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Simpson’s aggregation paradox in
nonparametric statistical analysis:
Theory, computation, and
susceptibility in public health data
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This study establishes su�cient conditions for observing instances of Simpson’s

(data aggregation) Paradox under rank sum scoring (RSS), as used, e.g., in the

Wilcoxon-Mann-Whitney (WMW) rank sum test. The WMW test is a primary

nonparametric statistical test in FDA drug product evaluation and other prominent

medical settings. Using computational nonparametric statistical methods, we also

establish the relative frequency with which paradox-generating Simpson Reversals

occur under RSS when an initial data sequence is pooled with its ordinal replicate.

For each 2-sample, n-element per sample or 2 x n case of RSS considered,

strict Reversals occurred for between 0% and 1.74% of data poolings across the

whole sample space, roughly similar to that observed for 2 x 2 x 2 contingency

tables and considerably less than that observed for path models. The Reversal

rate conditional on observed initial sequence is highly variable. Despite a mode

at 0%, this rate exceeds 20% for some initial sequences. Our empirical application

identifies clusters of Simpson Reversal susceptibility for publicly-released mobile

phone radiofrequency exposure data. Simpson Reversals under RSS are not simply

a theoretical concern but can reverse nonparametric or parametric biostatistical

results even in vitally important public health settings. Conceptually, Paradox

incidence can be viewed as a robustness check on a given WMW statistical test

result. When an instance of Paradox occurs, results constituting this instance

are found to be data-scale dependent. Given that the rate of Reversal can vary

substantially by initial sequence, the practice of calculating this rate conditional

on observed initial sequence represents a potentially important robustness check

upon a result.

KEYWORDS

Simpson’s Aggregation Paradox, aggregation rules, collective choice, social choice

theory, nonparametric statistical analysis, public choice

1. Introduction

Simpson’s Aggregation Paradox, also known as the Yule-Simpson Aggregation Paradox,

represents an anomaly in statistics whereby two qualitatively equivalent statistical test

results—each arising from one of two qualitatively equivalent statistical test results—reverse

when the same statistical test is applied to the pooled data. The Paradox was first put forth

by Yule [1] and later developed by Simpson [2]. While first analyzed for the domain of
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parametric testing, its presence in non-parametric statistical results

has recently been studied [3–5]. Of particular importance to the

present study, Haunsperger and Saari [5] find conditions for

Simpson Reversal in rank sum statistical testing, where the term

Simpson Reversal is used synonymously with the term instances of

Simpson’s Aggregation Paradox herein. In general, the Paradox has

been found to affect statistical results in many important scientific

domains, including pharmaceutical drug testing, environmental

research, and related medical and scientific research (see, e.g.,

Allison and Goldberg [6], Huang et al. [7], and Pineiro et al. [8]).

Chipman and Braun [9] identify and characterize the Paradox

for integrated discrimination improvement comparisons of two

prediction models. In studying global temperature over time,

Foster and Rahmstorf [10] note that the scale of date (time scale

of study) can influence the statistical results of a study. [11]

note the importance of the Paradox when analyzing geospatial

data, while Tran and Waller [12] note that the Paradox can

explain variability in results of environmental data analysis. Berger

et al. [13] find evidence of aggregation paradox instances in

randomized clinical trial data. Evidence of aggregation paradox

has also been found in the settings of large-scale registry data

[14], meta-analyzes of an academic literature [15], and clinical risk

reclassification [16].

In one respect, the Paradox can be viewed as a robustness check

on a given statistical result. When the Paradox occurs, it follows

that a given result is at least partly a function of data scale or

sample size. As noted, the Paradox has been shown to occur for the

Wilcoxon-Mann-Whitney (WMW) Rank Sum Test. However, there

exists no computational or empirical evidence as to the frequency

with which instances of the Paradox occur for the WMW Rank

SumTest and little such evidence for non-parametric statistical tests

overall. Are Simpson Reversals pervasive or only amarginal concern

for the WMW Test? Even previuos research as to the incidence of

the Paradox for parametric statistical tests is scarce and provides

somewhat contrasting conclusions. There are two studies that

directly estimate the incidence of Simpson’s Paradox for parametric

tests: one pertaining to contingency tables and the other pertaining

to path models. Specifically, [17] find that a Simpson Reversal occurs

for one-sixtieth (1.67%) of all 2 x 2 x 2 contingency tables. Kock

[18] estimates the likelihood of a Simpson Reversal in path models as

approximately 12.8%.

Hammond [19] considers the aggregation of cross-country

running individual positions via rank sum scoring, as do Mixon

and King [20]. Both studies find evidence of major social choice

violations in rank sum scoring.Mixon and King conclude that these

violations are expected to create noise in the allocation of coaching

positions and salaries for the sport. Similarly, Sanders et al. [21]

find that variation in outcome by aggregation rule is fairly common

for rank sum scoring and other aggregation common aggregation

rules. For nonparametric statistical testing, Nagaraja and Sanders

[22] consider a case in which a data set is ordinally replicated and

then pooled with the replicate data set. In such an environment,

the authors prove that Simpson Reversals cannot occur if the sign

test for matched pairs is applied to the primitive and pooled data

sets. They also show evidence of Simpson Reversals for the WMW

Test. The authors further discuss the advantage of such a pooled

replicate approach to studying Simpson Reversals in nonparametric

settings. By introducing and pooling an observed data set with its

ordinal replicate, one introduces no additional information to the

comparison between two or more groups (e.g., between groups A

and B). As such, instances of Simpson Reversal that occur when

an ordinal data is pooled with its ordinal replicate act as a pure

robustness check upon a statistical result. Given only iterations of

this data sequence and the statistical test, we can obtain alternative

results by varying the scale of the data. As such, the original result can

be viewed as scale-dependent. Moreover, a data sequence’s ordinal

replicate is always accessible such that this robustness check can

be applied to every nonparametric statistical result. Given these

advantages, we will adopt a pooled replicate approach to studying

Simpson Reversals in the present study.

