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Abstract 19 

The 10th International Yakult Symposium was held in Milan, Italy, on 13-14 October 20 

2022. Two keynote lectures covered the crewed journey to space and its implications 21 

for the human microbiome, and how current regulatory systems can be adapted and 22 

updated to ensure the safety of microorganisms used as probiotics or food 23 

processing ingredients. The remaining lectures were split into sections entitled 24 

'Chances' and 'Challenges'. The 'Chances' section related to opportunities for the 25 

science of probiotics and fermented foods to contribute to diverse areas of health 26 

such as irritable bowel syndrome, major depression, Parkinson's Disease, immune 27 

dysfunction, infant colic, intensive care, respiratory infections, and promoting healthy 28 

longevity. The 'Challenges' section included selecting appropriate clinical trial 29 

participants and methodologies to minimise heterogeneity in responses, how to view 30 

probiotics in the context of One Health, and understanding how substances of 31 

bacterial origin can cross the blood-brain barrier. The symposium provided evidence 32 

from cutting-edge research that gut eubiosis is vital for human health and, like space, 33 

the microbiota deserves further exploration of its vast potential. 34 

 35 

Abbreviations: GM, gut microbiota; ISS, international space station; AMR, antimicrobial resistance; 36 

PD, Parkinson's Disease, SCFA, short-chain fatty acid; LPS, lipopolysaccharide; TLR, toll-like 37 

receptor; FMT, fecal microbiota transplant; MDD, major depressive disorder; HPA, hypothalamus-38 

pituitary-adrenal; BDNF, brain-derived neurotrophic factor; LcS, Lacticaseibacillus paracasei strain 39 

Shirota; BBB, blood-brain barrier; CSF, cerebral spinal fluid; OMV, outer membrane vesicles; IBS, 40 

irritable bowel syndrome; T1D, type 1 diabetes; FF, fermented foods; LAB, lactic acid bacteria; RTI, 41 

respiratory tract infection; SRMA, systematic review and meta-analysis; RCT, randomised controlled 42 

trial; RA, risk assessment; QPS, the qualified presumption of safety; GRAS, generally recognized as 43 

safe; EFSA, European Food Safety Authority; Med, Mediterranean; NK, natural killer; TREC, T-cell 44 

receptor excision circles. 45 
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Introduction 46 

Decades of research have revealed the remarkable extent to which the gut 47 

microbiota (GM) influences and interacts with many areas of the body beyond the 48 

large intestine. Slowly, a picture has emerged of the potential role of the GM in 49 

helping to modulate gut health, immune function, mineral absorption, metabolic 50 

balance, appetite, brain health, and aging.  51 

 52 

This creates opportunities for the use of dietary or medical interventions which may 53 

impact the GM by promoting particular microbiological species, excluding others, or 54 

broadening microbiological diversity. It also poses challenges to understanding 55 

mechanisms, ideal intakes, appropriate health markers, and characteristics of 56 

responders, as well as how best to regulate products.  57 

 58 

These were the topics considered by the 10th International Yakult Symposium held in 59 

Milan, Italy, on 13-14 October 2022. This report summarises the presentations given 60 

by a panel of international experts and invites reflection on the chances and 61 

challenges presented by the study of the GM and probiotics. 62 

 63 

The crewed journey to space and its implications for the human microbiome 64 

Space travel is a unique environment in which to study the human microbiome. Prof. 65 

Christine Moissl-Eichinger from the Medical University of Graz, Austria, outlined why 66 

a good understanding of the GM is essential for ensuring the success of crewed 67 

space missions, mainly as 8% of astronauts report gastrointestinal issues and 68 

access to medical interventions in space is limited. 69 

 70 
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Simulation experiments 71 

Space training in closed systems provides opportunities to study changes in the GM 72 

and those microorganisms present in the environment (Kuehnast et al., 2022). One 73 

example is the Mars 500 experiment which saw six crew members spend 520 days 74 

in a terrestrial-based simulator to mimic a journey to Mars (Schwendner et al., 2017). 75 

During this time, samples at different time points were taken from the surfaces and 76 

air of the module, revealing that microbial communities followed the functions of 77 

humans and could also be altered by human activity (e.g., changing to a different 78 

cleaning product). This experiment also tracked the GM of the six crew members. 79 

Remarkably, given the constrained environment and similar diet, each person had 80 

their own signature GM which fluctuated over time but remained distinct from the GM 81 

of other crew members. Individual phyla, such as Pseudomonadota (formerly the 82 

Proteobacteria), Bacteroidota (formerly the Bacteriodetes), or Verrucomicrobiota 83 

