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Modeling sequential information for image sequences is a vital step of various
vision tasks and convolutional long short-term memory (ConvLSTM) has
demonstrated its superb performance in such spatiotemporal problems.
Nevertheless, the hierarchical data structures (e.g., human body parts and
vessel/airway tree in biomedical images) in various tasks cannot be properly
modeled by sequential models. Thus, ConvLSTM is not suitable for analyzing
tree-structured image data that has a rich relation among its elements. In order to
address this limitation, we present a tree-structured ConvLSTM model for tree-
structured image analysis which can be trained end-to-end. To demonstrate its
effectiveness, we first evaluate the proposed tree-structured ConvLSTMmodel on
a synthetic Tree-Moving-MNIST dataset for tree-structured modeling.
Experimental results demonstrate the superiority of the tree-structured
ConvLSTM model for tree-structured image analysis compared with other
alternatives. Additionally, we present a tree-structured segmentation
framework which consists of a tree-structured ConvLSTM layer and an
attention fully convolutional network (FCN) model. The proposed framework is
validated on four large-scale coronary artery datasets. The results demonstrate
the effectiveness and efficiency of the proposedmethod, showing its potential use
cases in the analysis of tree-structured image data.

KEYWORDS

tree-structured ConvLSTM, vessel segementation, attention, hierarchical data structures,
deep learning

1 Introduction

Various real-world applications involve high dimensional data with rich structures.
Owing to their abilities to process sequences with arbitrary length, convolutional long short-
term memory (ConvLSTM) models Shi et al. [1] and their variants Shi et al. [2]; Patraucean
et al. [3] have achieved state-of-the-art results on many tasks related to spatiotemporal
predictions. Examples include precipitation nowcasting Shi et al. [1], action classification Li
et al. [4], 3D biomedical image segmentation Jinzheng et al. [5], and object motion prediction
William et al. [6]. One major difference between ConvLSTM and the traditional long short-
term memory (LSTM) is that the vector multiplication is replaced by the more efficient
convolutional operations. By this means, ConvLSTM preserves the spatial topology of the
inputs. Additionally, it introduces sparsity and locality to the LSTM units to reduce model
over-parameterization and overfitting Ballas et al. [7].
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Albeit its effectiveness, ConvLSTM assumes that the input data
is sequential. However, in many practical problems, the input data
has intrinsic non-linear structures so that it is difficult to be modeled
sequentially but can be better represented by more complex
structures, such as trees or graphs. For instance, in action
recognition Baccouche et al. [8], human body parts are naturally
represented in a tree structure. Based on the geometric interactions
of the nodes in the tree, the action label is determined. Tree-like
structure is also commonly observed in medical imaging
applications, such as human airways, blood vessels (e.g., arteries,
veins, and capillaries) and nervous structures, in which the
anatomical structures are recursively split into branches.
Sequential ConvLSTM is conceptually and practically insufficient
to model such tree-structured data.

Attempts have been made by adopting traditional LSTM based
models to handle tree-structured input data. The part-aware LSTM
used an individual cell for each body joint and a shared output gate
for all body joints for 3D action recognition Shahroudy et al. [9].
Nevertheless, simply aggregating the outputs from all the cells
cannot yield satisfactory solutions since it neglects the complex
hierarchically spatial relationships of body parts.

Recently, tree-structured LSTM is proposed for learning
syntactic representations in language processing problems Tai
et al. [10]. Graph neural networks are also introduced for data
that could be organized into complex graph structures Hamilton
et al. [11]. However, these approaches are not suitable for image
analysis since their input-to-state and state-to-state transitions
are both formulated with fully-connected operations and the
spatial correlations are not taken into consideration Tai et al.
[10]; Nam Khanh and Weiwei [12]; David and Tommi [13]. In
this work, inspired by the sequential ConvLSTM Shi et al. [1], we
develop a tree-structured convolutional recurrent model,
i.e., tree-structured ConvLSTM, for leveraging the rich
topology of trees. The proposed tree-structured ConvLSTM is
not only able to efficiently capture discriminative features from
each node in a tree but also capable of taking the inter-node
correlations in the tree into considerations. Furthermore, we
propose a new deep learning architecture combining the
attention FCN and tree-structured ConvLSTM and apply it to
automated coronary artery segmentation from 3D cardiac
computed tomography angiography (CTA). The attention
FCN extracts hierarchical multi-scale features from each
node, and the tree-structured ConvLSTM efficiently captures
the appearance evolution in tree structures. As our framework
effectively models the inter-node correlations, the generated
segmentation results are more accurate as well as
anatomically reasonable. The main contributions of this work
can be summarized as follows:

• Inspired by sequential ConvLSTM, we propose tree-structured
ConvLSTM so that convolution operations can be applied to
high dimensional data understanding such as tree structures.
The superiority over a sequential ConvLSTM is demonstrated
on an image classification task with tree-structured data
(i.e., synthetic Tree-Moving-MNIST dataset).

• The proposed tree-structured ConvLSTM is a unified
model and is capable of propagating information among
the entire tree. Thus, it avoids applying the sequential

ConvLSTM locally to each branch of a tree-structured
data, which is suboptimal.

• We present a framework composed of a tree-structured
ConvLSTM and an attention FCN model. The proposed
framework is general and can be easily extended to other
tree-structured image segmentation tasks. In this work, it is
extensively validated on four coronary artery segmentation
datasets. Without extensive tuning, it outperforms other state-
of-the-art baseline models by a large margin.