Despite important theoretical contributions by Haunsperger

and Saari [5] and Nagaraja and Sanders [22], there have been

no computational studies that assess the incidence of Simpson

Reversals in the case of nonparametric tests. Though we know

the WMW Test yields instances of the Paradox, we cannot

ascertain without computational support if these instances are fairly

frequent, as in the case of path models, or somewhat rare, as in

the case of contingency tables. The answer to this question has

potentially important implications. The WMW Test is a leading

nonparametric statistical test across the medical sciences (see,

e.g., Lin et al. [23]). For example, this test is routinely used to

assess drug efficacy in FDA clinical trials, as well as in EPA data

evaluation (see, e.g., Boudreau et al. [24] for a discussion of

FDA use of this test in the Statstical Review and Evaluations of

products such as Novantrone, Memantine, Cologuard, Pitressin,

SPD485, Oxaliplatin, Oxcarbazepine, Berinert, Novartis, Vascepa,

Trileptal, and many others). Results as to incidence of Simpson

Reversals for the WMW Test can effectively assess the general

robustness ofWMW Test results to data scale changes. As Simpson

Reversals cast ambiguity on a given original result, incidence of

Simpson Reversal for a test shares similarities to the concept of a

hypothesis test p-value. In the same way that a p-value assesses

the proportion of significance results that are, in fact, non-robust

due to sample variation, incidence of Simpson Reversal assesses

the proportion of statistical test results that are non-robust due to

data scale dependence. In this sense, the proportional incidence

of Simpson Reversal might be thought of as loosely analogous to

a hypothesis test p-value (e.g., when considering the magnitude of

the proportion).

In general, the study of aggregation paradoxes and public

choice outcomes has received substantial treatment. Klein [25],

March [26], Sobel [27], and Tabarrok [28, 29], and Leeson and

Thompson [30] each consider the role of the FDA in public

health outcomes. Each of these studies finds government failures

stemming from the FDA’s decision-making criteria, where the FDA

depends heavily on non-parametric efficacy tests that are subject to

aggregation paradoxes.

Herein, we consider all 2-group, k-element per group cases

of RSS for k ∈ {2, 3, 4, 5, 6, 7, 8}. For each case up to k =

7, we enumerate every possible rank outcome sequence in that

case. For each given sequence, we then ordinally replicate the

sequence and consider all possible poolings of the sequence with

its ordinal replicate. For each case, we then compute the relative

frequency with which a strict Simpson Reversal occurs. We find
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that strict instances of the Paradox cannot occur for 2-group,

k-element per group cases of RSS where k ∈ {1, 2} but that

instances occur for approximately 1.7 percent of sequence poolings

in the 2-group, 5-element and 2-group, 7-element cases. Given

the computational complexity of the problem—for the 2-group,

8-element case, there are 7.74 trillion possible poolings of two

rank data sequences—we are not able to extend the results beyond

the k = 7 case at present. However, we use a simulation

approach to characterize the 2-group, 8-element case herein. We

conclude from our computational results that the incidence of

Simpson Reversals in this setting is lower than a standard, allowable

Type I error rate (α-value) for a statistical test. Given conceptual

similarities between a test’s p-value and its Simpson Reversal rate,

as discussed previously, we might then characterize the incidence

of Simpson Reversal for considered cases of rank sum testing as

“tolerable” from the perspective of statistical sensitivity. For certain

initial data sequences, however, Reversals are found to be much

more prevalent, occurring as frequently as roughly once in five

poolings for certain initial sequences. As such, incidence of Simpson

Reversals should ideally be considered conditional upon both the

test and data under consideration.

2. Materials and methods

2.1. Rank sum scoring and simpson’s
aggregation paradox: Definitions and a
theorem

Let us formally define 2-group rank sum scoring. Consider two

groups, A and B. Each group is defined as a rank-ordered sequence

of n individual elements, where n is some integer greater than 1

(n ∈ Z+). For example, A is defined as A = (a1, a2, a3, ..., an),

where the element ai represents the ith ranked element in A. We

define an event as an objective process of comparison that generates

a complete rank-order sequence of individuals across more than

one group (i.e., both within and between groups). An event might

be defined as a competition or as a statistical test. Consider an

event in which elements of A and B are compared. If A and B

are each composed of n elements, for example, then the event

generates a rank-ordered outcome sequence of 2n elements. One

possible outcome sequence for the case in which n = 3 is FAB =

(a1, b1, b2, a2, b3, a3). If ai precedes bj in the outcome sequence, we

say ai ≻ bj (ai ranks higher than bj). For simplicity, we assume

that rank-order equality between two elements is not possible,

an outcome that would obtain given continuous measurement of

underlying parameter values. For any ai ∈ A and bj ∈ B, that is, we

have that ai ≻ bj ⊕ bj ≻ ai is a tautology.

