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In plant breeding programs, multiple traits are recorded in each trial, and the traits
are often correlated. Correlated traits can be incorporated into genomic selection
models, especially for traits with low heritability, to improve prediction accuracy.
In this study, we investigated the genetic correlation between important
agronomic traits in safflower. We observed the moderate genetic correlations
between grain yield (GY) and plant height (PH, 0.272–0.531), and low correlations
between grain yield and days to flowering (DF, −0.157–0.201). A 4%–20%
prediction accuracy improvement for grain yield was achieved when plant
height was included in both training and validation sets with multivariate
models. We further explored the selection responses for grain yield by
selecting the top 20% of lines based on different selection indices. Selection
responses for grain yield varied across sites. Simultaneous selection for grain yield
and seed oil content (OL) showed positive gains across all sites with equal weights
for both grain yield and oil content. Combining g×E interaction into genomic
selection (GS) led to more balanced selection responses across sites. In
conclusion, genomic selection is a valuable breeding tool for breeding high
grain yield, oil content, and highly adaptable safflower varieties.
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Introduction

Genomic selection (GS), as an efficient breeding tool, was first implemented in animal
genetic improvements (Schaeffer, 2006; Meuwissen et al., 2013). With the availability of
genome-wide markers and low-cost genotyping technologies, GS is rapidly adopted in plant
genetics and breeding (Heffner et al., 2009; Lin et al., 2014). In GS, a training population,
which has been genotyped and phenotyped, is used to train a statistical model to predict
individuals that have been genotyped but not phenotyped. The predicted value is termed as
an estimated breeding value (EBV) if the model utilized a pedigree relationship between
individuals and a genomic estimated breeding value (GEBV) if marker data is used in the
analysis. The EBVs or GEBVs can be used to rank and select germplasm (Meuwissen et al.,
2001; de Los Campos et al., 2013).

Implementing GS in the breeding program heavily depends on the prediction accuracy of
GEBVs. Multivariate models showed higher prediction accuracy than univariate models in
GS studies (Jia and Jannink, 2012; Sun et al., 2019). The additional information in genetically
correlated traits is exploited in multivariate models, and the higher the correlation is, the
greater the multivariate models would benefit (Zhao et al., 2022a). Rutkoski et al. (2016)
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included canopy temperature and normalized difference vegetation
index in a multivariate model, which resulted in a 70% prediction
accuracy improvement for grain yield in wheat. Important
agronomy traits, such as days to flowering, plant height, etc.,
with malting quality traits, were used to assess the prediction
accuracy of multivariate models, and the result showed a 76%
higher predictive ability than univariate models (Bhatta et al., 2020).

GS can improve the genetic gain of target traits in crop breeding
programs mainly by increasing selection accuracy, shortening
breeding cycles, etc. (Falconer and Mackay, 1996; Xu et al.,
2017). Studies to compare genetic gains achieved by different
selection strategies have been conducted with real datasets and
simulations (Woolliams et al., 2015; Marulanda et al., 2016).
Simulation with ryegrass showed a 4-year reduction in cycle
time, with genetic gain doubling or tripling when GS is
incorporated into the breeding program (Lin et al., 2016). In the
short breeding cycle, improving the selection accuracy would be
important for higher genetic gain. Beyene et al. (2015) estimated
genetic gains in grain yield in eight bi-parental maize populations
and observed higher grain yield achieved fromGS than conventional
pedigree-based phenotypic selection (PS). A study with wheat
indicated that the integrated PS + GS approach could result in
an optimal genetic gain for yield (Lozada et al., 2020).

GS can simultaneously select multiple traits with the genomic
selection index (GSI), a linear combination of ‘traits’ GEBVs. Both
simulation and real data showed that GSI was more efficient than the
phenotypic selection index (PSI) per unit of time (Ceron-Rojas et al.,
2015; Habyarimana et al., 2020b). A study with maize confirmed
that GSI is more efficient in obtaining sustainable gain than the
phenotypic selection index (PSI) per unit of time in selection for
grain yield, plant height, etc. (Ceron-Rojas et al., 2015). Various GSI
were compared in wheat, and the results indicated the employed
GSI mitigated the negative trade-off between grain yield and
protein content and led to a substantial selection response for
protein yield (Michel et al., 2019). In multitrait index selection,
the choice of the selection index and the assignment of the
weights to different traits strongly affected the selection gain
(Marulanda et al., 2021).

