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Monitoring forest species diversity is essential for biodiversity conservation 
and ecological management. Currently, unmanned aerial vehicle (UAV) remote 
sensing technology has been increasingly used in biodiversity monitoring due to 
its flexibility and low cost. In this study, we compared two methods for estimating 
forest species diversity indices, namely the spectral angle mapper (SAM) 
classification approach based on the established species-spectral library, and the 
self-adaptive Fuzzy C-Means (FCM) clustering algorithm by selected biochemical 
and structural features. We  conducted this study in two complex subtropical 
forest areas, Mazongling (MZL) and Gonggashan (GGS) National Nature Forest 
Reserves using UAV-borne hyperspectral and LiDAR data. The results showed 
that the classification method performed better with higher values of R2 than the 
clustering algorithm for predicting both species richness (0.62 > 0.46 for MZL and 
0.55 > 0.46 for GGS) and Shannon-Wiener index (0.64 > 0.58 for MZL, 0.52 > 0.47 
for GGS). However, the Simpson index estimated by the classification method 
correlated less with the field measurements than the clustering algorithm (R2 = 0.44 
and 0.83 for MZL and R2 = 0.44 and 0.62 for GGS). Our study demonstrated that 
the classification method could provide more accurate monitoring of forest 
diversity indices but requires spectral information of all dominant tree species at 
individual canopy scale. By comparison, the clustering method might introduce 
uncertainties due to the amounts of biochemical and structural inputs derived 
from the hyperspectral and LiDAR data, but it could acquire forest diversity patterns 
rapidly without distinguishing the specific tree species. Our findings underlined 
the advantages of UAV remote sensing for monitoring the species diversity in 
complex forest ecosystems and discussed the applicability of classification and 
clustering methods for estimating different individual tree-based species diversity 
indices.

KEYWORDS

forest species diversity, classification, clustering, UAV, individual tree-based

1. Introduction

Forest biodiversity is essential in maintaining ecosystem patterns, functions and services 
(Balvanera et al., 2006; Thompson et al., 2009; Brockerhoff et al., 2013). Forest species diversity 
is a fundamental component of biodiversity, which refers to the uniformity of the number and 
distribution of tree species in forest ecosystems (Magurran, 1988; Vellend, 2004). However, with 
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the increasing pressure of human activities and climate change, it has 
faced severe threats, such as accelerated species extinction and 
increased endangered species (Iida and Nakashizuka, 1995; Haas et al., 
2011). Therefore, accurate and repeated forest species diversity 
monitoring is important for biodiversity conservation and 
ecological management.

Currently, the assessment of species diversity in a certain region 
is mainly based on species diversity indices, among which species 
richness (Gaston, 2000) emphasizes the number of various species, 
while Shannon-Wiener index (Shannon, 1948) and Simpson index 
(Simpson, 1949) take into account both the amount and evenness of 
species. Traditional forest species diversity monitoring relies on field 
surveys to investigate these diversity indices (Kerr and Ostrovsky, 
2003), which are labor- and material-intensive and focus on forest 
species distribution at the sample scale (Myers et al., 2000; Duro et al., 
2007). Remote sensing has the advantages of an extensive detection 
range and a short data acquisition period, extending the possibilities 
of forest species diversity monitoring at both temporal and spatial 
scales (Turner et al., 2003; Skidmore et al., 2015). Near-surface remote 
sensing platform equipped with hyperspectral sensors and laser 
scanners has been a promising tool for forest species diversity 
monitoring in the past decade (Turner, 2014; Guo et al., 2017; Wang 
and Gamon, 2019; Pu, 2021). In particular, UAV (unmanned aerial 
vehicle) remote sensing technology, due to its advantages of flexibility 
and low cost, has shown great potential in species identification and 
biodiversity monitoring (Anderson and Gaston, 2013; Lin et al., 2019; 
De Almeida et al., 2021).

Hyperspectral data can obtain continuous spectral information 
of vegetation and has been increasingly used for monitoring forest 
species diversity (Féret and Asner, 2014; Ferreira et  al., 2016; 
Laurin et al., 2016). The monitoring methods are mainly divided 
into two categories: supervised classification methods that directly 
identify forest species based on their spectroscopic characteristics 
(Féret and Asner, 2013; Fassnacht et al., 2016; Cao et al., 2018; 
Franklin and Ahmed, 2018), and spectral diversity metrics that 
indirectly link the variation of leaf or canopy spectra to species 
diversity (Palmer et  al., 2002; Gholizadeh et  al., 2018). Light 
Detection and Ranging (LiDAR) data can directly penetrate the 
vegetation canopy by actively emitting high-frequency pulses, so it 
is widely used for high-precision estimation of forest structural 
features, including tree height and crown diameter (Popescu, 2007; 
Morsdorf et al., 2009; Sankey et al., 2013; Wallace et al., 2014). 
Furthermore, advances in lidar remote sensing have enabled the 
accurate extraction of information from individual tree crowns 
(ITCs) (Ene et al., 2012; Zhao et al., 2014). Compared to the pixel-
based approach, the ITC-based approach is more directly 
analogous to the field-based individual sampling method, which 
can better extract structural features of the canopy and minimize 
the signal confusion brought by non-tree pixels (Zheng et  al., 
2022). Based on LiDAR data, forest species diversity at the regional 
scale can be  monitored by establishing relationships between 
structural features and field-measured species diversity indices 
(Lopatin et  al., 2016; Torresani et  al., 2020; Hu et  al., 2021). 
However, the capability of forest species diversity monitoring using 
only hyperspectral data or LiDAR data might be limited by species 
complexity, image spectral mixing and canopy morphological 
variation (Koch, 2010; Guo et al., 2017). The fusion of hyperspectral 
and LiDAR data provides a synergistic ability, which can use 

vertical and horizontal information from each data source to 
acquire more robust diversity monitoring results.

