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Endocrine-disrupting chemicals (EDCs) are a class of man-made substances with
potential to disrupt the standard function of the endocrine system. These EDCs
include phthalates, perchlorates, phenols, some heavymetals, furans, dimethoate,
aromatic hydrocarbons, some pesticides, and per- and polyfluoroalkyl substances
(PFAS). EDCs are widespread in the environment given their frequent use in daily
life. Their production, usage, and consumption have increased many-fold in
recent years. Their ability to interact and mimic normal endocrine functions
makes them a potential threat to human health, aquatics, and wild life.
Detection of these toxins has predominantly been done by mass spectroscopy
and/or chromatography-based methods and to a lesser extent by advanced
sensing approaches such as electrochemical and/or colorimetric methods.
Instrument-based analytical techniques are often not amenable for onsite
detection due to the lab-based nature of these detecting systems.
Alternatively, analytical approaches based on sensor/biosensor techniques are
more attractive because they are rapid, portable, equally sensitive, and eco-
friendly. Advanced sensing systems have been adopted to detect a range of
EDCs in the environment and food production systems. This review will focus
on advances and developments in portable sensing techniques for EDCs,
encompassing electrochemical, colorimetric, optical, aptamer-based, and
microbial sensing approaches. We have also delineated the advantages and
limitations of some of these sensing techniques and discussed future
developments in sensor technology for the environmental sensing of EDCs.
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1 Introduction

Due to rapid industrial advances, hundreds of new chemicals have been synthesized for
domestic and industrial use without a clear understanding of the toxic effects on humans and
the long-term deleterious effects on the ecosystem (Ren et al., 2015b; Esteso, 2022). EDCs are
a group of structurally diverse, artificially synthesized exogenous chemicals with the ability to
perturb the normal function, secretion, transport, and metabolism of natural hormones
(Chen H. et al., 2019; Charitos et al., 2022). These hormones are produced by the endocrine
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glands (hypothalamus, pituitary, thyroid, parathyroid, thymus, and
adrenal), have many regulatory effects on natural homeostasis, and
affect the development and overall function of the endocrine system.
EDCs can enter the body through several routes such as inhalation,
skin contact, and ingestion to affect the natural functions of the
endocrine hormones (Roy et al., 1997; Bergman et al., 2013;
Preciados et al., 2016). Several EDC compounds are found
contemporaneously in pesticides, insecticides, pharmaceutical
agents, compounds of heavy metals, drugs, feed additives,
industrial chemicals, and electronic waste (e-waste). Because of
the impact of the endocrine system on healthy development and
regulation of hormones, EDCs have a devastating potential to
adversely affect individuals of every group from childhood to old
age (Lee et al., 2015; Preciados et al., 2016).

EDCs are present in a wide range of synthetic plastic products
such as toys, bottles, and PVC pipes. They are also commonly found
in detergents, toothpaste, flame retardants, and in different cosmetic
items (Flint et al., 2012). EDCs as pesticides are extensively applied
in the agriculture industry for the improvements of crop yields. The
residues of these toxins are detected in diverse food products and
their related environments (Yang et al., 2020). For example, Atrazine
is detected in surface and groundwater all over the world (Wan et al.,
2021). EDCs enter the environment via wastewater discharge,
hospital waste disposal, leaching of chemicals from industrial
plants and households, and pesticide residues. They often enter
landfills and reach aquatic bodies, such as surface water,
groundwater (Gao et al., 2020), the marine environment (Muller
et al., 2020), freshwater reservoirs (Rocha et al., 2019), and ultimately
enter the food chain through sea food contamination (Muller et al.,
2020; Chen et al., 2022; Shah et al., 2022).

Per- and poly-fluoroalkyl substances (PFAS) which have been
brought to the limelight are ubiquitous and reported to be present in
surfactants, lubricants, fire retardants, and polymer additives
(Hoisaeter et al., 2019; Mumtaz et al., 2019; Xu et al., 2021).
Dichlorodiphenyltrichloroethane (DDT) is an insecticide
commonly used to combat malaria (Meeker, 2012).
Polychlorinated biphenyls (PCBs) have been extensively used in
electrical equipment, mainly in transformers and capacitors
(Habibullah-Al-Mamun et al., 2019). Phthalates are extensively
used in children’s products, medical devices, cosmetics goods,
plastic items, packing, and building materials (Vieira et al., 2021).
Bisphenol A, an estrogen mimic, is widely used in the plastics
industry and in food packaging, thermal papers, DVDs, plastic
pipes, vehicle panels, medical equipment, personal care products,
and dental sealants (Fisher et al., 2017). It has also been used as a
supplement in cattle and poultry production to increase growth rates
(Pironti et al., 2021). Cadmium is used in the production of batteries,
pigments, plastic, and alloys (Friberg et al., 2019). The use of Lead is
reported in plastic, glass, batteries, and weldingmaterials. Mercury is
used in the production of pigments, caustic soda, thermometers, and
in dental products. As a result of extensive uses and applications of
these toxins, EDCs are widespread in our ecosystem contributing to
conditions such as diabetes, obesity, nervous disorders, gland
dysfunction, discomfort in respiration, abnormalities in muscular
functions, seizures, cardiovascular diseases, fluctuation in blood
pressure, early puberty, and infertility (Vieira et al., 2021).

Many EDCs have the ability to mimic the functions of natural
hormones, impacting many physiological functions such as growth,

development, and reproduction through the overstimulation of receptors
(Lu et al., 2020). Other EDCs block the activity of natural hormones,
disrupting normal signaling through the inhibition of binding. This leads
to the disturbance in the function of glands, abnormal levels of hormone
production, secretions, andmetabolism, which ultimately lead to adverse
health outcomes for the exposed individual (Vandenberg et al., 2012; Hu
et al., 2015; Vandenberg, 2019). Exposure to EDCs leads to many
diseases which are caused by a disturbance in the normal
functionality of estrogen, androgen, and thyroid hormones. Structural
similarities of EDCs provide the potential to interact with nuclear and
hormonal receptors, resulting in the activation of hormone transporter
proteins, dysregulation of healthy hormone metabolism, and affect the
number of receptors on cell surfaces, which lead to the interruption in
normal hormonal responses. EDCs affect the signal transduction to the
immune as well as the nervous systems and often lead to alteration of the
production and function of natural hormones (De Coster and Van
Larebeke, 2012). The lipophilic nature of many of these chemicals causes
them to be retained in adipose tissues, which leads to prolonged and
elevated levels of these chemicals inside living beings (Heindel et al.,
2015; Sargis, 2015). EDCs also have negative impacts on genome
regulation. Epigenetic changes such as methylation and acetylation of
DNA and histone modifications are also being reported (Zama and
Uzumcu, 2010; Lauretta et al., 2019). Even a low dose of these chemicals
have the potential to either directly or indirectly affect the exposed
individuals. Experimental results suggest that the low concentration of
these chemicals showing impairment during in vitro experiments can
also be detrimental not only to wildlife but to human health as well
(Lauretta et al., 2019).