Formally, we represent the rank of an element ai ∈ A in the

outcome sequence FAB as r(ai | FAB). Let x
+
i (FAB) = {x ∈ FAB : x ≻

ai} be the set of elements in FAB that rank better than ai. Then,

r(ai | FAB) =| x+i (FAB | +1. From elemental rankings, we generate

a rank sum score for each group as follows. The respective scores

for A and B for outcome sequence FAB are S(A | FAB) = 6aj∈A

r(aj | FAB) and S(B | FAB) = 6bj∈B r(bj | FAB), where it must be

that S(A | FAB) + S(B | FAB) =
2n(2n+1)

2 . That is, the sum of ranks

for a 2n element sequence simply equals the sum of integers from 1

to 2n. We map from group scores to group rankings to obtain the

following outcomes.

If S(A | FAB) < S(B | FAB), then A ≻ B

≡ If S(A | FAB) < S(B | FAB), then A ranks higher than B

(1)

If S(A | FAB) = S(B | FAB), then A ∼ B

≡ If S(A | FAB) = S(B | FAB), then A ranks equally with B

(2)

If S(A | FAB) > S(B | FAB), then A ≺ B

≡ If S(A | FAB) < S(B | FAB), then A ranks lower than B

(3)

2.1.1. Replicated data aggregation
We consider an environment in which a data set yields a

given aggregate or group rank-ordering result under RSS (e.g.,

A ≻ B). We then ordinally replicate the data. By necessity, the

ordinal replicate data will yield the same group rank result under

RSS. As RSS is a nonparametric form of scoring, only the order

of elements influences the group ranking. We then aggregate the

original data set with its ordinal replicate as inNagaraja and Sanders

[22] and consider whether (under what conditions) the pooled

data yields a different group rank result under RSS than do its

two constituent data sets. That is, we consider the conditions for

strict Simpson Reversal, whereby the outcome in 1 (3) is obtained

for each constituent data sequence, but outcome 3 (1) is obtained

for the pooled sequence. It is important to note that an ordinal-

replicate data sequence can have starkly different parametric values

than the original data sequence that it ordinally replicates. Ordinal

replication simply implies the same ordering of elements across the

two sequences.

Let FAB represent the original data sequence, F
′

AB its ordinal

replicate, and FF
′

AB the sequence whereby FAB and F
′

AB are pooled

by comparing the underlying parametric value of each element.

Formally, we define a Simpson Reversal as follows.

Definition 1. Simpson Reversal: When FAB and F
′

AB are pooled, a

strict Simpson Reversal occurs if [S(A|FAB)−S(B|FAB)]·[S(A|FF
′
AB)−

S(B|FF′AB)] < 0. Equivalently, a strict Simpson Reversal occurs

if [S(A|F′AB) − S(B|F′AB)]·[S(A|FF
′
AB) − S(B|FF′AB)] < 0. These

conditions yield the group rank result thatA ≻F B andA ≻F′ B, but

B ≻FF′ A (i.e., that A ranks strictly higher than B in F and F′, but

B ranks strictly higher than A in FF′) or that B ≻F A and B ≻F′ A,

but A ≻FF′ B (i.e., that B ranks strictly higher than A in F and F′,

but A ranks strictly higher than B in FF′).

We now derive sufficient conditions for the presence and

absence of Simpson Reversal in RSS.
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Theorem 1. (Sufficient Condition for Simpson Reversal in Rank

Sum Scoring)

For any two groups, A and B, such that A ≻ B in pairwise

comparison for a given outcome sequence, FAB (i.e., A ≻FAB B), let

ζ be the largest integer such that bi+ζ−1 ≻ ai in FAB (F′AB). When

FAB and F
′
AB are pooled, a strict Simpson Reversal occurs for at least

one pooling of A and B if S(B | FAB)− S(A | FAB) < nζ .

Proof:Note that the maximum differential impact toward a reversal

that F′AB has when pooled with FAB is if all n elements of F′AB are

pooled with FAB in a way that they are placed between bi+ζ−1 and

ai of FAB. In this case, the pooling effect of F′AB upon FAB is to raise

the score ofA by 2nζ more rank sum units than the score of B. If the

2n elements of F′AB are pooled with FAB at this position, then ζ more

elements ofA in FAB than B in FAB each lose 2n rank positions (gain

2n additional rank sum points) to the elements of F′AB. Regardless of

the reciprocal pooling effect of FAB upon F′AB, then, we are assured

of at least this stated differential pooling effect for some pooling of

FAB and F′AB.

As a countervailing effect, A has a lower score than B by S(B |

FAB) − S(A | FAB) units in FAB (by definition) and by the same

margin in F′AB, as S(B | F′AB)−S(A | F′AB) = S(B | FAB)−S(A | FAB)

due to FAB and F′AB being ordinal replicates. Then, S(A | FF′AB)

relative to S(B | FF′AB) depends upon the magnitude of the pooling

effect in comparison to the magnitudes of [S(B | FAB)−S(A | FAB)]

and [S(B | F′AB)− S(A | F′AB)], where the latter two terms are equal

to each other. For a sequence, FAB, and its ordinal replicate, then,

a Simpson Reversal is certain to occur if 2 · [S(B | FAB) − S(A |

FAB)] < 2nζ . That is, a Simpson Reversal is certain to occur if

[S(B | FAB)− S(A | FAB)] < nζ�.