2 Related work

Recurrent neural networks (RNNs) have been proven to be
efficient tools for sequence learning. Their recursive formulations
naturally allow the handling of variable-length sequences problem.
Nevertheless, the notorious vanishing or exploding gradients
problem Pascanu et al. [14] during the training phase (i.e., back-
propagation through time) prevents RNNs from achieving satisfying
results in applications requiring long-term dependencies. This
problem is alleviated by the LSTM Gers et al. [15] which
incorporates long-term stable memory over time using a series of
gating functions. LSTM has been widely used, achieving state-of-
the-art results in numerous sequence learning applications, such as
such as COVID-19 detection Hassan et al. [16]; Li et al. [17], video
sequence processing Kong et al. [18]; Donahue et al. [19], cancer
metastasis detection Kong et al. [20], and time series analysis Du
et al. [21]. However, the traditional LSTM is not suitable for image
sequence analysis since it uses fully-connected structure during both
the input-to-state and state-to-state transitions, neglecting the
spatial information. Different from traditional LSTM, ConvLSTM
Shi et al. [1] takes image sequence as input and the vector
multiplications in traditional LSTM are replaced by convolutional
operations. By this means, ConvLSTM preserves the spatial topology
of the inputs and introduces sparsity and locality to LSTM units to
reduce over-parameterization and overfitting. Thus, ConvLSTM
models are more suitable for spatiotemporal prediction problems.
However, sequential ConvLSTM is not capable of dealing with tree-
structured data.

Recently, applying deep learning to graph and tree-like data
that has complex structures are becoming a hot topic Wang et al.
[22,23]. It has been explored in various problem settings, ranging
from supervised, unsupervised to reinforcement learning. Graph
neural network is first presented in Scarselli et al. [24] to process
data organized in graph structures. Following this line of work,
various types of graph convolution networks Zhang et al. [25] are
proposed. We briefly classify them into two main categories:
spectral and non-spectral approaches. Spectral approaches take
input the spectral representations of the graph. One of the
seminal work is the spectral network Bruna et al. [26], in
which the eigendecomposition of the graph Laplacian is
computed by the convolution operation. However, this
operation is computationally intensive. To address this
problem, Henaff et al. [27] introduce a parameterization with
smooth coefficients to spatially localize the filters. Nevertheless,
the spectral methods are dependent on the graph Laplacian (the
structure of the graph). As a result, a trained model can hardly
generalize to graphs that have different structures from the
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training data. Non-spectral approaches directly apply
convolution operations to spatially close nodes. For instance,
GraphSAGE Hamilton et al. [11] directly generates embeddings
for graphs from each node’s neighboring nodes. A special subset
of graphs can be organized as hierarchical structures, i.e., trees.
Attempts have also been made to extend sequential LSTM and
gated recurrent unit (GRU) Cho et al. [28] to trees to eliminate
their limitations. For instance, tree-structured LSTM Tai et al.
[10] has been proposed for language processing. Nevertheless, as
the vector multiplication was used in both graph and tree-
structured networks, they are not suitable for image analysis.
In contrast, our tree-structured ConvLSTM model considers
both spatial information and inter-node dependencies in the
tree structure. In this work, the data can be naturally
organized as tree structure. Thus, we decide to investigate the
capability of tree-structured models. We also plan to investigate
the applications in which the image data can be organized as
graphs.

Numerous works have been dedicated to the segmentation of 3D
tree-like structures. One kind of approaches rely on local or voxel-
level information (e.g., prior knowledge of the intensity distribution
in tree structures). For example, Schneider et al. Schneider et al. [29]
extract local steerable features from the 3D data, which are further
used by the random forests to conduct voxel-wise classification.
However, voxel-wise approaches are especially prone to errors
(causing noisy contours, holes, breaks, etc.). Tracking-based
methods, instead, better leverage the anatomical structure of the
tree. For instance, Macedo et al. Macedo et al. [30] present a
technique for tracking centerlines by building bifurcation
detectors based on 2D features. Nevertheless, the final
segmentation results are highly dependent on the initial seeding
of trees. Geometry and topology of the tree have been proven to be
beneficial for tree segmentation De Bruijne et al. [31]; De Bruijne
et al. [32]. However, these priors typically require domain-specific
knowledge of a certain task, and the enforced priors also restrict
these approaches andmake it difficult to be extended to other similar
tasks. The above methods attempt to directly segment objects
organized in tree structures, which is extremely difficult. To
address this issue, the state-of-the-art approaches Bauer et al.
[33] often adopt a two-stage framework for the segmentation of
complex tree-structured image data. For instance, in Jin et al. [34];
Bauer et al. [33], tree-structured tubular structures are first identified
to provide preliminary topology information. Afterward, the
segmentation algorithms are conducted on the initial tree-
structured structures. In Jin et al. [34], a 3D FCN network is first
utilized to preliminarily segment the airway. Then, a graph-based
based method utilizing the tree-like topology of the airway is
performed to considerably boost the segmentation result. These
works demonstrate that topology information in tree-structured
image data is crucial for object segmentation in tree-structured
image data.

3 Tree-structured convolutional LSTM

We develop a tree-structured convolutional recurrent model,
referred to tree-structured ConvLSTM, for image analysis with
tree-structured data. We first review the LSTM/ConvLSTM

algorithms and then introduce the proposed tree-structured
ConvLSTM model.

3.1 Revisiting LSTM/ConvLSTM algorithms

In the LSTM model, each unit maintains a memory cell ct. A
typical LSTM unit includes three gates: input gate it, forget gate ft,
and output gate ot. These gates are essentially non-linear functions
which control the information flow at each time step t, listed as
follows:

it � σ Wixt + Uiht−1( ), ft � σ Wfxt + Ufht−1( ),
ot� σ Woxt + Uoht−1( ), mt � tanh Wmxt + Umht−1( ),
ct � ft ⊙ ct−1 + it ⊙ mt, ht � ot ⊙ tanh ct( ),

(1)

where σ is the sigmoid function, xt is the input at the current time
step t. ⊙ denotes Hadamard product, andWi,Ui,Wf,Uf,Wo,Uo,Wm,
and Um are the weight matrices for each unit1.

