59.27 A C 0.833

C 154.26 ± 123.45 B C 0.199

Affected side -VM A 173.25 ± 96.18 A B 0.853

B 131.67 ± 95.65 A C 0.458

C 321.24 ± 717.19 B C 0.273

Contralateral Side -VM A 292.86 ± 192.94 A B 0.038

B 111.61 ± 64.62 A C 0.133

C 177.78 ± 250.88 B C 0.315

Affected Side -BF A 99.45 ± 34.28 A B 0.561

B 137.07 ± 86.54 A C 0.017

C 240.03 ± 198.78 B C 0.042

Contralateral side -BF A 127.68 ± 43.97 A B 0.958

B 136.57 ± 72.78 A C 0.264

C 297.65 ± 546.23 B C 0.221

Affected side -ST A 172.25 ± 81.63 A B 0.368

B 135.52 ± 80.08 A C 0.34

C 137.63 ± 110.93 B C 0.946

Contralateral side -ST A 169.74 ± 76.27 A B 0.997

B 169.55 ± 60.07 A C 0.423

C 211.25 ± 178.38 B C 0.352

SEMG, surface electromyography; RF, rectus femoris; VM, vastus medialis; VL, vastus lateralis; BF, biceps femoris; ST, semitendinosus.

That the bold values indicates the statistical significance was established.
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height: 171 ± 5.36 cm; weight: 70.1 ± 13.71 kg); Individuals with
ACLR for less than half a year were recruited as Group B (13 men
and 7 women, average age: 32.35 ± 9.4 years; height: 171.85 ±
8.46 cm; weight: 75.98 ± 17.49 kg); Individuals with ACLR more
than half a year and less than 1 year were recruited as Group C
(14 men and 6 women, average age: 31.45 ± 8.02 years; height:
171.35 ± 7.81 cm; weight: 71.88 ± 12.25 kg). Patients with knee
disorders, anatomical abnormalities, or a history of surgery were
excluded. The Medical Ethics Committee of Binzhou Medical

University Hospital approved this study (2021-S019-01). A
signed consent form was obtained from each participant before
the test was performed.

2.2 Measurement process

Surface electromyography (SEMG) was performed using a
Noraxon wireless dynamic electromyography tester (Noraxon,

TABLE 3 SEMG values during fast walking.

Groups Mean ± SD Groups P-value

Affected side -RF A 241.22 ± 274.33 A B 0.993

B 240.71 ± 188.02 A C 0.079

C 141.08 ± 99.02 B C 0.044

Contralateral side -RF A 391.95 ± 430.19 A B 0.557

B 500.38 ± 828.46 A C 0.257

C 199.96 ± 227.7 B C 0.042

Affected side -VL A 306.77 ± 324.57 A B 0.324

B 248.57 ± 128.09 A C 0.007

C 158.12 ± 67.57 B C 0.055

Contralateral side -VL A 171.33 ± 86.88 A B 0.281

B 210.73 ± 92.93 A C 0.233

C 211.24 ± 111.1 B C 0.986

Affected side -VM A 276.23 ± 154.71 A B 0.825

B 235.61 ± 214.4 A C 0.44

C 406.61 ± 692.31 B C 0.243

Contralateral side -VM A 362.23 ± 182.44 A B 0.31

B 217.02 ± 195.37 A C 0.783

C 326.33 ± 522.64 B C 0.333

Affected side -BF A 245.77 ± 143.18 A B 0.661

B 280.05 ± 282.65 A C 0.756

C 267.97 ± 198 B C 0.845

Contralateral side -BF A 215.38 ± 125.05 A B 0.924

B 215.38 ± 196.95 A C 0.24

C 371.69 ± 537.51 B C 0.175

Affected side -ST A 171.4 ± 81.42 A B 0.108

B 341.97 ± 465.56 A C 0.417

C 249.48 ± 199.2 B C 0.267

Contralateral side -ST A 222.96 ± 111.68 A B 0.547

B 262.21 ± 203.31 A C 0.945

C 218.91 ± 186.31 B C 0.404

SEMG, surface electromyography; RF, rectus femoris; VM, vastus medialis; VL, vastus lateralis; BF, biceps femoris; ST, semitendinosus.

That the bold values indicates the statistical significance was established.
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FIGURE 4
SEMG values during fast walking. (A), The affected side of RF; (B), The affected side of VL; (C), The affected side of VM; (D), The affected side of BF; (E),
The affected side of ST; (F), The contralateral side of RF; (G), The contralateral side of VL; (H), The contralateral side of VM; (I), The contralateral side of BF;
(J), The contralateral side of ST; SEMG, surface electromyography; RF, rectus femoris; VM, vastus medialis; VL, vastus lateralis; BF, biceps femoris; ST,
semitendinosus.