Many in vitro and in vivo studies report the health damages due
to exposure to EDCs, including short-term acute and long-term
chronic effects, which may appear months or years after exposure
(Hayes et al., 2011; Sabuz Vidal et al., 2021; Sakhteman et al., 2021).
Acute effects which are observed in persons involved in the use of
pesticides include painful eyes, rashes, wounds, blindness, nausea,
respiratory issues, and diarrhea (De Coster and Van Larebeke, 2012;
Ren et al., 2015a). The chronic effects which are reported include
cancer, congenital disabilities, neural and developmental
deformation as well as immunotoxicity (Nalbone et al., 2013;
Scognamiglio et al., 2016). The brain and nerve cells are very
prone to be affected by these EDCs, especially at the
developmental stages (Marinello and Patisaul, 2021).
Experimental results and clinical and epidemiological studies
confirm that exposure to EDCs can result in harmful effects on
brain health (Lopez-Rodriguez et al., 2021). The toxic nature of
EDCs has the potential to alter normal functions of neural cells that
result in neurogenesis and affect neural transmission. This can lead
to neurological disorders that can disrupt learning and cause
aggressive behavior (Kajta and Wojtowicz, 2013; Preciados et al.,
2016; Streifer and Gore, 2021).

Conventional measurement of EDCs has been primarily
performed using liquid or gas chromatography-mass
spectrometry (LC- or GC-MS) in a variety of matrices such as
water, breast milk, urine, serum, food, and soil (Metcalfe et al., 2022).
PFAS and phthalates have most commonly been measured by LC-
MS using tandem mass spectrometry (MS/MS) (Dima et al., 2020;
Abafe et al., 2021) or high resolution mass spectrometry (HRMS)
(Charbonnet et al., 2022) In contrast, aromatic hydrocarbons have
been primarily measured using GC-MS or GC-HRMS (Wang et al.,

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Shah et al. 10.3389/fbioe.2023.1141523

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1141523


2019; Zastrow et al., 2021) while BPA, insecticides, and pesticides
have been analyzed using either LC-MS/MS or GC-MS (Lee et al.,
2017; Dima et al., 2020). Metal EDCs such as arsenic and lead have
most often been tested by inductively coupled plasma mass
spectrometry (ICP-MS) (Luo et al., 2017). In general, while
targeting specific EDCs using such techniques as MS/MS
provides the optimal ability to detect low abundant compounds,
HRMS enables the greater ability to discover unknown EDC
metabolites through untargeted screening (Metcalfe et al., 2022).
Due to the variety of sample matrices and extraction methods used
prior to MS analysis, the use of internal standards is critical for
ensuring precision and accuracy of quantitation (Cortese et al.,
2020). Surrogate internal standards, consisting of stable isotope
or deuterium labeled versions of target compounds, are added at
the beginning of extraction to later adjust data for factors including
extraction efficiency and matrix effects. In some instances, such as
with PFAS, internal standard mixtures consisting of a large number
of compounds within an EDC class can be purchased to facilitate
inclusion in extraction protocols (Genualdi and deJager, 2021).

Monitoring and detection of EDCs compounds, as noted earlier,
have been traditionally performed with analytical methods such as
gas chromatography-mass spectrometry (GC-MS) (Azzouz et al.,
2020), Liquid chromatography (Zatrochova et al., 2022), ultra-
performance liquid chromatography-tandem mass spectrometry
(Zhou et al., 2022), capillary electrophoresis (Chen et al., 2021)
surface plasmon resonance (Bakhshpour and Denizli, 2020), and
solid phase extraction (Zhang et al., 2020). Although conventional
analytical methods are standardized, highly sensitive and selective,

these approaches are time-consuming, have complex protocols,
often require sample pre-treatment and sophisticated
instrumentation, trained and skilled personnel. Novel sensing
systems have been reported and well-established in the last
decades to monitor several toxins. Recent advances in materials
and detection systems provide rapid, amenable for on-site, real-time,
and cost-effective monitoring at very high sensitivity of EDCs at
trace levels. Table 1 provides a concise account of technologies used
for detection various EDCs.

The impact of EDCs on health is amplified by both a dearth of
knowledge of how these chemicals affect our wellbeing and by a lack
of awareness of how pervasive these compounds are in our
environment (Kabir et al., 2015). In this review, we will focus on
new or emerging technologies for the detection of EDCs. We discuss
biosensors based on electrochemical, colorimetric, optical, aptamer,
and microbial sensing approaches for EDC detection. The
advantages and limitations of different sensing systems are
compared and evaluated in the context of more conventional,
lab-based detection techniques. Future developments and
applications of EDC sensors will be discussed in the last section.

2 Sensing systems for EDCs

Sensors are integrated devices that require small sample volumes
and minimum sample preparation, are fast, cheap, portable, user-
friendly, and capable of performing real-time monitoring without
the production of toxic chemicals. While there are several success

TABLE 1 Instrument-based techniques for monitoring EDCs in selected samples.

Chemical name Conventional detection method Type of sample LOD (mol L−1) References

1. Perchlorate Carbon Nanotubes/Solid-contact ISEs -- 1.8 × 10−7 Hassan et al. (2019)

2. Phthalate Electrochemical impedance sensing platform -- 4.5 × 10−9 Bolat et al. (2019)

GC-MS Human Saliva 9.14 × 10−11 –1.82 × 10−9 Vu et al. (2020)

3. Bisphenol A GC-MS Dairy products 2.62 × 10−11–.01 × 10−10 Palacios Colon et al. (2021)

Water 9.14 × 10−11–1.82 × 10−9 Alimzhanova et al. (2022)

--- Fish (Muscle) 1.00 × 10−10 Petrarca et al. (2022)

GC-MS Planaria -- St. John et al. (2021)

DLLME- GC-MS/MS Placenta Tissues 1.75 × 10−10–3.50 × 10−10 Fernandez et al. (2021)

GC-MS/MS Ambient air 3.06 × 10−10–6.57 × 10−10 Naing et al. (2021)

HPLC-UV and LC-MS/MS Whole milk 1.09 × 10−7–2.19 × 10−7 Mesa et al. (2019)

4. Heavy Metal Ions SPR Water, Aqueous Solutions 8.89 × 10−11 Bakhshpour and Denizli (2020)

0.28 nm × 10–3 Dhara et al. (2019)

0.55 nm × 10–6 Chen et al. (2019c)

5. Organophosphates CE Fruit and vegetable juice 4.27 × 10−8 Chen et al. (2021)

1.16 × 10−10 Li et al. (2018a)

LC-MS/MS Environmental water 7.38 × 10−11 and 8.92 × 10−12 Cakır and Baysal (2019)

SPR Environmental water 3.65 × 10−12 and 3.10 × 10−11 Cakır and Baysal (2019)

6. PAHs GC-MS/MS Cow milk 1.18 × 10−9–3.59 × 10−9 Hasan et al. (2022)
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TABLE 2 Advanced sensing techniques for the detection of EDCs.

Analyte Sensor technology Sensing approach LOD (mol L−1) Type of sample Ref.