Safflower is a multi-purpose crop that is grown worldwide in
Africa, America, Europe, and Asia (Zohary, 1999). It is grown as a
vegetable, cut flower, herbal medicine, bird feed, etc. However, the
main growing interest has shifted to safflower seed oil because of its
high oleic and linoleic acid content (Li and Mündel, 1996; Khalid
et al., 2017). In 2020, the global safflower growing area was about
0.8 million ha, and it was around 40,000 ha in Australia (FAO,
2020). Safflower has the potential to be further incorporated into the
farming system because of its drought tolerance. Two Australian
safflower varieties released in 1998 carried resistance to leaf spot
(Alternaria Carthami) and root rot (Macrophomina phaseolina),
respectively, and most varieties grown today in Australia were
developed overseas (Jochinke et al., 2008). Breeding for high-
yield safflower varieties is under demand. In this study, we
attempted to evaluate the genetic gain by adopting genomic
selection to select elite crossing parents from a diverse Genebank
collection. The aims of the study were 1) to estimate the genetic
correlation between major safflower agronomy traits; 2) to evaluate
the genomic prediction accuracy for safflower grain yield by
combining other traits with multivariate prediction models; 3) to

compare selection responses of grain yield to different safflower
selection strategies.

Materials and methods

Plant material, phenotyping, and genotyping

The plant material used in this study belongs to a diverse
safflower collection sourced from the Australian Grain Genebank.
The accession information, field design, and genotyping detail have
been described previously (Zhao et al., 2021). Briefly, all accessions
in the collection were tested in 2017 and 2018 with two trials each
year: site 1 (2017 irrigation site, IR), site 2 (2017 rainfed, RF), site 3
(2018 rainfed in low rainfall zone, LR), and site 4 (2018 rainfed in
high rainfall zone, HR). Site IR was the optimal site. Site RF suffered
water stress at the flowering stage, and sites LR and HR suffered
water stress during the whole safflower growing period. Field trials
adopted a randomized complete block design with 2-3 replications,
and the plot size was 1 m × 5 m with five rows in each plot. Eight
traits were recorded (Supplementary Table S1), including days to
flowering (DF, days from sowing to 25% of the plot flowering), days
to maturity (DM, days from sowing to 90% of the plot being
physiologically mature), flowering time (FT, days from flowering
to mature), plant height (PH, in cm), seed weight (SW, Gram/per
500 achenes), grain yield (GY, t/ha, with the plot width 1.25 m), seed
protein (PC%), and seed oil content (OL%).

A total of 349 safflower accessions were genotyped with
genotyping-by-sequencing (GBS). Six seeds per accession were
crushed, and genomic DNA was extracted, digested, amplified,
purified, and sequenced with Illumina Hiseq 3,000 sequencer
with in-house GBS protocols. SNPs were filtered with a missing
data rate of <50% and minor allele frequency (MAF) > 0.01 for this
study. The resulting 6,911 SNPs were imputed with LinkImpute
(Money et al., 2015) and showed in Supplementary Table S2. Details
on the population structure of those accessions have previously been
described by Zhao et al. (2021).

Genomic parameters estimation

A multivariate linear mixed model with the variance-covariance
matrix was used to estimate the genetic parameters (i.e., heritability,
genetic variance, and genetic correlation between traits) at each site.
The model could be illustrated as follows:

y1
y2

[ ] � X1 0
0 X2

[ ] b1
b2

[ ] + Zg1 0
0 Zg2

[ ] g1
g2

[ ] + Zr1 0
0 Zr2

[ ] r1
r2

[ ]
+ Zc1 0

0 Zc2
[ ] c1

c2
[ ] + ε1

ε2
[ ] (1)

where y1 and y2 are the vectors of two traits, b1 and b2 are the vectors
of two traits’ mean and replications, g1 and g2 are the vectors of
random genetic effects following a variance-covariance matrix of

two traits, as
g1
g2

[ ] ~ N 0, I ⊗ T( ) in where T � σ2g1 σg12
σg21 σ2g2

[ ] , r1,

r2, c1, and c2 are the field design row and column vectors of two
traits, ε1 and ε2 are the residuals of two traits also following a
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variance-covariance matrix as
ε1
ε2