Theorem 2. (Sufficient Condition for Impossibility of Simpson

Reversal in Rank Sum Scoring)

For any two groups, A and B, such that A ≻ B, in pairwise

comparison for a given outcome sequence, FAB (i.e., A ≻FAB B),

let ζ be the largest integer such that bi+ζ−1 ≻ ai in F (F′). A strict

Simpson Reversal cannot occur for any pooling of FAB and F′AB if

S(B | FAB)− S(A | FAB) ≥ 2nζ .

Proof:Note that the maximum differential impact toward a reversal

that F′AB can have when pooled with FAB is if all n elements of F′AB
are pooled with FAB in a way that they are placed between bi+ζ−1

and ai of FAB. Reciprocally, the maximum differential that FAB can

have when pooled with F′AB is if all n elements of FAB are pooled

with F′AB in a way that they are placed between bi+ζ−1 and ai of

F′AB. Thus, the maximum achievable two-way pooling effect of FAB
cannot exceed 4nζ . If 4nζ is not greater than the primitive score

differentials between A and B in FAB and F′AB, then a strict Reversal

is not possible. That is, if 2 · [S(B | FAB) − S(A | FAB] ≥ 4nζ , then

a strict Reversal is not possible�.

Interestingly, this condition is similar to the condition for a

violation of Independence from Irrelevant Alternatives (IIA) found

in Boudreau et al. [31]. This equivalence is not coincidental. Rather,

Simpson Reversals share important properties with IIA violations.

In each case, a pairwise group ranking is overturned by the

inclusion of additional data, where the imposed data is not expected

to overturn the original ranking. Like an IIA violation, a Simpson

Reversal requires the additional data to impose a sufficiently

TABLE 1 Su�cient condition for presence of reversal observation of at

least one reversal.

Su�cient condition for
presence of reversal

Observation of at least one
reversal

F T

F 162 12

T 0 78

All Poolings tabulated by initial sequence for 2× 5 case.

TABLE 2 Su�cient condition for absence of reversal and observation of

at least one reversal.

Su�cient condition for
absence of reversal

Observation of at least one
reversal

F T

F 84 90

T 78 0

All poolings tabulated by initial sequence for 2× 5 case.

TABLE 3 Su�cient condition for presence of reversal and observation of

at least one reversal.

Su�cient condition for
presence of reversal

Observation of at least one
reversal

F T

F 618 86

T 0 220

All poolings tabulated by initial sequence for 2× 6 case.

differential effect upon the respective rank sum scores of the two

groups being compared. The conditions for that differential effect

are similar for IIA violations and for Simpson Reversals.

The following computational results tables further demonstrate

that Theorems 1 and 2 each represent respective sufficient

conditions for both the 2 x 5 and 2 x 6 cases. While these

computations are not strictly needed given the previous general

proofs, they are useful in that they demonstrate the utility of the

sufficient conditions in practice (i.e., how frequently sequences,

FAB, that generate these conditions are observed).

Of the 252 initial sequences, FAB, Table 1 tells us that the

sufficient condition for presence of at least one Reversal across

all poolings of FAB and F′AB holds for 78 of those sequences.

Empirically, we observe at least one Reversal for each of those

sequences. Table 2 shows that for a distinct 78 of the 252 initial 2

x 5 sequences, FAB, the sufficient condition for absence of Reversals

across all poolings of FAB and F′AB holds. Empirically, we do not

observe aReversal in any of those sequences. For the 2 x 5 case, then,

the sufficient conditions from Theorems 1 and 2 assure us whether

or not Reversal is possible for 156 of the 252 initial sequences

(61.9%).

Tables 3, 4 deal with sufficient conditions for the 2 x 6 case. Of

the 924 initial sequences, FAB, for the 2 x 6 case, Table 3 shows

that the sufficient condition for presence of at least one Reversal

across all possible poolings of FAB and F′AB holds for 220 of those

sequences. Empirically, we observe at least one Reversal for each of

those sequences. Table 4 shows that for a distinct 364 of the 924
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initial 2 x 6 sequences, FAB, the sufficient condition for absence

of Reversals across all poolings of FAB and F′AB holds. Empirically,

we do not observe a Reversals for any of those sequences. For

the 2 x 6 case, then, the sufficient conditions from Theorems 1

and 2 assure us whether or not Reversal is possible for 584 of the

924 initial sequences (63.2%). In each observed case, the sufficient

conditions determine unambiguously whether an initial sequence is

susceptible to Reversal in more than three-fifths of cases. Therefore,

we can usually assess the general robustness of a rank sum result in

terms of susceptibility to Simpson Reversals. As such an assessment

can determine whether a given result is scale-variant, we conclude

that Theorems 1 and 2 can usually combine to offer a “quick and

dirty” robustness check on a rank sum result.