Atrazine QD Fluorescence 0.80 × 10−7 Water Nsibande and Forbes
(2019)

Nitrogen-doped QD Luminescent probe 3 × 10−12 Vegetables Mohapatra et al. (2018)

SnO2 Nanofibers Electrochemical 0.9 × 10−21 Water Supraja et al. (2019)

Carbon Nanotubes Immunosensor 4.63 × 10−12 Water Belkhamssa et al.
(2016)

MIPs Electrochemical sensor 8.80 × 10−8 Water Che Lah et al. (2021)

Capped AgNPs Electrochemical sensor 1.77 × 10−7 -- Zahran et al. (2020)

MIP-Based Potentiometric 4 × 10−7 Tap water Alberti et al. (2022)

NiHCF NPs and reduced
graphene oxide.

Electrochemical aptasensor 0.1 × 10−12 Water Fan et al. (2019)

BPA biochar NPs Electrochemical 3.18 × 10−9 Water Liu et al. (2019)

Aptamers Based Colorimetric detection 2.02 × 10−9 Milk, orange juice, and
mineralized water

Jia et al. (2020)

AuNPs Colorimetric aptasensor 0.004 × 10−9 Grain Lee et al. (2019)

AuNPs and carbon black Nano
composite

Electrochemical sensor 60 × 10−9 Water Jebril et al. (2021)

Engineered Escherichia coli cells Electrochemical biosensor 0.01 × 10−9 Tea and juice samples Zhao et al. (2022)

Aptasensor Ellipsometric method 36 × 10−12 -- Sahin et al. (2022)

Perchlor ate lux biosensors, bioluminescence Bacterial luciferase lux genes -- Water Balabanov et al. (2017)

AuNPs Colorimetric sensing 2.4 × 10−5 Soil Keskin et al. (2020)

Pt(II) terpyridyl complex-based
sensing

Colorimetric and luminescent
dual-mode

0.45 ng (naked eye) Soil and air Su et al. (2022)

AuNPs Colorimetric Sensor 1.5 × 10−6 Sparkler filtrate Keskin et al. (2022)

Platinum (II) complex in a
hydrogel matrix

Luminescent turn-on 1.12 ng (naked eye) -- Su et al. (2021)

OP Pesticides gold nanorods Multicolor sensor 8.58 × 10−10 Food samples Yin et al. (2021)

UCNPs- MnO2 Aptasensor 2.61 × 10−10 -- Ouyang et al. (2021)

C-AuNPs Colorimetric detection 1.99 × 10−8 Environmental sample Shah et al. (2021)

Gold Nanoparticles Nano Gold- electrochemical
biosensor

7.38 × 10−11–2.99 ×
10−10

-- Zhao et al. (2021)

Cu@Ag Nanoparticles Colorimetric detection 4.23 × 10−8 fruit extract and environmental
sample

Faghiri et al. (2021)

Gold Nanoparticles Colorimetric detection 1.77 × 10−7 Ma et al. (2017)

-- Fluorometric sensing 4.52 × 10−10 -- Liu et al. (2020)

Phthalate esters ZIF-8 fluorescent MOF NPs Optical sensing 3.32 × 10−5

–9.98 × 10−5
-- Chapartegui Arias et al.

(2019)

Quantum dot aptasensor <2.56 × 10−7 -- Lim et al. (2018)

AuNPs@β-CD Colorimetric/SERS sensor 14.9 × 10−9 Liquor and rice wine Li J et al. (2019)

AuNPs Electrochemical 2.51 × 10−8 Water samples Liang et al. (2017)

SiO2@QDs@MIPs Fluorescence --- Tap water Zhou et al. (2017)

MWCNTs and AuNPs MIP electrochemical sensor 1.83 × 10−11 -- Wang et al. (2022)

Heavy Metals
Ions

Gold nanoparticles Colorimetric sensing -- Water Gunupuru et al. (2022)

(Continued on following page)
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stories, summarized in Table 2, numerous systems are still in
development. In the subsequent sections, we will discuss the
different biosensing modalities for the detection of EDCs.

2.1 Electrochemical sensors for the
detection of EDCs

An electrochemical sensor is made of two electrodes, i.e., reference
and sensing electrodes. A suitable electrolyte separates both electrodes.
The presence of a target analyte generates electrochemical signals which

are used to monitor the concentration of the analyte (Kaya et al., 2021).
These types of sensing systems provide high selectivity, low power
requirements, linear and stable output, excellent accuracy, repeatability,
and economical sensing. With all these features, the easy integration of
these electrochemical sensors into smart portable units makes them a
useful option for in-field deployment (Hayat and Marty, 2014). Their
compatibility with complicated sample matrices reduces the need for
lengthy sample pretreatments and leads to the simplification of sensing
protocols (Lee and Irudayaraj, 2013; Huang et al., 2017). All these are
attractive features in the development of electrochemical sensors for the
detection of EDCs.

TABLE 2 (Continued) Advanced sensing techniques for the detection of EDCs.

Analyte Sensor technology Sensing approach LOD (mol L−1) Type of sample Ref.

PFOS Macrocycle Bowtie Cyclophane Fluorescence detection 47.3 ± 2.0 ×10−9 Water Lei and Cong (2022)

QDs Fluorescent and visual sensor 18.27 × 10−9 Water Chen et al. (2019b)

FIGURE 1
Schematic diagram representing well-developed electrochemical approaches for EDCsmonitoring (A)Common EDCs with chemical structures (B)
BPA can be detected by the electro-chemical oxidation methods to find out the presence of its phenolic groups, (C) Competition-based immunoassay
assay for PCB sensing, enzymes connect with circular dots of different colors which is pre link to the surface, as a result of this connection the
electrochemical signals are being generated depending upon PCB amounts in the solution, (D) An electrochemical sandwich assay, functioning on
the binding of E-coli to an electrode is being sketched to monitor EDCs.
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EDCs such BPA and phthalates, due to their electroactive
nature, can be detected directly by adopting suitable
electrochemical sensing approaches as illustrated in Figure 1.
Some common EDCs along with their chemical structures are
depicted in Figure 1A. Figure 1B illustrates the direct detection of
electroactive species. Figure 1C elaborates on the sensing of EDCs
such as polychlorinated biphenyls (PCBs) and PFAS that need an
adjunct electro-active species to be measured. These non-
electrostatic targets can be identified after interaction with
electro-active substances. Figure 1D, shows the detection of
binding functionalities of microorganisms via electrochemical
sandwich assay (Ranaweera et al., 2019; Sofen and Furst, 2019).
An electrochemical assay was constructed by expressing estrogen
receptors on the surface of Escherichia coli (E. Coli) for monitoring
various EDCs by signal variants from impedance measurements
(Furst et al., 2017).

Recent electrochemical sensing systems have also used
nanomaterials to enhance the selectivity and sensitivity of the
systems (Guo and Irudayaraj, 2011; Stefan-van Staden et al.,
2019). The incorporation of nanomaterials such as carbon
nanotubes, graphene, and other metal-based nanomaterials onto
electrodes provides more selective and sensitive results by improving
signal-to-noise ratios on the sensing electrode (Qu et al., 2019; Sofen
and Furst, 2019; Ahmad et al., 2022).

