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Non-destructive prediction and
visualization of anthocyanin
content in mulberry fruits using
hyperspectral imaging

Xunlan Li, Zhaoxin Wei, Fangfang Peng, Jianfei Liu
and Guohui Han*

Research Institute of Pomology, Chongqing Academy of Agricultural Sciences, Chongqing, China
Being rich in anthocyanin is one of the most important physiological traits of

mulberry fruits. Efficient and non-destructive detection of anthocyanin content

and distribution in fruits is important for the breeding, cultivation, harvesting and

selling of them. This study aims at building a fast, non-destructive, and high-

precision method for detecting and visualizing anthocyanin content of mulberry

fruit by using hyperspectral imaging. Visible near-infrared hyperspectral images

of the fruits of two varieties at three maturity stages are collected. Successive

projections algorithm (SPA), competitive adaptive reweighted sampling (CARS)

and stacked auto-encoder (SAE) are used to reduce the dimension of high-

dimensional hyperspectral data. The least squares-support vector machine and

extreme learning machine (ELM) are used to build models for predicting the

anthocyanin content of mulberry fruit. And genetic algorithm (GA) is used to

optimize the major parameters of models. The results show that the higher the

anthocyanin content is, the lower the spectral reflectance is. 15, 7 and 13

characteristic variables are extracted by applying CARS, SPA and SAE

respectively. The model based on SAE-GA-ELM achieved the best

performance with R2 of 0.97 and the RMSE of 0.22 mg/g in both the training

set and testing set, and it is applied to retrieve the distribution of anthocyanin

content in mulberry fruits. By applying SAE-GA-ELM model to each pixel of the

mulberry fruit images, distribution maps are created to visualize the changes in

anthocyanin content of mulberry fruits at three maturity stages. The overall

results indicate that hyperspectral imaging, in combination with SAE-GA-ELM,

can help achieve rapid, non-destructive and high-precision detection and

visualization of anthocyanin content in mulberry fruits.
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1 Introduction

Mulberry (Morus L.) is widely planted around the world.

Tender, juicy and delicious mulberry fruits have long been used

as traditional medicine as well as edible fruits in countries such as

China, India and Turkey (Jan et al., 2021). Modern researches show

that black and red mulberry fruits are rich in anthocyanins, which,

with the properties of antioxidant, anti-inflammatory and chemical

protection, play a positive role in reducing the risk of cardiovascular

diseases and cancers (Chen et al., 2006; Krishna et al., 2018).

Anthocyanins are considered to be one of the most important

indicators for mulberry fruits of good quality by researchers

and consumers.

Anthocyanin contents are usually determined by adopting wet

chemical methods, such as spectrophotometry (Jiang and Nie,

2015) and high-performance liquid chromatography (Zou et al.,

2012). The samples need to be ground and extracted with the use of

chemical reagents such as ethanol or acetone. These methods are

destructive and will produce chemical residues. And only a small

number of samples can be analyzed at a time. It is difficult to detect

anthocyanin content in mulberry fruits on a large scale by applying

the existing time-consuming and inefficient detecting methods. For

efficient agricultural management and production, it is necessary to

find a reliable, fast and non-destructive method for anthocyanin

content detection.

Hyperspectral imaging (HSI) can obtain the spectral data of

each pixel in the sample image simultaneously. This is of potential

value in non-destructive detection of uneven distribution of quality

indicators. There are reports about visualizing anthocyanin

contents of purple sweet potato (Liu et al., 2017), lychee pericarp

(Yang et al., 2015), and grape (Chen et al., 2015) by using HSI. The

research by Huang et al. (2017) has shown that 400-1000nm and

900-1700nm HSI, in combination with least squares support vector

machine (LS-SVM), has great potential in evaluating total

anthocyanin content and antioxidant activity of mulberry fruits.

This is the only study on determining anthocyanin of mulberry by

using HSI. And further research endeavors to visualize anthocyanin

content of mulberry fruit have not been reported yet.

