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Heart failure (HF) is a serious health and economic burden worldwide, and its

prevalence is continuously increasing. Current medications e�ectively moderate

the progression of symptoms, and there is a need for novel preventative

and reparative treatments. The development of novel HF treatments requires

the testing of potential therapeutic procedures in appropriate animal models

of HF. During the past decades, murine models have been extensively used

in fundamental and translational research studies to better understand the

pathophysiological mechanisms of HF and develop more e�ective methods to

prevent and control congestive HF. Proper surgical approaches and anesthetic

protocols are the first steps in creating these models, and each successful

approach requires a proper anesthetic protocol that maintains good recovery and

high survival rates after surgery. However, each protocol may have shortcomings

that limit the study’s outcomes. In addition, the ethical regulations of animal

welfare in certain countries prohibit the use of specific anesthetic agents, which

are widely used to establish animal models. This review summarizes the most

common and recent surgical models of HF and the anesthetic protocols used

in rat models. We will highlight the surgical approach of each model, the use of

anesthesia, and the limitations of the model in the study of the pathophysiology

and therapeutic basis of common cardiovascular diseases.
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1. Introduction

Heart failure (HF) is a leading cause of death worldwide. The mortality rate of HF is very

high, with ∼50% of patients dying within 5 years of their initial diagnosis, which is higher

than the fatality rate of most cancers. The most recent World Health Organization estimates

that cardiovascular disorders kill 17.9 million people each year, accounting for ∼31% of all

global deaths (1), and there is a significant economic burden due to the rising prevalence

of HF in industrialized countries. The enhancement in treatment for acute myocardial

infarction (MI), which has reduced the mortality rate but not morbidity and is based on the

rate of survivors, is at least partly responsible for this increase. Additional factors include an

increased prevalence of comorbidities, which accelerate the progression of HF. Therefore,

it is essential to modify these risk factors and develop new treatment strategies for HF

patients (2).
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The study of HF requires dependable animal models to

evaluate severe changes and pharmacodynamic interactions

in the structure and function of the injured myocardium

and to pursue its progression to HF. In recent decades,

researchers have used small animal models to better understand

the pathophysiology of HF and develop more effective

strategies for managing patients with congestive HF (3).

Therefore, this review aims to describe the different surgical

rat models commonly used for the induction of HF and to

identify the most reliable anesthetic regimes required for

these procedures.

1.1. Circulatory system in rats

Rats are mammals belonging to the Muroidea rodent

superfamily. The cardiac, pulmonary, and systemic circulatory

systems, as well as their valves, are similar to those of

humans. The rat heart has four chambers. On the right side

of the aortic arch, the brachiocephalic trunk branches into the

right common carotid artery and the right subclavian artery.

The left common carotid artery is located in the anterior

part of the aortic arch, while the left subclavian artery is

located to its left (4, 5). Furthermore, the internal mammary

arteries supply coronary blood to the right and left atria (5).

The rat also has no true equivalent of a circumflex artery

besides a small artery such as a ramus intermediate (6); the

arterial and venous systems in rats are illustrated in detail in

Figure 1.

1.2. Anesthesia in rats

Anesthesia is an essential aspect of laboratory animal

research to minimize pain and stress during experimental

procedures and is also essential to ensure the reproducibility of

experimental results. Appropriate anesthesia administration

is crucial in achieving success in surgical experiments

(7, 8). Here is a general overview of anesthesia in rats,

and the various detailed protocols are explained in

Table 1.

1.2.1. Inhalant anesthesia
Isoflurane and sevoflurane are commonly used inhalant

anesthetics in rats. They are administered through a mask or

nose cone to induce and maintain anesthesia. The dose and

concentration of anesthetic gas can vary based on the species,

weight, and age of the rat, as well as the procedure being performed

(61, 62).

1.2.2. Intraperitoneal injection
A combination of ketamine (50–100mg/kg) and xylazine (5–10

mg/kg) is a commonly used anesthetic protocol for intraperitoneal

injections in rats. This method provides a rapid onset of anesthesia

and is often used in short procedures (63, 64).

1.2.3. Intramuscular injection
A combination of ketamine (50–100mg/kg) and xylazine (5–10

mg/kg) is a commonly used anesthetic protocol for intramuscular

injections in rats. This method also provides a rapid onset of

anesthesia and is often used as a backup when inhalant anesthesia

is impossible (65).

1.2.4. Intravenous injection
Propofol (2–4 mg/kg) is a commonly used anesthetic for

intravenous injections in rats. This method provides rapid and

controlled induction of anesthesia and is often used for more

invasive procedures (66).

Unfortunately, some countries have prohibited some anesthetic

drugs and classified them as narcotics; for instance, Ketamine

is currently classified as a narcotic medication in Japan, and

numerous other countries have reinforced limitations on its

purchase, possession, and related record-keeping methods (67).

These decisions represent a big obstacle to their researchers

and thus increase the challenges of finding alternative anesthetic

protocols. Therefore, we have recently published a paper describing

a novel protocol for induction of general anesthesia in rats for

cardiac surgery using a mixture of injectable and inhalation

anesthesia along with antagonists (60).