Previous studies have integrated structural features extracted by 
LiDAR data and spectral characteristics from hyperspectral images for 
directly discriminating tree species by using classification techniques, 
including linear discrimination analysis (Alonzo et al., 2014), support 
vector machine (Dalponte et al., 2012), random forest (Liu et al., 2017) 
and spectral angle mapper (Zhao et al., 2020). Mayra et al. (2021) 
compared the performance of different classification methods for 
identifying the major tree species in a boreal forest based on airborne 
hyperspectral and LiDAR data. Assessing forest species diversity using 
remote sensing classification methods has the advantage of providing 
spatially explicit species distribution information for each ITC or 
pixel. However, it remains challenging to directly discriminate the 
species of all individuals accurately in complex subtropical or tropical 
forests due to the potential spectral or structural similarity among 
different species or differences existing for the same species (Price, 
1994; Wang and Gamon, 2019). The confusion in classification usually 
increases with increasing biodiversity levels and more training data 
for species-rich forests is usually needed to improve the classification 
accuracy. Moreover, collecting sufficient training and validation data 
for each tree species in species-rich and topographically complex 
forests can be  a challenging task. Although some methods are 
relatively capable of classifying trees with limited training samples 
(Christian et  al., 2013; Awad, 2018), the classification results are 
achieved using specific images and algorithms with relatively 
lower transferability.

Many indirect approaches using spectral and structural 
information have shown great potential for monitoring forest species 
diversity, such as regression analysis and clustering. Regression 
analysis is to model the spectral and structural information directly 
with the measured species diversity indices, which is a mature and 
straightforward algorithm, but the applicability in different regions is 
poor (Ceballos et al., 2015). The clustering algorithm can evaluate 
species diversity by grouping trees with similar characteristics based 
on the biochemical and structural variation of different tree species 
(Asner et al., 2015; Padilla-Martinez et al., 2020; Pakgohar et al., 2021). 
Clustering can be used to identify patterns or trends in the distribution 
and abundance of different species within a forest ecosystem. Among 
them, the self-adaptive Fuzzy C-Means (FCM) clustering algorithm 
overcomes the disadvantage of traditional clustering methods, which 
require a pre-indication of the initial classes, and can determine the 
optimal number of clusters automatically (Bezdek et al., 1987; Li and 
Yu, 2009). Zhao et al. (2018) estimated the forest species richness and 
Shannon-Wiener index in a subtropical forest based on airborne 
LiDAR and hyperspectral data using seven biochemical components 
and tree height by the adaptive FCM clustering algorithm. The 
biochemical and structural parameters selected in each study area for 
clustering methods may be  dependent, and their applicability to 
species diversity monitoring in other areas still needs to be determined, 
especially for forests with diverse species and complex compositions.

Several studies have used either classification or clustering 
methods to estimate forest species diversity by combining various 
features from remote sensing data, but it remains unclear which 
method is more effective for monitoring different aspects of diversity 
in different forest conditions. Although some studies have used 
spaceborne or airborne data to assess species diversity (Shen and Cao, 
2017; Wan et al., 2021), they are often limited by spatial resolution or 
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expensive costs. UAV-borne hyperspectral and LiDAR data could 
provide spatially explicit information on individual trees, so it is more 
advantageous to explore the applicability of advanced methods in 
different species-rich forests by UAV data.

Therefore, the major objectives of our study are to explore the 
performance of individual tree-based classification and clustering 
methods in estimating three commonly used forest species diversity 
indices (species richness, Shannon-Wiener index and Simpson index) 
in two typical subtropical forests in China using UAV-borne 
hyperspectral and LiDAR data. We aim to: (1) classify tree species 
using the SAM classification method based on hyperspectral image 
and the individual tree crown segmentation results from LiDAR data, 
(2) estimate forest species diversity using the self-adaptive FCM 
clustering algorithm based on optimal biochemical vegetation indices 
and structural features, and (3) further compare the performance of 
classification and clustering methods in these two subtropical 
forest sites.