2.1.1 Detection of bisphenol A
BPA is an ideal candidate for direct detection due to its

electroactive nature, undergoing two-electron, two-proton
oxidation, and detection can be amplified with combinations of
enzyme reactivity and signal enhancement. Liu et al. (2019)
developed an electrochemical biosensor for the monitoring of
BPA with the help of a tyrosinase enzyme. In this method,
biochar nanoparticles (BCNPs) are synthesized from sugarcane
sources by applying the Nafion embedding method, which is
being used as a transducer and signal enhancer. The presence of
highly conductive BCNPs not only increased the sensor signals but
also decreased the impedance and reduction potential, which
ultimately improved the output from amperometric sensing. By
utilizing this sensor, as little as 3.18 nM of BPA can be detected with
a linear range between 0.02 and 10 µM. One important aspect of
implementing these technologies is the ability to commercialize
testing platforms. These BNCP-enzyme platforms show 86.9%
signal retention after 1 month of sensor storage, which confirms
the stability of BCNPs/Tyr complex. BNCP-enzyme coupled
biosensors provide easy electrode preparation, non-complicated
operation, and better performance for the detection of BPA from
water samples (Liu et al., 2019).

2.1.2 Detection of atrazine
Atrazine is an herbicide commonly found in ground water and

surface runoff (Bachetti et al., 2021; Urseler et al., 2022). Supraja and
co-researchers created a real-time sensor for atrazine using an
electrospun SnO2 nanofiber platform. Using label-free
transductions on this platform, atrazine can be detected at
0.9 zM with a linear range of 1.0 zM to 1.0 μM. This system
exhibits excellent interference resistance as spiked ground and
mineral water samples were successfully tested for atrazine
(Supraja et al., 2019). Zahran et al. (2020), used silver

nanoparticles (AgNPs) synthesized by the direct reduction
technique for the electrochemical sensing of atrazine. Signal
enhancement was facilitated with dissolved organic matter
(DOM) interacting with AgNPs on the surface of the glassy
carbon electrode (GC), leading to the formation of a DOM/
AgNP/GC composite. After optimizing the composite
manufacture, atrazine was detected in the nM range in stream
water samples with this method (Zahran et al., 2020).

2.1.3 Monitoring of phthalate
Dibutyl phthalate (DBP) is used during the manufacture of

flexible plastics, as an insect repellent, and as a solvent for oil and
resins in several products (Batool et al., 2022; Sun et al., 2022). Bolat
et al. (2019), developed a sensor using molecular imprinting for the
targeted detection of DBP. An integrated approach using a
conducting polymer, polypyrrole (PPY), molecularly imprinted
by polymerization in the presence of DBP on a graphite
electrode was used. Electrochemical impedance spectroscopy
(EIS) is used to detect the interaction of solution DBP with the
molecularly imprinted sensor. After sensor optimization, the device
can detect 4.5 nM DBP with a linear response range of 0.01–1.0 μM.
This sensor provides a rapid, sensitive, economical, disposable, and
easy-to-use platform for the detection of DBP (Bolat et al., 2019).
Also to detect DBP, a biosensing platform based on a competitive
binding assay similar to enzyme-linked immunosorbent assay
(ELISA) was developed using gold nanoparticles (AuNPs) for
signal amplification. The amplification results from the
enlargement of AuNPs via catalytic precipitation. Under
optimized conditions, the LOD of this system at 7.0 nM is
10 times lower than conventional ELISA. Detection efficiency
remains stable at a wide range of pH (6–9) and ionic content
(Na+8%, Ca+2 4%; w/v) as well as in matrices of pond water and
river water. The overall performance of this immunosensor indicates
the potential to be developed into a rapid and low-cost sensor for
monitoring DBP in water samples (Liang et al., 2017).

2.1.4 Sensing of perchlorates
Perchlorate contamination is primarily associated with military

installations due to its use as a strong oxidant in explosives but is also
found in food packaging (Feng et al., 2022). It has been found in both
drinking water and food (Tian et al., 2020). Hassan and his
colleagues developed an electrochemical sensor for perchlorate
ions using a solid-contact ion-selective electrode (SC-ISE). The
use of single-walled carbon nanotubes as a solid-contact material
provides a high double layer capacitance as a result of the high
surface area of the nanomaterial. The sensor showed enhanced
selectivity toward perchlorate ions with a broad linear range
spanning 1 μM–10 mM concentrations and a detection limit
under 200 nM. The system showed quick response time, high
sensitivity, and accuracy. These types of sensors could be used
for the perchlorate determination in a flow system for
continuous monitoring (Hassan et al., 2019).

2.1.5 Detection of poly-fluoroalkyl substances
(PFAS)

Perfluorooctane sulfonate (PFOS) was widely used in stain-
resistant fabrics, fire-fighting foams, food packaging, and as a
surfactant in industrial processes, and PFOS can also be
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generated in the environment after release and transformation of
precursors (Kancharla et al., 2022; Nilsson et al., 2022). Although
no longer produced in the United States, PFOS remains an
environmental contaminant and is still being produced and
used in products internationally (Pontius, 2019). Li et al., have
developed a low-cost, disposable photoelectrochemical (PEC)
strip to monitor the PFOS precursor perfluorooctane sulfonyl
fluoride (PFOSF). PFOSF has been recalcitrant to measurement
without chemical derivatization. The PEC strips are fabricated
via a facile one-step electrodeposition method, coated with
bismuth oxyiodide (BiOI) nanoparticles, and targeted to
PFOSF detection with molecular imprinted polymers grafted
to the electrode. The resulting sensors have a linear range of
detection of 0.1–1 μM and are capable of detecting PFOSF in
spiked river and lake water (Li et al., 2018c). An electrochemical
biosensor for PFOS based on the inhibition of the biocatalytic
process in enzymatic biofuel cells (BFC) was established. This
single-compartment BFC was equipped with multi-walled carbon
nanohorns (MWHNs). Glassy carbon electrodes (GCE) acts as a
substrate for bio-anode as well as for bio-cathode and glutamic
dehydrogenase (GLDH) behaved as biocatalyst for the bio-anode.
It had previously been noted that PFOS altered the glutamate
mediated current in rat hippocampal cells (Liao et al., 2009). In
general, the detection levels from the biosensors were not
currently on par with the conventional methods but future
improvements are expected. Sensitivity targets to monitor the
minimum reporting levels (usually in the 2–4 ppt range) and

lifetime health advisory levels (0.004 ppt for PFOA, 0.02 ppt for
PFOS, 10 ppt for GenX, and 2,000 ppt for PFOS) are mandated by
the EPA in their 2022 reports (Hogue, 2022).

2.2 Colorimetric sensors for the detection of
EDCs

Colorimetric-based sensing systems depend on the color variations
in the reaction mixture due to the presence of a specific analyte. The
presence of an analyte produces a reaction with the sensing materials,
which causes visual color variation (Rodrigues et al., 2021). These sensor
platforms provide advantages over existing lab-based methods such as
ease of use, quick response, and the ability to obtain test results without
any accessory equipment or access to power sources. The quick and
distinct color change of the reaction enables users to interpret the
positive results qualitatively with the naked eye or quantitatively with
optical sensors. The colorimetric assay has proven to be a powerful
analytical approach for EDCs, owing to its convenience and simplicity
(Shah et al., 2013; Che Sulaiman et al., 2020). An example schematic for
novel colorimetric sensing comprising of synthesis steps,
characterization, and application (AuNCs-MnO2) for monitoring
target analytes is outlined in Figure 2. The fabrication of MnO2

(AuNCs-MnO2) NPs from bacteria/green source is depicted in
Figure 2A, and their characterization with various techniques in
Figure 2B, while Figure 2C illustrates sample analysis and signal
detection by colorimetry.