2.2. The sample space: A combinatorial
description

For the 2 x n case, there are (2n)!
(n!)2

initial sequences, F. We

are arranging 2n elements—n elements from each of 2 groups—

where we do not distinguish between respective objects of a given

group. For each initial sequence, we then ask in how many ways

F can be pooled with its ordinal replicate, F′. This is equivalent to

a “stars and bars” combinatorial problem, in which we are placing

2n “stars” or elements from F′ into 2n “bars” or potential pooling

positions amongst the elements of F. From this characterization,

there are (4n)!
([2n]!)2

poolings for each initial sequence and (2n)!
(n!)2

initial

sequences. The number of poolings for a given 2 x n case equals

the product of the number of initial sequences and the number

of poolings per initial sequence, or (2n)!
(n!)2

·
(4n)!

([2n]!)2
, for each case,

2 x n. For example, in the 2 x 7 case, there are (2·7)!
(7!)2

= 3, 432

TABLE 4 Su�cient condition for absence of reversal and observation of

at least one reversal.

Su�cient condition for
absence of reversal

Observation of at least one
reversal

F T

F 254 306

T 364 0

All poolings tabulated by initial sequence for 2× 6 case.

initial sequences, F. Moreover, there are (4·7)!
([2·7]!)2

= 40, 116, 600

poolings per initial sequence. As such, there are 3, 432 · 40, 116, 600

or approximately 137.68 billion possible poolings for the 2 x 7 case.

We provide the sample space for each 2 x n case in Table 5 of the

subsequent section.

2.3. Computational methods and materials

We wrote a computational algorithm in Java by which to

search the sample space of each case where 0 < n(∈ Z+) <

7. It systematically generates all possible initial sequences, FAB
(F′AB), for a case, then creates all possible pooled sequences, FF′AB,

for each initial sequence. For each initial sequence, rank sum

scores for A and B are computed. This scoring task is then

repeated for each pooling FF′AB of FAB and F′AB and iteratively

for each pooling of each initial sequence. Then, instances of

Simpson Reversal are checked using the condition obtained in

Theorem 1. This brute force, enumerative approach is extended

later in the paper using a simulation approach. The full algorithmic

code is provided in Appendix 1 of the paper, but here we

provide an illustrative example and pseudo code to illustrate

the process.

Example 1. Consider the case of n = 7 with the original

data sequence

FAB = (b1, b2, a1, a2, a3, a4, a5, b3, b4, b5, a6, b6, b7, a7).

Let

F
′

AB = (β1,β2,α1,α2,α3,α4,α5,β3,β4,β5,α6,β6,β7,α7)

be the ordinal replicate of FAB, and FF
′

AB the sequence whereby FAB
and F

′

AB are pooled by comparing the underlying parametric value

of each element.

In Example 1, S(A | FAB) = 50 and S(B | FAB) = 55, so A ≻F B

(and A ≻F′ B since F
′

AB is an ordinal replicate). ζ = 2 in this case,

so the sufficiency condition S(B | FAB)− S(A | FAB) < nζ outlined

in Theorem 1 is satisfied, meaning a Simpson reversal will occur for

at least one pooling of the two sequences. Reversals may occur for

more than one pooling, however, and will not occur for all poolings.

In the simplest pooling, for example, where the full original FAB is

succeeded by F
′

AB, S(A | FF
′

AB) = 198 and S(B | FF
′

AB) = 208, so

A ≻FF
′ B; no reversal.

TABLE 5 Relative frequency of Simpson reversal by case.

Groups Data points
per group

Initial data
sequences

Poolings per initial
sequence

Poolings
overall

Simpson reversal rel. frequency

2 1 2 6 12 0/12= 0%

2 2 6 70 420 0/420= 0%

2 3 20 924 18,480 30/18,480= 0.80%

2 4 70 12,870 900,900 1,732/900,900= 0.19%

2 5 252 184,756 46,558,512 795,392/46,558,512= 1.71%

2 6 924 2,704,156 2,498,640,144 10,780,504/2,498,640,144= 0.43%

2 7 3,432 40,116,600 137,680,171,200 2,435,044,740/ 137,680,171,200= 1.77%
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If, instead,

FF
′

AB = (b1, b2,β1,β2,α1,α2,α3,α4,α5,β3,β4,β5,α6,β6,β7,α7,

a1, a2, a3, a4, a5, b3, b4, b5, a6, b6, b7, a7),

S(A | FF
′

AB) = 212 and S(B | FF
′

AB) = 194, so B ≻FF
′ A; a reversal.

But note that a reversal could also occur for an alternate pooling

such that

FF
′

AB = (b1, b2,β1,β2, a1, a2, a3, a4, a5, b3, b4, b5, a6, b6, b7,α1,α2,α3,

α4,α5,β3,β4,β5,α6,β6,β7,α7, a7).

We again have a reversal, since S(A | FF
′

AB) = 217

and S(B | FF
′

AB) = 189.

2.4. Empirical methods and materials:
Application to phone radio frequency
energy exposure data: Apple iPhone 3/4 v
Nokia E series

For our application, we consider mobile phone Specific

Absorption Rate (SAR) radiofrequency exposure data. The Federal

Communications Commission (FCC) requires that mobile phones

sold in the U.S. undergo manufacturer SAR testing while the phone

is operating at highest power. FCC regulation requires that each

cell phone test at a SAR level of no greater than 1.6 watts per

kilogram. Utilizing compiled data on FCC cell phone radiation

ratings by model/brand,1 we compare iPhone 3 / 4 phones with

Nokia E Series phones. We chose this comparison for a few reasons.

