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lung diseases
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Department of Translational Research, Biotest AG, Dreieich, Germany
Inflammatory lung diseases represent a persistent burden for patients and the

global healthcare system. The combination of high morbidity, (partially) high

mortality and limited innovations in the last decades, have resulted in a great

demand for new therapeutics. Are therapeutic IgA antibodies possibly a new

hope in the treatment of inflammatory lung diseases? Current research

increasingly unravels the elementary functions of IgA as protector against

infections and as modulator of overwhelming inflammation. With a focus on

IgA, this review describes the pathological alterations in mucosal immunity and

how they contribute to chronic inflammation in the most common inflammatory

lung diseases. The current knowledge of IgA functions in the circulation, and

particularly in the respiratory mucosa, are summarized. The interplay between

neutrophils and IgA seems to be key in control of inflammation. In addition, the

hurdles and benefits of therapeutic IgA antibodies, as well as the currently known

clinically used IgA preparations are described. The data highlighted here,

together with upcoming research strategies aiming at circumventing the

current pitfalls in IgA research may pave the way for this promising antibody

class in the application of inflammatory lung diseases.

KEYWORDS
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1 Introduction

With each breath, our airways are exposed to a multitude of inhalable pathogens or

toxins. As a contact zone to the environment, with an area of about 100 m2, the respiratory

tract is a vulnerable part of the human immune defense (1). Therefore, evolution provided

this area with a powerful protective machinery, the mucosal immune system. If mucosal

immunity is impaired, pathogens can invade and various respiratory illnesses may develop

including acute or chronic inflammatory diseases (2, 3).

Respiratory diseases are globally among the most common diseases, especially chronic

obstructive pulmonary disease (COPD) and asthma (2). COPD and asthma together with
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cystic fibrosis (CF) have been identified as the third leading cause of

death worldwide (4, 5). Acute respiratory infections can induce

pneumonia, either through community- or hospital-acquired

pathogens or through inflammation induced by prolonged

mechanical ventilation. Particularly severe forms, such as severe

community-acquired pneumonia (sCAP), still have a high mortality

rates (6–8). Recently, coronavirus disease 2019 (COVID-19) joined

the group of respiratory diseases, with high morbidity and mortality

especially in patients with risk factors (9).

In the last decades, the number of patients with respiratory

diseases has grown, highlighting the need for pharmaceutical

interventions (5, 7). Although the medical need in respiratory

diseases is high, the probability for a new drug to reach the

market has been lower than for other diseases (3% vs. 6-14%).

The large diversity and complexity of respiratory diseases paired

with limited understanding of the mucosal immune system are

aspects that contribute to the challenging development of novel

therapies (7).

The mucosal immune system plays a central role in immune

surveillance. It is located within mucosal surfaces throughout the

body epithelia and protects against infections at the interface to the

external environment. This part of the immune system is

characterized by a high antibody production to protect against

pathogen invasion (10). The immunoglobulin distribution on

mucosa differs from that in serum: In serum, IgG is the

dominating isotype (75- 80% of serum immunoglobulins),

followed by IgA (15%) and IgM (10%) (11, 12). In contrast, on

the mucosa, IgA is the predominant class (~74% of all mucosa

immunoglobulin) followed by IgG (~25%) and IgM (~2%) (13, 14).

The overall production of IgA (40-60 mg/kg per day) is higher than

all other isotypes together (15).

IgA has elementary functions in protecting the mucosa from

invading pathogens, as well as maintaining homeostasis with the

commensal microbiome (16, 17). In humans IgA exits in two

subclasses – IgA1 and IgA2 – both are structurally similar but

differ in their hinge region and the glycosylation sites. In a recent

study Steffen et al. showed the functional relevance of IgA

glycosylation. IgA2 induces pro-inflammatory activation of

neutrophils and macrophages more potent than IgA1.

Accountable for the pro-inflammatory properties of IgA2 were

fewer sialic acid glycosylation sites compared to IgA1 (18). The

prolonged hinge region of IgA1 makes this subclass more prone to

proteolytic degradation, which occurs mainly due to bacterial

proteases on the mucosa (19, 20). This is also reflected in the IgA

subclass ratio: In serum, IgA1 is dominant (90% IgA1 vs. 10%

IgA2), whereas on the mucosa more IgA2 is observed (20-60% of

total IgA, depending on the location) (13, 19, 20).

In serum, IgA is mainly found as a monomer with a small

portion (~15%) of dimers or other multimers (13, 19, 21). In

contrast, mucosal IgA is observed solely in multimeric forms.

These forms are covalently linked by the J-chain, a small

molecule that facilitates multimerization and is necessary for the

binding to the polymeric immunoglobulin receptor (pIgR) and

subsequent transport to the mucosa. After translocation, a part of

the pIgR, called secretory component (SC), remains attached to IgA

and thereby forms the secretory IgA (SIgA) (13, 22). The SC
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stabilizes the SIgA molecule and protects it from proteolytic

degradation (23).

This review provides insights into the current knowledge of IgA,

regarding its role in the most common respiratory diseases as well

as its functions in infection and inflammation. A special focus will

be set on the mucosal immune response. Furthermore, an overview

of therapeutically used IgA antibodies and further efforts to use IgA

as such in the treatment of inflammatory lung diseases is given.
2 IgA in inflammatory lung diseases

Low or absent IgA levels are a relatively common clinical

observation, often caused by selective IgA deficiency (sIgAD) the

most common type of primary antibody deficiency. Although most

of these patients are asymptomatic, the lack of IgA antibodies

results in a notable number of patients (~40% of all sIgAD

patients) with several immunological disorders (24, 25). The most

common disorders, associated with low IgA levels are recurrent

respiratory infections, allergic conditions, gastrointestinal disorders

or auto-immune diseases (24–30), highlighting the important role

of IgA in mucosal areas. Alterations in IgA-mediated mucosal

immunity and impaired IgA functions that have been correlated

with the most common inflammatory lung diseases are summarized

in Table 1. The important role of IgA in the mucosal immunity is

also demonstrated indirectly by the ability of virulent bacterial

strains to produce anti-IgA or anti-FcaRI proteins which help the

pathogen to evade IgA-mediated immune responses (26, 51).
2.1 Chronic respiratory diseases

Chronic respiratory diseases (COPD, asthma and CF) are a

group of diseases with similar characteristics, including obstruction

of the small airways and episodes of worsening (called

exacerbations) due to recurrent airway inflammation (2, 52).

Furthermore, alterations of the pIgR/IgA system are described for

these diseases [reviewed in (2)].

COPD patients with low serum and/or mucosal IgA levels have

a higher risk for exacerbations and recurrent infections (1, 31, 32).

The inflammatory environment in the COPD lung is driven by

chronically infiltrating neutrophils (1). Inflammation leads to

downregulation of pIgR via TGF-b and consequently to an

impaired IgA transport followed by reduced levels of SIgA on the

mucosa (1, 2).

In asthma (type-2 inflammation), the expression of pIgR is

downregulated due to IL-4 and IL-13 release by Th2-cells (33).