[ ] ~ N 0, I ⊗ R( ), in where

R � σ2e1 σe12
σe21 σ2e2

[ ]. X, Zg, Zr, and Zc are the incidence matrices

associating phenotypes with fixed and random effects, and I is
the identity matrix. Phenotypic variance (σ2P) were calculated
according to: σ2P � σ2G + σ2e where σ2G is the genetic variance, σ2e is
the residual variance. The broad sense heritability (H2) was
calculated as follow:

H2 � σ2G/ σ2G + σ2e( ). (2)

The phenotypic correlation between traits was calculated as:

rP x,y( ) � covP xy( )/ ������
σ2Pxσ

2
Py

√
, (3)

where σPx
2 and σPy

2 are the phenotypic variances of traits x and y,
covP(xy) is the covariance. When the genomic relation matrix (G)
replaced I in the model, narrow sense heritability (h2) was calculated
as the proportion of additive genetic variance (σ2A) to the total
phenotypic variance:

h2 � σ2A/ σ2A + σ2e( ) (4)

The additive genetic correlation (rA(x,y)) was calculated the same
as the phenotypic correlation but with the additive genetic variance
(σAx

2, σAy
2) and covariance (covA(xy)). All calculations were

conducted with ASReml (Gilmour et al., 2015).

Prediction accuracy for grain yield

The best linear unbiased estimates for each safflower accession
(BLUEs) were estimated for each trial the same as the previous study
(Zhao et al., 2021) by fitting accessions as fixed effects and an
autoregressive (AR) correlation structure in the error to account for
the spatial variation. GBLUP model was adopted for the genomic
prediction accuracy evaluation. It could be illustrated as follow:

y � Xb + Zg + e (5)
where y is the vector of BLUEs, b is the vector of means, g is the
vector of additive genetic effects, e is the residual, and X and Z are
the correspondent design matrix for g and b. When the BLUEs of
single trait GY (univariate), GY with PH/DF, and GY, PH, and DF
(multivariate), were fitted respectively, different prediction models
were developed for estimating the prediction accuracy of GY.

The prediction accuracy was defined as ‘Pearson’s correlation
coefficient between GEBVs and BLUEs for GY by a five-fold cross-
validation method. All accessions were randomly divided into five
equal subsets. Each subset was, in turn, chosen as the validation set
and was subsequently predicted by using the other four subsets as
the training set. The prediction accuracies of multivariate models
were compared from two cross-validation prediction scenarios. The
first cross-validation scenario (MT-CV1) predicted accessions in the
validation set that have been phenotyped with PH and DF but not
GY, while the training set had phenotypes of GY, PH, and DF. The
second cross-validation scenario (MT-CV2) predicted the
performance of accessions in the validation set that have not

been evaluated with GY, PH, and DF, while the training set had
been phenotyped with GY, PH, and DF. The whole process was
repeated five times. We calculated the mean prediction accuracy and
standard deviation (SD) across all 25 validation sets at each site.

Selection response

Aside from assessing the genomic prediction accuracy for GY,
we further explored the selection responses of two breeding
strategies with different indices, which 1) aimed to select high-
yield genotypes and 2) to select simultaneously high-yielding and
high-oil content genotypes. Zhao et al. (2022b) observed high
correlations between performance of lines at the site LR and HR
for all traits, and outcomes should be comparable between LR and
HR. Therefore, we only calculated the selection responses at sites IR,
RF, and LR.

For selecting GY, we used BLUEs as the phenotypic selection
index to perform phenotypic selection (PS). GEBVs estimated from
the univariate model as the first GS index (SGS) and GEBVs
estimated from the multivariate model (PH and GY) as the
second GS index (MGS) were used for the genomic selection
(GS), respectively.

For simultaneously selecting GY and OL, we compared two
indices. We gave equal weight to GY and OL without considering
the correlation between those two traits, represented as multi-
trait GS index 1 (MTGS1). The GEBVs estimated for GY and OL
with univariate GBLUP models were standardized before
applying the weights. The second multi-traits GS index
(MTGS2) was calculated with unequal weights, calculated
following the formula: b � P−1g, where b is a vector of index
weight for each trait, g is a vector of the additive genetic variance
of the traits, P−1 is the inverse of the phenotypic variance-
covariance matrix (Dekkers, 2007):

σ2p1 σp12
σp21 σ2p2

( ), (6)

where σ2p1 and σ
2
p2 are the phenotypic variance of GY and OL, and

σp12 is the covariance. All the genomic parameters were estimated
with model 1. MTGS1 and MTGS2 were calculated in a
conventional way as the linear combination of the weighted
GEBVs.