LSTM applies vector multiplications on the input elements.
While image sequences are composed of spatial as well as
temporal components, the standard LSTM treats the input as
vectors by vectorizing the input feature map. As no spatial
information is considered, the results are suboptimal for image
sequence analysis. In order to preserve the spatiotemporal
information, the fully connected multiplicative operations of the
input-to-state and state-to-state transitions are replaced by
convolutions in ConvLSTM Shi et al. [1], formally,

it � σ WipX t + UipHt−1( ), ft � σ WfpX t + UfpHt−1( ),
ot� σ WopX t + UopHt−1( ), Mt � tanh WmpX t + UmpHt−1( ),
Ct� ft ⊙ Ct−1 + it ⊙ Mt, Ht � ot ⊙ tanh Ct( ),

(2)
where * denotes convolutional operation, X t is the input image at
the current time step t.Wi, Ui,Wf, Uf,Wo, Uo,Wm, and Um are the
weight matrices for the input, forget, and output gates, and
memory cell, respectively. Ct and Ht are the memory cell and
hidden state.

3.2 Tree-structured ConvLSTM

As in the standard sequential ConvLSTM, each tree-
structured ConvLSTM unit j consists of an input gate ij, an
output gate oj, a memory cell Cj and a hidden state Hj.
Differently, in a tree-structured ConvLSTM unit, gate signals
and the memory cell are dependent on the states of possibly
multiple children so that each unit is able to incorporate
information from all of its children units. Additionally, the
tree-structured ConvLSTM contains one separate forget gate fjl
for each child unit l, instead of a single one in the standard
ConvLSTM. This enables the tree-structured ConvLSTM unit to
selectively integrate information from each child (e.g., in the
coronary artery segmentation task, a tree-structured ConvLSTM
can learn to emphasize the trunk artery when a much thinner

1 We assume zero biases in Eq. 1 in this paper for simplicity.
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artery bifurcates from it.). Let N (j) indicate the children of the
tree-structured ConvLSTM unit j. The hidden state Hj, and the
memory cell Cj of unit j can be updated as:

Hj′ � ∑
l∈N j

Hl, ij � σ WipX j + UipHj′( ), fjl � σ WfpX j + UfpHl( ),

oj � σ WopX j + UopHj′( ), Mj � tanh WmpX j + UmpHj′( ),
Cj � ∑

l∈N j

fjl ⊙ Cl + ij ⊙ Mj, Hj � oj ⊙ tanh Cj( ).

(3)

The workflow of the tree-structured ConvLSTM is illustrated in
Figure 1. The gating mechanism of our tree-structured ConvLSTM
is similar to LSTM, with two distinct differences. First, the gating
signals in tree-structured ConvLSTM is 2D feature maps, instead of
feature vectors in the standard LSTM. Second, tree-structured
ConvLSTM has to consider the scenarios with more than one
child. As the current node j has two children, l1 and l2, two
forget gates (i.e., fl1 and fl2) are used to regulate the information
flow from the memories (Ml1 and Ml2) of its children nodes. The
input gate ij and output gate oj are controlled by the input feature
map X j and the sum of hidden states of its children nodes Hj′.

4 Framework for tree-structured image
segmentation

We formulate the coronary artery segmentation as a machine
learning problem over tree structures, in which the learning occurs
over a collection of trees and the prediction is generated at the node
level. In this formulation, each node j is associated with an input
imageX j and we aim to learn a non-linear mapping σW at each node
in the tree: Pj � σW(X 1, . . . ,X J), where J denotes the number of
tree nodes and W are the learnable parameters and Pj is the
predicted segmentation for node j.

In this section, we present a segmentation framework that applies
the tree-structured ConvLSTM model described above to a image
segmentation task with tree-structured data. The input nodes (green
circles) are organized as a tree structure. All the nodes in the input tree
are fed into an encoder, yielding high dimensional feature maps for the
tree nodes. Afterward, a tree-structured ConvLSTM layer takes the
feature maps as input. Note the information flow (red arrow line) in the
hidden states of the tree-structured ConvLSTM. Benefited from the
ability of the tree-structured ConvLSTM to learn the inter-node
dependencies in tree structures, the feature maps are more
anatomically reasonable. Finally, the decoder generates the output
tree, or the final segmentation results (yellow circles).

4.1 Encoding-decoding structure

The backbone network of the proposed segmentation
framework is an attention FCN Kong et al. [35], which is based
on the U-Net Ronneberger et al. [36]. It consists of two phases:
encoding and decoding. In the encoding stage, 3 × 3 convolutional
operation followed by a rectified linear unit (ReLU) and 2 × 2
pooling operation with stride 2 for downsampling are progressively
applied to the input of tree node. In this way, multi-scale high
dimensional image representations are generated from each node
X j, mapping the tree nodes into a common semantic space.

Then, a tree-structured ConvLSTM layer is used to propagate the
context information among the units in the tree. More specifically, we
apply the tree-structured ConvLSTM layers to the image
representations generated in the encoding phase of the attention
FCN. Thanks to the tree-structured ConvLSTM layer, the spatial
information is preserved for each tree node and the topological
information is merged into the image representations. Finally, in the
decoding stage, the high dimensional representations are progressively
rescaled to the same dimension as the original input.