Reduced SIgA on the mucosa leads to decreased immune exclusion

of allergens, thereby strengthening the allergic reaction of the

immune system. In addition, immunomodulatory effects of SIgA

on dendritic cells (DC) and subsequent inhibition of Th2-cell-

mediated inflammation are impaired (2, 34).

CF patients suffer from recurrent infections and inflammation,

which suggest an impaired mucosal immunity (37). Data regarding

the dysregulation of the pIgR/SIgA axis in CF patients are scarce

and not fully understood. Due to mutation and misfolding of the
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epithelial cystic fibrosis transmembrane conductance regulator

(CFTR) protein, cellular stress and an unfolded protein response

is induced, which inhibits pIgR expression. Concurrently SIgA

production and transcytosis was shown to be upregulated through

IL-17 induced by chronic Pseudomonas aeruginosa infection. In

addition increased amounts of dysfunctional SC were observed in

sputum of CF patients (2, 23, 37). In summary, the interplay

between multiple components affects the pIgR/SIgA axis and

induces the dysregulated mucosal immunity in CF.

In COPD, asthma or CF there are multiple alterations and

defects affecting the pIgR/IgA axis, contributing to the diseases. A

harmful circle of neutrophil-mediated inflammation and impaired

SIgA function potentiates chronic inflammation and recurrent

infections. The role of neutrophils is dually detrimental in the

observed pathology as the released inflammatory mediators can

mediate tissue damage, increase inflammation and some, especially

neutrophil elastase and proteinase-3, can degrade pIgR, SC and

mucosa immunoglobulins (1, 23, 53, 54). Therefore, the regulation

of neutrophil inflammation could be a valuable therapeutic strategy.
2.2 Pneumonia

Pneumonia is an inflammation of the pulmonary alveoli, which

is mostly triggered by infections with bacteria, virus or fungi (55).

The most common form of pneumonia is community-acquired

pneumonia (CAP), in which the symptom onset occurs in the

community (6). Patients with an impaired or dysregulated immune

system are at higher risk of developing severe CAP (sCAP) which

requires intensive medical care and is associated with high mortality

(6, 55).

Besides the persistent infection with highly virulent pathogens,

overwhelming inflammation mainly contributes to the pathology of

severe pneumonia. The primary immune response induced by the

infection in the alveoli facilitates the infiltration of leucocytes from

the blood into the alveolar spaces to eliminate the pathogen.

However, an overwhelming infiltration and inflammatory

activation of neutrophils can trigger tissue damage and more
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severe lung injury (56, 57). Considering the current challenges

and high mortality rates in severe pneumonia, alternative

therapeutic approaches, which boost the impaired immune

response as well as control the overwhelming neutrophil

inflammation, are urgently needed.

An impaired immune response in severe pneumonia is often

associated with altered immunoglobulin levels. Diverging data

regarding the serum immunoglobulin levels of pneumonia

patients were published. Studies showed either lower (38–40) or

higher (41, 42) levels of IgA, nevertheless both were associated with

an increased mortality risk. Data on alterations in mucosal antibody

levels are scarce. A few reports investigated SIgA levels in human

bronchoalveolar lavage (BAL) and showed reduced amounts of

SIgA in patients with severe pneumonia (43, 58). Interestingly, there

seems to be a link between decreased SIgA levels and neutrophil

infiltration (43). This could be based on the anti-inflammatory

effects of SIgA on neutrophils (59, 60).
2.3 COVID-19

Infection with the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) induces COVID-19 diseases. While

about 20% of people infected with SARS-CoV-2 had a severe form

of COVID-19 with pulmonary or systemic inflammation at

beginning of the pandemic (61, 62), this has changed to <1% in

2022. Increased vaccination rates and the currently prevalent

omicron variants have reduced hospitalization and mortality rates

(63, 64). Nevertheless, in patients with an impaired and

dysregulated immune response, the infection can still cause

inflammation (mainly mediated by neutrophils) and critical

damage to the lung (65–67).

The role of serum IgA in COVID-19 has been investigated in

early reports. It was shown, that an early and strong serum IgA-

response (levels of SARS-CoV-2 specific IgA1 and IgA2) is

associated with a mild course of the disease (3, 44–48). Vice

versa, decreased serum IgA levels were observed in COVID-19

patients with pneumonia compared to patients with mild course of
TABLE 1 Overview of IgA levels and implications of impaired IgA response in inflammatory lung diseases.

Disease IgA-levels Cause of altered SIgA levels Implication References

COPD
Serum: reduced
BAL: reduced

TGF-b mediated downregulation of
pIgR

Higher risk for exacerbations (1, 2, 31, 32)

Asthma
Serum: reduced
BAL: reduced

IL-4 and IL-2 mediated downregulation
of pIgR

Reduced immune exclusion of allergens and
immunomodulatory effects on DC

(2, 33–36)

CF
Serum: increased
BAL: increased

Dysregulation of pIgR expression and
dysfunctional SC

Recurrent infections and inflammation (2, 23, 37)

Pneumonia
Serum: increased or reduced
BAL: reduced

Increased consumption, endothelial
leakage

Infiltration and inflammatory activation of
neutrophils

(38–43)

Severe
COVID-19

Serum & BAL: severe course when reduced
early and increased in later stages of
diseases

Impaired immune response against
SARS-CoV-2

Impaired viral clearance from mucosa and
enhanced activation of neutrophil
inflammation

(44–50)
COPD, chronic obstructive pulmonary disease; SIgA, secretory IgA; BAL, Broncho alveolar lavage; TGF-b, transforming growth factor b; pIgR, polymeric immunoglobulin receptor; IL,
Interleukin; DC, Dendritic cells; CF, cystic fibrosis; SC, secretory component; COVID-19, Corona virus diseases 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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disease (68), highlighting the importance of antibody-mediated

immunity for disease outcome (49, 69, 70). Little information is

available regarding the mucosal immunity in COVID-19 (71, 72). It

was found that SARS-CoV-2 specific SIgA is an early marker for

virus infection and correlates with the severity of disease and

inflammatory cytokine response (increase of IFN-b and IFN-g)
(73–75). All these data indicate an elementary role of IgA in

mucosal defense against the invading SARS-CoV-2 virus (70, 72).

The importance of the mucosal IgA response for the fight against

COVID-19 is also reflected in emerging attempts to induce

immunization via a mucosal route of vaccination (76, 77).

Besides beneficial effects of the mucosal IgA response in

protection against SARS-CoV-2 infection, detrimental effects of

IgA in COVID-19 have been observed as well. Especially in later

stages of COVID-19, when virus neutralizing activity of SIgA gets

lost, the outcome can be fatal (49, 75). For example, Staats et al.

describes the correlation of anti-SARS-CoV-2 IgA antibodies in

serum with neutrophil extracellular trap (NET) formation in severe

COVID-19 cases. By measuring SARS-CoV-2 specific IgA- and IgG

levels, CRP and extracellular DNA, they found that especially

antibodies of IgA2-subclass are potent activators of neutrophil

inflammation and NET-formation (78). The IgA-mediated

enhancement of NET-release was also reported by others (79–81).