It is important to note that the correct protocol can vary

greatly depending on the individual animal and the procedure

being performed. Additionally, closemonitoring of an animal’s vital

signs, such as heart rate, respiratory rate, and body temperature,

is crucial during anesthetic procedures to ensure the safety and

wellbeing of the animal.

2. Surgical models

2.1. Myocardial infarction

Coronary circulation is the main supply of blood to the cardiac

tissues, and effective coronary circulation is crucial for the health

of the myocardium. Constriction or blockage of one or more

branches of the coronary artery is life-threatening and may cause

irreversible heart damage and MI; therefore, MI is the main type of

ischemic heart disease, characterized by unbalanced ischemia and

myocardial necrosis (68, 69).

Despite significant improvements in prognosis, acute

myocardial infarction remains the most severe manifestation

of coronary artery disease, affecting over seven million people

worldwide and contributing to over four million fatalities annually

in Northern Asia and Europe (70, 71). MI is described as necrosis

of the cardiac muscle cells caused by a prolonged lack of oxygen

supply. Because of the decrease in blood circulation, there is

insufficient oxygen and nutrition supply to fulfill tissue demand.

As a result, cardiomyocyte death occurs (72). Furthermore, in

chronic situations, MI may worsen hemodynamics, resulting in

patient death. When an acute MI occurs, the patient typically has

extensive pain in the chest, upper abdomen, and other regions for

at least 20 mins, accompanied by symptoms such as dyspnea (73).

FollowingMI, myocardial cells undergo acute necrosis, and fibrotic

scars form during the repair phase. The formation and build-up of
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FIGURE 1

Circulatory system in rats.

fibrotic scars over time may damage the structure and function of

the heart (74).

2.2. Surgical methods of MI

2.2.1. Coronary artery ligation
CAL in a rat model is a research technique commonly used

to induce MI (heart attack) in rats to study the pathophysiology

of the disease, test potential therapeutic interventions (75, 76),

evaluate the efficacy of stem cell therapy (9), investigate changes in

BM-MSCs in vivo and their ability to differentiate into contractile

myocytes (77), and explore the effect of autophagy on acute MI and

its mechanism in rats (78).

Permanent CAL results in total blood flow blockage and

irreversible hypoxia, leaving most of the area at risk of infarction

and a massive and permanent scar in the myocardium. This

damaged area is susceptible to pathological remodeling, which

leads to the progression of HF. Furthermore, the site of the

artery blockage influences the size of myocardial ischemia, with

ligation closer to the heart’s base causing more severe damage.

The use of a well-proven procedure performed by a qualified

surgeon lowered the variation in infarct size based on the ligation

site (79).

2.2.1.1. Surgical technique

The procedure began with the injection of an anesthetic

drug into the animal, followed by the use of a mechanical

ventilator to secure the airway. A left thoracotomy was performed,

the heart was rapidly exposed, and the initial ligation site was

determined (80).

Once the site of ligation of the left anterior descending coronary

artery (LAD) was identified, a cotton earbud was gently pressed

onto the artery slightly below the site of ligation, immobilizing

the heart, while simultaneously making the artery noticeable and

easy to recognize. A non-absorbable ligature passes below the

LAD and is secured with three knots using a tapered atraumatic

needle. Blanching and cyanosis of the anterior wall of the left

ventricle, as well as enlargement of the left atrium, are signs of

successful ligation. Due to direct vision and observation of the

process and targeted area of infarction, CAL provides accurate

time, location, and extent of the coronary event. The ribs and

muscles were closed with dissolvable sutures, with a small gap left

to aspirate any remaining air in the thorax, and air was aspirated

to keep the lungs from collapsing. At the time of closure, the

muscle and skin stitch sites were treated with neomycin powder

and betadine, respectively. Before extubation, the lungs were

deflated by submerging the exit tube connected to the endotracheal

tube in an underwater seal with adequate postoperative care

(Figure 2) (9).

Extubation was conducted before the rats were fully awake,

and a 1mL syringe was used to carefully suction the endotracheal

catheter to prevent bronchial occlusion due to heavy mucus.

The rats were then placed in a recovery cage with an oxygen

source for around 30min. Analgesia (0.025 mg/kg body weight

subcutaneously every 12 h) was planned for up to 72 h (81).
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TABLE 1 Di�erent anesthetic protocols used for the induction of experimental surgical models of heart failure in rats.