FIGURE 5
SEMG values during straight leg raising training (30°). (A), The affected side of RF; (B), The affected side of VL; (C), The affected side of VM; (D), The
affected side of BF; (E), The affected side of ST; (F), The contralateral side of RF; (G), The contralateral side of VL; (H), The contralateral side of VM; (I), The
contralateral side of BF; (J), The contralateral side of ST; SEMG, surface electromyography; RF, rectus femoris; VM, vastusmedialis; VL, vastus lateralis; BF,
biceps femoris; ST, semitendinosus.
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Scottsdale, AZ, USA). The sampling frequency was 1,200 Hz.
After scraping, abrading, and alcohol cleaning, the electrodes
were fixed onto the patient’s skin (Figure 1). SEMG signals were
collected from the RF, VM, VL, BF, and ST. The signals were
sampled at 1,200 Hz with a bandpass filter of 20–500 Hz. The root
mean square (RMS) was used to assess muscular activity. The
tasks performed during the experiment included straight leg
raising (SLR) training at 30°, SLR training at 60°, ankle
dorsiflexion, walking, and fast walking.

2.3 Data collection

Before the experiment began, we explained in detail what the
participants needed to accomplish. Maintaining the stability of the
knee while spinning is an important function of ACL (Markatos
et al., 2013; Van Melick, et al., 2022); thus, we chose it as a walking
task. The patient walked continuously on an elliptical curve for
5 min at the most comfortable speed. The width of the examination
room was 6 meters, and the length was 8 meters. We separately

TABLE 4 SEMG values during straight leg raising training (30°).

Groups Mean ± SD Groups P-value

Affected side -RF A 157.88 ± 116.82 A B 0.495

B 87.37 ± 51.52 A C 0.34

C 249.72 ± 444.73 B C 0.078

Contralateral side -RF A 137.04 ± 60.52 A B 0.546

B 98.91 ± 65.06 A C 0.049

C 254.45 ± 269.72 B C 0.007

Affected side -VL A 157.11 ± 93.6 A B 0.28

B 98.22 ± 58.74 A C 0.036

C 264.84 ± 223.52 B C 0.001

Contralateral side -VL A 144.71 ± 40.56 A B 0.39

B 104.77 ± 63.17 A C 0.137

C 209.4 ± 195.43 B C 0.013

Affected side -VM A 131.68 ± 71.9 A B 0.777

B 149.79 ± 311.9 A C 0.997

C 131.88 ± 96.41 B C 0.751

Contralateral side -VM A 73.94 ± 41.95 A B 0.794

B 65.86 ± 81.77 A C 0.049

C 131.37 ± 114.17 B C 0.019

Affected side -BF A 24.36 ± 6.32 A B 0.401

B 39.43 ± 33.75 A C 0.001

C 94.44 ± 73.88 B C 0.001

Contralateral side -BF A 45.18 ± 32.69 A B 0.22

B 66.56 ± 82.5 A C 0.575

C 36.13 ± 23.32 B C 0.051

Affected side -ST A 148.64 ± 252.89 A B 0.244

B 84.9 ± 157.34 A C 0.121

C 69.38 ± 61.13 B C 0.746

Contralateral side -ST A 84.97 ± 64.26 A B 0.909

B 92.37 ± 146.48 A C 0.096

C 186.66 ± 255.54 B C 0.104

SEMG, surface electromyography; RF, rectus femoris; VM, vastus medialis; VL, vastus lateralis; BF, biceps femoris; ST, semitendinosus.

That the bold values indicates the statistical significance was established.
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acquire bilateral lower limbs EMG signals. And the middle 3 min
EMG signal was used for analysis during the walking process.
Similarly, when walking quickly, the patient was required to walk
for 5 min at the fastest speed and the analysis test process was carried
out for 3 min in the middle. The patient laid supine on the bed,
baseline SEMG signals were measured during a state of muscle
relaxation, then raised the leg 30° or 60° and dorsiflexed of the ankle,
and maintained this position for 10 s (Li et al., 2020; Mitchell et al.,
2022; Molina-Cárdenas et al., 2022). The experiment was repeated
three times. The test is considered successful to see if the SEMG

signal increases to more than 3 times the baseline signal with the
active contraction movement of the muscle. The above tests are
performed first on the contralateral side and then on the affected
side. In the test of the maximum muscle strength of the quadriceps
femoris, the patient performs a knee extension exercise in the supine
position, keeping the calf hanging at the end of the bed and applying
resistance at the lower end of the calf. The maximum muscle
strength of the BF and ST was applied by having the patient
bend the knee in the prone position and apply resistance to the
crus (Dixit et al., 2022). The movement of the maximum muscle

TABLE 5 The SEMG values during straight leg raising training (60°).