2. Materials and methods

2.1. Study area

Subtropical forest in China is a hotspot of tree species richness 
and a priority area for forest species diversity monitoring (Li et al., 
2009; Liu et al., 2018). We conducted research in two study areas, both 
of which are typical subtropical forests of China, but their forest 
species compositions and environmental conditions are different. The 
first study area is located in the Mazongling National Nature Reserve 
(MZL, 115°41′37′–115°42′5′E, 31°15′25′–31°15′44′N) in Jinzhai 
county, Anhui province of China (Figure 1). The study area covers 
about 23.8 ha with an elevation varying from 1,000 m to 1,184 m above 
sea level. This region is characterized by a subtropical monsoon 
climate. The average annual temperature is about 13 ~ 15°C, and the 
average annual precipitation is 1,510 mm (Fan et  al., 2022). 
Mazongling National Nature Reserve has abundant forest resources, 
and the study area contains more than 10 dominant tree species, 
including Quercus glandulifera, Platycarya strobilacea, Castanea 
mollissima and Lindera glauca.

The second study area is situated in the Minya Konka National 
Park (also known as Gonggashan, GGS, 102°3′50′–102°4′28′E, 
29°36′2′–29°36′15′N) in Ganzi (Garzê) Tibetan Autonomous 
Prefecture, Sichuan province of China with an elevation varying from 
1959 m to 2,247 m above sea level (Figure 1). This study area is located 
in the transitional zone from the subtropical belt to the temperate belt 
of the eastern Tibetan Plateau, covering an area of approximately 
20.5 ha. The average annual temperature is about 4.2°C, and the average 
annual precipitation is 1947 mm (Zhou et al., 2013). The forest canopy 
across this study area comprises more than 15 dominant tree species, 
including Fagus longipetiolata, Jasminum nudiflorum, Ailanthus 
altissima, Cercidiphyllum japonicum and Bothrocaryum controversum.

2.2. Data acquisition and preprocessing

2.2.1. UAV-borne hyperspectral and LiDAR data
The UAV-borne hyperspectral data were collected on September 

18 and October 15, 2020, using the Cuber UHD185 Firefly imaging 

spectrometer (Cubert GmbH, Ulm, Baden-Württemberg, Germany) 
onboard a DJI Matrice 300 aircraft (Da Jiang innovate technology Ltd., 
Shenzhen, China) under cloudless conditions. The sensor comprises 
125 visible and near-infrared spectral channels ranging from 450 nm 
to 946 nm with an 8 nm spectral resolution. The sensor was equipped 
on the UAV platform and flew at an altitude of 80 m, resulting in a 
7 cm spatial resolution. The preprocessing of the images consisted of 
four preliminary steps. First, the Agisoft PhotoScan software (Agisoft 
LCC Co. St. Petersburg, Russia) was used for image mosaic. Spectral 
radiation calibration was the second step to convert the spectral 
response into the true spectral radiance. Then, the reflectance 
spectrum was calculated from the reference spectra of calibration 
plates and the spectral radiance. Finally, the geometric correction was 
performed in the Image Registration Workflow tool of ENVI5.3 
software (Gai, 2019).

The UAV-borne LiDAR data were obtained simultaneously with 
the hyperspectral dataset acquisition using the LiAir VH Pro scanner 
(Green Valley Inc., Beijing, China) operating at a wavelength of 
905 nm. The scanner provided a 70.4° horizontal (cross-track) and 
77.2° vertical (along-track) angle of view. The height accuracy of the 
laser scanner was 5 cm and had an 80% flight strip overlap. The 
average point density in MZL is more than 117 points/m2, and the 
average point density in MZL is more than 168 points/m2. The point 
cloud data were noise filtered and classified into ground and vegetation 
returns using the software TerraSolid (Terrasolid, Helsinki, Finland). 
We  generated the digital elevation model (DEM) based on the 
classified ground points and constructed the digital surface model 
(DSM) from the first pulse reflections of the LiDAR point clouds, and 
subtracted a canopy height model (CHM) with a resolution of 0.1 m 
(Zhao et al., 2013). The UAV-LiDAR data were normalized based on 
the ground points to remove the influence of terrain undulations on 
the height values. Besides, the vegetation point clouds with a 
normalized height below 2 m were removed to reduce the effect of 
background factors such as shrubs and grasses.

2.2.2. Field measurements
Field measurements were collected simultaneously with the UAV 

data acquisition in September–October 2020, and a supplemental 
survey was conducted in July 2022. A total of 26 square sample plots 
(30 × 30 m) within these two study areas were acquired. Differentially-
corrected GPS determined the coordinates of the four corners of each 
sample plot. Tree parameters were measured in each sample plot, 
including tree species name, diameters at breast height (DBH), crown 
base height, tree height, crown classes (dominant, co-dominant, 
intermediate and suppressed trees) and crown diameters in two 
directions (south–north and east–west) for all individual trees with 
DBH ≥ 5 cm. The plot-level forest canopy closure and leaf area index 
(LAI) were also obtained by hemispherical photographs taken by a 
fish-eye camera along two diagonals. In addition, to validate individual 
tree segmentation and carry out classification research, we measured 
the location of each tree in two of the sample plots in MZL and four 
of the sample plots in GGS by integrating the Real Time Kinematic 
(RTK) GPS/GLONASS System with the total station.