Namely, these two series of phones were manufactured during

roughly the same time frame, where new versions in each series

were released with similar frequency. Moreover, each type of phone

achieved a high level of market popularity. Lastly, each series

features 8 different phone versions in the source dataset such that

the empirical application can align with our computational results

in terms of case coverage.

3. Results and discussion

3.1. Computational

Computational results are given in Table 1 as follows.

We observe that Simpson Reversals are not possible for

sufficiently small n (i.e., n < 3). In the context of Theorem 1,

the largest possible ζ is not sufficiently large to motivate a strict

Simpson Reversal in these cases. For the 2 x 1 and 2 x 2 cases, a

group that is strictly outranked in FAB cannot have a positive ζ , and

therefore a strict Simpson Reversal is not possible for these cases.

We can also consider computed cases where n > 2. From even to

odd case, the results suggest a wavelike movement in the likelihood

of a Simpson Reversal. In general, there is a lower likelihood of strict

Simpson Reversal in even cases than in neighboring odd cases due to

the possibility of ties for n-even cases of pairwise rank sum scoring

(but not for n-odd cases). With some probability mass allowing

1 The secondary dataset is available from [32].

FIGURE 1

Frequency of simpson reversal by case.

for a pairwise tie in the n-even case, strict Simpson Reversals are

less likely. This result also holds for other social choice violations

(e.g., violations of Transitivity and of IIA; see [31]). To evaluate

the marginal effect of increases in n, as distinct from the effect of

changes from even to odd case, one should compare the iterative

trend between n and n + 2 rather than that between n and n + 1.

We do this for the even and odd cases, respectively, in Figure 1.

Over the set of cases computed, the relative frequency of

Reversal rises for both the even and odd sets of cases. For the 2 x

8 case, we run a simulation to estimate whether this trend might

continue. Specifically, we randomly select and generate one-quarter

of all possible initial sequences, FAB, (without replacement) for this

case and then replicate each selected initial sequence. For each

selected initial sequence and its replicate, we then randomly select

approximately 0.1% of all possible poolings, or a little more than

600,000 poolings per sampled initial sequence. For each pooling, we

check for Reversals as in the main algorithm. Doing so, we estimate

that 0.63% of all poolings result in reversal for the 2 x 8 case. In

proportion terms, this represents a substantial increase from the

2 x 6 case. As such, this estimate suggests that our trend of rising

relative frequency of Reversal from n to (n + 2) is maintained for

the 2 x 8 case.

We find that strict instances of the Paradox cannot occur for

2-group, k-element per group cases of rank sum scoring where k ∈

{1, 2} but that instances occur for as many as roughly 1.7 percent

of sequence poolings in the 2-group, 5-element and 2-group, 7-

element cases. We conclude from our computational results that

the incidence of Simpson Reversal for small sample cases of rank

sum scoring is (not) roughly similar to previous results on 2 x 2 x 2

contingency tables (path models). Moreover, the computed rate of

Simpson Reversals in this setting is generally lower than a standard,

allowable Type I error rate (α-value) for a statistical test. Given

conceptual similarities between a test’s p-value and its Simpson

Reversal rate, as discussed previously, we might then characterize

the incidence of Simpson Reversals for considered cases of rank
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sum testing as being typically “tolerable” from the perspective of

statistical sensitivity. Next, we consider how likelihood of Simpson

Reversal relates to rank sum score for A and B in FAB. We do this

sub-analysis for the 2 x 5 case and visualize the results in the heat

map and scatter plot of Figure 2.

For the 2 x 5 case, Reversals are most likely when the rank

sum score margin in FAB is closest (i.e., where one group scores

27 and the other scores 28). A Reversal is more likely if the original

score margin is close due to the relative ease with which a Reversal

can be obtained in such a case. As the score margin increases,

the relative frequency of Reversals declines quickly. This observed

relationship between match “closeness” and likelihood of violation

mirrors earlier results for violations of Transitivity and IIA under

rank sum scoring (see [24]). We also find that Reversals cannot

occur if the rank sum score margin in FAB is equal to 7 or more

for the 2 x 5 case. If the score margin is 7 or more, then it must be

that ζ ≤ 1. As such, we know that S(B | FAB)−S(A | FAB) > nζ for

this range of score margins in the 2 x 5 case, and a Reversal cannot

occur.

While the overall likelihood of Reversal is relatively low for

small sample cases of rank sum scoring (e.g., relative to a standard

α-value), there is evidence that certain types of sequences are

problematic. For example, sequences that yield closer scores are

shown to be more productive of Reversals. As such, we compute

the relative frequency of Reversal for each initial sequence in each

case and then identify the initial sequence for each case that yields

the highest such relative frequency, as well as the relative frequency

itself. In Figure 3, we plot the highest relative frequency of Reversal

at the initial sequence level for each computed case. These same

results are represented with greater detail in Table 6.

Table 6 shows that reversals are more likely given sequences

that feature both close rank sum scores and uninterrupted clusters

of one group and then of the other within the rank sequence. Note

that themaximum Reversal likelihood generating sequence for each

case is not unique. In each case, one could transpose the elements

‘a’ and the elements ‘b’ to obtain the same Reversal likelihood. We

find that the maximum Reversal likelihood generating sequence

also generates the closest margin of victory in each case (i.e., 1 rank

sum unit for n-odd cases and 2 rank sum units for n-even cases).