In COVID-19 enhanced NET-formation is correlated to a fatal

outcome, as reported by several groups (49, 82–85). Therefore

LaSalle et al. hypothesized that early IgA induced NET-release is

beneficial in the mucosal areas to prevent SARS-CoV-2 entry,

whereas NET-release in later stages can be harmful in the

circulation and promote tissue damage (49). This represents an

important aspect for the development and application of IgA-based

COVID-19 therapies.
2.4 IgA and neutrophils

IgA is able to interact with several Fc-receptor expressing

immune cells like neutrophils, eosinophils, monocytes or Kupffer

cells. Furthermore IgA can interact by binding to alternative IgA

receptors (like DC-SIGN, transferrin receptor or FcRL4) with, for

example, T-cells or dendritic cells. These interactions can activate

immune cells (e.g. enhance the phagocytosis of pathogens by

macrophages) or induce potent immunomodulation (e.g. the

expansion of regulatory T-cells) (86, 87).

However, when looking at the above mentioned inflammatory

lung diseases, the interaction between IgA and neutrophils is from

particular interest. Based on their large number (50-70% of human

leucocytes) and potent cytotoxic capabilities (e.g. degranulation,

oxidative burst, NETs, or proteases) neutrophils play a key role in

promoting chronic inflammation, tissue damage and overall

diseases pathogenesis (88). The interaction of IgA with the

neutrophil IgA-Fc-receptor (FcaRI) is able to activate a strong

intracellular signaling cascade (see chapter 3 below), which is

capable to induce the release of leukotriene B4 (LTB4). LTB4 is a

potent neutrophil chemoattractant, which leads to the infiltration of

large numbers of neutrophils into the lung. The self-containing

positive feedback loop of IgA-mediated activation and neutrophil
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infiltration can induce overwhelming neutrophil response with

detrimental effects on the lung tissue (86, 89).

Therefore and although IgA interacts with several other

immune cell types (like monocytes, DC or T-cells) the interaction

with neutrophils is the most relevant in view of inflammatory

lung diseases.
3 The functional role of IgA

As highlighted in the previous chapter, IgA immunity is

impaired in the most prevalent inflammatory lung diseases. This

indicates that IgA antibodies have important functional roles, in

serum and on the mucosa. In the following, an overview of the

currently known IgA functions is given.

Based on binding to the FcaRI, IgA can mediate a dual role in

immunity. On the one hand, IgA has anti-pathogenic properties

protecting against infections and on the other hand, IgA has potent

immunomodulatory functions thereby maintaining immune

homeostasis (87, 89–91).

Multivalent binding of IgA, within an immune complex,

induces FcaRI cross-linking, which activates the Src family kinase

Fyn. This kinase fully phosphorylates several immunoreceptor

tyrosine-based activation motifs (ITAM) leading to recruitment of

the kinase SYK. This kinase activates several downstream kinases

and signaling pathways, ultimately leading to activation of MAP

kinase and NF-kB, which results in pro-inflammatory cell

activation (90, 92).

In contrast, monovalent binding of IgA lead to recruitment of

Src family kinase Lyn. In contrast to Fyn, Lyn phosphorylates only a

single tyrosine motif, which induces the recruitment and activation

of SHP-1 phosphatase. SHP-1 inhibits pro-inflammatory responses

from activating Fc- or toll-like-receptors by formation of

inhibisomes. This inhibitory ITAM (ITAMi)-signaling results in

cellular immunomodulation (90, 93).

Noteworthy is also a third way of Fc-receptor signaling, the

immunoreceptor tyrosine-based inhibition motif (ITIM) signaling,

which is solely induced by the inhibitory IgG-FcgRIIB (90, 92).
3.1 Function of IgA in serum

3.1.1 During infection
As described above the functions mediated by serum IgA are

dependent on the interaction with FcaRI. In case of infection IgA-

antibodies recognize and opsonize invading pathogens and their

toxins. Binding of multivalent IgA-immune complex to FcaRI
induces – depending on the immune effector cell type – several

pro-inflammatory effector functions. These include firstly direct

clearance mechanism like neutralization, phagocytosis,

degranulation, NET formation, release of reactive oxygen species

(ROS) or antibody dependent cellular cytotoxicity (ADCC). And

secondly the further activation of the immune response, for example

due to the release of inflammatory cytokines or chemokines, antigen

presentation or the recruitment of neutrophils by the

chemoattractant LTB4 [reviewed in (13, 51, 86, 87)].
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Independent of FcaRI, IgA has the ability to induce the

alternative and lectin pathway of the complement system, thereby

promoting complement dependent pathogen clearance (94).

3.1.2 During inflammation
In contrast, and in the absence of any pathogenic antigen,

monomeric serum IgA mediates important immunomodulatory

functions via FcaRI and ITAMi signaling, thereby restoring a

homeostatic state after inflammation. It was shown that IgA

downregulates several inflammatory cell responses, e.g. IgG-

mediated phagocytosis, chemotaxis, oxidative burst and

inflammatory cytokine release [reviewed in (87, 91, 95)].

Furthermore, IgA blocks IgG-mediated complement activation

(96) and counteracts IgE-FcϵRI-induced mast cell degranulation

(97, 98). ITAMi signaling is therefore described as a critical

mechanism to maintain immune homeostasis (92, 98).

Apart from FcaRI and innate immune cells, it was shown that

IgA is able to modulate the T-cell response. Saha et al. demonstrated

that monomeric serum IgA is able to inhibit Th17-cell mediated

inflammation, and concurrently expand FoxP3+ Treg-cells via F(ab’)2
binding to cytokine receptors (99).
3.2 Function of IgA on lung mucosa

The modes of action proposed for SIgA antibodies in lung

infection and inflammation are summarized in Figure 1.

3.2.1 During infection
The main function of SIgA on the lung mucosa is to provide

protection against invading pathogens. This is possible due to its

unique properties, which include high valency binding to pathogens

(due to its multimeric structure) and the high resistance to bacterial

proteases (due to SC) (1, 100).

During infection SIgA induces agglutination of bacteria and

virus, thereby preventing pathogen binding to lung epithelium

(Figure 1A). Agglutinated pathogens are rapidly cleared through

the mucus, a process known as immune exclusion. The fact that pIgR

can transport IgA alone or in complex with an antigen, allows the

efficient intracellular neutralization of virus within infected epithelial

cells during transport to the mucosa. In addition, pathogens that

invaded into the lamina propria can be opsonized by dimeric IgA and

transported back to the mucosa, a process called antigen excretion. In

addition to pathogens, SIgA can also efficiently neutralize pathogenic

toxins and enzymes (Figure 1B) (13, 16, 17, 87). The importance of

IgAmultimerization for efficient pathogen binding and neutralization

was demonstrated several times and has to be highlighted as a central

element in therapeutic IgA antibody development (101–104).

