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Editorial on the Research Topic

The role of transcription factors in inborn errors of immunity
Inborn errors of immunity (IEI), also known as primary immunodeficiencies (PID), are

a heterogeneous group of disorders caused by germline-encoded defects in the immune

system resulting in an increased susceptibility to infections, autoimmune diseases,

autoinflammation, benign lymphoproliferation, severe allergy, malignancies, and/or bone

marrow failure. By use of advanced next-generation sequencing technologies, more than

485 IEI-associated genes have been reported to date. Pathogenic variants in transcription

factors (TFs) have been identified in nearly all categories of IEI, emphasizing their

widespread role across immune responses (1). TFs are key cellular proteins that bind to

specific regulatory DNA motifs and modulate target gene expression and protein synthesis

(2). The first fundamental insights in transcriptional regulatory mechanisms were

established by Jacob and Monod in 1961 (3). Since then, alterations in transcriptional

control have been shown to contribute to the development of many different diseases,

including immune-related disorders and malignancies (2). In the field of IEI, the dynamic

behavior of TFs in binding to DNA motifs, interacting with other proteins, and ultimately

gene expression is a challenging subject (4, 5). The original research and review articles in

this Research Topic illustrate the complexity of the genetic, immunological and clinical

features of IEI caused by defects in TFs. Moreover, this article collection radiates the

scientific effort that is being done worldwide to further elucidate the role of TFs in IEI.

Kuijpers et al. reported three patients from the same family carrying a novel, autosomal

dominant variant in IKZF1 causing IKAROS deficiency. The variant was predicted to result

in a dimerization defect of the mutant IKAROS protein. IKAROS, encoded by IKZF1, is a

hematopoietic zinc finger transcription factor important in lymphocyte development and

differentiation. Somatic IKZF1 alterations have been frequently documented in human

leukemia, particularly in B cell acute lymphoblastic leukemia (B-ALL), in which they have

been associated with an adverse impact on prognosis. Since 2016, heterozygous germline
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variants in IKZF1 have been recognized to cause IEI, and can be

classified into four categories depending on the mechanism of

action (loss-of-function [haploinsufficiency, dimerization-

defective, dominant-negative] and gain-of-function). Each

category is characterized by a particular, though variable, clinical

and immunological phenotype (5). The index patient in the report

by Kuijpers et al. was diagnosed with common variable

immunodeficiency (CVID), whereas the father was found to have

asymptomatic selective IgA deficiency and the brother suffered

from chronic idiopathic thrombocytopenia (ITP). This study is a

clear example of the phenotypic diversity within a single family

carrying the same genetic defect. We previously made a similar

observation in a family with IKAROS haploinsufficiency (6). In

these patients, the contribution of additional germline DNA

alterations (modifier genes) and/or epigenetic modifications

remains to be elucidated (7). Of interest, the authors also

underline the diagnostic and therapeutic challenges that

practitioners encounter in these patients.

IKAROS is one of five members of the IKAROS family of zinc

finger transcription factors, all playing essential roles in

hematopoiesis. Very recently, heterozygous germline variants in

IKZF2 (encoding HELIOS) and IKZF3 (encoding AIOLOS) have

also been associated with IEI, showing overlapping features with

IKZF1-associated IEI (8–10). In this Research Topic, Yamashita and

Morio published a comprehensive review on AIOLOS-associated

IEI. Currently, two families with heterozygous loss-of-function

IKZF3 variants have been described. One variant (G159R) was

characterized by B cell lymphopenia and an increased susceptibility

to EBV-associated lymphoma. The other variant (N160S) resulted

in a combined immunodeficiency (CID) phenotype including

hypogammaglobulinemia and opportunistic infections, as well as

an increased risk of chronic lymphocytic leukemia (CLL) (9, 10).

Yamashita and Morio have clarified how elaborate studies of these

variants have revealed the pivotal role of AIOLOS in T and B cell

development and adaptive immune regulation not only in humans,

but also in mice models.

The review by Fabozzi et al. focused on the genetics, clinical

features and treatment options of guanine-adenine-thymine-

adenine 2 (GATA2) deficiency. Similar to the IKAROS family of

proteins, GATA2 is a zinc finger transcription factor crucial in

hematopoiesis. More specifically, GATA2 regulates the

development, self-renewal and expansion of hematopoietic stem

cells (HSC). Germline heterozygous loss-of-function variants in

GATA2 were first reported in 2011, causing a complex phenotype

involving hematological and immunodeficiency features, as well as

lymphedema, sensorineural deafness, miscarriage, and pulmonary

alveolar proteinosis. The age of onset and disease severity is very

variable, even within the same family (11–14). Nowadays, GATA2

deficiency is mainly regarded as an inherited bone marrow failure

disorder due to progressive depletion of the HSC pool (15). GATA2

deficiency is also considered one of the most frequent cancer

predisposition syndromes for myeloid neoplasms, including

myelodysplastic syndromes (MDS), especially in childhood (16).