FIGURE 1
The workflow of the tree-structured ConvLSTM. The gating mechanism of our tree-structured ConvLSTM is similar to LSTM, with two distinct
differences. First, the gating signals in tree-structured ConvLSTM is 2D feature maps, instead of feature vectors in the standard LSTM. Second, tree-
structured ConvLSTM has to consider the scenarios withmore than one child. As the current node j has two children, l1 and l2, two forget gates (i.e., fl1 and
fl2 ) are used to regulate the information flow from the memories (Ml1 and Ml2 ) of its children nodes. The input gate ij and output gate oj are
controlled by the input feature map X j and the sum of hidden states of its children nodes Hj′.
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In each rescaling operation, the image representations are
upsampled with a deconvolution layer, followed by a
concatenation with the corresponding feature maps generated in
the encoding phase, and convolutional layers of kernel size 3 × 3 and
ReLU layers. The tree-structured ConvLSTM layer is followed by an
attention block with three convolutional layers and Conv3_2 layer is
followed by an attention block of four convolutional layers. To
reduce the computational cost, we do not apply attention operation
to Conv4_2 layer. By stacking attention FCN and tree-structured
ConvLSTM layer together and forming an encoding-decoding
structure, we are able to build a network model for the general
tree-structured segmentation problems.

4.2 Attention component for salient region
detection

Attention mechanism has demonstrated its effectiveness in
various vision-related tasks, e.g., image captioning Xu et al. [37],
representation learning Fan et al. [38], and visual question
answering Lu et al. [39]. In this work, we propose a novel
attention block to guide our network to attend to objects of
interest. Integrating the attention mechanism into our framework
brings at least two advantages: 1) Attention can help highlight the
foreground regions, thereby avoiding distractions of some non-
salient background regions. In the example of the coronary artery
segmentation task, attention guides the network to focus on the
coronary artery when there are some other tissues with similar
intensity distributions around the coronary artery. 2) By filtering out
unrelated regions, the subsequent layers can focus on more
challenging regions, e.g., the coronary artery boundaries.

We also illustrate its detailed structure in feature maps in
Figure 2. Given the convolutional feature map F ∈ RC×W×H (C,
W, H are the number of channels, width, height, respectively), the
proposed attention block generates an attention weight for each
element in F . Most existing approaches treat all convolutional
channels without distinction by generating a single attention
weight for all channels at each pixel (w, h). Nevertheless, as is
demonstrated in Liu et al. [40], employing a single attention weight
for all channels is suboptimal, as totally different semantic responses
can be potentially generated for different channels. Therefore, we

generate a separate attention weight αcw,h for each channel c at each
pixel (w, h) based on the local context information, yielding a
separate attention weight αcw,h for each channel c. This procedure
is achieved by using multiple convolutional layers.

Specifically, several convolutional layers of 3 × 3 (for
computational efficiency) are first deployed after the feature map
F to enlarge the receptive field of each pixel, yielding the convolved
feature mapF ′. Next, αcw,h is generated for each pixel by applying the
sigmoid normalization to theF ′, and the attended context feature is
generated. The whole pipeline is as follows:

F ′ � Wkp · · ·W2p W1pF( )( ), α � σ F ′( ), F att � α ⊙ F , (4)
where k is the number of convolutional layers in the attention block.
Wk is the convolution kernel of the kth convolutional layer.

Finally, Fan et al. Fan and Zhou [41] demonstrate that the
sigmoid function dilutes the gradients during backpropagation. To
mitigate this problem, we concatenate the original feature map with
the generated attended context feature to yield the final feature map
~F for more stable training.

5 Experiments and results

In this section, extensive experiments are carried out to evaluate
the proposed methods. In Section 5.1, we first compare the multi-
label classification error of the proposed tree-structured ConvLSTM
with that of other methods on a synthetic Tree-Moving-MNIST
dataset. Relatively simple dataset allows us thoroughly analyze the
capability of our approach for tree-structured learning. Then, we
evaluate the proposed segmentation framework on four challenging
3D cardiac CTA datasets to demonstrate its effectiveness on the
segmentation tasks with tree-structured data in Section 5.2.

5.1 Multi-label classification for tree-
moving-MNIST dataset

5.1.1 Dataset and evaluation metrics
We generate a synthetic Three-Moving-MNIST dataset using a

process similar to Srivastava et al. [42], which is illustrated in
Figure 3. All data instances in the dataset are tree-structured and

FIGURE 2
Detailed attention component structure illustrated in feature maps.
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each node contains handwritten digits bouncing inside a 64 ×
64 patch. For each data instance, the digits keep moving from
leaf nodes to the root node. For every three steps, the digits
merge with another moving digit. Finally, the root node contains
all the digits from the leaf nodes. In all the instances, the leaf nodes
are randomly chosen from 0 to 9 in the MNIST dataset. The starting
position and velocity direction are chosen uniformly at random and
the velocity amplitude is randomly chosen in [3, 5). This generation
process is repeated 15,000 times, resulting in the training set with
10,000 training instances, validation set with 2,000 instances, and
testing set with 3,000 instances2. We evaluate the classification
(multi-label classification is performed as one node may contain
multiple digits) accuracy on Tree-Moving-MNIST dataset to
demonstrate the effectiveness of the proposed tree-structured
ConvLSTM.

We keep tracking of the whole evolving process, as illustrated in
Figure 3. In this example, all the input nodes X j containing one or
more digits are shown. The boxes above the images denote the
predictions by different models. In this example, each node X j may
contain digits 1, 3, or 8. This root node is on the rightmost side of
figure (T = t + 8), with all digits are merged into a single image. The
images with only one digit in the image (T = t and T = t + 3) denote
the leaf nodes. As the leaf nodes gradually merge to one single image,
this collection of images clearly form a tree structure. In this
application, the goal is to predict the all the digits in each image
(tree node).

5.1.2 Results
We consider the following baselines: 1) A normal CNN

architecture (CNN), i.e., LeNet LeCun et al. [43], 2) LeNet with
sequential ConvLSTM (CLSTM), 3) LeNet with tree-structured
LSTM (TreeLSTM), 4) LeNet with tree-structured ConvLSTM
(TreeCLSTM).