Like serum IgA, activation of FcaRI bearing effector leucocytes
via SIgA has been reported, although binding of SIgA to FcaRI is
partially hampered due to steric hindrance of SC (Figure 1C) (51,

87, 89, 105). Based on transgenic mouse and in vitro studies, SIgA

binding can promote inflammatory activation of the mucosal

immune response e.g. phagocytosis, ADCC, ROS generation,

degranulation and inflammatory cytokine secretion (1, 2, 23, 51,

74). Furthermore, the binding of SIgA opsonized pathogens to
Frontiers in Immunology 05
FcaRI on neutrophils, induces LTB4-release and recruitment of

further neutrophils to the lung (Figure 1C) (87, 89).

3.2.2 During inflammation
Despite the generally well-known anti-pathogenic functions,

SIgA mediates also important immunomodulatory effects on

different mucosal immune cell types. Similar to monomeric serum

IgA, it is proposed that the low affinity binding of SIgA to FcaRI, in
absence of antigen, leads to immunomodulatory effects via

inhibitory ITAMi signaling on mucosal effector leukocytes

(Figure 1D) (2, 74, 89).

The anti-inflammatory effects of SIgA were frequently

demonstrated by looking at the cytokine response. Under

homeostatic conditions SIgA can reduce the pathogen-mediated

inflammatory cytokine response, downregulates the oxidative burst

and the release of inflammatory cytokines of neutrophils and

epithelial cells in vitro (Figure 1D) (59, 60, 97, 106, 107).

However , not only SIgA but a lso the SC alone has

immunomodulatory properties. It was shown that the SC can

neutralize IL-8, an important chemokine for neutrophil migration

(Figure 1D) (108).

In addition to infection-mediated inflammation, SIgA has

important anti-inflammatory functions in context of allergic

reactions. Due to immune exclusion SIgA prevents allergen

binding and activation of the mucosal immune response (2, 97),

as well as IgE-mediated degranulation of mast cells via cross-linking

of FcaRI (Figure 1E) (97, 98).
Furthermore, cells of the adaptive immune response can be

modulated by SIgA. It was shown that SIgA interacts with DC in

mice via SIGNR-1 (the human analog to DC-SIGN), thereby

inhibiting pro-inflammatory cytokine production and inducing

IL-10 production via expansion of regulatory FoxP3+ Treg-cells

(Figure 1F) (34, 91).

4 IgA as therapeutic antibody

IgA is a crucial player in the immune defense as well as in

control of overwhelming inflammation. When the functions of

mucosal SIgA are impaired or IgA levels are low, respiratory

diseases can develop (1, 2, 33, 109–111). Which represents the

rationale for the development of therapeutic IgA antibodies.
4.1 Hurdles and benefits with IgA as
therapeutic antibody

With a few exceptions, almost all therapeutically used

antibodies (recombinant or plasma-derived) are of IgG class

(112). This can be attributed to the natural abundance of this

antibody class in the human body, the long half-life, but also to the

comprehensive knowledge about IgG and the limited knowledge

about the other isotypes (113). The research and clinical use of IgA

was historically impaired due to several reasons: (i) Issues with

small animal models, especially rodents, hamper the research with

IgA. Rodents and humans have major physiological differences.
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Mice have, like most other species, one subclass of IgA, which is

dimeric in serum. In contrast, human IgA exists in two subclasses

and is mainly monomeric, a feature shared only with chimpanzees,

gorillas and gibbons (114–116). The major IgA receptor FcaRI is
missing in rodents (19, 51, 117, 118) and human IgA has only a

short half-life in mice (119). (ii) Problems with recombinant

production of IgA. Because IgA is highly and heterogeneously

glycosylated, the production can cause altered glycosylation

patterns and therefore enhance immunogenicity and clearance

(19, 105, 112). (iii) The short half-life in humans compared to

IgG which would require shorter dosing intervals (13, 27, 120).

Although IgA antibodies were often not considered in research,

they have some major advantages, e.g. IgA can activate more potent

cellular effector functions in comparison to other immunoglobulin

isotypes. Comparison of IgG and IgA functions was mainly done in

the context of cancer research, because IgG lacks efficient activation

of neutrophils (113). It has been shown that IgA, via FcaRI, induces
a much stronger neutrophil-mediated tumor cell killing than IgG.

Mechanistically this could be reasoned through enhanced migration

of neutrophils, induced by IgA mediated LTB4 release.

Furthermore, IgA induces stronger phagocytosis by macrophages

as well as ADCC, oxidative burst, cytokine and NET release by
Frontiers in Immunology 06
neutrophils (19, 119–121). A possible explanation therefore is, that

although FcaRI expression is lower than FcgR expression, IgA-

FcaRI binding induces stronger ITAM signaling than IgG-FcgR
binding, which was found to be due to the 2:1 stoichiometry in IgA-

FcaRI binding (113, 122).

Apart from the stronger immune activation by IgA-FcaRI ITAM-

signaling, IgA can also mediate stronger immunomodulation via

inhibitory ITAMi pathway compared and counteracting to IgG.

Which was demonstrated using a neutrophil cell-line (123, 124).

These immunomodulatory properties have a great therapeutic

potential in the treatment of inflammatory diseases (95, 105).
4.2 Overview of clinically used
IgA antibodies

Currently only plasma-derived IgA antibodies are

therapeutically used. Plasma-derived IgA can be received either

directly from plasma donations (e.g. convalescent plasma or fresh

frozen plasma) or from purified antibody preparations (100, 125).

For the latter, antibodies were purified from a pool of thousands of

plasma donations from healthy donors. Such preparations are
B

C

D

E

F

A

FIGURE 1

Functions of SIgA in lung infection and inflammation. During infection, SIgA induces potent anti-pathogenic effects (left): (A) SIgA can efficiently
agglutinate bacteria and virus, (B) neutralize pathogenic toxins and enzymes and (C) activate FcaRI dependent inflammatory effector functions on
immune effector cells. These include ROS generation, degranulation or the release of inflammatory cytokines. Furthermore, SIgA-FcaRI cross-linking
on neutrophils mediates the release of LTB4, which leads to recruitment of neutrophils to the lung. On the other hand, SIgA can induce various
immunomodulatory effects during lung inflammation (right): Binding of SIgA to FcaRI on immune effector cells can reduce the release of ROS and
inflammatory cytokines. SC alone can reduce inflammatory cytokines (D). In case of allergic inflammation, SIgA can prevent binding of allergens to
the mucosa and reduces FceRI dependent degranulation of mast cells via FcaRI binding (E). SIgA can also interact via DC-SIGN with dendritic cells,
thereby modulating inflammatory cytokine release and T-cell responses (F). SIgA, Secretory Immunoglobulin A; FcaRI, Fc alpha-receptor I; ROS,
Reactive oxygen species; LTB4, leukotriene B4; SC, secretory component; IgE, Immunoglobulin E; FceRI, Fc epsilon-receptor I; DC-SIGN, Dendritic
cell-specific ICAM-3-grabbing non integrin; DC, Dendritic cell; Th17, T-helper 17 cell; FOXP3, Forkhead-Box-Protein P3; RORgt, RAR-related orphan
receptor gamma-t; Treg, T-regulatory cell.
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known since the 1950s as intravenous immunoglobulin

preparations (IVIg) for the treatment of antibody deficiencies and

nowadays additionally for the treatment of a plethora of

autoimmune- and inflammatory-diseases (100, 126). As plasma-

derived antibodies are from human origin and usually not modified

during the manufacturing process, they were well tolerated and safe

(127). The high diversity in these polyclonal preparations allows it

to target a multitude of pathogens and induce several modes of

action simultaneously (127–129).