Anesthetic protocols Surgical models References

A mixture of ketamine hydrochloride and

xylazine hydrochloride (intraperitoneal

injection)

Myocardial infarction (MI) model (80 mg/kg ketamine and 10 mg/kg xylazine) (9, 10)

Cryoinjury-induced MI model (100 mg/kg ketamine and 10 mg/kg xylazine) (11)

Ischemia-reperfusion (IR) model (40 mg/kg ketamine and 10 mg/kg xylazine) (12)

Arteriovenous shunt (AVS) model (90 mg/kg ketamine and 10 mg/kg xylazine) (13, 14)

Aortic regurgitation (AR) model (50 mg/kg ketamine and 10 mg/kg xylazine) (15, 16)

Sodium pentobarbital (intraperitoneal

injection)

MI model (50 mg/ kg sodium pentobarbital) (17–19)

Cryoinjury-induced MI model (50 mg/ kg sodium pentobarbital) (20)

IR model (50–60 mg/kg sodium pentobarbital) (21–23)

Aortic constriction (AC) model (40 mg/kg sodium pentobarbital) (24, 25)

AR model (50 mg/ kg sodium pentobarbital) (26, 27)

PAB model (50–60 mg/ kg sodium pentobarbital) (28–31)

AVS model (50 mg/ kg sodium pentobarbital) (32, 33)

Two kidneys, one clip (2K1C) model (40 mg/kg sodium pentobarbital) (34–36)

Chloral hydrate 10 % (intraperitoneal

injection)

MI model (37, 38)

IR model (350 mg/kg chloral hydrate 10 %) (39, 40)

AC model (300 mg/kg chloral hydrate 10 %) (41, 42)

2K1C model (0.3 ml/100 g 10% chloral hydrate) (43)

Isoflurane (inhalational anesthesia) MI model (induction: 5%, maintenance: 2.5%) (44)

AC model (induction: 4%, maintenance: 2.5%) (45)

AVS model (induction: 4%, maintenance: 1.5%) (32, 46)

AR model (maintenance: 1.5%) (47)

PAB model (induction: 4% isoflurane in a mixture of 50% O2 and 50% N2O) (48)

A mixture of ketamine, xylazine, and

acepromazine.

MI model (50 mg/kg ketamine, 4 mg/kg xylazine, and 1 mg/kg acepromazine). (49)

Intraperitoneal injection of sodium

pentobarbital followed by an Intramuscular

administration of ketamine hydrochloride.

Cryoinjury-induced MI model (30 mg/kg sodium pentobarbital and 22 mg/kg ketamine

hydrochloride)

(50)

Intramuscular ketamine injection followed by

an intraperitoneal injection of pentobarbital.

Cryoinjury-induced MI model (22 mg/kg ketamine and 30 mg/kg pentobarbital). (51)

Diethyl ether (inhalational anesthesia) Cryoinjury-induced MI model (52)

A mixture of ketamine and medetomidine

intramuscular injection

2K1C model (60 mg/k ketamine and 250 µg/kg medetomidine) (53)

Ketamine intraperitoneal injection 2K1C model (90 mg/kg ketamine) (54, 55)

A mixture of injectable and inhalational

anesthesia ketamine hydrochloride and

isoflurane

AVS model (10mg per rat ketamine hydrochloride and subsequently anesthetized using 5%

isoflurane for the first minute followed by 2–3% during the remainder of the surgery).

(56)

A mixture of ketamine and midazolam AVS model (57)

Methohexital sodium intraperitoneal

injection

AVS model (50 mg/kg methohexital sodium). (58)

A mixture of pentobarbital and xylazine

intraperitoneal injection

PAB model (50 mg/kg pentobarbital and 5 mg/kg xylazine) (59)

A mixture of medetomidine-

midazolam-butorphanol (MMB) and

isoflurane followed by atipamezole

MI model MMB (0.3/5.0/5.0 mg/kg/SC) with isoflurane 1% encountered by atipamezole 1.0

mg/kg/SC

(60)
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FIGURE 2

Surgical techniques and limitations for some experimental rat models of heart failure (coronary artery ligation myocardial infarction [MI], cryoinjury

MI, ischemia-reperfusion, and aortic constriction models).

FIGURE 3

Surgical approach and shortcomings in some heart failure models in rats (two kidneys-one clip, arteriovenous shunt, aortic regurgitation, and

pulmonary artery banding models).

2.2.1.2. Limitations

These procedures are reported to have a mortality rate of more

than 50% due to malignant ventricular tachycardia in the acute

phase. Furthermore, infarctions are usually mild (averaging 21% of

the left ventricle), which may be due to the large amount of sub-

pericardial collateral circulation in this species. Consequently, only
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minor hemodynamic changes were observed (82). Furthermore,

creating the model is time-consuming and has been increasingly

criticized in terms of animal protection (83). Reichert et al. (84)

mentioned that the main limitation of this technique is the risk of

postoperative mortality, mostly caused by the occurrence of cardiac

arrhythmias, hemorrhage, and pneumothorax.

However, the MI model using the ligation technique produces

a wide variation in infarct size (85, 86). According to Pfeffer

et al. (87), the extent of the infarct ranges from 8 to 65%.

Widely varying results have minimal statistical significance and

limited utility, and infarct size is a significant predictor of left

ventricular remodeling and death. Survival, cardiac remodeling,

and hemodynamic dysfunction are frequently proportional to the

infarct size (88). The site of the occluding suture influences the size

of the infarct and the outcomes of coronary occlusion, and it is

difficult to identify the path of the LAD and the optimal ligation

site in small-sized rats (49, 88).