All selections with different indices were conducted at each site.
The selection responses at the other two sites were also calculated
with the same selected candidates to compare the response across
sites. We further estimated GEBVs for GY and OL with a g×E
GBLUP model, which combined three sites and described by (Zhao
et al., 2021) as follows:

y � Xb + Zg + Z2gE + e (7)
Where terms are the same as in model (2), with gE being the
interaction between site and additive genetic effects and Z2 being the
incidence matrix. The combined GEBVs were used as GSI for GY
selection (g×EGS) or combined with equal weights to
simultaneously select for GY and OL (g×EMTGS1).

We selected the top 20% of the accessions based on indices as
selected candidates. The selection differential (S) is calculated as the
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difference between the mean GY or OL of the selected candidates
and the mean GY or OL of the diverse population at each site. We
used the selection differential to calculate the selection response (R)

according to R = h2S, where h2 is the narrow-sense heritability, and S
is the selection differential. The percentage of the gain increased at
each site was calculated to facilitate the comparison.

TABLE 1 Estimated variance components and narrow sense heritability (h2) with SD in each site.

IR RF LR HR

σ2e σ2A h2 ± SD σ2e σ2A h2 ± SD σ2e σ2A h2 ± SD σ2e σ2A h2 ± SD

SW 2.297 9.726 0.808 (0.0) 2.741 8.461 0.756 (0.001) 3.847 6.55 0.63 (0.001) 3.471 6.962 0.669 (0.002)

PH 61.84 176.286 0.74 (0.001) 52.116 152.129 0.745 (0.0) 55.524 23.94 0.301 (0.001) 41.729 35.894 0.463 (0.002)

DF 3.594 9.621 0.728 (0.003) 4.707 3.083 0.394 (0.003) 5.966 15.301 0.719 (0.0) 5.996 15.843 0.727 (0.002)

GY 0.557 0.682 0.548 (0.004) 0.291 0.294 0.502 (0.007) 0.11 0.034 0.229 (0.01) 0.089 0.037 0.287 (0.014)

OL 3.067 11.73 0.792 (0.001) 4.169 10.947 0.723 (0.001) 3.484 7.121 0.673 (0.003) 3.303 7.994 0.706 (0.001)

PC 0.294 0.342 0.539 (0.004) 0.272 0.395 0.592 (0.005) 0.26 0.327 0.559 (0.002) 0.38 0.483 0.559 (0.003)

FT 3.898 4.546 0.536 (0.004) 5.645 5.716 0.502 (0.003) 4.583 3.414 0.426 (0.002) 3.621 4.255 0.541 (0.002)

DM 6.163 13.534 0.686 (0.003) 2.583 4.028 0.609 (0.002) 12.844 12.696 0.498 (0.002) 7.274 9.503 0.567 (0.001)

Note: *σ2e, error variance; σ2A, additive genetic variance; ** IR, site 1 (2017 irrigation site), RF, site 2 (2017 rainfed), LR, site 3 (2018 rainfed in low rainfall zone), and HR, site 4 (2018 rainfed in

high rainfall zone); *** DF, days to flowering; FT, flowering time; DM, days to maturity; PH, plant height; SW, seed weight; GY, grain yield; PC, seed protein content; and OL, seed oil content.

FIGURE 1
Additive genetic correlation among pairwise safflower traits in four field sites. Color ranged from dark orange to dake blue is correspondent to the
genetic correlation (rg) from −1 to 1. The abbreviations used for sites and traits in this figure are described in Table 1.
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Results

Heritability and correlation

We estimated the variance components and the narrow
sense heritability (h2) for all traits in each site. The results are
averaged from pairwise traits combination and shown in Table 1.
The estimated additive genetic variance (σ2A) was higher than
the error variance (σ2e) for most traits at all sites, suggesting
SNPs used in the study were able to capture the additive
genetic variations in both the optimal site and stressed
sites. SW and OL showed high estimated h2, ranging from
0.63 to 0.81, while PC, FT, and DM all showed moderate h2,
around 0.5 at all sites. We observed large variations between
sites for h2 for DF, PH, and GY. DF had a relatively low
estimated h2 at site RF, 0.4, with high h2 at the other three
sites. The estimated h2 for GY and PH were lower at sites
LR and HR compared with sites IR and RF. The boxplot of
BLUEs for each trait at each site was shown in Supplementary
Figure S1.