More specifically, each tree node X j containing one or more
digits is fed into a CNN (LeNet). The extracted high-dimensional
features are then input to a tree-structured ConvLSTM/
ConvCLSTM layer. The information propagation procedure starts
from the leaf nodes (e.g., tree nodes with only one digit in Figure 3)
and ends in the root node (e.g., image with three digits at timestep
T = t + 8 in Figure 3). The generated feature maps Fj for each node
are then fed to the final fully-connected layers for predicting the digit
numbers in each tree node.

In experiments, CNN is applied to each tree node
independently. For CLSTM, TreeLSTM, and TreeCLSTM, the
LSTM layers are inserted into LeNet before the first fully
connected layer. For CLSTM, we divide the tree into five cells
(each cell has three nodes) according to the merging points and
the CLSTM is applied to each cell. As illustrated in Table 1,
TreeCLSTM achieves the lowest overall classification error,
13.5%, outperforming the other methods. Figure 3 shows the
predictions of these methods on a randomly chosen example.
Note that all methods, except TreeCLSTM, has false predictions
(red digits on top of each tree node) to a certain extent. The red and
yellow dots on the time axis (bottom) denote the timestep that the
digits merge with others. Note that CNN, CLSTM, TreeLSTM, and
TreeCLSTM tend to make false predictions at these timesteps
because of their weak capabilities to model the inter-node
dependencies among the tree nodes.

FIGURE 3
One example from Tree-Moving-MNIST with three digits bounding inside a 64×64 patch from time T = t to T = t +8. On the top of each node shows
the prediction results of CNN in gray color, sequential ConvLSTM (CLSTM) in blue color, fully connected tree-structured LSTM (TreeLSTM) in orange
color, and tree-structured ConvLSTM (TreeCLSTM) in green color, respectively. The digits in red color denote wrong predictions. Note that all methods,
except TreeCLSTM, has false predictions to certain extent. The red and yellow dots on the time axis (bottom) denote the timestep that the digits
merge with others. Note that CNN, CLSTM, TreeLSTM, and TreeCLSTM tend to make false predictions at these timesteps because of their weak
capabilities to model the inter-node dependencies among the tree nodes.

2 Tree-Moving-MNIST dataset and the code formulti-label classificationwill
be released soon.
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We also break down the total classification error into three parts,
corresponding to the classification errors on the nodes containing 1,
2, and 3 digits, respectively. As is shown in Figure 4, for all the
methods, the nodes with only one digit has the lowest classification
error as it does not need the inter-node information. By contrast,
classifying the nodes with three digits is the most difficult as more
digits may occlude each other. TreeCLSTM has the lowest
misclassification rates on the nodes with 2 and three digits due
to its ability to efficiently leverage the inter-node information in the
tree. TreeLSTM shows higher misclassification due to vectorized
hidden states. CNN and CLSTM have lower classification error on
the nodes with only one digit because they focus on learning local
patterns. However, they perform poorly on nodes that need inter-
node information because they are not able to leverage the full inter-
node context of the tree structure.

In summary, these experiments demonstrate the effectiveness of
the proposed tree-structured ConvLSTM for tree-structured
learning.

5.2 Coronary artery tree segmentation

Next, we evaluate the performance of the proposed tree
segmentation framework using 3D cardiac CTA datasets to
further demonstrate the advantages of tree-structured ConvLSTM
on the segmentation tasks.

5.2.1 Dataset and evaluation metrics
Four 3D cardiac CTA datasets (CA1, CA2, CA3, and CA4) are

collected from four hospitals to validate the proposed method. The
ground truth coronary artery regions of these datasets were
delineated by the experts from our collaborative hospitals. A
summary of these datasets is listed in Table 2. To the best of our
knowledge, these datasets are the largest reported in the field. Each

dataset is randomly split into three parts: 80% for training, 5% for
validation, and 15% for testing.

Figure 5 illustrates our workflow for coronary artery
segmentation. The first step is centerline extraction. In this step,
a 3D U-Net Çiçek et al. [44] is first employed to generate the
preliminary coronary artery tree segmentation. The coronary
arteries are elongated and thin structures with complex
topologies. Thus, solely using this step is extremely difficult to
generate a satisfactory segmentation results. We then use the
centerline extraction approach (minimal path extraction filter)
that is similar to Mueller [45] to generate the centerlines for the
3D cardiac CTA datasets.

Then, we crop a image patch of size 41 × 41 (35 is the largest
diameter of the coronary artery in our dataset) around each
centerline point that is perpendicular to the centerline.
Afterward, we normalize each image patch with the mean value
of the aorta to increase the contrast of the coronary artery regions
and the empirical thresholding value of the calcification regions
1,000 to highlight the calcification regions, which are further
concatenated with the preliminary coronary artery segmentation
result, yielding a three-channel image for each centerline point. We
organize them into a tree structure according to the topological

TABLE 1 Overall classification error comparison of different networks on the Tree-Moving-MNIST dataset.

Model CNN (%) CLSTM (%) TreeLSTM (%) TreeCLSTM (%)

Cls. Error 17.4 19.6 17.6 13.5

The bold value indicates the best performance.

FIGURE 4
Average classification error using different methods as a function of the number of the training examples. From the left to right panes, the plots are
corresponding to the classification errors on the nodes containing 1, 2, and 3 digits, respectively.

TABLE 2 Summary of the four datasets used in our experiments.

Dataset Example Train Test Ave. Node

CA1 516 438 78 727

CA2 546 464 82 806

CA3 446 380 66 802

CA4 324 276 48 694

Total 1832 1558 274 774
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structures of the centerline, with each node being the generated
three-channel image.