There are no consensus guidelines on the management of GATA2

deficient patients. The only curative treatment is allogeneic

hematopoietic stem cell transplantation (HSCT). However, the
Frontiers in Immunology 02
optimal timing for HSCT, donor type and conditioning regimen

remain unclear (17). In this review, the authors discussed the state-

of-the-art of GATA2 deficiency, pinpointing the challenges and

opportunities for future research.

Smith et al. provided a comprehensive review on the biology

and role in human disease of the two Signal Transducer and

Activator of Transcription (STAT) 5 paralogs, STAT5a and

STAT5b. The STAT5 proteins are key transcription factors in

numerous biological processes, including hematopoiesis and

immunity. STAT5 signaling is activated by a variety of cytokines,

hematopoietic growth factors, and growth hormone. Both somatic

and germline variants in STAT5 have been associated with

immune-related diseases and malignancies in humans (18). In

particular, germline variants in STAT5B causing STAT5b

deficiency are associated with IEI (19). Smith et al. dedicated an

important section of their review on the latter, covering the wide

spectrum of clinical manifestations seen in these rare patients.

Furthermore, the authors elaborated on the molecular

mechanisms of STAT5 alterations in human disease, their

contributions in several types of cancer, and options for targeted

therapy. Overall, this review is a nice illustration of the complexity

of JAK/STAT signaling in immune and non-immune cells, and how

the multilevel regulation of these proteins and the dynamics of

countless protein-DNA and protein-protein interactions

complicate research efforts as well as clinical practice.

Nuclear factor of k light polypeptide gene enhancer in B cells 1

(NF-kB1) deficiency, caused by heterozygous loss-of-function

variants in NFKB1, is one of the most frequent monogenic

subtypes of CVID in Europe and North America (20). NF-kB1 is

one of the five transcription factors of the (NF-kB)/Rel family, and

plays a pivotal role in inflammatory and immune responses. Defects

in NF-kB1 signaling have not only been associated with IEI, but also

autoimmunity and cancer (21) (Barnabei et al.). Upon activation of

NF-kB1, the precursor protein p105 is proteolytically processed into

the subunit p50 which translocates to the nucleus in p50-containing

dimers to exert its transcriptional activity. The work of Fliegauf et al.

investigated a functional validation method for missense variants in

NFKB1 located in the N-terminal domains, thereby affecting both

p105 and p50. The authors analyzed 47 missense variants and were

able to demonstrate deleterious loss-of-function defects in about half

of them. This study will facilitate the functional validation of NFKB1

missense variants in the future. On the other hand, for many

missense variants a possible pathogenic or benign impact could not

be determined, underlining the difficulty of interpretating such

variants and the need for additional functional validation assays.

Finally, Pernaa et al. described a kindred with a novel IEI caused

by an autosomal dominant variant in Krüppel-like factor 2 (KLF2).

KLF2 is a zinc finger transcription factor expressed in several cell

types, but is especially important in endothelial cells, lymphocytes,

monocytes, and adipocytes. KLF2 also exerts a regulatory effect on

the NF-kB signaling pathway (22, 23). The heterozygous frameshift

variant identified by Pernaa et al. disrupted the conserved zinc

finger domain of KLF2 resulting in defective protein activity. The

corresponding phenotype encompassed T and B cell lymphopenia,

maturation abnormalities in T and B cells, normal to mildly reduced

immunoglobulins, (respiratory tract) infections, autoimmune
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diseases, and malignancies. The KLF2 variant carriers showed

variable expressivity and incomplete penetrance, similar to what

is seen in many other heterozygous IEI disorders (1). Identification

of additional patients with KLF2 variants will be required to further

unravel the genotypical and phenotypical spectrum of this new

IEI entity.

Together, the publications collected in this Research Topic

highlight the critical role of TFs in regulating immune cell

development and differentiation. These articles are useful to the

reader in understanding the multilevel complexity by which defects

in TFs can result in IEI with diverse clinical pictures including

immune dysregulation and malignancies. Moreover, this Research

Topic will assist researchers in selecting appropriate assays to

functionally validate variants of unknown significance.
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