2.2.2. Cryoinjury-induced MI
Cryoinjury is another technique used to create anMI rat model.

It involves applying a cold probe to the surface of the heart,

typically the left ventricle, to freeze and damage a small area of

heart tissue. The resulting injury leads to a local inflammatory

response and scar formation, mimicking the pathophysiological

changes observed in human MI. This technique is commonly used

to study the effects of different therapeutic interventions on cardiac

repair and regeneration (89), as well as the underlying molecular

and cellular mechanisms involved in cardiac remodeling after

injury (90), evaluate the therapeutic effectiveness of biomaterials

for cardiac repair in the MI model (91), and examine the effect of

embryonic cardiomyocyte transplantation on HF progression (92).

According to Van Den Bos et al. (93), this is an ideal model

for studying therapeutic interventions to restore heart function or

cardiac regeneration following MI. They compared the results of

myocardial injury created by cryoinjury with the CAL method and

concluded that both resulted in a comparable loss of contractility

and diastolic dysfunction, but the cryoinjury model demonstrated

milder LV remodeling with no obvious heart failure. No obvious

cardiac failure due to a minor necrotic disc-shaped lesion caused

by the cryoprobe was observed. The generated lesion has cellular

characteristics, such as coagulation necrosis of myocardium. Thus,

it is an appropriate model for demonstrating myocardial repair

(93, 94).

The pathophysiology of MI in the cryoinjury approach differs

from that in other methods, such as LAD ligation, in that acute

cell death occurs without accompanying ischemia. It is caused by

mechanical stresses generated by the development of ice crystals

in the intracellular and extracellular spaces, as well as in the

vasculature (93). This technique has been employed in studies

involving intracardiac cell transplantation for myocardial repair

(89). Transplanted cells are easily injected at predetermined sites,

and the presence of vascular reperfusion is favorable for cellular

repair (93, 94).

2.2.2.1. Surgical technique

Three consecutive exposures to a liquid nitrogen-cooled

cryoprobe, a 6mm stainless steel cylinder, resulted in acute LV MI.

Blanching of the wall followed by hyperemia indicated the onset

of MI in the heart. In addition, the cryoinjury region of an MI

heart is distinguished by its pale appearance compared with the

surrounding tissue (Figure 2) (89).

2.2.2.2. Limitations

This method does not result in apparent HF following

cryoinjury, which is most likely due to the smaller infarct size

compared with coronary ligation. As a result, when an observable

HF model is required, the cryo-infarction model is not a choice; in

other words, cryo-infarction cannot replace the currently available

HF models. Instead, it can be used as a model for evaluating

medical treatments aimed at reducing cardiac remodeling and

improving heart function after myocardial infarction, such as drugs

that promote cardiac regeneration through progenitor cells or

growth factors (93), and invasive surgical procedures involving

thoracotomy, as in the LAD ligation technique (72).

2.2.3. Ischemia-reperfusion model
The IR rat model is a widely in used research to study the

pathophysiology of ischemic injury and test potential therapeutic

interventions. Its creation involves interrupting blood flow to

a specific organ or tissue (ischemia) for a period of time and

then restoring blood flow (reperfusion). In the case of the heart,

a common approach is to temporarily occlude the coronary

artery, induce myocardial ischemia, and then re-perfuse the

tissue by removing the occlusion (95). This process results in

a series of pathophysiological events, including oxidative stress,

inflammation, and cell death, which can be studied to better

understand the mechanisms of ischemic injury and identify

potential therapeutic targets. The IR rat model is used to

simulate ischemia-reperfusion injury that occurs in many clinical

conditions, such as MI, stroke, and organ transplantation (96),

and to evaluate the efficacy of human amniotic membrane

mesenchymal stem cell-derived conditioned medium against IR

injury (97).

Inducing MI in rodents with IR was originally tested in

experimental in vivo organs before being used in dogs in 1988 (98).

Initial apoptosis following hypoxia, as well as a smaller second wave

of necrosis, causes an infarct after IR, which is, therefore, regarded

as damage caused by reactive oxygen species and the opening of the

mitochondrial permeability transition pores (95).

The implementation of early reperfusion in the clinical

management of acute MI results in lower mortality and

enhanced cardiac function (99). The period between occlusion

and reperfusion ranged from 15min to 2 h, with 30min being the

most common (100). However, there is insufficient information

to support this conclusion. Some of the variances, as with

the permanent CAL procedure, can be explained by factors

such as operator experience and animal strain; however, the

time of reperfusion adds another major level of variance and

unpredictability to the outcome. As a result, 30min after IR, the

model may show infarct sizes of as low as 4%, indicating modest

damage with no influence on heart function or eventual pathology,

or as high as 30%, indicating minimal infarct size to significantly

impair function (100, 101).
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In all cases, the infarct size produced by IR was significantly

smaller than that produced by the permanent CALmethod because

blood flow restoration rescues a portion of the affected area. One

significant distinction between IR and permanent ligation (PL) is

the secondary onset of reperfusion damage. This occurs as a direct

result of the rapid return of blood flow to the damaged region, and

is a secondary cause of cell damage and death after ischemia. In

general, IR is more technically challenging than PL, resulting in

smaller andmore variable infarcts that frequently do not advance to

other cardiovascular pathologies. However, it allows researchers to

study the second wave of injury associated with blood reperfusion,

which applies to clinical interventions in human acute MI patients

but is not currently a therapeutic target (95).