The variable selection is an essential step for modeling. From

previous researches, variable selection methods, such as interval

partial least square, successive projections algorithm (SPA) and

competitive adaptive reweighted sampling (CARS) are often used to

reduce the number of input variables before modeling (Zhu et al.,

2017; Silva and Melo-Pinto, 2021). When using these variable

selection methods, the average spectrum of all pixels in the

hyperspectral image is applied, while efficient big data analysis of

each pixel spectrum is ignored. Depth feature extraction and

dimension reduction can be conducted by using the stacked auto-

encoder (SAE), a nonlinear unsupervised neural network, which is

capable of effectively analyzing the spectral data of all pixels of the

hyperspectral image and then select variables (Yu et al., 2018). In

terms of modeling, the LS-SVM has been shown to be of good

potential in non-destructive detection. Research reports show that

the extreme learning machine (ELM), a single hidden layer
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feedforward neural network model, is able to achieve similar or

much better performance at a much faster learning speed than

traditional LS-SVM (Huang et al., 2011; Zheng et al., 2014).

This study is meant for developing a rapid, non-destructive,

high-precision method to detect and visualize the anthocyanin

content of mulberry fruit. The main research objects are as

follows: (1) analyzing the differences in anthocyanin content and

corresponding spectral data between two mulberry varieties at

different maturity stages; (2) reducing the dimension of high-

dimensional spectral data by using SPA, CARS and SAE, and

selecting the most effective feature variables; (3) using LS-SVM

and ELM to build the models for predicting mulberry anthocyanin

and selecting the best prediction model so as to achieve rapid, non-

destructive and high-precision prediction of the anthocyanin

content of mulberry fruit; (4) mapping distribution of

anthocyanin content in mulberry fruit.
2 Materials and methods

2.1 Materials

The sampled varieties, Dashi (Morus nigra L.) and Siji

(Morus nigra L.) were collected from the mulberry resource

conservation nursery of Chongqing Academy of Agricultural

Sciences on April 23, 2020. Disease-free fruits at three maturity

stages (S1: red maturity, S2: red to purple maturity and S3: full

maturity) were randomly picked, then stored in ice boxes. They

were brought back to the laboratory for hyperspectral image

collection and anthocyanin content detection (Figure 1). Six

fruits at the same maturity stage were randomly selected as one

sample for anthocyanin content detection. A total of 180 samples

were obtained, and the numbers of Dashi and Siji were 90

respectively. The samples were randomly divided into the

training set and the testing set at a ratio of 7:3.
2.2 Collection and calibration
hyperspectral images

The hyperspectral imaging systemwas used to collect hyperspectral

images of mulberry fruits (Figure 2). The hyperspectral imaging system

consists of a spectrograph (ImSpector V10E, SPECIM, Finland), an

EMCCD camera (DL-604E, Andor Technology plc., N. Ireland), two

halogen light sources (150 W/21 V halogen lamp, Illuminator

Technologies, Inc, USA), an electric mobile platform and controller

(SC30021A, Zolix, China), and a laptop. The wavelength range of the

spectrum collected was 305-1 090 nm. The two light sources were at an

angle of 45° with the mobile platform respectively. The camera

exposure time was 60 ms. The spectral resolution was 2.8 nm. The

platform moving speed was 1.87 mm/s. The distance between the

objective lens and the platform was 40 cm. After preheating for half an

hour by the light source, the mulberry fruits were placed on the black

cardboard for hyperspectral image collection.
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B

A

FIGURE 1

Fruit images of Dashi (A) and Siji (B) at three maturity stages: (S1) red maturity; (S2) red to purple maturity; (S3) full maturity.
FIGURE 2

The hyperspectral imaging system.
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The collected hyperspectral images need to be calibrated so as to

avoid the effect caused by uneven light source intensity distribution

and dark current during the image collecting process. Under the

same conditions as the sample images were collected, the white

reference image W was obtained by scanning the standard white

reference panels. The dark reference image D was obtained by

scanning with the lens covered. And the image calibration was

completed on the basis of formula (1),

Rl =
Il − Dl

Wl − Dl
(1)

where Rl is the calibrated image, Il is the raw image, Wl is the

white reference image, and Dl is the dark reference image.
2.3 Anthocyanin content extraction