(formerly Verrucomicrobia; Oren & Garrity, 2021) found in one person's GM could be 84 

completely missing in the GM of others. In three subjects, major fluctuations in 85 

microbial configurations occurred after 340 days (range 330-360 days) in the 86 

module, which could be related to stress, or the tasks being performed. These 87 

fluctuations were characterized by the depletion of Faecalibacterium prausnitzii, 88 

Ruminococcus bromii, Blautia luti, Anaerostipes hadrus, and Roseburia faecis. 89 

 90 

Another Mars simulation model is the Hawai‘i Space Exploration Analog and 91 

Simulation (HI-SEAS) mission (Mahnert et al., 2021). This involved a team of 92 

astronauts spending 4-12 months in a 111 m2 module, during which time samples 93 

were taken from different areas of the module and the crew's skin and feces. Some 94 

interesting patterns emerged. Firstly, the microbial diversity reflected the function of 95 
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the living area, e.g., the toilet and kitchen. There was a crossover in the human 96 

microbiota when interactions occurred, such as a higher number of pathogens on the 97 

skin of the crew on toilet cleaning duty. Secondly, while each person had their 98 

microbiota signature, there were evident crossovers of species between those 99 

astronauts who had the most interactions with other crew members. Thirdly, while 100 

the microbiome of the built environment remained relatively stable over time, the skin 101 

microbiome of the crew increased in diversity as it incorporated species from the 102 

environment. This was particularly the case during an episode where a technical 103 

failure of the toilet facilities forced individual crew members to carry out additional 104 

cleaning duties, providing more chance for them to come into contact with fecal 105 

bacteria, which was then reflected in their skin microbiome. 106 

 107 

Experiments in space 108 

Few studies have been conducted in space. In one of these, Mora et al. (2019) 109 

tested whether the unique conditions inside the International Space Station (ISS) 110 

altered the microorganisms found there. This is warranted since there is evidence 111 

that microgravity can influence the virulence of certain species (Rosenzweig et al, 112 

2010), while technophilic microorganisms have been known to cause equipment to 113 

malfunction in space. The EXTREMOPHILES study involved sampling in several 114 

areas of the ISS over three months. The key learnings were: 115 

 The diversity and composition of the ISS microbiome fluctuates in response to 116 

human activity reflecting the purpose of the different living areas but retaining 117 

a core group of stable species. 118 

 The ISS microbiome is similar to indoor environments on Earth but has a 119 

greater prevalence of species that can make biofilms (for details, see Mora et 120 
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al., 2019). This is probably due to adaptation to thrive on the metal surfaces 121 

inside the ISS. 122 

 While the ISS microbiome was mostly human-associated, it was reassuring 123 

that no evidence was found of selection for enhanced pathogenicity or 124 

antimicrobial resistance (AMR) (Mora et al., 2019). 125 

 126 

Further studies have found that space travel disrupts the normal GM, probably due 127 

to the influence of stress. During one space mission, astronauts' skin, nose, and gut 128 

microbiomes changed markedly. The GM became more similar across crew 129 

members, primarily due to a drop in the abundance of several bacterial taxa mainly 130 

Akkermansia, Ruminococcus, Pseudobutyrivibrio and Fusicatenibacter (Voorhies et 131 

al., 2019). However, one longer-term study in twins (Garrett-Bakelman et al., 2019) 132 

found that the GM shifts back to the pre-flight pattern within 6 months of the 133 

astronaut returning to Earth. 134 

 135 

To summarise, the microbiome of the built environment in space fluctuates around a 136 

set of core species but does not appear to present a particular risk to crew health in 137 

terms of pathogenicity, virulence, or antibiotic resistance. This is relevant as there 138 

are limited opportunities to treat microbial infections in space. While space travel 139 

disrupts humans' normal skin and gut microbiome, this effect is reversible. Future 140 

space experiments will help find the answers to essential questions such as how to 141 

control microbial outbreaks in space, how to treat microbial disease in space, 142 

whether there is a need for novel probiotics/prebiotics, and how the microbiome of 143 

space environments and crew can be monitored long term at vast distances from 144 

Earth.  145 
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 146 

Parkinson’s Disease: evidence for the role of the gut 147 

Initially viewed as a brain condition, there is growing evidence that the gut has a role 148 

in initiating Parkinson’s Disease (PD), as discussed by Prof. Aletta Kraneveld from 149 