We selected 10 dominant tree species in MZL and 15 dominant 
tree species in GGS and collected top-of-canopy leaves for these 
dominant tree species to measure their biochemical components and 
spectral properties. We measured 10 major biochemical components, 
including chlorophyll a and b (Chl-a, Chl-b), total carotenoids (Car), 
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total carbon (C), nitrogen (N), phosphorus (P), cellulose (Cel), lignin 
(Lig), specific leaf area (SLA) and equivalent water thickness (EWT) 
similar as the previous study (Zheng et  al., 2021). Leaves of each 
species with a mass of more than 150 g were selected and stored in 
plastic bags on ice and immediately transported to the laboratory for 
component analysis and spectroscopic measurement. Hemispherical 
reflectance spectra with 350–2,500 nm wavelengths were measured on 
10 fresh leaves of each dominant tree species using a leaf clip coupled 
with the ASD FieldSpec 4 portable spectroradiometer (ASD Inc., 
Boulder, CO, United States). The bands with a wavelength of less than 
400 nm and more than 2,400 nm were removed to eliminate the 
influence of instrument noise, and the spectra between 400 to 
2,400 nm were smoothed by the Savitzky–Golay filter (Savitzky and 
Golay, 1964).

2.2.3. Species diversity indices
We used species richness, Shannon-Wiener index, and Simpson 

index to represent forest species diversity and calculated them within 
each sample plot based on the field measurements. Species richness 
refers to the total number of species in the sample plot. Shannon-
Wiener index (Shannon, 1948) and Simpson index (Simpson, 1949) 
can reflect species richness and evenness of species distribution. They 
are comprehensive indicators reflecting the degree of species diversity. 
The Shannon-Wiener index is more sensitive to the number of species, 

and the Simpson index is more sensitive to the evenness of enriched 
species (Nagendra, 2002). The calculation formula of the Shannon-
Wiener index (H) and Simpson index (D) were as follows:

 H p p
i

n
i i= −

=
∑
1

ln   (1)

 D p
i

n
i= −

=
∑1

1

2

  (2)

where n is the total number of species in the sample plot, and pi  
is the proportional abundance of the species i.

2.3. Methods

2.3.1. Individual tree crown segmentation
Based on the 0.1 m CHM data, we used a watershed algorithm 

combined with morphological crown control to separate the 
individual tree crowns (ITCs) (Wang et al., 2004; Chen et al., 2006; 
Zhao et al., 2014). Firstly, a morphological crown closing operator was 
used to determine the crown area and obtain the binary image of the 

FIGURE 1

The location of two study areas (top left) with 10 m spatial resolution from ChinaCover2020 (Wu et al., 2017), and MZL study area (top right) and GGS 
study area (bottom right) with imaging spectroscopy data acquired from Cuber UHD185 Firefly imaging spectrometer (Red: 866 nm, Green: 654 nm, 
Blue: 566 nm). The blue triangles indicate the locations of field-measured sample plots. The green circles indicate the locations of individual tree crown 
(ITC) validation plots. Six photographs of these ITC plots are shown on the bottom left.
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canopy. Next, a local extremum algorithm was used to detect the 
positions of the potential individual treetop. The actual individual 
treetop positions and potential crown shapes were calibrated through 
two watershed transformations and image reconstruction operations. 
Finally, the crown shapes were determined using an adaptive 
optimized morphological crown opening operator.

2.3.2. Spectral angle mapper (SAM) classification
Among many supervised classification methods, the SAM 

classification was used for its better performance in the hyperspectral 
data (Park et al., 2004; Yang et al., 2008; Zhang and Li, 2014). The SAM 
algorithm is a physically based spectral classification that uses an 
n-dimensional angle to match the extracted endmember spectra 
(Kruse et al., 1993; Park et al., 2007; Mohajane et al., 2017). The SAM 
algorithm determines the spectral similarity though calculating the 
angle between the spectrum vectors. Smaller angles correspond to 
closer matches to the endmember spectrum.

We calculated the average spectrum of each canopy based on the 
ITC segmentation results in the sample plots. Firstly, pixels with 
NDVI <0.2 and canopy height < 2 m were removed from the 
hyperspectral images to reduce the effect of background factors such 
as canopy gaps. A total of 2 ITC plots with 14 tree species in MZL 
(covering more than 90% of local tree species) and a total of 4 ITC 
plots with 22 tree species in GGS (covering more than 75% of local 
tree species) were used to establish the endmember spectral library. 
Then we determined the average spectrum of each species in the two 
study areas and used the SAM algorithm to classify them according to 
the established spectral library. With the classification results, 
we acquired the species diversity indices of each sample plot and used 
for validation.

2.3.3. Self-adaptive fuzzy C-means (FCM) 
clustering algorithm

The optimal biochemical components selection followed two 
principles (Zhao et al., 2016): (1) biochemical components can be well 
inverted by the spectrum. (2) these biochemical components are 
sufficient to distinguish different tree species. The partial least squares 
regression (PLSR) was used to determine the relationships between 
the in-situ leaf spectral and the biochemical measurements and 
explore whether the biochemical components of tree species can 
be quantitatively estimated by their spectral signals. The PLSR method 
combines the advantage of principal component analysis, canonical 
correlation analysis, and multiple linear regression analysis. It was 
performed using JMP14.0 statistical software.