Anthocyanin content was detected by pH-differential

spectrophotometry (Lee et al., 2005). 0.5 ± 0.001 g of grinded

fresh mulberry fruits was added to 10 ml of acidified ethanol (95%

ethanol and 1% concentrated hydrochloric acid, the volume ratio of

ethanol to hydrochloric acid was 60:40) for 1 h ultrasound

extraction and 2 min centrifugation at 8000 r•min-1. 1 ml of

supernatant was taken and the volume was fixed to 25 ml by

adding buffer solutions of pH 1.0 and pH 4.5 respectively. The

absorbance was measured at 520 nm and 700 nm after letting it

stand for 15 min with an ultra-violet-visible spectrophotometer

(UV-6000PC ShanhaiMetash. Co. Ltd, China). The anthocyanin

content was calculated by the formula (2) and (3).

A = (A520nm − A700nm)   at   PH   1:0 − (A520nm

− A700nm)   at   PH   4:5 (2)

Total   anthocyanin   content(mg=g)

= (A*MW*DF*V)=(ϵ*1*M) (3)

Where is the absorbance, A520nm and A700nm are the absorbance

at the 520 nm and 700 nm respectively. MW (molecular weight) =

449.2 g/mol for cyanidin-3-glucoside (cyd-3-glu). DF (Dilution

factor) = 25. V is the original volume of 10 ml. The molar

extinction coefficient ϵ=26900. M is the weight of the sample.
2.4 Region of interest and spectral
data extraction

In this study, the whole fruit with the fruit stalk removed was

treated as the region of interest (ROI). The whole mulberry fruit and

the collection background plate were segmented at 800 nm, with the

reflectance of 0.2 as the minimum value. The petiole was removed

from the whole fruit at 550 nm and 670 nm, with the difference

value of 0.04 as the maximum value. Then the ROI was obtained by

conducting mask processing. The average spectrum of ROI at each

wavelength was calculated for subsequent SPA and CARS feature

wavelength extraction. To create a data set for deep learning, 400
Frontiers in Plant Science 04
pixels (20 * 20) corresponding to spectral data were randomly

selected from the ROI of each sample, totaling 72,000, for

SAE training.
2.5 Spectral data processing

2.5.1 Spectral data pretreatment
Owing to the existence of strong noises in the beginning and

ending bands of the raw spectral data, spectral data within the range

of 450-1050 nm, a total of 379 variables were selected for

subsequent analysis. In this study, standard normal variate

transform (SNV) was used to preprocess the spectral data, to

eliminate the scattering caused by uneven particle distribution

and different particle sizes, and the influence of optical path

change on the spectral data.
2.5.2 Feature extraction
Successive projections algorithm(SPA), Competitive adaptive

reweighted sampling(CARS) and Stacked auto-encoder (SAE) were

respectively used in this study to extract spectral data features for

the purpose of reducing the number of input variables, improving

model efficiency, eliminating redundant information of spectral

data, and improving the prediction accuracy of the model.

Successive projections algorithm (SPA) is a forward variable

selection algorithm. By this method, the cycle of forward is

conducted with a wavelength initially selected and the projection

value of the remaining wavelength calculated. Then the projection

vector is combined with the wavelength corresponding to the

maximum projection value until the cycle ends. The minimum

variable group can be effectively obtained by calculating the band

projection value, thus minimizing the collinearity between variables

(Araújo et al., 2001).

Competitive adaptive reweighted sampling (CARS) is a method

based on Monte Carlo sampling and the PLS regression coefficient.

By this method, characteristic variables are primarily screened out

by using the PLS regression coefficient in combination with the

exponential decline function. Then the initially selected

characteristic variables are competitively screened out by using

adaptive reweighted sampling. And the final characteristic

variables are screened out from the wavelength combinations

according to the cross-validation root mean square error. The

detailed algorithm of CARS can be found in reference (Li et al.,

2009). In this study, the number of CARS samples was set to 50, and

the ten-fold cross-validation method was used.