Finally, We feed the cardiac image tree into the trained tree-
structured segmentation network, yielding the final predicted
coronary artery. We then compare the predicted coronary
arteries generated by our tree-structured segmentation framework
with the ground truth to evaluate the proposed method. As the focus
of this paper is to demonstrate the effectiveness of the proposed tree-
structured ConvLSTM for modeling inter-node dependencies in
tree-structures, we only compare our framework with other
approaches for generating the final coronary arteries from the
cardiac images that are organized as tree structures.

The segmentation results were evaluated by the average dice
score coefficient (Ave. D) of the tree nodes:

Ave. D P,G( ) � 1
J
∑
J

j�1

2|Pj ∩ Gj|
|Pj| + |Gj|, (5)

where J denotes the number of tree nodes. Pj and Gj are the
predicted segmentation and ground truth label of the tree unit j,
respectively.

Dice tends to underestimate the difference between twomasks as
they focus on the whole segmentation instead of the local
discrepancies, which is essential in guaranteeing a topologically
accurate segmentation and error-free downstream tasks, such as
computational hemodynamics. We also evaluate the result with two
additional metrics: 95% Hausdorff distance and 95% radius
difference. The 95% Hausdorff distance first sort the distances
between the predicted mask and the ground truth. Then the
95 percentile is selected as the distance to alleviate the noises in
the masks. 95% radius difference is defined as the 95 percentile of the
radius difference between the predicted and the ground truth masks.
These two metrics highlight the difference between two masks that
are not visually differentiable.

5.2.2 Implementation details
All the models were trained using PyTorch Paszke et al. [46]

framework and all the experiments were conducted on a workstation
equipped with an NVIDIA Tesla P40 GPU. The networks were
trained with Adam optimizer Kingma and Ba [47] using an initial

learning rate of 0.001 and a weight decay of 0.0005 and amomentum
of 0.9. We randomly initialized the weights of all the convolutional
layers according to Gaussian distribution with a mean of 0 and a
standard deviation of 0.02. For the tree-structured ConvLSTM
layers, we clipped the gradient norm of the weights by 50. These
models were trained with early-stopping on Ave. D.

5.2.3 Results
For fair comparison, we compare our tree-structured

ConvLSTM (Tree CLSTM) with two baselines: 1) a small 3D
densely-connected volumetric convnets (DenseVoxNet) Yu et al.
[48], which achieved state-of-the-art performance on complex
vascular-like segmentation tasks, 2) sequential ConvLSTM
(CLSTM). For DenseVoxNet, we crop a volume along the
coronary artery centerline with a size of 41 × 41 × 20. For
CLSTM, we propagate the information from the root to each
leaf node.

As illustrated in Table 3, the proposed TreeCLSTM compares
favorably with these two baselines in all the datasets, outperforming
DenseVoxNet by 1.02%, 0.91%, 0.90%, 0.88% on CA1, CA2, CA3,
CA4, respectively, and surpassing CLSTM by 0.79%, 0.80%, 1.22%,
0.77% on CA1, CA2, CA3, CA4, respectively. We also evaluate these
methods on the aggregated dataset (Total) of CA1, CA2, CA3, and
CA4 to demonstrate the capacity of our network for a large-scale
dataset. TreeCLSTM still outperforms DenseVoxNet and CLSTM by
1.6% and 0.87%, respectively. Additionally, the 95% Hausdorff and
95% Radius Diff. of TreeCLSTM outperform significatnly over
DenseVoxNet, CLSTM. These results demonstrate the
effectiveness of our methods in dealing with the tree-structured
segmentation problems.In the multi-label classification for Tree-
Moving-MNIST, we demonstrated that classification error is highest
on those nodes that have multiple digits. In the coronary artery
segmentation problem, however, we guess that segmentation around
bifurcation nodes is much more challenging because dynamics in
these nodes are much more difficult to model than the normal
nodes. To confirm this point, we conduct an additional experiment
on the aggregated dataset (Total), in which we compare the methods
above around the bifurcation nodes (nodes within four nodes’
distance from the bifurcation nodes) in the trees. As is illustrated
in Table 4, TreeCLSTM surpasses DenseVoxNet and CLSTM by a

FIGURE 5
Coronary artery segmentation pipeline. The first step is centerline extraction. In this step, We first utilize a pretrained 3D U-Net Çiçek et al. [44] to
generate the preliminary coronary artery. The coronary arteries are with complex topologies. Thus, solely using this step is extremely difficult to generate
a satisfactory segmentation results. We then use the centerline extraction approach that is similar to Mueller [45] to generate the centerlines for the 3D
cardiac CTA datasets. Then, we crop a image patch of size 41×41 around each centerline point that is perpendicular to the centerline. We organize
the nodes into a tree structure according to the topological structures of the centerline. Finally, We feed the cardiac image tree into the trained tree-
structured segmentation network, yielding the final predicted coronary artery.
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large margin in terms of Ave. D (6.85% and 3.71%, respectively).
Additionally, attention further improves the final accuracy (0.53%).
All in all, our approach outperforms other methods, especially
around bifurcation nodes.

5.2.4 Evaluation of the robustness to initial
segmentation

In this application, the proposed segmentation framework
depends on a 3D U-Net network for the initial segmentation and
centerline extraction. It is natural to question the proposed
framework’s dependence on the initial segmentation result. To
answer this question, we used three different 3D U-Net models to
generate the initial segmentation for the testing dataset. These
models have the same network architecture but with different
initial segmentation performance (41%, 62%, and 73%
respectively). The inital segmentation is used for centerline
extraction and then used as the input for the proposed
AttTreeCLSTM model. Table 5 show the comparison results.
According to the result, the initial segmentation results nearly
have no impact on the final segmentation result. The Avg. D, 95%

Hausdorff, and 5% Radius Diff. of TreeCLSTM slightly improve
from 0.8143, 0.9, and 1.2 to 0.8312, 0.7, and 1.1. On the contrary,
the performance of DenseVoxNet severely degrades as the
performance of the initial segmentation get worse. The
performance degradation of CLSTM is between these two
methods.