After the optimal biochemical components were determined, the 
corresponding vegetation indices (VIs) from the hyperspectral data 
could be selected through the existing vegetation index models to 
estimate the biochemical components. Due to the lack of influential 
lignin invention bands, we finally identified nine canopy-scale VIs to 
indicate Chl (Chl-a and Chl-b), Car, C, N, P, Cel, SLA and EWT based 
on the literature (Table  1). Many studies have confirmed that the 
standard deviation of VIs in an area can reflect the species diversity in 
this region (Cayuela et  al., 2006; Stickler and Southworth, 2008; 
Costanza et al., 2011), so we calculated the standard deviation of VIs 
for all ITCs at the plot scale, and performed Spearman correlation 
analysis with the species diversity indices (corrplot, R-package) to 
select the optimal VIs. The VI for each ITC was calculated by 
extracting the VI of the central pixel of each ITC. These canopy-level 

biochemical VIs were then converted into leaf-scale biochemical VIs 
by dividing the canopy-level biochemical VIs by the ITC’s LAI to 
eliminate the effects caused by the canopy structure (Zarco-Tejada 
et al., 2001; Zhao et al., 2018). ITC’s LAI was calculated by establishing 
the relationship between forest gap fraction (GF) and LAI according 
to Beer–Lambert Law (Richardson et  al., 2009), as shown in 
Formula (3):

 

GF
n

n n

LAI
GF
k

ground

ground vegetation
=

+

= − ( ) ∗ ( )









 cos

ln
θ

  (3)

where nground is the number of extracted ground points, nvegetation is 
the number of vegetation points, k is the extinction coefficient and 
takes a value of 0.5 if the vegetation is considered to follow the 
spherical leaf angle distribution, θ is zenith angle (LiDAR scanning 
angle) and GF is gap fraction.

We extracted 58 structural features for each ITC, including 
canopy cover, leaf area index, and height variables (statistical 
parameters related to point cloud height value) based on 
UAV-LiDAR data and the ITC-segmented ITC boundaries using 
LiDAR 360 software (Supplementary Table S1). Then we calculated 
the standard deviation of these structural variables in each sample 
plot. Finally, the Spearman correlation coefficient test with species 

TABLE 1 Vegetation indices corresponding to the biochemical 
components.

Biochemical 
component

Vegetation 
index

Formula Reference

Chl TCARI/ OSAVI TCARI / 

OSAVI = 3[(R750.6–

R704.6)-0.2(R750.6–

R550.6)(R750.66/R704.6)] / 

(1 + 0.16)(R750.66–

R704.6)/

(R750.66 + R704 + 0.16)

Daughtry et al. 

(2000) and Wu 

et al. (2008)

VOG1 VOG1 = R979.95/R720.88 Vogelmann 

et al. (1993)

EWT WBI WBI = R895/R972 Penuelas et al. 

(1993)

Car CRI CRI = 1/R510–1/R550 Gitelson et al. 

(2002)

Cel PRI PRI = (R531 – R570)/

(R531 + R570)

Gamon et al. 

(1992)

N CCCI CCCI = (0.7415R790–

0.6965R720)/

(0.0319R790–

0.281R720)

El-Shikha et al. 

(2007)

P NDSI NDSI = (R553-R518)/

(R553 + R518)

Patil et al. 

(2007)

SLA RVI RVI = R750/R705 Jordan (1969)

C PSRI PSRI = (R680-R500)R750 Merzlyak et al. 

(1999)
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diversity indices was performed to obtain the optimal 
structural features.

Self-adaptive Fuzzy C-Means (FCM) clustering algorithm was 
applied to calculate the species richness (the number of clusters) based 
on the optimal biochemical VIs derived from the hyperspectral image 
and optimal structural features obtained from LiDAR data for each 
ITC. Each cluster was considered to be a specific but unidentified 
species. Then the Shannon-Wiener index and the Simpson index can 
be derived from the cluster amount and the ITC number of each 
cluster in the sample plot [Formula (1) and (2)]. The field-measured 
values of species diversity indices of 26 sample plots in two study areas 
were then compared with the forest biodiversity prediction results to 
verify the estimation accuracy of the clustering algorithms.

The standard Fuzzy C-Means algorithm transforms the cluster 
into a nonlinear optimization problem and achieves the number of 
categories through iteration (Bezdek et al., 1987). Self-adaptive Fuzzy 
C-Means (FCM) clustering algorithm was developed from the 
standard Fuzzy C-Means algorithm (Li and Yu, 2009). Self-adaptive 
FCM automatically determines the optimal number of clusters by 
using a new validity function without relying on the number of pre-set 
categories and prior knowledge, solving the acute problem of the 
clustering algorithm to the initial value. The validity function is 
defined as:
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where c is the number of clusters, m is the fuzzy weighting 
exponent, X x x xn= …{ }1 2, , ,  is a sample data set, V v v vn= …{ }1 2, , ,  
is the cluster center dataset, uij  represents the membership if the j-th 
sample point belongs to the i-th class, x  is the central vector of all 
data, and d x vij j i= −  is the Euclidean distance between the j-th 
sample point and j-th cluster center.