While the overall likelihood of Reversal is consistently below 0.02

for computed cases, Reversals are found to be much more prevalent

for certain initial sequences. In the 2 x 7 case, the maximum initial

sequence conditional likelihood of Reversal is approximately 0.22,

for example. The results of Figure 3 suggest that it is important

to consider not only the statistical test but also the particular

data (sequence) of interest when assessing prevalence of Simpson

Reversals. As with the overall likelihood of Reversal for computed

cases, we find that the maximum likelihood of Reversal at the initial

sequence level of the data strictly increases from the n to n+ 2 case

for the range of computed cases.

3.2. Empirical

Table 7 provides parametric SAR value data for each phone

under consideration. Unlike in our theoretical case, we note

that SAR data is typically rounded to the nearest hundredth or

thousandth unit such that several ties are observed in our data.

From this data, we find that Nokia E Series phones from

this time period rank higher than Apple iPhones in terms of

emitting lower levels of radiation. The rank sum score for the

8 Nokia (Apple) phones is 62 (74). We also compare subsets of

these two mobile phone series. For example, we compare the 7

(6, 5, 4, 3, 2, 1) most recently released Nokia E phones in the dataset

with the 7 (6, 5, 4, 3, 2, 1) most recently released Apple iPhones.

For each of these subsets, Nokia E Series phones also rank better

than Apple iPhones under rank sum scoring. Given these subset

results, we might expect Simpson Reversals to not occur in this

application data.

In this application setting, there are two main ways in which to

think of Simpson Reversals. One can think of them in the specific:

Is there an alternative set of data comparing the two phone series

such that, when pooled with the original data, yields a Reversal?

Alternatively, one can think of them generally: For what proportion

of poolings of this data and its ordinal replicate does a strict Reversal

arise? Though the specific question dominates applications in the

previous literature on Simpson Reversals, the general question has

certain conceptual advantages. Under the general question, one

can determine how globally robust a given data is against Reversal

when pooled with an ordinal data that individually generates an

identical test result. When one ordinally replicates a data set, no

new information is introduced by which to evaluate the two groups.

By definition, the original data and its ordinal replicate yield the

very same rank sum test result. By considering incidence of Reversal

under pooling of the two data sets, one can determine the general

robustness of the original result by considering to what extent

that result relies upon the interaction of the test itself with scale-

variant features of the data. In the present application, therefore, we

consider the general question as a means to determine the general

robustness of the data against (susceptibility to) Reversal. In so

doing, one can characterize the strength of the original result in

terms of data scale invariance.

In the empirical exercise, we first consider the 2 groups and

8 phone types per group case (i.e., the 2 x 8 case). We sort the

data from lowest to highest SAR level to obtain SAR rankings

for each of the 16 phones. We then add the 8 rank positions

of Apple iPhones and the 8 rank positions of Nokia E phones,

respectively, to obtain each brand’s empirically-observed rank sum

score. We then consider each “most-recent sub-sample” of the data.

That is, the 2 x 7 case is developed by rank sum scoring the 7

most recently marketed Apple iPhones in the sample against the 7

most recently marketed Nokia E phones. The same procedure was

followed inductively to obtain the 2 x n case ∀ n ∈ {1, 2, 3, . . ., 6}.

For each case, rank sum scores are shown in Table 8. In Table 9,

incidence of empirically observed Reversal is reported for each case.

Unlike in our computational treatment, note that a single

outcome for F is given (observed) in the empirical treatment. For

the empirical application, then, we need only consider all possible

poolings of the specified sequence, F, and its ordinal replicate,

F′. In the computational section, we observed that the likelihood

of a strict Reversal has a high degree of variability across initial

sequences. As this application selects a single sequence F based

solely onmarket characteristics of two cellular phone product series

(e.g., similar market time period, status as a popular line of phones

during that time period, and number of models in series) and not
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FIGURE 2

Heat map and scatter plot relating rank sum scores to likelihood of reversal.

FIGURE 3

Highest initial sequence level reversal likelihood by case.

TABLE 6 Highest initial sequence level reversal likelihood by case.

Groups Data points
per group

Highest Simpson reversal
likelihood by initial sequence

Generating
sequence

S(A) - S(B) ζ

2 1 0/6 NA NA NA

2 2 0/70 NA NA NA

2 3 30/924= 3.25% abbaab 10–11 1

2 4 402/12,870= 3.12% abbbaaab 19–17 1

2 5 26,872/184,756= 14.54% aabbbbaaab 27–28 2

2 6 187,520/2,704,156= 6.93% aaabbbbbabaa 38–40 2

2 7 8,881,034/40,116,600= 22.14% aaabbbbbbaaaab 52–53 3
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on parametric properties of the underlying data, there was no a

priori reason to believe that instances of strict Reversal would occur

at all in the application. For two of the 2 x n cases considered,

the 2 x 1 and 2 x 2 cases, we have established that Reversals are

not possible for any pooling of the data. However, we observe a

cluster of Reversals occurring with moderate frequency, relative to

the theoretical results, for the 2 x 5 case. For this case, we have

that N ≻F I for F but that I ≻FF′ N for 0.80% of poolings of F

and F′. For this observed sequence, we have that n = 5, observed

ζ = 2, and the score differential is 5 such that we are, in fact,

assured the existence of Reversals in this case. For no other observed

sequences do we obtain sufficient conditions for the existence of a

Reversal. Given the results of the 2 x 5 case, we observe that data

scale can influence one’s comparison of radiofrequency exposure

when comparing models from two types of mobile phone. In this

TABLE 7 Smart phone sar values and ranking.