This phenomenon can be explained by the fact that the
centerline extraction is less sensitive to the initial
segmentation result. Although the initial segmentation gets
really bad when the Avg. D approaches 41%, it still captures
the whole structure of the coronary artery and the proposed
framework can utilize the structured information to refine the
coronary artery segmentation. On the contrary, DenseVoxNet
and CLSTM doesn’t or only partially utilize the structured
information.

Additionally, we also test if the proposed method is robust to
random perturbations of the initial segmentation result and the
extracted centerline. The following experiments are conducted:
1) randomly dilate the initial segmentation by a maximum of four
voxels; 2) randomly erode the initial segmentation by a maximum

TABLE 3 Comparison of 3D densely-connected volumetric convnets (DenseVoxNet) Yu et al. [48], sequential ConvLSTM (CLSTM) Shi et al. [1], tree-structured
ConvLSTM (TreeCLSTM), and tree-structured ConvLSTM with attention (AttTreeCLSTM) in terms of Ave. D, 95% Hausdorff, and 95% Radius Difference.

Dataset Metrics DenseVoxNet CLSTM TreeCLSTM AttTreeCLSTM

CA1 Avg. D 0.8370 0.8393 0.8472 0.8525

95% Hausdorff 2.7 2.0 1.2 1.1

95% Radius Diff 2.9 1.8 1.1 1.0

CA2 Avg. D 0.8405 0.8416 0.8496 0.8549

95% Hausdorff 3.0 2.0 1.0 0.9

95% Radius Diff 2.9 1.8 1.1 0.8

CA3 Avg. D 0.8433 0.8401 0.8523 0.8577

95% Hausdorff 3.2 2.1 1.1 1.0

95% Radius Diff 3.0 1.9 1.1 1.1

CA4 Avg. D 0.8182 0.8193 0.8270 0.8322

95% Hausdorff 3.3 2.3 1.0 0.9

95% Radius Diff 3.1 2.1 1.2 1.0

Total Avg. D 0.8518 0.8591 0.8678 0.8691

95% Hausdorff 3.6 2.6 1.2 1.1

95% Radius Diff 3.4 2.1 1.4 1.2

TABLE 4 Comparison of DenseVoxNet Yu et al. [48], CLSTM Shi et al. [1], TreeCLSTM, and AttTreeCLSTM around bifurcation nodes (with two or more children
nodes) in terms of Ave. D.

Metrics DenseVoxNet CLSTM TreeCLSTM AttTreeCLSTM

Avg. D 0.7806 0.8120 0.8438 0.8491

95% Hausdorff 2.3 1.7 1.3 0.7

95% Radius Diff 2.5 1.6 1,5 1.1

The bold value indicates the best performance.
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of four voxels; 3) randomly choose one of the leaf nodes as the
root and set the root node as leaf node. 4) randomly perturb the
centerline points by a maximum of four voxles. Note that four
voxels are considered a large perturbation as the image patch size
is only 41 × 41. Table 6 summarizes the final segmentation result.
The results suggest that the proposed model is relatively robust to

the perturbations to the initial segmentation (random dilation
and erosion) and the centerline (random centerline
perturbation). Randomly choosing one of the leaf node has a
higher impact on the segmentation result. The performance
degradation maybe result from the fact that we are not fully
using the prior knowledge.

TABLE 5 Performance comparison of three different initial segmentation models.

Init. Model (%) Metrics DenseVoxNet CLSTM TreeCLSTM

41 Avg. D 0.5203 0.7764 0.8143

95% Hausdorff 6.7 3.3 0.9

95% Radius Diff 6.4 3.2 1.2

62 Avg. D 0.6678 0.7983 0.8213

95% Hausdorff 4.3 2.5 0.8

95% Radius Diff 4.6 2.6 1.1

73 Avg. D 0.7603 0.8163 0.8312

95% Hausdorff 2.5 1.7 0.7

95% Radius Diff 3.1 2.0 1.1

TABLE 6 Performance of the proposed model with different perturbation schemes applied to the initial segmentation and the centerline.

Metrics Dilation Erosion Random root Random centerline No perturbation

Avg. D 0.8467 0.8452 0.8103 0.8416 0.8491

95% Hausdorff 0.8 0.6 0.9 0.7 0.7

95% Radius Diff 1.2 1.1 1.3 1.0 1.1

FIGURE 6
Attention examples. The 1st, 4th, and 7th columns show input subvolumes. The 2nd, 5th, and 8th columns show the corresponding ground truths (red)
overlaid on the original subvolumes. The 3rd, 6th, and 9th columns show the generated attentionmaps overlaid on the subvolumes. The top two rows show
some examples viewed along the coronary artery. The bottom two rows show samples viewed in the cross-section direction.
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5.2.5 Evaluation of the proposed attention model
To demonstrate the effectiveness of the proposed attention

mechanism in our tree-structured ConvLSTM, we compare
attention TreeCLSTM (AttTreeCLSTM) with the non-attention
implementation (TreeCLSTM). With attention, the Ave. D of
TreeCLSTM increased by 0.53%, 0.53%, 0.54%, 0.52%, 0.13% on
CA1, CA2, CA3, CA4, and total, respectively. Figure 6 shows some
examples of the generated attention maps (3rd, 6th, and 9th columns)
and the corresponding ground truths (2nd, 5th, and 8th columns)
alongside with the original input subvolumes (1st, 4th, and 7th

columns). The results demonstrate that the proposed attention
component can attend to the coronary arteries. With the
proposed attention module, AttTreeCLSTM outperforms
TreeCLSTM and obviously generates better results than other
methods.