3. Results

3.1. Individual tree crown segmentation

The ITC segmentation results of all 26 sample plots show that 
the amounts of segmented ITCs are quantitatively close to the 
ground-measured tree number (MZL: R2 = 0.76, RMSE = 5.41; GGS: 
R2 = 0.82, RMSE = 7.17; Figure  2). Due to the effects of crown 
overlap, point cloud density, small crowns, multi-stemmed trees 
and other reasons, some extra trees (over-segmentation) and missed 
trees (under-segmentation) can be found in the ITC segmentation 
results. The segmented and measured position of ITCs in sample 
plot 2 of MZL (71 segmented vs. 74 field-measured ITCs) and 
sample plot 4 of GGS (55 segmented vs. 54 field-measured ITCs) are 
shown in Figure  2 as an example. The over-segmentation 
phenomenon occurs in broad-leaved trees with large crowns and 
non-prominent treetops. In contrast, the under-segmentation 

phenomenon is caused by the overlapping crowns owing to the high 
forest canopy density. Multiple overlapping crowns are considered 
as one crown and are not isolated.

3.2. Forest species diversity prediction 
based on classification method

The SAM classification algorithm was applied to obtain the tree 
species of each ITC based on hyperspectral image and ITC boundaries 
from LiDAR data. As illustrated in Figure 3, a total of 14 endmembers 
in MZL and a total of 22 endmembers in GGS were extracted directly 
from the hyperspectral image. These tree species’ endmembers were 
significantly different from each other and thus could be used for 
classification. Figure 4 shows the tree species classification results of 
two typical sample plots using the SAM algorithm.

The performance of the relationships between the predicted values 
and the three field-measured species diversity indices (species 
richness, Shannon-Wiener index, and Simpson index) is shown in 
Figure  5 (Blue colors). In MZL, the SAM classification algorithm 
demonstrated positive and significant predictive validity for species 
richness (R2 = 0.62, RMSE = 1.44), Shannon-Wiener index (R2 = 0.64, 
RMSE = 0.16) and Simpson index (R2 = 0.44, RMSE = 0.05). In GGS, 
the estimated values and the measured species diversity indices were 
positively and significantly correlated only for species richness 
(R2 = 0.55, RMSE = 2.87) and Shannon-Wiener index (R2 = 0.52, 
RMSE = 0.24). The classification-based prediction of the Simpson 
index was positively correlated with the field measurements, but the 
correlation was not significant (R2 = 0.44, p = 0.01).

3.3. Forest species diversity validation of 
clustering algorithm

The estimation accuracies of biochemical components based on 
leaf spectra of tree species are shown in Table 2. It demonstrates that: 
(1) In MZL, Chl-a, Chl-b, EWT, Car, SLA and C could be strongly 
predicted by leaf spectra based on PLSR models (R2 = 0.78–0.82). Cel, 
N, Lig and P are also relatively quantified by spectral reflectance 
(R2 = 0.44–0.74). (2) In GGS, Chl-a, Chl-b, EWT and SLA could 
be well estimated by spectral signatures (R2 = 0.62–0.73). Car, N and 
C also perform a relatively positive relationship with spectral 
properties (R2 = 0.30–0.46). Cel, Lig and P have no obvious correlation 
with spectral reflectance (R2 < 0.30).

Based on the optimal biochemical components that are 
spectrally obtainable (Table 2), we determined 9 biochemical VIs 
(TCARI/OSAVI, VOG1, CRI, WBI, CCCI, RVI, PRI, NDSI and 
PSRI) in MZL to indicate Chl (Chl-a and Chl-b), Car, EWT, N, SLA, 
Cer, P and C, respectively. As for GGS, we selected 7 biochemical 
VIs (TCARI/OSAVI, VOG1, WBI, RVI, CRI, CCCI and PSRI) to 
express Chl (Chl-a and Chl-b), EWT, SLA, Car, N and C, 
respectively. Supplementary Figures S1, S2 show the relationships 
between the standard deviation of ITC’s biochemical VIs of sample 
plots and the species diversity indices in the two study areas. In 
MZL, there was a positive correlation between the standard 
deviation of 7 ITC-based VIs (WBI, TCARI/OSAVI, PRI, RVI, 
CCCI, VOG1 and PSRI) and species richness at the sample plot 
scale. These 7 VIs were selected as the optimal biochemical VIs. In 
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GGS, only 3 ITC’s VIs (TCARI/OSAVI, RVI and PSRI) partially 
correlated with the species diversity indices. We regarded them as 
the optimal biochemical VIs.

The standard deviation of ITC-based structural features was 
weakly correlated with the species diversity indices in MZL. We finally 
conducted the two most relevant characteristics, namely canopy cover 
(CC) and density metric 30% (DM 30%) as the optimal structural 
features. In GGS, many structural features were positively and 
significantly correlated with species diversity indices. We  finally 
determined five optimal structural features, including the interquartile 
range of accumulated elevation (Elev AIQ), coefficient of variance of 
elevation (Elev CV), the variance of elevation (Elev Var), density 
metric 20% (DM 20%) and density metric 30% (DM 30%), which 
showed high correlation with species diversity indices (Spearman 
correlation was above 0.5). Supplementary Figures S3, S4 show the 

relationships between the standard deviation of ITC’s structural 
features of sample plots and the species diversity indices for MZL and 
GGS, respectively.