Groups Mean ± SD Groups P-value

Affected side -RF A 94.67 ± 42.27 A B 0.959

B 91.06 ± 52.67 A C 0.277

C 163.19 ± 247.96 B C 0.208

Contralateral side -RF A 115.09 ± 62.47 A B 0.658

B 226.21 ± 237.17 A C 0.023

C 165.37 ± 183.06 B C 0.046

Affected side -VL A 113.1 ± 58.84 A B 0.586

B 165.13 ± 125.92 A C 0.035

C 135.28 ± 100.54 B C 0.092

Contralateral side -VL A 126.08 ± 51.23 A B 0.566

B 201.71 ± 131.8 A C 0.006

C 159.89 ± 107.75 B C 0.019

Affected side -VM A 144.16 ± 186.39 A B 0.186

B 133.62 ± 69.74 A C 0.229

C 126.64 ± 112.94 B C 0.766

Contralateral side -VM A 74.36 ± 54.74 A B 0.733

B 140.77 ± 154.8 A C 0.208

C 111.37 ± 118.88 B C 0.074

Affected side -BF A 32.92 ± 39.15 A B 0.908

B 109.87 ± 194.94 A C 0.094

C 70.75 ± 145.23 B C 0.088

Contralateral side -BF A 90.96 ± 106.28 A B 0.017

B 40.21 ± 34.47 A C 0.695

C 52.68 ± 66.19 B C 0.012

Affected side -ST A 65.13 ± 67.45 A B 0.826

B 85.7 ± 89.89 A C 0.593

C 76.95 ± 75.57 B C 0.391

Contralateral side -ST A 45.9 ± 33.91 A B 0.579

B 153.91 ± 225.5 A C 0.214

C 108.37 ± 171.34 B C 0.043

SEMG, surface electromyography; RF, rectus femoris; VM, vastus medialis; VL, vastus lateralis; BF, biceps femoris; ST, semitendinosus.

That the bold values indicates the statistical significance was established.
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strength test is also a training exercise in the rehabilitation program.
We performed an sEMG signal test on the muscle surface at
maximum muscle strength to assess muscle activation during the
movement, which was useful for us to evaluate the effectiveness of
the activity in the rehabilitation program. The doctors and nurses
accompanied the patients to ensure safety during the test.

2.4 Data process

SEMG signals were processed and analyzed using EMGworks
Analysis and MATLAB R2020a (MathWorks, 3 Apple Hill Dr,
Natick, MA 01760-2098). The sampling frequency was 1,200 Hz.
The root mean square (RMS) value was analyzed and used to
evaluate muscle activity.

2.5 Statistical methods

All data were analyzed using SPSS software (version 19.0). Data
are presented as mean ± standard deviation (M±SD). The
Shapiro–Wilk normality test was performed to examine the
normality distribution of the data. One-way ANOVA and post-
hoc Least-Significant Difference tests were used to detect statistically

significant differences of the variables. Statistical significance was
established at p < 0.05.

3 Results

In the maximum strength test, there were differences between
groups in the RMS values of BF and ST on the affected side, and
group A was significantly higher than group B and Group C
(Table 1; Figure 2).

In the walking test, there were differences between groups in the
RMS values of RF, VM, and BF. The RF of the contralateral side in
group B was significantly higher than that in group C; the VM of the
contralateral side in group A was significantly higher than that in
group B. The BF of the affected side in group C was significantly
higher than that in group A and group B (Table 2; Figure 3).

In the fast-walking test, there were differences between groups in
the RMS values of RF and VL. The RF of both sides in group B were
significantly higher than that in group C. The VL of the affected side
in group A was significantly higher than that in group C (Table 3;
Figure 4).

In the SLR training (30°) test, there were differences between
groups in the RMS values of the RF, VL, VM and BF. RMS values of
Group C was significantly higher than group A and Group B. VL of

FIGURE 6
The SEMG values during straight leg raising training (60°). (A), The affected side of RF; (B), The affected side of VL; (C), The affected side of VM; (D),
The affected side of BF; (E), The affected side of ST; (F), The contralateral side of RF; (G), The contralateral side of VL; (H), The contralateral side of VM; (I),
The contralateral side of BF; (J), The contralateral side of ST; SEMG, surface electromyography; RF, rectus femoris; VM, vastusmedialis; VL, vastus lateralis;
BF, biceps femoris; ST, semitendinosus.
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the contralateral side of VL in group B was significantly decreased
when compared with that in group C (Table 4; Figure 5).