In contrast to the standard IVIg, which contains >95% IgG

(130), there are four preparations with notable amounts of IgA used

in clinical settings so far: IgAbulin, Venimmun, Pentaglobin and

trimodulin (12, 27, 100, 126) (Table 2).

4.2.1 IgAbulin
IgAbulin was a plasma-derived preparation consisting mainly

of IgA (~70% of Ig’s), but also notable amounts of IgG (~30% of

Ig’s) and additionally transferrin (~10% of total protein).

Approximately 74% of the total immunoglobulin was monomeric,

~17% dimeric, ~1% polymeric and ~3% fragmented (126, 131, 132).

The anti-inflammatory effects of IgAbulin were investigated in

vitro. IgAbulin downregulated FcaRI-dependent the release of

TNF-a and IL-6, as well as the oxidative burst of neutrophils and

monocytes. In contrast the release of the inhibitory IL1-ra was

enhanced (107, 148, 149). IgAbulin demonstrated more potent anti-

pathogenic properties than IVIg, by neutralizing streptococcal

superantigens in vitro (150).

In a double blind, placebo-controlled study, IgAbulin was

administered as a nasal spray to children with rhinitis. Children

in the IgAbulin group had significant reduced days with rhinitis

compared with placebo (n=40, p=0.004) and the ease of use was

convincing (133). In another placebo-controlled trial in children

with frequent respiratory infections, IgAbulin was effective in the

prophylaxis and reduction of upper respiratory tract infections

(n=36, p < 0.012). In this study IgAbulin was applied via nose
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drops in the nasal cavity and showed a good safety profile, as well as

a convenient application to the children (134).

In two similar experimental studies, IgAbulin was used as

prophylaxis to prevent infections in adult top-athletes. The nasal

application lead to an increase in nasal salvia IgA levels, however

reduced upper respiratory tract infections only in one of the studies

significantly (n=34, p < 0.01) (135, 136).

Besides intranasal administration, the efficacy of IgAbulin was

also tested after oral administration. In a prospective study of

infants and children with chronic diarrhea IgAbulin lead to a

reduced number of stools per day (n=7, p < 0.05) (131) and in a

randomized clinical trial prevents necrotizing enterocolitis (NEC)

of preterm infants and neonates (n=179, p=0.0143) (132). However,

a meta-analysis concluded no significant benefit after oral IgAbulin

administration, which does not support the further use of IgAbulin

in NEC (137).

The monomeric form of IgA, which was the main ingredient,

could be a reason for the limited efficacy of IgAbulin (100).

However, and importantly, no concerns with anaphylactic

reaction caused by pre-existing anti-IgA antibodies were

observed, which was for a long time considered as a possible risk

factor in IgA therapy (126, 151).

The usage of IgAbulin was safe and well-tolerated justifying the

use of therapeutic IgA preparations. The application of IgAbulin to

prevent respiratory tract infections is the only known clinical

delivery of a therapeutic IgA antibody to the mucosa and

therefore a potential starting point for further approaches. Using

multimeric-polyvalent IgA preparations or higher dosage could be

more effective and might be an option to be further investigated in

the future.

4.2.2 Venimmun N
Venimmun N was a plasma preparation, with an IgA-portion of

~12%, but there are no data about the biochemical structure of these

IgA molecules available (126). Venimmun N was used in
TABLE 2 Overview of clinically used plasma-derived antibody preparations containing notable amounts of IgA.

Product and
manufacturer

Ig-distribu-
tion*

Indication and administration Development
status

References

IgAbulin
Immuno AG

73% IgA
26% IgG
1% IgM

Oral or nasal application.
Clinical studies in NEC and
treatment/prevention of respiratory tract infections.

Produced for
experimental clinical
use only

(126, 131–
137)

Venimmun N
CSL Behring
GmbH

12% IgA
80% IgG
8% IgM

For IV use.
Clinically tested as immunomodulatory agent in ITP and Crohn’s diseases, further
as substitution therapy in antibody deficiencies.

Produced for
experimental clinical
use only

(12, 126, 138–
140)

Pentaglobin
Biotest AG

12% IgA
76% IgG
12% IgM

For IV use.
Approved for the adjunctive treatment of bacterial infections and immunoglobulin
substitution in patients with immunodeficiency or severe secondary antibody
deficiency syndrome.

Marketed product (126, 141–
143)

Trimodulin
(BT588 &
predecessor
BT086)
Biotest AG

21% IgA
56% IgG
23% IgM

For IV use.
In development as adjunctive treatment to standard of care in sCAP and COVID-
19.

Clinical phase III in
COVID-19
(NCT05531149)
and sCAP
(NCT05722938)
ongoing

(144–147)
Immunoglobulin composition, development status and current usage were compared. *Ig distribution are approximate values. IV, intravenous; NEC, necrotizing enterocolitis; ITP, immune
thrombocytopenic purpura; sCAP, severe community acquired pneumonia; COVID-19, Coronavirus diseases 2019.
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experimental studies as substitution therapy in patients with

immune deficiencies and as prophylaxis for septic complications,

with no clear effects (138, 152, 153).

In the treatment of autoimmune diseases, Venimmun N

showed contradicting results. Although in case studies the

treatment of patients with Crohn’s diseases mediated beneficial

immunomodulatory effects, there was no benefit compared to a

standard IVIg (139, 154). Moreover, in a prospective crossover trial

with 177 immune thrombocytopenic purpura (ITP) patients no

significant differences in the response rates of Venimmun N

treatment could be demonstrated (140). In a comparative in vitro

study, Venimmun showed stronger modulation of TNF-a release

than standard IVIg in microglia cell culture. An effect partially

attributed to the IgA component. However, another IgM/IgA-

enriched preparation Pentaglobin showed much more potent

effects on TNF-a release and nitric oxide production (155).

In most of the mentioned studies, Venimmun N was considered

as a pure IgG preparation; therefore, no evaluation of the

therapeutic effect of IgA in this preparation can be performed.

4.2.3 Pentaglobin
Pentaglobin is a human plasma-derived immunoglobulin

preparation containing IgM, IgA and IgG. The immunoglobulin

distribution in Pentaglobin (~12% IgM, ~12% IgA and ~76% IgG)

is comparable to that in human serum (12, 126). Biochemical

characterization of Pentaglobin showed a complex mixture of

monomeric IgG, monomeric IgA, dimeric and trimeric IgA, as

well as pentameric IgM. The multimeric IgA and IgM species were

shown to be associated with notable amounts of J-chain, which

could enable the transport to mucosa and support the usage in

inflammatory lung diseases (156).