FIGURE 2
Steps for the colorimetric monitoring of analytes (A) Synthesis of MnO2 (AuNCs-MnO2) nanoparticle from plant/bacteria source, (B) fabricated
nanoparticles are characterized with different techniques, (C) colorimetric detection of an analyte by adapting fluorescence and colorimetric signal
variation.
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2.2.1 Colorimetric sensor for detection of
perchlorate

The physio-chemical nature of gold nanoparticles is being exploited
for onsite visual detection of perchlorate. A reliable nanoparticle-based
analytical method for perchlorate detection was proposed with the help
of methylene blue (MB) and negatively charged gold nanoparticles. The
presence of MB gives an overall positive charge to the AuNPs-MB
nanocomposite, which enables the surface to electrostatically attract
negatively charged perchlorate which leads to the ion-pair formation
between the MB and perchlorate anion. This ion pair formation causes
agglomeration in the AuNPs, which is confirmed by the localized SPR
absorption band. The LOD of this system was found to be 240 mM and
the limit of quantification (LOQ)was observed as 830 mM. The efficacy
of this system for percolate ions is being investigated statistically for
different interfering common ions (Keskin et al., 2020).

2.2.2 Colorimetric sensor for the detection of
pesticides

In a study by Yan et al. (2019), a nanocomposite based on gold
nanoclusters and MnO2 (AuNCs-MnO2) was used to detect
carbamate pesticides by adopting fluorescence and colorimetric
signal variations. MnO2 quenched the fluorescence of AuNCs,
which cause a decrease in fluorescence as well as a color change.
The presence of acetylcholinesterase (AChE), its substrate, and
choline oxidase lead to the generation of H2O2 due to enzymatic
hydrolysis resulting in the decomposition of MnO2, affecting the
fluorescence from AuNCs. But when carbamate is in the system, its
blockage of AChE leads to the reduction of the enzymatic reaction,
hence a drop in H2O2 generation, which eventually results in the
blockage of MnO2 breakage and increase in quenching of AuNCs
fluorescence (Yan et al., 2019).

A simple, easy-to-use dual-sensing system for organophosphate
(OP) pesticides using adenosine triphosphate (ATP) and rhodamine
B-modified gold nanoparticles (RB-AuNPs) has been successfully
developed (Li et al., 2018b). This sensing system is based on the
aggregation of AuNPs due to ligand replacement, which is caused by
the presence of OP. Ethoprophos, an OP ester, can be detected by the
variations in colorimetric and fluorescence signals grom the RB-
AuNPs. The linear range for this detection system was 4.0–15.0 µM,
and the LOD of this system was as low as 37.0 nM. This cost-
effective, sensitive and reliable sensing platform can be applied to
real-time sensing of ethoprophos in water samples (Li et al., 2018b).

A colorimetric method for the monitoring of OP is being
developed by the aggregation of lipoic acid-capped AuNPs and
subsequent color change due to AChE/ATCh (acetylthiocholine)
reaction. In this scheme, the enzymatic product of AChE, cationic
thiocholine (TCh), causes the aggregation of AuNPs which leads to a
change in color from red to blue. The presence of OP in this system
causes the blockage of AChE, which ultimately reduces TCh
generation, preventing aggregation of AuNPs and the absence of
a red-shift in the system. This detection system was applied to detect
OP from fruit samples (Sun et al., 2011).

2.3Optical sensors for the detection of EDCs

Optical sensors are highly attractive devices that use light to
detect and measure changes in a physical entity, such as position,

motion, light intensity, wavelength, and temperature. These sensors
have been applied to detect very low concentrations of EDCs in
various samples, such as food, beverages, blood, urine, soil, crops,
industrial effluents, wastewater, and surface water (rivers, lakes, and
oceans). Detection of EDCs in blood and urine helps in the diagnosis
of EDC-related disorders and monitoring treatment progress. These
chemicals were monitored in soil and crop samples by employing
optical sensors to identify the sources of contamination and to
undertake measures to reduce their impact on crop yields and soil
fertility. Monitoring industrial effluents and wastewater can help in
the identification of sources of contamination wherebymeasures can
be undertaken to reduce their release into the environment. Optical
sensors can be used to assess the extent of contamination and to take
measures to mitigate its effects.

2.3.1 Optical sensors for the detection of atrazine
A fluorescent-based photo-stable detection system of atrazine

was developed by Mohapatra et al. (2018), with the help of a
nitrogen-doped carbon quantum dot. The presence of atrazine
induces the fluorescence system to luminesce at increasing
intensity depending on the concentration of atrazine. The
hydrogen bonding interaction between the atrazine and amino
groups on the surface of the quantum dots makes the sensing
system selective and highly sensitive to atrazine. With this
approach, as low as 3.0 pM of atrazine could be detected in the
broad linear range of 5.0 pM–7.0 nM. This system is being applied to
not only the real-time detection of atrazine in agricultural samples
but also to detect atrazine in bacterial cell lines were the nitrogen-
doped carbon quantum dots show good cell permeability and
emission intensity in bacterial cell lines (Mohapatra et al., 2018).

The detection principle of a novel fluorescence immunoassay for
atrazine is shown in Figure 3. Herein, the probe [comprising of the
antigen-polystyrene magnetic microspheres (PMMs) complex] can
be used to capture the target [coating antibody-upconversion
nanoparticles (UCNPs) blend] to form an immune conjugate
(antibody-UCNPs-atrazine-PMMs) and detected with a
spectrometer. The use of an association between the atrazine and
the fluorescence signal allows for quantitative sensing of atrazine in
the sample (Sheng et al., 2019).

2.3.2 Optical sensors for detection of aromatic ring
compounds

Li et al. (2021), adopted a fluorescence-based method for the
ultrasensitive detection of BPA in water samples with the application
of up-conversion nanoparticles (UCNPs) and
tetramethylrhodamine. The use of UCNPs not only enhanced the
sensitivity of the system, but the luminous efficiency also increased.
A simple pretreatment for the water sample measured makes this
method time-saving and easy to adopt (Li Q et al., 2019).

An assay for detecting BPA using a material created by
compounding magnetic Fe3O4 onto the surface of oxidized
graphene to make magnetic oxidation graphene (MGO) was
developed. The magnetic material is a strong quenching agent.
Fluorescently labeled BPA-targeted single-stranded DNA
(ssDNA) aptamer sequences bind to the surface in a quenched
state. The presence of free BPA releases the aptamer and restores the
fluorescence. Magnetic separation of the MGOmaterial after release
of fluorescent aptamer provides a sensitive indicator of the presence
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of BPA. The LOD of this system was 0.071 ng/mL and a linear range
of 0.2–10 ng/mL. The specificity of the aptamer for BPA and the use
of fluorescence proves to be highly sensitive and selective (Hu et al.,
2017). Using a similar targeted binding strategy, Inuyama and co-
researchers capitalized targeted dioxin-binding peptide in a
competitive binding assay with fluorescence readout. The
fluorescent compound N-NBD-3-(3′, 4′-dichlorophenoxy)-1-
propylamine binds to the dioxin-targeted peptide which is
conjugated to the surface of a bead. The fluorescence of the
beads decreases as increasing concentrations of dioxin displace
the fluorescent molecule from the bead. The fluorescence
intensity decreases with the increase in the concentration of
dioxin. With optimized bead conjugations an LOD of 0.5 nM
dioxin is achieved. This system is robust enough to identify soil
samples that have a higher concentration of dioxin than standards
(Inuyama et al., 2007).