Stacked auto-encoder (SAE) is a deep neural network consisting

of multilayer auto-encoders (AE), by which better feature extraction

is obtained with the hidden layers added to the simple auto-

encoders. AE consists of encoders and decoders. The input layers

map the input data to the hidden layers through the activation

function to obtain the encoding features, which is called encoding.

Through the same steps, the encoding features are mapped to the

output layers by using the activation function to obtain the

decoding features, which is called decoding. In terms of SAE,

the decoding features of the previous AE are used as the input of
frontiersin.org
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the next hidden layer of AE, and code and decode the next layer of

AE. By analogy, these hidden input layers are connected to form

SAE (Xu et al., 2022).

2.5.3 Model construction and evaluation
Least squares support vector machine (LS-SVM) is a machine

learning algorithm based on SVM, boasting good generalization

ability and nonlinear regression processing ability (Suykens and

Vandewalle, 1999). The fitting ability of LS-SVM mainly depends

on the selection of kernel parameters (C and g). Kernel parameter C

affects the fitting accuracy and generalization ability of the model,

and kernel parameter g directly determines the calculation amount

and efficiency of the model.

Extreme learning machine (ELM) is a feedforward neural

network with a single hidden layer, which has a fast learning

ability and strong nonlinear approximation ability (Huang et al.,

2006). Compared with traditional neural network learning

algorithms, such as back propagation neural network, ELM

presents the advantages of strong generalization ability and fast

calculation speed (Ye et al., 2022). Over-fitting is liable to occur,

since the weight and offset of ELM are randomly determined.

Genetic algorithm (GA) is a search algorithm for obtaining the

global optimal solution based on the biological evolution

mechanism of “survival of the fittest” (Mirjalili, 2019). In this

study, GA is used to optimize the important parameters of the

RBF kernel function and the offset and weight of ELM. In this case,

the value ranges of kernel parameters (C and g) were set to 0.01-100,
the population size was set to 20, and the number of maximum

evolution times was set to 200. When GA was used to optimize

ELM, the population size was set to 20, the maximum number of

evolutions was set to 300, and the number of neurons in the hidden

layer of ELM was set to 90.

The training set determination coefficient (R2c), testing set

determination coefficient (R2p), training set root mean square

error (RMSEC), and testing set root mean square error (RMSEP)

were used as indicators to evaluate the performance of models. The

closer to 1 the determination coefficient (R2) is, the better the model
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fitting effect is. And the smaller RMSEC and RMSEP are, the higher

the precision of the model is.

The hyperspectral image calibration in this study was

completed by the software of the hyperspectral image acquisition

system. ROI segmentation, spectral data extraction and processing

were completed by using MATLAB 2022a, with SPA, CARS, GA,

SAE, and LS-SVM realized by using SPA_GUI, Lib PLS1.98,

GATBX, Deep Learning toolbox, and LS-SVMlab v1.8 toolbox.

The overall flow is shown in Figure 3.
3 Results and analysis

3.1 Anthocyanin content and spectral
characteristics of mulberry fruits

The anthocyanin contents of two mulberry varieties at three

maturity stages were analyzed and measured, and the mean

anthocyanin content and corresponding spectral reflectance of two

mulberry varieties at different maturity stages were calculated

(Figure 4). It was shown in Figure 4A that the higher the maturity

of mulberry fruits was, the higher the anthocyanin content was,

which followed the description of the report of Saracoglu (Saracoglu,

2018). The anthocyanin content of Dashi was higher than that of Siji

at the same maturity stage. Anthocyanins are the main reasons why

mulberry has red and purple (Li et al., 2020). From the analysis of the

spectrum reflection curve of mulberry fruit, it can be seen that the

spectral reflection value in the range from 500 to 700 nm was very

low. According to qin and Lu (Qin and Lu, 2008), the maximum

absorbance of anthocyanin pigments is about 535 nm. However, the

difference between the mulberry fruits of different maturity was not

obvious at 535 nm in Figure 4B. This may be because the black

substances have strong absorption in the visible light area, and the

reflectance value is not attributed to a single compound, the spectra

are the sum of the major mulberry fruit composition spectra

(Cozzolino et al., 2004). A small reflective valley could be seen near

680 nm in red maturity fruits, which is related to the existence of
B C DA

FIGURE 3

Overall flow chart. (A) Acquisition of data; (B) hyperspectral image processing; (C) analysis of spectral data; (D) visualization of anthocyanin content.
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chlorophyll. The spectral reflectance was lower with the increase of

maturity and anthocyanin content within the range of 590-800 nm.