In the SLR training (60°) test, there were differences in RMS
values for RF, VL, BF, and ST between groups. The contralateral
RF in group C was shown to be significantly larger than that in
group A and smaller than that in group B. The contralateral VL
in group C was significantly larger than that in group A and
smaller than that in group B. The VL of the affected side in group
A was significantly decreased when compared with that in group
C. The ST of contralateral side in group B was significantly larger

than that in group C. The VL of the affected side in group A was
significantly decreased when compared with that in group C.
The contralateral BF in group B was significantly decreased
when compared with that in group A and group C (Table 5;
Figure 6).

In the ankle dorsiflexion training test, there were differences
between groups in the RMS values of RF, BF, and ST on the
contralateral side, and group B was significantly higher than
group C. The RMS value of contralateral side of VM in group A
was significantly larger than that in group C (Table 6; Figure 7).

TABLE 6 SEMG values during ankle dorsiflexion training.

Groups Mean ± SD Groups P-value

Affected side -RF A 73.5 ± 74.03 A B 0.524

B 53.79 ± 35 A C 0.739

C 83.23 ± 112.88 B C 0.249

Contralateral side-RF A 47.17 ± 30.8 A B 0.115

B 80.37 ± 87.9 A C 0.936

C 45.61 ± 37.93 B C 0.046

Affected side -VL A 109.87 ± 107.15 A B 0.975

B 102.26 ± 42.8 A C 0.403

C 305.52 ± 1,010.29 B C 0.32

Contralateral side -VL A 144.67 ± 84.18 A B 0.388

B 110.07 ± 64.73 A C 0.624

C 126.2 ± 143.91 B C 0.624

Affected side -VM A 53.85 ± 34.8 A B 0.141

B 76.24 ± 47.07 A C 0.8

C 57.44 ± 41.33 B C 0.133

Contralateral side -VM A 116.9 ± 82.15 A B 0.016

B 51.34 ± 48.33 A C 0.115

C 77.12 ± 84.58 B C 0.239

Affected side -BF A 18.17 ± 22.04 A B 0.935

B 48.49 ± 63.91 A C 0.394

C 316.47 ± 1,517.49 B C 0.381

Contralateral side -BF A 32.34 ± 30.36 A B 0.523

B 37.54 ± 27.98 A C 0.157

C 21.41 ± 12.21 B C 0.019

Affected side -ST A 34.32 ± 27.06 A B 0.678

B 41.53 ± 44.89 A C 0.909

C 36.19 ± 57.71 B C 0.709

Contralateral side -ST A 27.15 ± 24.15 A B 0.013

B 69.93 ± 76.6 A C 0.652

C 20.01 ± 18.16 B C 0.001

SEMG, surface electromyography; RF, rectus femoris; VM, vastus medialis; VL, vastus lateralis; BF, biceps femoris; ST, semitendinosus.

That the bold values indicates the statistical significance was established.
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4 Discussion

This study explored the muscles’ SEMG characteristics of
patients with ACL injuries in different rehabilitation phases. The
results showed that the maximum muscle strength has a significant
tendency to decrease, and the attenuation of each muscle during
different movements was also different. However, muscle strength
recovery in BF and ST are significantly poorer. Although muscle
strength and symmetry of the bilateral lower extremities play an
important role in patient recovery, muscle atrophy is common in
patients who require local fixation. Factors related tomuscle size and
strength loss after ACLR remain unclear. The decrease in the
maximum muscle strength of the BF and ST may be due to the
influence of the operation. Furthermore, some studies have been
conducted on age, preoperative and postoperative activity levels, the
time elapsed since surgery, ACL grafts, rehabilitation programs,
concurrent operative procedures, and other methods have been used
to define muscle size and function. Muscle atrophy appears to occur
regardless of the type of graft used to reconstruct the ACL and often
occurs bilaterally (Papannagari et al., 2006). The pattern of muscle
strength decline is not the same for different muscles, Li et al.
showed that Among the VL, VM, and RF, the recovery rate of VL is
the slowest (Li et al., 2020). Kim et al. also found significant
differences in the recovery rates of extensor muscles and flexor
muscles of knee (Kim et al., 2015).