A Surface Plasmon resonance (SPR) based sensing assay was
developed by capitalizing on functionalized gold nanoparticles to
enhance sensor response. By adopting this strategy BPA was
successfully detected in the concentrations ranging from pM to
mM with a detection limit of 22.7 pM (Xue et al., 2019). Another
sensing system was designed for monitoring BPA based on
molecular imprinted photonic crystals. The high specificity and
selectivity of the developed sensing system were associated with the
interactions of binding sites of nano-cavities with BPA (Griffete
et al., 2011). An efficient, regenerative two dimensional, dually cross-
linked photonic crystal for colorimetric and florescent-based sensing

system for BPA monitoring was developed. The detection limit of
this cost-effective and rapid system was 4.38 nM (Du et al., 2023).

Another SPR-based sensing system was developed for
monitoring of triclosan in wastewater. The sensor was modified
to enhance its functionality by the incorporation of allylmercaptane-
modified gold SPR chip and imprinted poly(2-hydroxyethyl
methacrylate–methacryloylamidoglutamic acid) nanofilm. The
linearity range and detection limit of this sensor were
0.173–3.45 nM and 0.058 nM, respectively (Atar et al., 2015). A
modified quartz crystal microbalance (QCM) was established to
inspect four EDCs including BPA, oestrone, oestradiol, and
sulfamethoxazole, by employing an adsorption mechanism via a
zeolite filter in real-time in water samples. Observed results correlate
with the models of pseudo-first-order kinetic and Sips isotherms.
Adsorption efficiency was influenced by the molecular structure and
polarity of these analytes, but the variations in pH and ionic strength
of the sample did not impact adsorption efficiency (Li et al., 2021).

2.3.3 Monitoring of phthalate esters by optical
sensing systems

Chapartegui-Arias et al. (2019), established a zeolitic imidazole
framework (ZIF) to measure phthalate esters (PAEs) in solution by
an optical sensing protocol. In this method, the fluorescence
emission intensity of aminopyrine conjugated to the ZIF changed
due to the presence of Phthalate. Aminopyrene is covalently bound
to the zeolitic imidazolate framework (ZIF-8) and the addition of a
butylamine as a modulating agent during synthesis resulted in

FIGURE 3
An illustration of probe fabrication and analysis based on immunofluorescence (competition assay for atrazine detection).
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nanoparticles of ZIF-8. The quenching of the fluorescence is
observed when PAEs are present and interact with the material
by their aromatic structures. The ability to capture transient changes
in fluorescence intensity without expensive and time-consuming
regeneration steps show the possibility of a cheap, fast, and easy-to-
use PAEs detection system. With some initial pretreatment of
industrial wastewater, this detection system can be used for quick
and reliable PAEs sensing with the LOD range from 0.064–0.19 mM
(Chapartegui-Arias et al., 2019).

A novel fluorescence-based molecularly imprinted polymer
(MIP) synthesized by precipitation polymerization for the
monitoring of dibutyl phthalate (DBP) has been described. Mn-
doped ZnS quantum dots (QDs), which anchor a MIPs layer on the
SiO2 nanoparticles (SiO2@QDs@MIPs), were synthesized.
Acrylamide was used as a functional monomer and ethyl glycol
dimethacrylate as the cross-linker in the presence of DBP to create
the MIP layer on the surface of the SiO2 nanoparticles. The sensor
can selectively and sensitively recognize DBP resulting in a
decreasing fluorescence intensity of the particles with increasing
binding of DBP. In optimized conditions, the fluorescence signal
changes linearly with concentration of DBP. The SiO2@QDs@MIPs
was applied to tap water analysis, and on average, a 97.80% recovery
rate of DBP was observed with a relative standard deviation (RSD) of
less than 3.25%. This new method provides excellent, quick,
responsive, stable, and applied alternatives to sophisticated
analytical tools for the onsite detection of DBP in the linear
range from 5 to 50 µM (Zhou et al., 2017).

An immunofluorescence plate assay was developed by (Zhang
et al., 2006). A polyclonal antiserum was generated in rabbits
targeting DBP. A very low cross-reactivity rate (10%) with
similar phthalate compounds suggests polyclonal antiserum can
increase sensitivity with an acceptable loss of specificity. The
resulting antibody-coated plate format was used for the detection
of dibutyl phthalate (DBP) via fluorescence immunoassay. With the
help of this assay, water samples from different sources such as river
water, tap water, and drinking water can be tested for the DBP with
simplicity, sensitivity, and reliability (Zhang et al., 2006).

2.3.4 Optical sensor for detection of pesticides
A novel, indirect strategy for detecting the insecticide parathion-

methyl (PM) based on the measurement of its hydrolysate,
p-nitrophenol, was established by Yan et al. (2015). The fluorescence
of CdTe quantum dots (QDs) assembled with positively charged
cetyltrimethylammonium bromide (CTAB) is quenched when the
alkyl chain of CTAB interacts with the aromatic ring of
p-nitrophenol. The compound p-nitrophenol is produced by the
hydrolysis of PM by organophosphorus hydrolase (OPH) and is
subsequently involved in the electron transfer from CdTe QDs/CTAB.
The long alkyl chain of CTAB possesses a positive charge that is an
absorbent for p-nitrophenol due to hydrophobic interactions. The
presence of PM is indirectly assessed from the fluorescence variation
of CdTe QDs/CTAB by this electron transfer approach at a detection
limit of 0.062 µM (Yan et al., 2015). For real-time, precise, and accurate
detection of a herbicide (2,4-dichlorophenoxyacetic acid), molecularly
imprinted QCM and SPR systems were proposed. Polymeric surfaces
were designed by exploiting the molecular imprinting procedure to
develop sensors with high sensitivity. Observed LOD of the QCM
and SPR sensors was 0.091 and 0.11 nM respectively (Cakir et al., 2019).