We applied the Self-adaptive FCM algorithm to estimate the three 
species diversity indices at 26 sample plots in two study areas based 
on the optimal biochemical VIs and optimal structural features for 
each ITC. The results are shown in Figure 5 (Red colors). In MZL, the 
clustering algorithm demonstrated positive and significant predictive 
validity for Shannon-Wiener index (R2 = 0.58, RMSE = 0.22) and 
Simpson index (R2 = 0.83, RMSE = 0.06). The estimated species 
richness was lower than the field-measured value (RMSE = 2.47) and 
performed relatively unsatisfactory inversion results (R2 = 0.46, 
p = 0.01). In GGS, the estimated value and the measured species 
diversity indices were positively and significantly correlated only for 
Simpson index (R2 = 0.62, RMSE = 0.07). The prediction results for 

FIGURE 2

Scatter diagram for verification of ITCs (left) and results of individual tree separation in sample plot 2 of MZL (middle) and sample plot 4 of GGS (right) 
(black boxes represent the boundaries of plots, white polygons refer to the segmented tree crowns, and red points represent the field-measured 
positions at the base of tree stems).

FIGURE 3

Endmember spectral library of dominant tree species in two study areas (left: MZL, right: GGS).
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species richness (R2 = 0.46, RMSE = 3.94) and Shannon-Wiener index 
(R2 = 0.47, RMSE = 0.28) were positive but not significant enough 
(p = 0.01).

4. Discussion

Our results showed that the classification method performed 
better with higher values of R2 than the clustering algorithm for 
predicting species richness (0.62 > 0.46 for MZL and 0.55 > 0.46 for 
GGS) and the Shannon-Wiener index (0.64 > 0.58 for MZL, 
0.52 > 0.47 for GGS) in two study areas (Figure 5). However, the 
Simpson index estimated by the classification method correlated less 
with the field measurements than the clustering algorithm (R2 = 0.44 
and 0.83 for MZL and R2 = 0.44 and 0.62 for GGS). This is probably 
due to the Simpson index weights rare species less and dominant 
species more than Shannon-Wiener index (Magurran, 1988; Daly 
et al., 2018), so the clustering algorithm taking dominant species/
traits more into account are expected to predict the Simpson index 
accurately. Some previous studies have suggested that the Shannon-
Wiener index is more closely related to species richness, while the 
Simpson index is more distantly correlated with richness (Nagendra, 
2002; Costanza et  al., 2011; Leinster and Cobbold, 2012). Our 
outcomes further indicated that the classification method is more 
advantageous in identifying rare species and estimating species 
richness, while the clustering method performs better in indicating 

the evenness of species. Constrained by the limited number of 
sample plots, it could be  considered to use more independent 
validation plots to verify the advantages of classification and 
clustering methods in predicting species diversity indices in the 
future study.

We demonstrated that the individual tree-based SAM 
classification could be  used to monitor the species diversity of 
complex forests and have the ability to distinguish the non-dominant 
species (Figure 4). This is mainly because SAM classification could 
distinguish similar spectra of tree species for classifying species 
based on hyperspectral data (e.g., Platycarya strobilacea and Tilia 
tuan in this experiment, Figure 3) when the endmember spectral 
library of dominant tree species is available (Awad, 2018; Zhao et al., 
2020). However, when the spectra of non-dominant trees and 
dominant trees are very similar (such as Carpinus turczaninowii and 
Castanea mollissima in this study, Figure 3), SAM classification may 
also incorrectly classify them, which brings some challenges to the 
estimation of Shannon-Weiner and Simpson index. To better 
estimate species diversity using the SAM classification approach, it 
is necessary to extract their distinguishable bands to accurately 
classify these tree species. Moreover, forest structure has been 
identified as an essential indicator of forest species diversity (Ishii 
et al., 2004; Zeng et al., 2008; Guo et al., 2017; Torresani et al., 2020). 
We used the SAM classification to monitor species diversity based 
on the ITCs’ spectral signal from UAV-hyperspectral data without 
considering the input of structural characteristics. The fusion of 

FIGURE 4

Tree species classification results of one sample plot in MZL (left) and one sample plot in GGS (right). Different geometric polygons represent identified 
ITCs, with white borders indicating the boundaries of the ITCs.
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spectral and structural features could increase the dissimilarity 
among tree species and improve classification accuracy (Torabzadeh 
et  al., 2019). Therefore, whether integrating LiDAR-derived tree 

structural parameters into the supervised classification of 
hyperspectral data can improve species diversity monitoring is 
worth to be further investigated.

A D

B E

C F

FIGURE 5

Field-measured species diversity indices compared with the predicted values based on classification and clustering approaches for MZL (left) and GGS 
(right).

TABLE 2 Estimation results of leaf biochemical components.