Indeed, in a case report of a common variable immunodeficiency

patient it was shown that IgA applied with Pentaglobin can be

transported onto the lung and help to reduce exacerbations of

bronchiectasis (157, 158). Furthermore, the IgA portion of

Pentaglobin was shown to be transported to the lung of rats and

mice, with notable amounts of functional active IgA present in the

BAL (159, 160). The presence of administered immunoglobulins on

the lung helped to defeat bacterial infections and protected lung tissue

via immunomodulatory effects in a mouse model of stroke associated

pneumonia (160).

In focus of systemic inflammatory diseases, like sepsis and septic

shock, the use of plasma-derived immunoglobulin preparations is a

promising approach, as these can mediate both – pro- and anti-

inflammatory – effector functions (161). These dual functions were

demonstrated for Pentaglobin in various in vitro and in vivo studies.

The anti-pathogenic functions of Pentaglobin comprise the

opsonization and phagocytosis of pathogens (162–164), as well as

the neutralization of bacterial endo- and exotoxins (164–166).

Functions, which were mediated more efficiently by Pentaglobin

in comparison to standard IVIg (167–169). It was shown that all

immunoglobulin species (IgM, IgA and IgG) within Pentaglobin

have titers against surface antigens of the most common pathogens

involved in sepsis (170).
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Pentaglobin showed stronger immunomodulatory properties

than IVIg, like the modulation of complement factors (171–173)

and cytokines (e.g. IFN-g, TNF-a, IL-6, IL-8, IL-1b, IL-10) (167–169,
174). Furthermore, Pentaglobin demonstrated immunomodulatory

effects on T-cells in vitro and in vivo (168, 175, 176).

In most of the mentioned studies these effects were attributed to

the IgM component, thereby not adequately addressing the role of

IgA in this polyclonal preparation (126). However, as pure IgM and

IgA controls were lacking in these studies, some effects could also be

attributed to IgA. Recent data confirm that IgA can have important

effector functions in such IgM/A-enriched immunoglobulin

preparations (123).

Apart from the preclinical data, there is a lot of clinical

experience gathered in the last decades with Pentaglobin.

Pentaglobin was approved in 1985 (177) for the use as adjuvant

therapy of severe bacterial infections and immunoglobulin

substitution in immunocompromised patients.

In septic patients, the levels of the main immunoglobulin

isotypes IgM, IgA and IgG are often decreased and were

associated with a reduced survival rate (178, 179). Therefore, the

supplementation of all three classes seems to be a promising

strategy (161). Pentaglobin has been investigated in numerous

clinical trials for the adjunctive therapy of sepsis in adult (141–

143) and in several trials in paediatric patients and neonates with

sepsis (180–183). As mentioned in several reviews the additional

IgM- and IgA-components in Pentaglobin mediate beneficial effects

in the treatment of inflammatory diseases compared to IVIg (100,

126, 151, 161, 177, 184). This was confirmed in systematic meta-

analyses, where a significant reduction of mortality and length of

mechanical ventilation was shown after Pentaglobin treatment in

patients with severe sepsis and septic shock (141–143). This effect

was not that pronounced after IVIg treatment (141, 143).

Furthermore, there were some case reports and small studies

regarding the usage of Pentaglobin as adjunctive therapy in

COVID-19 (185–188). Although in a large retrospective cohort

study, no significant difference in mortality was observed (n=316,

p=0.374), a subgroup of severe COVID-19 patients who have not

yet received invasive mechanical ventilation may benefit from

Pentaglobin therapy (p=0.063). It has been observed that an early

and high dose of Pentaglobin seems to help patients with low IgM,

IgA and IgG levels (189).

The efficacy and safety of Pentaglobin was shown in various

studies and countless regular administrations over decades,

therefore Pentaglobin is currently the longest lasting and best

characterized therapeutically used preparation containing IgA.

Simultaneously there is limited knowledge regarding the

functional role of IgA in Pentaglobin. Based on the complexity

and heterogeneity of this preparation containing IgM, IgA and IgG,

it is challenging to attribute beneficial effects to a distinct

component. With emerging data regarding the immunoglobulin

biochemistry, it seems to be feasible that these polyclonal

immunoglobulin preparations could also mediate protective

effects in inflammatory lung diseases, where especially multimeric

IgA species could be an object of interest.
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4.2.4 Trimodulin
Trimodulin is a human plasma-derived native polyvalent

antibody preparation for intravenous administration with ~23%

IgM, ~21% IgA and ~56% IgG. Based on a new manufacturing

process, native immunoglobulins with more active Fc- and Fab-

binding sites compared to Pentaglobin were purified.

Trimodulin is in clinical development for the treatment of sCAP

and moderate/severe COVID-19, two inflammatory lung diseases.

In a post-hoc analysis of a phase II trial (NCT01420744) conducted

in sCAP patients, trimodulin showed significant reduction in

mortality in a subgroup of invasively ventilated patients with low

IgM (≤ 0.8 g/L) and/or high CRP (≥ 70 mg/L) levels (n=92,

p=0.006). Furthermore trimodulin prevents secondary infections,

based on a reduced number of infection-related adverse events

(144). During the recent pandemic, the development of trimodulin

was expanded to the additional indication, severe COVID-19. A

phase II study in patients with severe COVID-19 [NCT04576728

(145)] showed reduced mortality in a subgroup of hospitalized

patients with early systemic inflammation (manuscript under

preparation). Based on the promising results from the two phase

II trials, development of trimodulin now continues in two phase III

trials in sCAP [NCT05722938 (190)] and moderate/severe COVID-

19-patients [NCT05531149 (146)].

The comprehensive preclinical characterization identified three

relevant modes of action for trimodulin: (i) opsonization and

clearance of pathogens, (ii) neutralization of toxins and (iii)

modulation of the inflammatory response.

The opsonization and clearance of causal pathogens was shown

by a large repertoire of antigen binding activities, as IgM, IgA and

IgG antibody titers against relevant bacteria, viruses and fungi were

present in trimodulin. It was shown that the antibodies of

trimodulin can opsonize and enhance phagocytosis in vitro (123,

191). The trimodulin mediated phagocytosis and inflammatory

activation of neutrophils was shown to be dependent on IgA-

FcaRI and IgG-FcgR binding, highlighting the anti-pathogenic

effects of IgA in this therapeutic antibody preparation (123).

The efficient neutralization of bacterial toxins by IgM, IgA and

IgG plasma preparations is known from literature (150, 165–169),

but was also demonstrated for trimodulin. Trimodulin can

effectively neutralize pneumolysin and protect platelets from

pneumolysin-induced damage (192, 193).