The two varieties showed obvious absorption peaks near 970 nm and

840 nm. This is speculated to be related to water and sugar absorption

(ElMasry et al., 2008; Zheng et al., 2008). The differences in spectral

characteristics of the mulberry fruits above show that hyperspectral

imaging has the potential to distinguish the mulberry fruits of

different anthocyanin contents.
3.2 The results of feature extraction

When hyperspectral imaging is used to detect the anthocyanin

contents of mulberry fruits, the redundant information is often

eliminated and the amount of calculation is compressed by

screening out the characteristic wavelengths to improve the

accuracy and robustness of the diagnostic models. In this paper,

SPA, CARS and SAE were used to extract feature variables from the

379 variables.

SPA was used to screen characteristic wavelengths from spectral

data of SNV pretreatment in 450-1,050 nm region, and the results

were shown in Figure 5. It can be seen from Figure 5A that when the

number of characteristic wavelengths increased from 1 to 7, the

value of RMSE decreased in a ladder shape and then leveled off. And

7 characteristic wavelengths at 684.88, 703.98, 747.15, 798.58,

842.15, 923.11 and 962.05 nm were obtained.

The process of screening wavelengths by using CARS was

shown in Figure 6. With the increase in sampling times, the

number of selected wavelengths decreased gradually at the speed

from fast to slow. This reflected the two stages, preliminary

screening and fine screening, of using CARS to screen out key

variables. With the increase in sampling times, the root mean

squares error of cross-validation (RMSECV) value gradually

decreased. And the RMSECV value obtained was the lowest when

the 31st sampling was conducted. This is an indication that some

irrelevant variables are removed during the sampling process. After

the 31st sampling, the RMSECV value presented a stepwise

progression, indicating the removal of some key information.

Therefore, the wavelengths obtained at the 31st sampling were
Frontiers in Plant Science 06
the characteristic wavelengths. Fifteen characteristic wavelengths,

450.08, 451.59, 601.16, 703.98, 707.17, 708.77, 743.95, 795.36,

796.97, 798.58, 832.45, 963.67, 965.29, 1038.29 and 1046.39 nm,

were screened out by using CARS.

Based on the analysis of the characteristic wavelengths, the

positions and numbers of characteristic wavelengths screened out

by using SPA and CARS were found to be different. And the

wavelength positions are concentrated within the ranges of 703-

835 nm and 963-1046 nm.

The feature variables of SAE screening are shown in Figure 7.

When it comes to SAE, it is not necessarily the case that the more

hidden layers are, the better the effect is. In this study, 379-300-150-

h-150-300-379 was set to be the basic network. h denotes the

number of neurons in the last coding layer, and it is also the

number of feature variables extracted. Based on experience and

many previous attempts, sigmod was set as the activation function,

iterate was set to 40 times, the batch size was set to 200, the initial

learning rate was set to 0.001, and h was set to 13. From the results

shown in Figure 7A, the reconstructed spectral reflectance curve is

highly coincident with the original spectral curve, indicating that

the original spectral data can be perfectly reconstructed by using

SAE. The last coding layer was extracted as the spectral feature

variables (Figure 7B). It can be seen that the corresponding values of

the 13 feature variables of samples at different maturity stages are

obviously different.
3.3 The results of modeling

All wavelengths and feature variables extracted by using SPA,

CARS and SAE were used as the model inputs. Regression models of

mulberry anthocyanin contents were built based on GA-LS-SVM

and GA-ELM respectively. And the regression results were

evaluated (Figure 8). Models were constructed by using the two

non-linear regression methods that achieved good performance, R2

values of the training sets and those of the testing sets of GA-LS-

SVM and GA-ELM models built on the basis of full wavelengths

and variables extracted by using SPA, CARS and SAE were greater

than 0.90, RMSE was less than 0.38 mg/g. The models based on
BA

FIGURE 4

The anthocyanin content (A) and average spectra (B) of mulberry fruit at three maturity stages. Values with the same letter (i.e. a, b, c or d) are not
significantly different (p<0.05).
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variables selected by SPA, CARS and SAE achieved better