2.2.3.1. Surgical technique

The same applies to the MI model, with a difference in the

ligation technique. After the heart was already visible, the LAD was

temporarily ligated using a piece of tubing. The suture was cut,

and the tubing was removed for reperfusion once the appropriate

period of ischemia had passed (Figure 2) (39).

2.2.3.2. Limitations

The most significant limitation of the IR model is that the

majority of damage is still caused by ischemia, with reperfusion

injury accounting for a considerably smaller second wave of post-

MI injury. Therefore, reperfusion injury may have no apparent

effect on the overall severity of MI (12). In addition, significant

variations in the results and outcomes were mainly dependent on

the IR time-course (102).

2.2.4. Aortic constriction model (pressure
overload)

The AC model is a commonly used experimental model of left

ventricular hypertrophy that involves partial constriction of the

aorta to increase the pressure in the left ventricle. Thismodel is used

to study the mechanisms underlying cardiac hypertrophy and HF,

to test potential therapeutic interventions (103), and to characterize

the immunomodulatory response in a pressure overload model of

HF (104).

Initially, banding had little or no effect on aortic flow, but

as the animal grew, the relative severity of the constriction

increased, resulting in heart hypertrophy, which has been utilized to

mechanically replicate the cardiac consequences of aortic stenosis,

systemic hypertension, and aortic coarctation in a variety of sites

(3, 105).

The constriction may be thoracic, near the aortic origin

(ascending AC [AAC]), or in the aortic arch between the first

and second trunks (transverse AC [TAC]). The constriction can

also be used in the abdominal aorta, either below or above

the renal arteries, with the latter inducing hypertension due to

renal hypoperfusion and concurrent LV hypertrophy. The main

distinction among these models is the anatomic position of the

constriction (106).

TAC and suprarenal AC cause a more gradual increase in

pressure, hypertrophy, and HF, whereas AAC is frequently used

to assess the effects of an early insult caused by pressure overload

(107). The severity of the disease varies according to the species,

age, and sex of the animal (108–110).

TAC surgery that reduces aortic diameter by 50%, causes a

systolic pressure gradient of 50–60 mmHg between the aorta

and the LV, resulting in clear echocardiographic evidence of LV

hypertrophy and an increase in left atrial pressure around the

eighth week (111). According to Weinberg et al. (109), after

18–20 weeks of compensatory LV hypertrophy, a subgroup of

rats eventually showed reduced LV systolic pressure, higher LV

volume, decreased ejection fraction, and clinical symptoms of overt

congestive HF.

2.2.4.1. Surgical technique

The anesthetized rats were placed in the supine position for

TAC. Following the skin incision, the upper half of the sternum

was separated in the midline using scissors, and the thymus was

removed. The aortic arch was carefully dissected from surrounding

tissues. A stylet (bent and blunted) 16G intravenous catheter was

tied securely to the aorta between the brachiocephalic trunk and

left common carotid artery using a 4.0 silk and then removed,

creating partial AC. Sutures were used to close the sternotomy and

skin incisions. Rats were extubated and placed in an incubator at

28–30◦C for recovery (Figure 2) (45).

Rats were intraperitoneally injected with buprenorphine (0.1

mg/kg) for postoperative analgesia. In addition, the rats were

administered oxytetracycline (500 mg/L of water) via drinking

water for 7 days (112).

2.2.4.2. Limitations

In the TAC model, although the onset of HF development

differs significantly from that of patients with hypertension or

aortic stenosis, the initiation of hypertension in this model is

sudden and results in a 50% increase in LV mass within 2 weeks;

thus, this is an ideal model to investigate intervention strategies that

affect the development of cardiac hypertrophy (113).

AC (abdominal AC in the infrarenal and suprarenal positions)

can also produce chronic LV pressure overload, which eventually

leads to cardiac hypertrophy and dysfunction. The progression of

this model to HF is more gradual, making it more appropriate for

hypertension-related HF. Because it does not require chest opening

or artificial breathing, it is more routinely utilized in rats than TAC

(114, 115).

2.2.5. Two kidneys-one clip (2K1C) model (renal
failure-induced hypertension, renovascular
hypertension)

The 2K1C model is an experimental model of renovascular

hypertension that involves placing a clip on one of the renal arteries

to reduce blood flow to one of the kidneys. This reduction in blood

flow stimulates the renin-angiotensin-aldosterone system, leading

to increased blood pressure. This model was used to study the

mechanisms of hypertension, test the efficacy of antihypertensive

therapies (116), and study the significance of stem cell therapy in

the remodeling of fibrotic kidney parenchyma (117).