5.2.6 Evaluation of the locations of tree-structured
ConvLSTM

As the feature maps contain all the encoded high dimensional
features in the decoding stage, the tree-structured ConvLSTM layer
can be inserted into different layers of the decoding stage in the
segmentation framework. Thus, we evaluate the performance of our
framework when the tree-structured ConvLSTM is inserted into
different layers of the decoding network. As illustrated in Table 7, we
compare our formulation (tree-structured ConvLSTM before the
decoding network) with the tree-structured ConvLSTM. Results in
Table 7 suggest that inserting tree-structured ConvLSTM into initial
(lower) layers of the decoding network leads to better performance
and our formulation achieves the best overall performance. This
may be attributed to the fact that upper layers contain local features
that are specific to the current tree node. As a result, combing local
specific features from other tree nodes does not help the
segmentation.

5.3 Comparisons of computational costs

Figure 7 shows the computational costs for the above methods.
Among all these methods, DenseVoxNet takes the longest time: 58 s.
CLSTM and TreeCLSTM take 28 s and 30 s, which are 2.1 and
1.9 times faster than DenseVoxNet, respectively. Finally,
AttTreeCLSTM takes slightly more time than CLSTM:
AttCLSTM takes 8s more time than tree-structured ConvLSTM.
Considering that 11 s is required to preprocess a data example and 1s
is required to load the data examples to memory in average, the
average model inference time is 46 s, 16 s, 18 s, and 24 s respectively
for DenseVox, CLSTM, TreeCLSTM, and AttTreeCLSTM. The
results demonstrate that the proposed tree-structured ConvLSTM
significantly speed up the inference. Additionally, the attention
mechanism can further boost the performance while marginally
increase the computational cost.

5.4 Discussions

We compared our tree-structured ConvLSTM based
segmentation framework (TreeConvLSTM) with ConvLSTM and
DenseVox on four large scale datasets. According to Table 3, the
performance of TreeConvLSTM consistently outperforms other
methods. Additionally, we evaluated their performance on the
aggregated dataset to test their scalability. TreeConvLSTM also
beats ConvLSTM and DenseVox. Additionally, we noticed that
annotators spend considerably more time around bifurcation
nodes. Thus, comparing the performance around the bifurcation
nodes is also important. In Table 4, we compared their performance
around the bifurcation nodes. According to Table 4,
TreeConvLSTM considerably outperforms ConvLSTM and
DenseVox. Thus, it is safe to say that our tree-structured
ConvLSTM based segmentation framework consistently
outperforms ConvLSTM and DenseVox in this task, especially
around bifurcation nodes.

Furthermore, in our coronary artery segmentation task, the
coronary artery tree is relatively rigid, which is already
determined by the anatomical structure of the coronary artery.
However, we observe that our coronary tree does not have a
natural order, which means that the information can be
propagated either from the root to the leaves of the tree or from
the leaves to the root. Thus, we tested the performance of these two
different propagation orders. The experiment demonstrates that the

TABLE 7 Ave. D obtained when tree-structured ConvLSTM is inserted after
different layers in the decoding stage.

Model Ours Conv3_2 Conv4_2

Ave. D 0.8691 0.8547 0.8584

95% Hausdorff 1.1 1.4 1.2

95% Radius Diff 1.2 1.3 1.3

The bold value indicates the best performance.

FIGURE 7
Computational costs of different models.
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order is not important (the performance difference is within 0.04%).
Thus, we conclude that our method is relatively insensitive to the
order of information propagation. In addition, Table 3 offers
additional insights. CA1, CA2, CA3, and CA4 are collected from
four different hospitals. As a result, the coronary arteries in these
four datasets have totally variant anatomical structures. According
to Table 4, the performance difference is within 2% for these four
datasets, even without considering other variations such as intensity
and appearance.

Finally, we offer some additional insights for using our tree-
structured LSTM. First, we noticed that some objects can be
naturally represented by tree structures, such as human body
parts Oliveira et al. [49], human pose Newell et al. [50], and
blood vessel Liskowski and Krawiec [51]. Our method is
especially applicable to these applications. Second, there exist
a lot of tasks requiring considering the correlation among
landmarks such as face landmark Liu et al. [52]; Alexandre
et al. [53]; Jeon et al. [54] and clothing keypoints Liu et al. [55].
Considering the abundance of these structures, we believe our
method can be potentially be leveraged to benefit a wide range of
applications.

As the proposed framework is general and not specific to any
specific application. We believe it can be a good candidate for solving
tree/hierarchical-structured problem. More specifically, it can be used
for human body part/keypoint detection, pose recognition in images
and videos, and facial keypoint hierarchical detection and tracking.

6 Conclusion

In this work, we explicitly consider the tree structures in
classification and segmentation tasks by presenting tree-structured
ConvLSTM model. The multi-label classification results on the
synthetic Tree-Moving-MNIST dataset clearly show the superiority
of the proposed tree-structured ConvLSTM model in tree-structured
learning. To demonstrate the effectiveness of the proposed tree-
structured ConvLSTM model on more complex vision tasks, we
propose an end-to-end tree-structured segmentation framework
which consists of an attention FCN subnet and a tree-structured
ConvLSTM subnet. More specifically, the attention FCN subnet
extracts multi-scale high dimensional image representations from
each tree node while reducing the distractions from non-salient
regions, and tree-structured ConvLSTM integrates the inter-node
dependencies in the tree. The proposed approach has been
successfully applied to the challenging coronary artery segmentation
problem, which so far has not benefited from the advanced hierarchical
machine learning approaches. We believe that our tree-structured
ConvLSTM structure is general enough to be applicable to other
tree-structured vision tasks. For the future work, we will investigate

the feasibility to apply the tree-structured ConvLSTM to other tree-
structured image analysis problems.
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