2.3.5 Sensing of PFAS by adopting optical sensors
A spectrophotometric turn-on method was devised for the

detection of PFOS/PFOA in environmental water samples using
an erythrosine B (EB) and CTAB fluorescence system. The
fluorescence of EB in the presence of a large excess of CTAB
results in both a quenching and a fluorescence redshift of 11 nm.
The addition of PFOS/PFOA induces enhanced fluorescence
intensity at the new redshifted wavelength. It is found that the
presence of PFOS/PFOA enhanced the fluorescence in proportion to
the concentration of these toxins. The LOD for PFOS was 12.8 nM
and for PFOA it was 11.8 nM. The established method is a natural,
simple, quick, economical, and sensitive way to monitor the PFOS/
PFOA in the water sample (Cheng et al., 2018). However, the
detection limits achieved may not be sufficient to detect trace
levels of PFAS. Using a similar strategy (Cheng et al., 2019),
further discovered that in a sensing setup, PFOS can be visually
detected from the aqueous samples with the help of carbon dots
(CDs) and berberine chloride hydrate (BH). The presence of BH
decreases the fluorescence of CDs in the medium of the Britton-
Robinson (BR) buffer solution (pH 6.09). The addition of PFOS in
the system recovers the fluorescence slightly at 488 nm but greatly
enhances fluorescence at 533 nm. Interestingly this effect was not
observed with other perfluorinated compounds of this family. Visual
color variations from blue to light yellow were easily perceived in the
presence of PFOS. The enhanced intensity responses at 533 nm are
linear in the range of 0.22–50.0 µM PFOS concentrations with a
LOD at 21.7 nM (Cheng et al., 2019).

2.4 Other enhanced approaches for the
detection of EDCs

Recognition and detection of EDCs with the help of antibodies,
aptamers, and hormones integrated into a sensing setup provide
sensitive and selective detection. This setup also provides and
enhances the knowledge of the interaction of EDCs with living
systems (Sofen and Furst, 2019). Aptamers are artificial manmade
nucleic acid ligands that can be produced to bind to any target
molecules including proteins, amino acids, and drugs (O’Sullivan,
2002).

2.4.1 Aptamer-based detection approaches for the
monitoring of EDCs

An aptamer-based electrochemical sensor for atrazine (ATZ) was
developed by Fan et al. (2019). Nickel hexacyanoferrate nanoparticles
(NiHCF NPs) and electrochemically reduced graphene oxide (ERGO)
were applied tomodify a glassy carbon electrode (GCE) surface. AuNPs
were deposited on the electrode to facilitate the anchoring of atrazine-
targeted aptamer.When atrazine is introduced into the system, it forms
a complex with the aptamer. This ATZ-aptamer complex leads to a
decrease in the electrochemical signal due to the hindrance of electron
transfer. The linear curve with this sensing system was in the range of
0.25–250 pM with the LOD 0.1 pM. This method could apply to the
detection of ATZ in water and soil samples (Fan et al., 2019). In another
study, Jia et al. (2020), took a previously developed 63-mer aptamer
targeting BPA and rationally truncated the sequence into two shorter,
higher affinity aptamers of 38-mer and 12-mer length. A comparison of
the sensing system with original and truncated aptamers was
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performed. In comparison to the parent aptamer, the LOD of the 38-
mer was 265-fold higher the original aptamter and the LOD of the 12-
mer was 14-fold higher. In the same way, the selectivity of truncated
aptamers was found to be much higher than the original aptamer. The
sensor shows the potential for sequential development and optimization
of aptamers for EDC targeted sensors. The developed sensorwas used to
detect BPA inmilk, orange juice, and water showing potential for use in
food and environmental samples (Jia et al., 2020).

A similar strategy of optimizing aptamer binding was used to
develop a sensor for the detection of the plasticizer di-2-ethylhexyl
phthalate (DEHP). A Quantum dot aptasensor (QD-aptasensor)
with a portable analyzer was developed. Three truncated aptamers of
45-, 28-, and 22-mer were taken from a previously identified 60-mer
aptamer targeting DEHP along with three unique DNA probes. Of
all the different combinations, the 22-mer aptamer with 12mer DNA
probe provides excellent sensitivity and selectivity even in the
presence of phthalate analogs and a linear signal response to
increasing concentrations of DEHP. The selected aptamer-probe
combination is being tested further to make the sensing systemmore
amenable to practical use (Lim et al., 2018). Using a 24-mer aptamer
coupled to gold nanoparticles (AuNP-aptamer), Lee and co-
researchers created an easy and quick colorimetric assay for the
detection of BPA. In the addition of BPA, the AuNP-aptamer
undergoes electrolytic induced aggregation, resulting in a visual
color shift from red to blue in presence of part per billion
concentrations of BPA. With the help of this method, BPA can
be detected at concentrations as low as 4.0 pM. Additionally, the
performance of this system is comparable to analytical methods such
as chromatography and ELISA (Lee et al., 2019).

2.4.2 Enzyme-based monitoring systems for the
detection of OP

An enzyme-based detection system for the organophosphate
pesticides dichlorvos and methyl-paraoxon was developed by
(Zhang et al., 2016) by exploiting the toxic, acetylcholinesterase
(AChE) inhibition caused by OPs. The system uses polyacrylic acid-
coated cerium oxide nanoparticles (PAA-CeO2) to oxidize the
chromogenic substrate tetramethylbenzidine (TMB) to create a
blue colored solution. The enzymatic activity of AChE in the
system reduces acetylthiocholine to thiocholine (TCh). The
resulting TCh inhibits the oxidation of TMB, resulting in a clear
color. The addition of OPs inhibits the creation of TCh, allowing
more TMB to be oxidized and create a blue color. The system can
detect dichlorvos as low as 8.62 ppb and methyl-paraoxon at
26.73 ppb. This colorimetric approach is a potential tool for
rapid screening for the presence of OPs (Zhang et al., 2016).

2.4.3 Detection of PFAS with SPR sensing
approaches

A surface plasmon resonance (SPR) optical fiber biosensor was
developed by Cennamo et al. (2018b), to detect perfluorooctanoate
(PFOA) and Perfluorooctane sulfonate (PFOS) compounds. Polyclonal
antibodies were produced in rabbits and the resulting serum was
enriched for target specificity using PFOA-EAH sepharose columns.
The resulting antibodies show similar affinity to both PFOA and PFOS,
likely due to the method of binding PFOA to the sepharose column.
This system has been applied for the sensing of PFOA/PFOS in
seawater. This sensing platform can detect concentrations of PFOA/

PFOS as low as 0.221 ppb, lower than the maximum residue limit for
PFOA/PFOS set by European Union regulations (Cennamo et al.,
2018b). A conceptually similar approach was adopted to create SPR
optical fiber biosensors using Molecularly Imprinted Polymer (MIP)
materials instead of antibodies. This systemwas selective toward a range
of per-and polyfluoroalkyl substances (PFAS) with carbon backbones in
the C4-C11 range. The sensor detected these compounds with LOD of
0.13–0.15 ppb. Its performance was comparable to the antibody-based
SPR-POF system but possessed the advantages of cost-effectiveness,
reproducibility, and increased stability with natural, environmental
solutions (Cennamo et al., 2018a).

2.5Microbial sensing system for detection of
EDCs

Various microbial sensors have been reported for the
monitoring of EDCs. Generally, this class of sensors consists of a
microbe as both a detector and a transducing agent as elaborated in
Figure 4. These systems build on detection and signaling pathways
that have previously evolved in organisms to improve survival
potential in the environment. The specificity and sensitivity of
these sensors to EDCs has been enhanced by the genetic
modification and regulation of gene expressions of these
microbes. As a result, the efficiency and sensitivity of these
systems has increased to compete with standard immunosensor
technology (Bilal and Iqbal, 2019). These sensors provide some
advantages over standard sensors such as robust response in a range
of measurement conditions, extended lifetime, and low cost. One
disadvantage of these systems is the need for a prolonged response
time compared to other sensing systems.