performances than those based on full-band spectral data,

indicating that SPA, CARS and SAE can reduce the redundancy

of model input variables and help improve the accuracy of the

model. Many researches show that ELM has the advantages of fast
Frontiers in Plant Science 07
learning speed and good generalization ability (Wong et al., 2013;

Huang et al., 2014). In this study, The SAE-GA-ELM models,

requiring only 13 input variables, has achieved the best predictive

performance, with the values of R2c and R2p reaching 0.97, and

RMSEC and RMSEP being only 0.22 mg/g, obtained.
B

A

FIGURE 5

The characteristic wavelengths selected by SPA. (A) Variation of RMSE with the number of variables, (B) the selected wavelengths.
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3.4 Visualization of anthocyanin content

The visualization of anthocyanin content distribution in

mulberry fruits is needed for more intuitively observing the

changes in anthocyanin contents of mulberry fruits at different
Frontiers in Plant Science 08
maturity levels. One of the advantages of hyperspectral imaging is

that spectral data of each pixel can be obtained by using hyperspectral

imaging. This makes it possible for the prediction about each pixel to

be made, thus helping create distribution prediction maps. The

visualization can be achieved with the average spectra applied for
B

A

FIGURE 6

The process (A) and result (B) of characteristic wavelength selection by CARS.
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modeling and all of the single-pixel spectra in the hyperspectral image

used for the best prediction model (Sun et al., 2019; Xiao et al., 2020).

In this study, SAE-GA-ELM, the best model for anthocyanin content

detection, was applied to visualize anthocyanin content distribution.

All the single-pixel spectrum was processed by the same treatment

used in the modeling. Figure 9 shows the visualization maps of
Frontiers in Plant Science 09
eighteen samples representing different maturity levels of two

varieties. we can see from Figure 9 that the higher the maturity

level of mulberry fruits is, the higher the anthocyanin content is, and

that the anthocyanin content of Dashi is higher than that of Siji at the

same maturity stage, which is consistent with the results shown in

Figure 4A. It can be seen that the distribution of anthocyanin content
B

A

FIGURE 7

The training results of SAE. (A) Original SNV spectrum and reconstructed SNV spectrum; (B) deep spectral features of Dashi and Siji.
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of the mulberry fruits at the red maturity stage is not consistent with

that of the content of the mulberry fruits at the red to purple maturity

stage, which is speculated to be the result of the uneven distribution of

such anthocyanin synthesis regulators as sugars and hormones in the

fruits (Aramwit et al., 2010; Mo et al., 2022).
4 Conclusions

In this study, with Dashi and Siji mulberry varieties selected

as research objects, and SPA, CARS and deep learning methods
Frontiers in Plant Science 10
SAE used to screen out feature variables, models for predicting

anthocyanin content in mulberry fruits are built based on GA-

LS-SVM and GA-ELM. The SAE-GA-ELM has achieved the best

performance with R2c and R2p reaching the value of 0.97 under

the condition of RMSEC and RMSEP being only 0.22 mg/g. By

applying this best model to each pixel of the mulberry fruit

images, distribution maps are created for visualizing the

changes in anthocyanin content of mulberry fruits at three

maturity stages. The results indicate that the hyperspectral

imaging, in combination with SAE-GA-ELM could realize the

fast , non-destructive, and high-precision detection of
FIGURE 8

Diagnosis results of anthocyanin content in the training set and testing set by GA-ELM and GA-LS-SVM models based on all-band and feature
variables.
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anthocyanin content of mulberry fruits, which means a new

reference for rapid and nondestructive evaluation of

physiological traits for the breeding, cultivation, harvesting

and selling of the fruits.
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