The physiological function of the kidney includes maintaining

electrolyte and fluid balance as well as secretion of renin, a key

component of the renin-angiotensin system. Thus, its role in blood
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pressure regulation and the development of hypertension is widely

acknowledged. Since Goldblatt et al. (118) created an elevation in

blood pressure by partially closing the renal artery in dogs in 1934,

many renal-generated hypertension models have been successfully

established in rats, rabbits, sheep, and cats.

According to Weber et al. (119), within 2–4 weeks of clipping

the kidney, the model is characterized by significant elevations in

plasma renin activity, as well as elevated circulating angiotensin II

concentrations and blood pressure. After 4 weeks, plasma renin

activity and angiotensin II levels returned to near-normal levels,

regardless of the presence of interstitial fibrosis in the heart,

particularly around the intramural coronary arteries. Within a

few months, a chronic phase developed, marked by increased

plasma renin activity and myocardial perivascular and interstitial

fibrosis (119).

Junhong et al. used 2K1C to simulate a rat model of

diastolic dysfunction and studied its biochemical alterations using

proteomic techniques. They found that diastolic dysfunction was

observed in hypertensive rats 8 weeks after the operation, as

evidenced by increased wall thickness, fibrosis, impaired relaxation,

and increased chamber stiffness (54). Another experiment was

conducted in our laboratory to induce renovascular hypertension

in rats to study novel echocardiographic techniques and herbal

medicines in this model (120).

2.2.5.1. Surgical technique

The anesthetized rats are subjected to a flank abdominal

incision to expose the left renal hilum, and the renal artery and

vein are carefully identified by blunt dissection. To prevent vessel

compression during clip placement, an insulin needle tip with an

outer diameter of 0.23mm is employed in each of the rats. A

titanium vascular clip is also gently placed around the left renal

artery. After that, the needle tip is carefully removed, the contents

of the abdomen are gently returned to their original location, the

abdominal wall and skin are sutured, and the animals are allowed

to recover (Figure 3) (43, 55). Non-steroidal anti-inflammatory

flunixin meglumine (2.5 mg/kg, subcutaneously) and antibiotic

enrofloxacin (5 mg/kg, subcutaneously) can be administered as

postoperative treatment (121).

2.2.5.2. Limitations

Renovascular hypertension created by this model usually

produces a complex HF model, in which myocardial hypertrophy

is eccentric due to overloading and concentric due to hypertension

that develops in addition to renal failure. Although this model

somewhat mimics complex renal failure-induced HF to some

extent, there are some issues regarding the success rate and rapid

change in the geometry of the heart, which limit the study of

detailed hemodynamic investigations of the heart. In a study by

Ma et al. the feasibility of a novel IVPG assessment did not show

significant benefits in this model within 8 weeks. However, his data

revealed clear evidence of rapid changes in myocardial strain and

the efficiency of a new medicine (salvianolic acid B) to ameliorate

the pathological consequences of the heart in this model (120).

The 2K1C approach is not always successful in rats; for

example, in the Dussaule experiment, 19 rats did not acquire

hypertension, 27 had malignant hypertension, and 12 died; only

47 (45%) established stable hypertension (122). In addition,

Amann et al. (123) found that after 14 months of uremia,

ventricular hypertrophy in operated rats was not accompanied

by an increase in the capillary number. Although this model

undoubtedly enables the analysis of hypertension following renal

failure, it is difficult to determine how it may be used for human

essential hypertension (124).

2.2.6. Arteriovenous shunt model (volume
overload)

The AVS model is an experimental model that involves the

surgical creation of a direct connection between an artery and vein,

bypassing the capillary bed. This results in increased blood flow

and pressure in the vein, mimicking the hemodynamic changes

observed in certain pathological conditions, such as arteriovenous

fistulas. The AVS model was used to study the effects of increased

blood flow and pressure on vascular function and to test potential

therapeutic interventions (32).

Aortocaval fistula (ACF)-induced chronic volume overload

in rats is a well-studied rodent HF model (106). This model

is simple and reliable, and it features several crucial aspects of

human HF, including a gradual change from the asymptomatic to

the decompensated phase, considerable neurohumoral activation

(125), fluid retention, and changes in myocardial phenotype typical

of HF (126).

An artificial shunt between the abdominal aorta and the

inferior vena cava causes a significant increase in cardiac

output and venous return, which causes compensatory, initially

asymptomatic ventricular hypertrophy (127), prolonged

hemodynamic overload, redistribution of cardiac output, and

activation of the neurohumoral response, causing HF to appear

8–10 weeks after ACF induction (57).

AVS have been used to cause volume overload, dilated

cardiomyopathy, and HF in rodents (128). Despite the limitation of

requiring laparotomy, the more recent aortocaval shunt technique

is a comparably faster and easier way to induce HF with good

survival rates (3, 129).

The hemodynamic data in these models suggest a persistent

increase in the LV diastolic volume. The Frank–Starlingmechanism

is responsible for maintaining a high output status in the early

stages following the development of the AV shunt. This variable

represents an abrupt increase in wall stress caused by volume

overload, whereas changes in LV end-diastolic pressure indicate

that the development of cardiac hypertrophy and dilation of the

cardiac chamber tend to regulate wall stress (6).