Phone type SAR Rank in set (lower SARs
rank higher)

Apple iPhone (4GB) 0.974 7.5

Apple iPhone (8GB) 0.974 7.5

Apple iPhone 3G (16GB) 1.38 14.5

Apple iPhone 3G (8GB) 1.38 14.5

Apple iPhone 3G S (16GB) 0.79 3.5

Apple iPhone 3G S (32GB) 0.79 3.5

Apple iPhone 4 (16GB) 1.17 11.5

Apple iPhone 4 (32GB) 1.17 11.5

Nokia E61i 0.83 5

Nokia E63 1.24 13

Nokia E65 0.74 2

Nokia E70 0.9 6

Nokia E71x 1.53 16

Nokia E73 1.07 10

Nokia E75 0.99 9

Nokia E90 Communicator 0.59 1

case, Simpson Reversals are empirically present in the 2 x 5 case.

This finding shows that the 2 x 5 empirical result for F is not

robust against aggregation. Rather, that result is potentially data

scale variant. While the incidence in this application is perhaps

modest and “acceptable” (e.g., relative to a standard α-value) from

an inferential statistical perspective, our computational section

demonstrates that there exist data sequences for which Simpson

Reversals are observed at substantially higher levels. Given that

the rate of Reversal can vary substantially by initial sequence, the

practice of calculating this rate, conditional on the observed F, can

be seen as a potentially important robustness check.

4. Conclusion

This study establishes sufficient conditions for observing

instances of Simpson’s (data aggregation) Paradox under rank

sum scoring (RSS), as used, e.g., in the Wilcoxon-Mann-Whitney

(WMW) rank sum test. Using computational methods, we also

establish the relative frequency with which paradox-generating

Simpson Reversals occur under RSS when an initial data sequence

is pooled with its ordinal replicate. For each 2 x n case of RSS

considered, strict Reversals occurred for between 0% and 1.74% of

data poolings across the whole sample space, roughly similar to that

TABLE 9 Incidence of empirical reversal by case under rank sum scoring

of Apple iPhone v Nokia E SAR level.

Case Poolings of F
and F′ (F
specified)

Strict
reversals

Percentage strict
reversals

2× 1 6 0 0

2× 2 70 0 0

2× 3 924 0 0

2× 4 12,870 0 0

2× 5 184,756 1,474 0.80%

2× 6 2,704,156 0 0

2× 7 40,116,600 0 0

2× 8 6.01 x 108 0 0

TABLE 8 Rank sum scoring of Apple iPhone v Nokia E SAR level.

Case F (sequence; i = “iPhone”, n = “Nokia E”) iPhone rank sum score Nokia rank sum score Outcome
on F

2× 1 <n,i> 2 1 N ≻FI

2× 2 <n,i,i,n> 2+ 3= 5 1+ 4= 5 N ∼FI

2× 3 <n,n,i,i,n,i> 3+ 4+ 6= 13 1+ 2+ 5= 8 N ≻FI

2× 4 <n,n,n,i,i,n,i,i> 4+ 5+ 7+ 8= 24 1+ 2+ 3+ 6= 12 N ≻FI

2× 5 <n,i,n,n,i,i,n,i,i,n> 2+ 5+ 6+ 8+ 9= 30 1+ 3+ 4+ 7+ 10= 25 N ≻FI

2× 6 <n,i,i,n,n,i,i,n,n,i,i,n> 2+ 3+ 6+ 7+ 10+ 11= 39 1+ 4+ 5+ 8+ 9+ 12= 39 N ∼FI

2× 7 <n,i,i,n,n,i,i,n,n,i,n,i,i,n> 2+ 3+ 6+ 7+ 10+ 12+ 13= 53 1+ 4+ 5+ 8+ 9+ 11+ 14= 52 N ≻FI

2× 8 <n,n,i,i,n,n,i,i,n,n,i,i,n,i,i,n> 3+4+7+8+11+12+14+15= 74 1+2+5+6+9+10+13+16= 62 N ≻FI
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observed for 2 x 2 x 2 contingency tables and considerably less than

the rate observed for path models. The rate of Reversal conditional

on observed initial sequence was highly variable. Despite a mode

at 0%, this rate exceeds 20% for some initial sequences. Further,

our empirical application identifies empirical susceptibility to

Simpson Reversals in the case of publicly-released mobile phone

radiofrequency exposure data. Simpson Reversals under RSS are not

simply a theoretical concern but can serve to flip nonparametric

or parametric biostatistical results even in vitally important public

health settings. Conceptually, incidence of the Paradox can be

viewed as a robustness check on a givenWMW statistical test result.

When the Paradox occurs (is possible), it follows that a given result

is at least partly a function of data scale or sample size. Given that

the rate of Reversal can vary substantially by initial sequence, the

practice of calculating this rate conditional on the observed F can

be seen as a potentially important robustness check upon a result.
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