The immunomodulatory properties of trimodulin on the release of

several cytokines and chemokines (e.g. TNF-a, IL-17a, IFN-g, MCP-1,

IL-8, IL-1ra and IL-10) were assessed in different cell-culture models

and shown to be significantly stronger compared to IVIg (123, 124,

194). In a neutrophil-cell model, the endotoxin-induced IL-8 release

was reduced via binding of the trimodulin IgA-component to FcaRI
and subsequent ITAMi signaling (123). As the FcR-mediated effects of

IgM on neutrophils are of minor importance, the beneficial effects over

IVIg can be attributed to the IgA component (123, 124). Furthermore,

direct binding and neutralization of IL-8 by trimodulin was more

potent than by IVIg, an effect that can be related to the multimeric IgM

and IgA species (123).

Immunomodulation by trimodulin was also observed on the

expression of monocyte and neutrophil cell surface receptors, like
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FcR, TLR and complement receptors (123, 194). On the neutrophil-

like HL-60 cell-line, trimodulin counteracted the endotoxin-

mediated upregulation of activating FcR for IgG (FcgRI, FcgRIIA
and FcgRIII) as well as IgA (FcaRI). Effects which were not

observed due to IVIg treatment (123). These modulatory effects

on surface receptor expression seem to counteract inflammatory

cell responses, like phagocytosis, ADCC or chemokine release. The

altered activation of intracellular signaling cascades via IgA-FcaRI
binding could to be key in modulating the neutrophil

inflammatory response.

Furthermore, trimodulin has a dual and balancing function on

the complement system. By either activating complement and

induce opsonophagocytosis, or avoiding excessive activation by

interacting with the activated complement factors C3b and C4b

(191). This balancing effect on anaphylatoxins were also observed in

healthy subjects and sCAP patients treated with trimodulin

(144, 191).

The data regarding the immunomodulatory modes of action of

trimodulin give a complex picture. The antibody isotypes target

several receptors and mechanism simultaneously, leading to more

potent immunomodulation compared to a pure IgG preparation. It

is difficult to attribute the pharmacological effects to one

immunoglobulin component; rather it is feasible that all

components together (IgM, IgA and IgG) mediate the observed

clinical effects, as mentioned by others (179). Nevertheless, it was

clearly shown that the (often neglected) IgA component of

trimodulin mediates powerful effects, especially via FcaRI binding
on neutrophils (123, 124).

Based on the h igh IgA conten t and the poten t

immunomodulatory activity, trimodulin is a promising

preparation for the treatment of inflammatory lung diseases.

Further research is necessary to expand the knowledge regarding

the role of IgA in this preparation and the intended indications, as

this may help to take advantage of the full therapeutic potential of

this product.
4.3 Upcoming strategies using IgA in
respiratory diseases

4.3.1 Application of IgA to the lung
The direct application of therapeutic IgA antibodies onto the

lung offers a great opportunity compared to systemic delivery as it

can support the respiratory immune defense before pathogens enter

the circulation, which was shown in several animal models (195–

202), or protect the lung tissue by anti-inflammatory effects as

shown in mice (106, 197, 203, 204). Inhalation ensures a rapid and

high amount of drug directly delivered to the site of action in the

lung, which is not achieved with other administration forms.

Therefore, a lower dose can be used to achieve the same efficacy,

which avoids possible side effects (205).

Technically, antibodies can be delivered to the lung viametered

dose inhalers, dry powder inhalers or nebulizers (206). These oral

inhalation procedures should be distinguished from intranasal

administration (e.g. via nasal sprays), as the latter applies the
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drug to the nasal mucosa, whereas oral inhalation reaches the lung

mucosa (7). Inhalation therapy is routinely used in the treatment of

chronic lung diseases, e.g. asthma or COPD. Administration by

inhalation allows self-administration and is more comfortable to

the patient in comparison to invasive administration with a needle

(205, 207).

Some monoclonal antibodies applied via inhalation route are

currently in preclinical or clinical trials (205, 207). Furthermore,

some clinical tests were performed with inhalable IVIg (208, 209).

However, development of antibodies for administration by

inhalation is challenging and the failure rate high. Firstly, the pre-

clinical testing in animal models is difficult as rodents are obligate

nose breathers and have several anatomical differences compared to

humans, which lead to different distribution and clearance patterns

(7, 210). Secondly, the pharmacokinetics of inhaled antibodies are

not as favorable, because the half-life is with ~ 1 day (for IgG) much

shorter than in human serum (~23 days) (205, 211). Thirdly,

stability during the nebulization process can be critical for the

development, as immunogenic aggregates can be formed (212).

To circumvent these issues, there are some approaches to

enhance stability of proteins during nebulization process and

enhance residence time in the lung. These approaches include

protein engineering, formulation- and carrier development, or

optimization of the nebulization process (212).

Antibody engineering approaches aim to modify the structure

of antibodies to enhance lung residence time and stability. These

include the generation of smaller antibody fragments, Fc-

engineering or PEGylation (213). Conjugation of polyethylene

glycol (PEG) chains to proteins increases the molecular size and

mucoadhesion, thereby leading to enhanced resistance against

proteolytic digestion and alveolar uptake (213–215). The

development of formulations and carrier particles specifically for

inhalation therapy offers a variety of solutions to prolong residence

in the lung. Besides the classical additives (e.g. salts, sugars or

surfactants), several carrier-formulations like liposomes, micelles,

nano- or micro-particles and microspheres were developed (216).

Based on particle size/shape and surface charge/coating the

deposition, retention and cellular uptake of carrier particles can

be influenced (205, 217, 218). During the nebulization process it is

crucial to maintain the molecular integrity and potency of the drug,

as well as targeted delivery. These critical parameters are driven by

the nebulization device and the particle size (213, 217).

SIgA has an outstanding role in the mucosal immunity and its

function is impaired in several inflammatory lung diseases, as

mentioned within this review. Therefore, supplementation with

inhalable therapeutic IgA antibodies might be a worthwhile

strategy (2). Especially with regard to neutrophil-mediated

inflammation, modulation by IgA seems to be promising (1, 23,

123, 124).

However, only a limited number of monoclonal IgA antibodies

were used for the intranasal delivery to the respiratory system in

animals (219, 220) and despite promising results did not reach

clinical testing. To avoid further setbacks, e.g. an excess of

therapeutic IgA might be applied, as degradation of IgA by

neutrophil- and bacterial proteases could have hampered clinical

effects in previous approaches. Alternatively, IgA preparations
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could be improved in a manner that mimics SIgA structural

stability, to be efficiently used on the mucosa (27).

Hence, Longet et al. coupled a recombinant SC to plasma-derived

multimeric IgA and IgM, thereby creating secretory like molecules

(21, 106). In vitro these SIgA and SIgM molecules were less prone to

proteases and protected epithelial cells from bacterial-induced

damage (21, 106). In three in vivo mouse models SIgA/IgM, as well

as other plasma-preparations (monomeric IgG (IVIg), monomeric

IgA and multimeric IgA/M) were applied orally or intranasally. The

immunoglobulins reduced mucosal infection and protected the

animals from lethal bacterial and viral infection. In contrast to

the in vitro data, coupling of the SC to IgA/M was not beneficial

and IVIg was more efficient in vivo (195, 197, 202). As part of one

study, the immunoglobulins were nebulized and administered via

oral inhalation to rats and non-human primates. IgM, IgA and IgG

remained structurally and functionally intact during the nebulization

and were detectable in the BAL of these animals (202). In addition to

the animal models, the nebulized IVIg was tested in a human in vitro

air-liquid interface tissue culture model. The IgG formulation

reduced viral infections and maintained the integrity of the

epithelial tissue (221). Based on this pre-clinical data, a clinical

phase I study with the nebulized IVIg (CSL787, not comprising

IgA) recently started in healthy subjects and patients with non-cystic

fibrosis bronchiectasis [NCT04643587 (222)].