Biochemical 
component

Chl-a Chl-b EWT Car Cel N Lig P SLA C

MZL
R2 0.80 0.81 0.78 0.82 0.44 0.74 0.67 0.61 0.80 0.81

RMSE 1.87 0.96 2.76 0.30 5.99 0.35 3.43 0.02 31.35 1.25

GGS
R2 0.68 0.69 0.62 0.46 0.24 0.34 0.25 0.24 0.73 0.30

RMSE 2.60 1.24 4.37 0.40 3.71 0.40 3.54 0.03 34.88 1.72
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Our results for both study areas demonstrated that forest 
diversity patterns could be  rapidly acquired by the Self-adaptive 
FCM clustering algorithm based on individual tree-based variations 
in biochemical and structural features without distinguishing the 
tree species, which is similar to the previous clustering research 
(Féret and Asner, 2014; Schafer et al., 2016; Zhao et al., 2018). A 
maximum number of 11 and 15 tree species can be identified in the 
sample polt of MZL and GGS based on different optimal feature 
compositions using the clustering algorithm (7 optimal biochemical 
VIs and 2 optimal structural features for MZL, 3 optimal biochemical 
VIs and 6 optimal structural features for GGS, Figure  6). The 
outcomes of our feature selection further illustrated the spectral and 
structural heterogeneity of different regions and also emphasized the 
applicability of our clustering method in subtropical forests. 
Compared to the previous studies using Random Forest (RF) 
algorithm to select the optimal features, we underlined the strength 
of correlation analysis between the variation of biochemical VIs or 
structural features and species diversity indices at sample plot scale 
(Xie et al., 2019; Adhikari et al., 2020; de Almeida et al., 2021). The 
RF algorithm filters the optimal features according to the importance 
of the variables, while our feature selection method considers the 
basic biochemical and structural principles of forest (Hall, 2000; 
Strobl et  al., 2008). However, the biochemical composition and 
structural characteristics of the same tree species vary considerably 
depending on individual development and landscape topography, 
introducing much uncertainty in selecting parameters for 
different forests.

Our results demonstrated better performance for forest species 
richness estimation in complex forests based on UAV-borne data 
(RMSE: 1.44 to 2.47 for MZL, 2.87 to 3.94 for GGS) than previous 
studies using airborne data (RMSE: 4.0 and 6.74) (Hernandez-
Stefanoni et al., 2014; Zhao et al., 2018). Coarser image spatial 
resolution (typically between 1 to 10 m) and relatively lower point 
density (usually between 4 to 10 points/m2) of airborne data can 

make it difficult to identify or segment trees with smaller canopies, 
and image spectral mixing may also be an issue (Medina et al., 
2013; Sankey et al., 2017). This affects the accuracy of forest species 
diversity monitoring, as the spectral and structural differences 
between species may not be accurately captured (Ustin et al., 2004; 
Lesak et al., 2011; Naidoo et al., 2012). In contrast, UAV-borne 
LiDAR data with higher point cloud density (more than 100 
points/m2) could discriminate and detect individual trees with 
satisfactory accuracies (Figure 2). The spectral mixture problem 
would be solved with the ultra-high resolution UAV-borne imagery 
(Somers et al., 2011; Ronay et al., 2022), but how to better represent 
the spectral features of each ITC and avoid potential noise caused 
by intra-crown shade still need to be further studied (Rocchini 
et  al., 2010). Given the lower flight altitude than conventional 
airborne platforms, the UAV-borne hyperspectral images are less 
affected by the atmosphere, leading to improved image quality and 
easier processing. UAV remote sensing has improved the timeliness 
of data acquisition, but it has limitations such as limited payload, 
short flight life, and more fabulous mosaic and geocode efforts 
(Nex and Remondino, 2014; Matese et  al., 2015; Pu, 2021). In 
addition, due to the “top-down” operation method of UAV-borne 
platforms, the data for the understory in dense forest areas are 
often missing. Therefore, combining the advantages of different 
monitoring tools, such as ground-based LiDAR to complement 
and verify each other can provide more information for related 
forest diversity research.

5. Conclusion

In this study, we compared the performance of individual tree-
based classification and clustering methods with UAV-borne data for 
estimating the forest species diversity indices in the Mazongling and 
Gonggashan National Nature Forest Reserves of China. We proved 

FIGURE 6

Selected features of two study areas (left: MZL, right: GGS; red labels: optimal biochemical VIs, orange labels: optimal structural features, blue labels: 
species diversity indices; TR/OV: TCARI/OSAVI, SW: Shannon-Wiener index).
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that the SAM classification could provide more accurate predictions 
of species richness indices but requires spectral information of all 
dominant tree species. The Self-adaptive FCM clustering algorithm 
could achieve high-precision predictions for evenness indices 
(especially Simpson index), although information on specific tree 
species is unavailable.

The combination of UAV imaging spectroscopy and LiDAR 
make it possible to predict regional forest species diversity more 
accurately at individual canopy scale for complex forests. Future 
studies could improve the forest species-spectral library and explore 
forest species identification from multiple perspectives. 
Additionally, considering the variation in forest species 
characteristics over time, it would be valuable to further examine 
the accuracy of classification and clustering methods by 
incorporating phenological or multi-temporal features. Moreover, 
it would be  beneficial to investigate the applicability of species 
diversity estimation models for forests in different ecological 
contexts and how high-resolution UAV data can be leveraged to 
bridge the scale gap between traditional field plot samplings and 
large-scale satellite observations.
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