2.2.6.1. Surgical technique

Flaim et al. established aHF ratmodel of a chronic AVS between

the abdominal aorta and the inferior vena cava, and surgical

introduction of an arteriovenous fistula between the abdominal

aorta and the inferior vena cava at a point ∼5mm caudal to the

left renal vein was used to induce a high cardiac output state. After

general anesthesia, a midline incision in the abdominal wall was

made to expose the peritoneal cavity, and the abdominal aorta

and vena cava were exposed and isolated for ∼20mm before all

branches were occluded using bulldog clamps A 10mm segment

of the aorta and vena cava were isolated under a dissecting

microscope by placing two bulldog clamps across the main vessels,
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and openings of approximately comparable size (width, 1mm)

were made through the medial walls at the midpoint of the isolated

segments. Three interrupted microsurgical sutures (9-O Ethilon)

were used to unite the opposing sides of the two apertures; the

clamps were removed, and the patency of the fistula was visually

confirmed by the presence of mixed arterial blood in the vena cava.

After closing the abdominal incision, the animal was allowed to

recover (Figure 3) (125, 130).

On the other hand, Garcia and Diebold developed a simple,

rapid, and effective method for exposing the vena cava and

abdominal aorta by opening the abdominal cavity with a midline

incision, placing a 18-gauge needle into the abdominal aorta and

progressing through themedial wall into the vena cava, constricting

the aorta is momentarily below the origin of the right renal artery,

and quickly repairing the aortic puncture using a cyanoacrylate

glue. To confirm the patency of the shunt, a pulsatile flow of

oxygenated blood into the inferior vena cava is visually observed.

A standard method is used to close the abdominal cavity using an

absorbable suture (131).

2.2.6.2. Limitations

In rats, an AV fistula is formed by a side-to-side anastomosis

of the aorta and vena cava (125) or by end-to-side anastomosis

of the left iliolumbar vein (56). Both operations necessitate

microvascular surgery, and the circulatory system is occluded for

15–30min. Furthermore, because these surgical procedures take

40 mins to complete, mortality rates range from 47 to 76% (56,

125). In addition, shunt size and hypertrophic and hemodynamic

characteristics have been inconsistent (13).

2.2.7. Aortic regurgitation model (volume
overload)

AR models are often created through surgical interventions

such as aortic valve leaflet perforation or cusp removal. These

procedures can lead to increased retrograde blood flow, resulting

in AR. The severity of regurgitation can be assessed using various

imaging techniques, such as echocardiography or MRI. These

models can be used to study the pathophysiology and potential

treatments of AR (132) and to study biological and tissue-

engineered valvular and cardiovascular grafts in vivo (133).

AR is another volume overload model of HF that is induced by

ventricular volume regurgitation and is thus directly related to the

severity of aortic insufficiency. Mild AR causes only minor volume

overload, whereas severe AR causes considerable LV volume

overload and increasing chamber dilatation. AR can be classified as

compensated or decompensated. In compensated AR, the LV first

responds to volume overload by eccentric hypertrophy, preserving

LV diastolic compliance and allowing LV filling pressures to

stay normal or mildly elevated despite a substantial regurgitation

volume. Decompensated AR is defined as LV systolic dysfunction

and poor LV diastolic compliance as a result of hypertrophy and

fibrosis, resulting in excessive filling pressures and HF (6, 134).

Although not the most frequently encountered valvular disease,

it has been estimated based on the findings of the Framingham

study that 13% of the population suffers from some degree

of AR (135). While mild AR normally does not cause any

significant problems, the disorder can grow silently for decades and

worsen. This stealthy progression results in increased LV dilatation,

hypertrophy, and, finally, HF (136, 137).

2.2.7.1. Surgical technique

AR is established in anesthetized animals by exposing the

right carotid artery through a right lateral neck incision. The

distal common carotid artery is ligatured using a 4.0 nylon suture,

followed by a arteriotomy to allow the insertion of a 0.9-mm guide

wire. The thorax is scanned with an echocardiographic probe to

obtain a clear view of the left ventricle, aortic valve, and ascending

aorta, which is equal to a parasternal long-axis view in standard

human echocardiography. Under continuous echocardiographic

observation, an arterial leader catheter is moved retrogradely

toward the aortic valve, and the position and passage of the catheter

through the aortic valve leaflet and into the left ventricle are guided

by the sonographer; an acute AR is caused by a tear in the leaflet

(Figure 3) (138).

The following echocardiographic criteria were used to

determine AR at the time of surgery: the color Doppler ratio

of regurgitation jet width to left ventricular outflow tract

obstruction diameter was 50–70%, and pulsed-wave Doppler

proved reversed diastolic flow in the abdominal aorta (139). When

the echocardiographic criteria determined that the severity of the

regurgitation jet in the abdominal aorta was insufficient, leaflet

perfusion was repeated. After the AR was established, the proximal

carotid artery was ligated using 4.0 nylon sutures (140). In the first

few hours following surgery, the animals were observed for any

signs of respiratory distress that could indicate severe HF. They

were weighed daily to check for excessive weight gain, which could

be a sign of pending HF (138).