The additive genetic correlations between traits within each
site are shown in Figure 1. We observed the negative
correlations between SW with OL and SW with PC at all
sites (−0.4 ~ −0.5), while OL and PC showed positive
correlations with a strong positive correlation observed at
sites LR (0.56) and HR (0.73). The correlations between OL
and GY were low and varied across sites, from −0.02 at site LR to
0.19 at site IR. However, negative correlations between PC and
GY were observed for all sites, ranging from −0.47 to −0.13. GY
and PH showed a low positive correlation (0.27) at site LR, but it
was moderate at the other three sites, and low correlations
between GY and DF (−0.16–0.2) were observed at all sites. The
phenotypic correlations between traits also showed similar
patterns (Supplementary Figure S2).

Prediction accuracy for multivariate models

In this study, the grain yield (GY) at each site was predicted with
univariate and multivariate models by fitting BLUEs as the
“phenotypes”. All models showed higher prediction accuracy at
sites IR and RF than at sites LR and HR in both scenarios (Figure 2).
The prediction accuracy for grain yield varied across four sites with
the highest accuracy achieved at site RF, 0.61, and lowest accuracy at
site LR, 0.28 with the univariate model. In the CV1 scenario, we
observed the prediction accuracy for the GY_DF multivariate model
was comparable to univariate model. However, the GY_PH model
showed higher prediction accuracy than the univariate model, with a
4% accuracy increase at site IR and a 20% increase at site LR. The
GY_DF_PH multivariate model performed the same as the GY_PH
multivariate model at sites IR and RF but with lower accuracy at sites
LR and HR. In the CV2 scenario, we observed all multivariate
models performed the same as the univariate model across all sites.

Selection response to different selection
strategies

The percentage of gain increase for each site was plotted in
Figure 3. For the single trait GY selection (Figures 3A1–C1), we
observed that the highest selection response for GY was achieved
when the selection was conducted at the optimal site (IR), and the
response was compromised at the stressed sites (RF and LR). When
the selection was conducted at stressed sites, the selection response
in the optimal sites was reduced dramatically (Supplementary Table
S3). When selected at site IR, the yield gain was 0.7 t/ha, about a 23%
yield increase. However, with the same selected candidate, the gain
was compromised to 0.3 t/ha, about a 16% yield increase at site RF,
and 0.03 t/ha, about a 2.6% yield increase at site LR. When selection
at sites RF and LR, higher gains were achieved for both sites, with

FIGURE 2
Cross-validation genomic prediction accuracy (PA) with standard deviation (black line) using different prediction models for grain yield (GY) in
safflowerwith two scenarios at four sites. Note: * Scenarios =GY predicted in the validation set when the CV1: Had plant height (PH) and days to flowering
(DF) phenotypes, or CV2: Had no PH and DF phenotypes.** Models = GY (univariate, GY), GY_PH (multivariate, GY and PH), GY_DF (multivariate GY and
DF), and GY_PH_DF (multivariate, GY, PH, and DF) *** The abbreviations used for sites and traits in this figure are described under Table 1.
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0.4 t/ha, about 24% yield increase at site RF, and 0.08 t/ha, about 8%
gain increase at site LR. But the gain for site IR was reduced to 0.36 t/
ha (about 12% yield increase) and 0.2 t/ha (about 7% yield increase),
respectively. With GEBVs predicted from the g×EGS model, we
achieved a more balanced gain for the three sites, with 22% for IR,
20% for RF, and 4% for LR. The data revealed no major response
differences between PS, SGS, and MGS for single traits GY selection,
but MGS often performed a bit better than SGS. We didn’t observe a
big difference of gains between PS and GS when selecting at sites IR
and RF, but the PS showed a slightly higher gain than GS when
selecting at the LR site.