Changes in the biomechanics of the lower extremities are also
important factors that lead to muscle changes. Surgery cannot
completely achieve the anatomical reduction of the ACL, which

can lead to a change in torque. The symmetry of both legs changes
due to the change in torque, especially during contralateral
movements. Numerous studies have evaluated the effect of
common musculoskeletal impairments after ACLR on lower-
extremity movement asymmetries. Some studies have suggested
that patients with high quadriceps strength symmetry
demonstrated lower limb movement symmetry and greater
functional performance than those with low quadriceps strength
symmetry (Lewek et al., 2002; Palmieri-Smith and Lepley, 2015).
Moreover, many studies have found that the biomechanical
characteristics of both lower extremities are still inconsistent after
ACLR. Roewer et al. (2011) reported asymmetric knee angles and
moments after ACLR in participants with symmetrical quadriceps
strength.

Additionally, Curran et al. (2018) reported that although
quadriceps strength improved after reconstruction, there were
still asymmetric biomechanical parameters of the knee. Shi et al.
(2019) reported that the isometric quadriceps strength of the injured
leg was significantly lower than that of the uninjured leg. Knee
flexion angles and knee extension moments were smaller in the
injured leg than in the uninjured leg during the loading response and
mid-stance phases. Asymmetry in the maximum knee flexion angle
during the loading response and mid-stance phases was significantly
correlated with asymmetry in the isometric quadriceps strength.
Isometric quadriceps strength was also significantly correlated with
the asymmetry in the peak knee extension moment during the
midstance phase. The authors believed that individuals receiving
ACLR demonstrate asymmetry in knee movement in the sagittal

FIGURE 7
SEMG values during ankle dorsiflflexion training. (A), The affected side of RF; (B), The affected side of VL; (C), The affected side of VM; (D), The
affected side of BF; (E), The affected side of ST; (F), The contralateral side of RF; (G), The contralateral side of VL; (H), The contralateral side of VM; (I), The
contralateral side of BF; (J), The contralateral side of ST; SEMG, surface electromyography; RF, rectus femoris; VM, vastusmedialis; VL, vastus lateralis; BF,
biceps femoris; ST, semitendinosus.
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plane. Isometric quadriceps strength asymmetry was significantly
correlated with the asymmetry in knee flexion angles during the
early stance phase and with the knee extension moments during the
midstance phase. Palmieri-Smith and Lepley (2015) also suggested
that decreased QF strength is associated with altered trunk
biomechanics of the lower extremity and sagittal plane during
landing tasks after ACLR. However, the relationship between QF
muscle strength and lateral trunk control after ACLR during landing
has not been examined. Furthermore, weakness in the hip abductor
(HA) muscles is often associated with a dynamic valgus of the knee
during landing activities, a pattern of motion associated with both
primary and secondary risks of ACL injury (Petersen et al., 2014).
Therefore, rehabilitation programs should emphasize eccentric
exercise to improve neuromuscular control.

This study showed that different muscles exhibited an obvious
decrease in muscle activation under different exercise conditions,
which closely related to the patient’s sports ability. For example, the
muscle strength of the contralateral side of the RF, the contralateral
side of the VM, and the affected side of the BF changed during
normal walking and that of the affected side of the RF, the
contralateral side of the RF, and the affected side of the VL
changed during a fast walking movement. ACL structures also
contain mechanoreceptors, injuries of which cause afferent block-
mediated dysregulation of motor control of the spine and spinal
cord, directly affecting neuromuscular control of the knee. ACL
injury can cause changes in biomechanical function, proprioceptive
function, and strategy of motor control (Van Melick et al., 2016).
Begalle et al. (2012) quantified the activity level of VM, VL, MH, and
BF muscles by SEMG. In exercises such as the single-limb squat, the
transverse-lunge, lateral-lunge, etc, the extensor and flexor muscles
of the knee show amarked difference. Therefore, the muscle training
method must refer to the target motion modes and evaluate the
quality of movement. The focus on quality evaluation of movement
is not only a risk factor for a second ACL injury, but also an
important factor for motor rehabilitation.

5 Limitation

Only 60 patients participated in this study, and the limited
sample size reduced the informative value of the study. The lack of
follow-up also reduces the representativeness of the results.
Therefore, we will continue to expand the sample size of this
study, achieve long-term follow-up of patients, and provide more
evidence to validate the results.

6 Conclusion

Overall, the muscle activation of various muscles differ in several
movements. Therefore, according to the test results under different
exercise conditions, we may find which muscle requires more
training and improves the functional status of patients after
surgery. We suggest developing a rehabilitation program based
on target orientation. At different phases of rehabilitation, testing

the activation of muscles under different training tasks, and the
training tasks and the intensity of the training tasks are selected
based on this. We speculate that there will be better rehabilitation.
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