2.2.7.2. Limitations

This rat model has various drawbacks in terms of AR.

One of the most serious complications is the extremely high

mortality rate associated with acute AR secondary to HF. Multiple

aortic valve leaflet perforations can cause serious valve damage,

uncontrollable HF, and death. Therefore, wire perforations should

be performed while echocardiography is being monitored, and

repeated perforations should be avoided (140).

Another challenge is the wire size of the perforations. Some

researchers prefer thicker wires (0.9mm), which can result in

multiple leaflet injuries with severe AR, while others prefer thinner

wires (0.3mm), which result in relatively moderate AR (138, 141).

Thus, a wire diameter of 0.6mm may be more acceptable for

creating a modest AR model (6).

2.2.8. Pulmonary artery banding model (right
ventricle pressure overload models)

PAB is a surgical model used in rats to induce right ventricular

(RV) pressure overload and study the development of RV

hypertrophy and HF. In this model, a band is placed around the

pulmonary artery, restricting blood flow to the lungs and causing

an increased RV afterload. The severity of RV pressure overload can

be adjusted by varying the tightness of the band. PAB is commonly

used in cardiovascular research to investigate the molecular and

cellular mechanisms involved in RV hypertrophy and HF to test

potential therapies for these conditions (28) and to explore the
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efficacy of stem cell therapy for RV failure in pulmonary arterial

hypertension (142).

Pulmonary arterial hypertension (PAH) is a chronic and

frequently fatal condition (143). Although the primary pathology

originates in the pulmonary vasculature, mortality is determined

by RV remodeling, dysfunction, and eventual failure (144). Several

animal models of RV pressure overload and PAH have been

developed to study the pathophysiology of PAH and RVs, as well

as their response to prospective treatments. PAB, Sugen-5416 plus

hypoxia (SuHx)-induced PAH, andmonocrotaline (MCT)-induced

PAH are some of the models used (145–148). Several studies have

demonstrated that these models produce distinct RV responses in

terms of adaptive RV hypertrophy in the PAB model, in contrast

to the maladaptive failure in the SuHx and MCT models (28,

149). Several characteristics of maladaptive RV remodeling in the

PAH model have been proposed, including RV dilation, reduced

function, fibrosis, and capillary rarefication (29, 150). However, as

of the confounding effects of potentially altered pulmonary vascular

resistance, hypoxia, molecular modulation (e.g., VEGF inhibition),

or toxins on RV function, the MCT and SuHx models cannot be

used to investigate isolated RV effects of potential therapies, and

the PAB model is relevant in this regard (29, 151, 152).

PAB involves constricting the pulmonary artery using a band

or clip to increase the workload on the right ventricle and

simulate the effects of pulmonary hypertension. A pre-adjusted

hemostatic clip is the most widely used approach in small animal

models of rats and mice (48, 153, 154), or a ligature tightened

around the pulmonary artery (155–157). Both procedures are

effective; however, the clipping approach may be easier to learn

and more reproducible, whereas the ligature method does not use

metal, making it better suited for MRI or ultrasound evaluation

of pulmonary artery flow (158). The banding method has the

advantage of allowing for accurate titration of afterload to produce

RV hypertrophy, compensated RV failure, or decompensated RV

failure owing to the precise diameter of the band/clip (159, 160), as

evidenced by hypertrophy with preserved hemodynamics, altered

hemodynamics without extracardiac symptoms of RV failure, and

altered hemodynamics with extracardiac signs of RV failure (158).

2.2.8.1. Surgical technique

The anesthetized animals are mechanically ventilated after

intubation using a volume-controlled respirator and oxygen-

enriched room air. After induction left thoracotomy, the

pulmonary artery (PA) is gently torn free from the aorta using a silk

thread that is threaded beneath the PA, then an 18-gauge needle is

threaded alongside the PA, and the suture is securely tied around

the needle and swiftly released, leaving a fixed, constricted aperture

in the lumen equal to the needle’s diameter. The combination of

a fixed banding around the PA and the animal’s growth results

in dramatically elevation RV afterload over time (Figure 3)

(28, 161, 162). In another technique using a clip applier with a

stopper, a small clip is half-closed around the PA, and blood flow

via the PA is restricted to the inner segment of the half-closed clip

(59). Buprenorphine (15 g/kg sc) is used to relieve postoperative

pain (28).

2.2.8.2. Limitations

A challenge with the banded model is to include RV failure,

rather than simply a well-adapted hypertrophic RV. The difficulty

is that a tight band causes abrupt RV failure and mortality in

adult animals, whereas a loose band causes compensatory RV

hypertrophy. To overcome this, most models begin operations with

weaning. This causes stenosis to worsen as the animal develops,

allowing for catastrophic RV failure over time (158, 163).
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