When the selection was performed for GY and OL
simultaneously, the equal weight GS (MTGS1) and unequal
weight GS (MTGS2) indices showed different gains for GY and
OL (Figures 3A2–C2). MTGS1 method had all positive gains for GY
and OL, while MTGS2 showed a higher gain for OL with negative
gains for GY at RF and LR sites. When selecting at the site IR, the
gain increase for GY varied dramatically across sites, from about
0.4% in LR to 16% in IR for MTGS1, with an 8.3%–11.4% gain
increase for OL. MTGS2 showed a higher gain increase for OL,
around 9.6–13.1-% OL, but negative responses for GY at RF and LR
were observed when selected at the IR site. The combined
g×EMTGS1 showed a 1.2%–15.8% gain for GY and an 8.7%–

11.4% increase for OL (Figures 3A2–C2).

Discussion

Safflower is an underutilized oil seed crop. Breeding efforts for
genetic improvement of target traits were modest. With limited
genetic and genomic resources and limited research funds, the
datasets we used in our study have been used for genetic
diversity study, genetic characterization, and genomic parameters

estimation of important agronomic traits in safflower. All those
studies enhanced our knowledge of safflower and paved the way to
transfer conventional safflower breeding into a highly targeted and
more efficient modern crop breeding scheme. In this study, we
further investigated the genomic prediction accuracy for grain yield
with multivariate models and compared grain yield selection
responses to different selection strategies. Combining GS into the
conventional breeding program and optimizing the breeding
strategies would facilitate and fast-track the genetic improvement
for safflower.

Genetic parameters are important estimates for quantitative
traits. In this study, we nearly doubled the SNPs number
compared to our previous study (Zhao et al., 2021). A high
marker density could affect the heritability estimation but not
impact the prediction accuracy too much (Zhao et al., 2021). To
increase the marker density, imputation of SNPs with missing rate
up to 80% has been reported in the GS study for ryegrass and
soybean (Jarquín et al., 2014; Faville et al., 2018). The estimated
variance and heritability via the multivariate model in our study
showed consistent trends with the univariate GBLUP models (Zhao
et al., 2021). With the decomposition of covariance between traits in
multivariate model, the h2 could be estimated more accurately
compared with the univariate model. Therefore, our study
indicates that the multivariate models may perform as well as the
univariate models in genetic parameters estimation.

Combining the correlated trait with high heritability would
improve the prediction accuracy for the low heritability traits by
the multivariate model. The correlation between traits could be a key
factor determining the multivariate model’s advantage over the
univariate model (Montesinos-López et al., 2021). In our study,
the higher prediction accuracy for the multivariate models
combining GY and PH confirmed that the correlation between
traits is important for the success of multivariate models. A study

FIGURE 3
The percentage of the gain improved by using different selection indices for GY (A1–C1), and GY and OL (A2–C2). (A1) and (A2): Selection
conducted at site IR; (B1) and (B2): Selection conducted at site RF; (C1) and (C2): Selection conducted at site LR. PS, phenotypic selection; SGS, GS
selection with GEBVs estimated with the univariate model; MGS, GS selection with GEBVs estimated with the multivariate model; g × EGS, GS selection
with GEBVs estimatedwith sites combined g × EGBLUPmodel; MTGS1, GS selectionwith equal weighted GEBVs; MTGS2, GS selectionwith unequal
weighted GEBVs; g × EMTGS1, GS selection with GEBVs estimated with sites combined g × E GBLUP model using MTGS1 selection strategy. The
abbreviations used for sites and traits in this figure are described in Table 1.
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with Sorghum also showed that genomic prediction for GY benefits
mainly from using PH as a secondary trait (Velazco et al., 2019). The
prediction accuracy increase varied across sites for GY, and the
highest increase was at site LR, where the estimated heritability for
GY and correlation between PH and GY were both low. This
indicated that multivariate models could benefit more for the
trait when estimated heritability is low. Up to 60% PA increase
for low heritability traits was reported in a lentil GS study when
implementing multivariate models (Haile et al., 2020). We also
evaluated the prediction accuracy of different cross-validation
scenarios. The scenario 2, PH only included in the training set
(CV2), didn’t improve the PA, indicating that adding information of
correlated traits in the prediction dataset was essential for improving
the prediction accuracy by the multivariate models. A similar study
in barley reported that the correlated traits only included in the
training population would not change the PA in validation and
performed equivalently to the univariate model (Arojju et al., 2020).
Plant height could be measured at the early stage, and high
throughput phenotyping technology, such as the UAV-based
RGB imaging system, has been reported to be used for plant
height in wheat (Volpato et al., 2021). It indicated that early
grain yield prediction by combining the high throughput PH
measurements to improve the GS breeding efficiency could
incorporate into future safflower GS breeding.