An E. coli-based lux operon biosensor for the efficient testing of
perchlorate was developed. The lux biosensor strains tested generate
a bioluminescence in response to reactive oxygen species. The
presence of ammonium perchlorate (AP) in the media causes the
generation of hydrogen peroxide and superoxide anion, which
causes oxidative stress in the sensor cells. During the design of
lux biosensors, hybrid plasmids are fused with bacterial luciferase
lux genes. The concentration of AP at 5.0 and 50 mM induces 5 and
10 times higher luminescence respectively in bacterial cells relative
to untreated cells (Balabanov et al., 2017). An array of
M13 bacteriophage is being exploited to develop a colorimetric
sensor for the detection and categorization of EDCs, including
benzene, phthalates, and polychlorinated biphenyls (PCBs).
Structurally and genetically modified M13 bacteriophages are
being used for the biomimetic sensor, which changes the color
patterns depending on the compound. This promising, portable, and
easy-to-use sensing system could be applied for the monitoring of
food and pharmaceutical samples (Moon et al., 2016).

3 Challenges and limitations of sensing
EDCs systems

Various types of sensing techniques including electrochemical,
colorimetric, and optical sensing technologies have been developed
for monitoring EDCs in various environments, such as water, food,
and consumer products. However, these technologies also face
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several challenges and limitations. As such, these sensors have
varying levels of sensitivity to the different EDCs, and poses a
challenge for detection with sufficient sensitivity. These sensors
may also face challenges in distinguishing between different
EDCs or between EDCs and other chemicals that may be present
in the sample. The presence of other chemicals or compounds in the
sample may interfere with the functioning of the sensor, leading to
false positives or false negatives. In some cases, sample preparation
may be required before analysis, which can add to the complexity of
detection. In addition, the performance of these sensors may be
affected by environmental factors such as temperature, humidity,
and pH, which can lead to variations in their accuracy and reliability.
The presence of different types of matrices (e.g., soil, water, food)
can also affect the performance of these monitoring systems since
the properties of the matrix may interfere with the functioning of the
sensor or affect the detection signal. Overall, while sensing
technologies offer promising solutions for the monitoring of
EDCs, there are still several challenges and limitations that need
to be addressed to improve their accuracy, sensitivity, and
practicality for use in real-world settings.

4 New trends and future prospects

Advanced sensing techniques hold significant promise in the
monitoring of EDCs in the environment. New nanomaterial-based
sensors can provide increased sensitivity to detect EDCs at very low

concentrations. This can lead to more accurate and reliable
monitoring even in complex matrices. Sensing techniques based
on molecularly imprinted polymers (MIPs), aptamers, or other
biomimetic materials have the potential to be highly specific to
the target EDC. This can minimize interference from other
compounds in the sample and reduce the occurrence of false
positives and has the potential for rapid response. This can be
especially important in industrial or agricultural settings where there
is a higher risk of EDC contamination. Sensor technologies can also
allow for remote monitoring of EDCs using wireless or internet of
things (IoT) technologies. Advance techniques can provide timely
data to environmental agencies or other stakeholders, enabling them
to take appropriate actions to reduce health hazards. Sensor-based
methods can render monitoring EDCs more accessible to a wider
audience, including communities and citizen scientists. Platforms
can be designed to detect multiple EDCs simultaneously, providing a
more comprehensive understanding of environmental
contamination. This can enable stakeholders to develop targeted
mitigation strategies to reduce exposure to multiple EDCs.

There are several new trends in the development of sensors for
the monitoring of EDCs, including integration with fluidics,
miniaturization, and multiplexing. The integration of sensors
with microfluidics can enable automated and high-throughput
sample processing, reducing the time and cost of EDC detection.
Microfluidic platforms can also enable precise control of sample
flow and reaction conditions, leading to increased sensitivity and
specificity of EDC detection. Miniaturization of sensors can enable

FIGURE 4
The illustration of cell free microbial sensors for monitoring EDCs. Cell free microbial sensors were used to detect EDCs. The downstream reporter
gene is activated for transcription and then translated for reporter protein production in a cell free system.
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portable and field-deployable devices. Miniaturized sensors can also
reduce the amount of samples and reagents required for detection,
making them cost-effective and environmentally friendly. These
sensors can also enable in situ and real-time monitoring of EDCs in
environmental and biological samples. Multiplexed sensors can
detect multiple EDCs simultaneously in a single sample, reducing
the time and cost of EDC detection. Multiplexed sensors can also
enable the detection of complex mixtures of EDCs which often occur
in environmental samples. Multi-target sensors can be achieved
through the use of arrays of sensors with different sensing elements,
or the use of microarrays on lab-on-a-chip platforms. Overall, these
trends are enabling the development of advanced sensors for EDC
detection that are more sensitive, specific, cost-effective, and
portable than traditional methods. These sensors have the
potential to revolutionize EDC monitoring and risk assessment,
leading to improved public health and environmental protection.

5 Conclusion

EDCs are found in a broad spectrum of locations ranging from
commercial to residential areas. Many are ubiquitous, posing serious
threats to human health. Given the increase in EDCs in the domestic
and industrial sectors, improved sensors for point of exposure
detection are of the highest need. In the future, advanced EDC
sensors for routine monitoring will become imperative to control the
deleterious health effects of these compounds. Devices to detect
these chemicals at home, in agricultural fields, wastewater treatment
units and in manufacturing plants will become the norm. EDC
detection is a potentially growing field; non-analytical advanced
sensing systems have emerged as a promising means for the
detection and monitoring of EDCs due to their high sensitivity,
selectivity, cost-effective, portable, rapid response time as well as
user-friendly approach. The development of sensors for EDCs has
been driven by the need to monitor these chemicals in various
settings, including water, air, and food and stringent limits by the
regulatory agencies. Biosensors have gained significant attention in
the medical industry and are already emerging as an alternative to
traditional and conventional methods for the sensing of EDCs. In
contrast to traditional analytical sensing techniques, modern sensing
methods can provide for the possibility of detecting an array of
pollutants and toxic chemicals on site, rapidly and with excellent
sensitivity and selectivity.

Despite the significant progress made in the development of
sensors for EDCs, challenges remain along with significant

opportunities. One of the main challenges is the detection of
EDCs in complex environmental sample matrices. Other
limitations such as sustainability and utilization under harsh
environmental factors such as temperature, alkalinity, pH,
salinity, and other adverse conditions can lead to poor results.
With advances in sample preparation methods, device durability,
and cost effectiveness these limitations can potentially be overcome
in the near future. Given the emphasis to reduce pollution in the
coming decades, explosive growth in the development and
deployment of these state-of-the-art technologies for
environmental sensing and detection of EDCs is expected.
Overall, the development of sensors for EDCs is an active and
growing field. The continued development of sensors for EDCs has
the potential to provide valuable insights into the exposure and
health effects associated with these chemicals, as well as inform
public health policies aimed at reducing health risk due to exposure
in a timely manner.
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