It remains questionable why the multimeric secretory-like IgA

preparations were not able to reproduce the in vitro efficacy in these

animal models. Perhaps the recombinant SC lost its protective

functions in vivo. This could also explain why intravenously applied

IgM/A/G, which was transported naturally onto mucosa protected

mice from infection (160). Nevertheless, the available data show

that application of IgA to the lung via nebulization is feasible and

could open the door for future research in this field. Current

alternatives to animal testing could be especially useful to answer

the open questions (see below).

4.3.2 Recombinant and engineered
IgA antibodies

As outlined above only plasma-derived polyclonal IgA

antibodies were used in humans so far; recombinant monoclonal

IgA antibodies did not proceed further than experimental or pre-

clinical testing. Especially for the production of recombinant IgA

antibodies, technical issues were limiting. For example, the

purification of IgA requires new capture materials, as the usually

for IgG purification used materials do not bind IgA (112, 223).

Another issue is the natural ability of IgA to form different

multimeric forms, as these require high demands in regard of

manufacturability and characterization (e.g. distinction between

aggregates) (101). One of the biggest issues are the number of

glycosylation sites, because the IgA hinge region is heavily

glycosylated, it is problematic to generate consistent glycoforms,

as well as to implement proper quality control (101, 112, 120, 224).

Furthermore, the complexity of IgA in regard to protein size and

glycosylation leads to lower expression yields compared to

recombinant IgG (101, 223).

To circumvent the persisting problems with recombinant IgA

antibodies, recent antibody engineering strategies successfully
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improved the manufacturability and the pharmacokinetic

properties of IgA. These strategies include modification of the

sugar residues (e.g. increased sialylation or removal of N-linked

glycosylation sites), addition of an albumin binding domain (which

enables recycling by FcRn) or generation of IgG-IgA hybrid

antibodies with a similar half-life as IgG1 (27, 112, 120).

Furthermore, by using different IgA-engineering approaches and

alternative expression systems, the production of IgA multimers

was recently successfully established (101, 223).

The idea of therapeutic IgA antibodies gets new attention

during COVID-19 pandemic, as a notable high virus

neutralization capacity of these multimeric isotypes compared to

IgG was shown (225–227). Therefore several studies were published

aiming to produce recombinant multimeric IgA antibodies (104,

226, 228, 229). With several advances in manufacturing of

recombinant multimeric IgA species, clinical trials seem to be

possible (101, 227).

4.3.4 Improvements in research models
There were promising efforts in inducing a protective SIgA

immunity due to intranasal vaccination, which is already successfully

used against influenza virus (71). Currently intranasal vaccination is in

development against SARS-CoV-2 (76, 77), but these efforts are

currently hindered by translation from animals to humans (3). This

is a commonly known problem in development of respiratory drugs,

especially therapeutic antibodies (205, 207, 230, 231).

Although there were successful efforts with transgenic mouse

models, more hope can be gained from new alternative strategies

with in silico, human ex vivo tissue-models (e.g. precision-cut lung

slices) or 3D-cell culture approaches (4, 7, 230). Due to recent

advances in the field of multi-organ chip technologies, which

combines the mentioned technologies with microfluidic devices,

more systemic and complex responses to the drug can be predicted

(230). Although it is clear that animal models will be indispensable

in the nearer future and further improvements in the field need to

be done (231), these new approaches could improve translational

research and could improve our understanding of the behavior of

drug candidates, while simultaneously being concordant with the

3R-principles. These approaches may pick up many of the current

pitfalls in IgA research and could push the usage of IgA antibodies

towards the clinical stage.
5 Conclusion

The picture of IgA has changed dramatically in the last decades.

There is growing evidence showing complex and potent immune

functions of IgA in the context of infection and inflammation

(Figure 1). Diverse approaches help to understand the dual

function of IgA, as protector against invading pathogens and as

keeper of immune homeostasis. These dual properties designate IgA

as a promising therapeutic agent for the treatment of inflammatory

lung diseases, which require both protection against recurrent

infections and control of overwhelming inflammation.
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Reasoned in several pitfalls, previous efforts in using IgA as a

therapeutic antibody are rare. Plasma-derived IgA preparations

are currently the only therapeutically used IgA antibodies.

Although they contain IgM and IgG antibodies, there is

evidence for potent immunomodulatory functions mediated by

the IgA component. With further advances in the production of

recombinant antibodies, also complex, multimeric IgA molecules

may be produced in large scale and with high quality. This could

open the door for the wide application of therapeutic

IgA preparations.

Targeting the IgA-FcaRI axis on neutrophils recently became

a focus in cancer therapy, but this also seems to be a promising

strategy in the treatment of inflammatory lung diseases. Both IgA

and neutrophils were shown to be important players in lung

inflammation. Neutrophils can perform a dual role, because they

are elementary for the elimination of invading pathogens, but can

also be detrimental and responsible for overwhelming

inflammation and tissue damage. IgA and neutrophil

dysfunction seems to have a harmful, reinforcing effect on each

other in inflammatory lung diseases. This is underpinned by

recent data from COVID-19, which show the important role of

IgA and NETs in neutrophil-mediated pathology (78, 121, 232).

As the IgA-FcaRI axis has a key role in the control of neutrophil

function, it could be interesting to target exhausted neutrophils

and control the inflammation in lung diseases with therapeutic

IgA antibodies. Apart from the effects mediated via the IgA-

FcaRI-axis it was recently shown that FcaRI is a potent innate

receptor that binds bacteria directly and independent of IgA (233).

Therefore it could be worth focusing additionally on FcaRI as

possible therapeutic target, acting before IgA-mediated responses

take place.

New approaches with direct application of IgA to the lung

target site or induction of mucosal SIgA response seem to be

promising, both in view of the benefits of self-administration and

clinical efficacy. Currently, for the clinical success of these

approaches the translation of small animal models to humans

remains a major issue in respiratory research (7, 230). Future

progress in the development of alternative methods could

circumvent issues with animal experiments in respiratory

research and boost IgA approaches.

After a long time with limited innovations and a series of

rather disappointing results, interest in IgA as a therapeutic option

has ceased. However, recent advances in the field, justify to

reinvestigate the potential of IgA as a therapeutic agent in the

treatment of inflammatory lung diseases. Nevertheless, further

research is needed to unravel the most suitable form of

administration and IgA molecule structure for a successful

therapy in these indications.
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