With the limited genetic and genomic resources for the
safflower, taking advantage of the modern breeding tool, such as
GS, could fast-track the genetic improvement of the crop. Tradition
safflower breeding program depends on the phenotypic selection of
the elite parental lines to initiate the crossing. In our study, we have
chosen the top 20% of individuals according to the BLUEs and
GEBVs, respectively, and the best gain achieved was 0.7 t/ha, about
a 23% yield increase in the optimal site. This indicated the high
yield potential for safflower genetic improvement. We expected to
find the highest response by PS for within site selection because the
selection differential was used to predict selection response in the
next-generation. However, the selection responses in PS and GS
were very similar, which could be associated with the fact that most
of the top 20% of the accessions with the highest phenotypes had
the highest GEBVs as well (Supplementary Table S4). Selection for
rust resistance in wheat had similar observations that gain from GS
was equal to PS when comparing the gain by two cycles of GS and
one cycle of PS (Rutkoski et al., 2015). Bernardo (2020)
recommended that selection based on breeding ‘lines’
performance (BLUEs) instead of GEBVs would be sufficient
enough if the breeding goal is to pyramiding the elite alleles.
However, with GS, selection decisions could be made in an
early stage, for example, selection for grain yield before harvest.
And when the breeding cycle increases, GS would benefit the
breeding program significantly by reducing the breeding cycle.
Those lines with high yield and high GEBVs in the safflower
collection could be selected directly to achieve yield gain.
Selection in the stressed environment, especially for drought
resistance, has been reported to improve the selection in
optimal conditions (Das et al., 2021; Kumar et al., 2021).
However, we observed the selection in the RF and LR sites leads
to the compromised gain for GY in IR. Although the gains from
different strategies were high at the selected sites, the gap between
the optimal and stressed environments was significant. The

decreased genetic variation in the stress sites could be the
reason for the lower selection response for GY in those sites
(Xu et al., 2017). Falconer (1952) mentioned that the correlation
between environments could impact the selection responses. In
other words, g × E could reduce the rate of genetic gain achieved by
breeding. The combined g × EGS selection increased gain slightly
in RF and LR, indicating that combining g × E into the prediction
model could benefit GS selection. Studies combined multi-
environment trials in the genomic prediction model showed
similar results (Gill et al., 2021; Khanna et al., 2022). In
safflower, using suitable GS models for an optimized breeding
pipeline, which selects genotypes that suit environments or
genotypes with compromised performance but robust in all
conditions, is essential.

Selection indices have been used efficiently for multi-trait breeding
programs for animals and crops (Smith, 1936; Hazel, 1943). If selections
were based mainly on GY, we observed that OL had limited positive
gain in the optimal site and negative gains in stressed sites
(Supplementary Table S2). The index selection achieved a high gain
for OL and GY although the gain for GY was compromised. The loss of
the gain for GY could be compensated by high OL, which would bring
high economic values for the farmer. A study in Sorghum also indicated
that GS with the optimal index selection to improve biofuel traits is the
most promising strategy (Habyarimana et al., 2020a). An optimal
breeding framework incorporating index selection has been
proposed for different crops (Marulanda et al., 2016; Akdemir et al.,
2019). As a minor crop, safflower faces similar challenges as other
orphan crops, such as limited resources and limited research
funds. GS with selection index is the fast way to pyramid elite
alleles into the future safflower varieties. The optimal selection
index for safflower GY and OL still requires further research.
More information, e.g., biotic and abiotic tolerance, early vigour,
seed protein content, etc., could be combined into the selection
index. Further validation of different selection strategies, which
would facilitate the optimization of breeding strategies by
simulation, would also be required.

Conclusion

In summary, we estimated the heritability and genetic
correlations as well as selection responses to different selection
indices for a diverse safflower Genebank collection. We achieved
higher genetic prediction accuracy for grain yield by combining the
correlated trait into themultivariate model. High selection responses
for GY were achieved at the selected sites with both PS and GS, but
the gains varied across the sites. Combining the g×E model with the
equal weighted selection index GS model could simultaneously
improve GY and OL in all studied sites.
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