Utrecht University, The Netherlands. 150 

 151 

PD affects 1% of older adults and is an incurable condition characterized by 152 

progressive tremors, muscle rigidity, postural instability, and intestinal dysfunction. 153 

This conflation of gut and brain symptoms implies two origins for the accumulation of 154 

α-synuclein (Lewy bodies) in the brain leading to neuro-inflammation and 155 

neurodegeneration (Horsager et al., 2020): either a direct central nervous system 156 

phenotype, or an indirect intestinal phenotype where leaky gut and endotoxemia lead 157 

to mucosal inflammation, microbiome changes and, eventually, α-synuclein 158 

accumulation (Scheperjans et al., 2018; Rietdijk et al., 2017). 159 

 160 

Intestinal phenotype hypothesis 161 

This is supported by more than 15 cohort studies which found correlations between 162 

neurological deterioration and gut dysbiosis characterized by reduced Prevotella, 163 

lower levels of fecal short-chain fatty acids (SCFAs), increased lipopolysaccharide- 164 

(LPS) producing bacteria, and increased pro-inflammatory Lactobacillaceae (Li et al., 165 

2023). Murine models have built on this concept. Mice which genetically overexpress 166 

α-synuclein develop PD-related pathophysiology and motor dysfunction, but such 167 

changes do not occur if α-synuclein overexpression mice are bred germ-free. 168 

However, inoculating these germ-free mice with GM from PD patients induces the 169 

pathology to a greater extent than non-exposed α-synuclein overexpression mice, 170 
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proving that gut bacteria are essential to initiating the disease (Sampson et al., 171 

2016). 172 

 173 

Other studies corroborate gut-related mechanisms. Colonizing α-synuclein 174 

overexpression mice with E. coli, which produce curli fibers (pro-inflammatory 175 

proteins which mediate host cell adhesion and invasion), led to the further 176 

aggregation of α-synuclein in the gut and brain, and enhanced brain inflammation, 177 

gut problems, and motor dysfunction (Chapman et al., 2002). Another study 178 

(Matheoud et al., 2019) considered the role of the PINK1 gene, which is responsible 179 

for clearing mitochondria damaged during the progression of PD. Knocking out 180 

PINK1 would be expected to induce or exacerbate PD-like changes in animal 181 

models. However, this does not happen unless there is also an intestinal infection 182 

with LPS-producing bacteria. 183 

 184 

A study of gut biopsies from PD patients revealed evidence of tight junction decline, 185 

leaky gut, and endotoxemia, and enhanced toll-like receptor (TLR) 4 expression, 186 

suggesting that PD is a TLR disease (Perez-Pardo et al., 2019). This hypothesis was 187 

tested using the pesticide, rotenone (an isoflavone molecule), which can initiate PD-188 

like pathophysiology in animal models. Compared with wild-type mice which 189 

developed the expected pathogenic changes, oral exposure to rotenone for several 190 

weeks did not lead to gut dysbiosis or α-synuclein accumulation in TLR4 knock-out 191 

mice. In addition, the loss of dopamine-producing cells in the substantia nigra was 192 

less pronounced and there were fewer motor & cognitive problems. A similar 193 

disruption of the expected PD pathophysiology was seen following the use of TLR4 194 

antagonists and TLR4 blocking antibodies, and when the vagus nerve was cut 195 
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suggesting that this is the likely route by which α-synuclein spreads, prion-like, to the 196 

brain (Kim et al., 2019). 197 

 198 

Can GM modulation slow the progression of PD? 199 

Fecal microbiota transplants (FMT) in murine models of PD reduce gut dysbiosis and 200 

neuroinflammation and result in fewer motor problems. Human trials are limited but 201 

demonstrate encouraging results for motor and non-motor symptoms in PD patients 202 

(Segal et al., 2021). Research on probiotics and synbiotics is more advanced and 203 

suggests that these are safe and effective, although further evidence is needed. In 204 

vivo studies report improved glucose metabolism, reduced inflammation, and 205 

neurodegeneration (Leta et al., 2021). In a review of eight clinical trials in PD 206 

patients given lactobacilli or bifidobacteria probiotics (Hong et al., 2022), constipation 207 

was significantly reduced, and modest anti-inflammatory effects were observed. A 208 

downside of using probiotics in PD is the potential for probiotic-drug interactions 209 

since bacterial decarboxylases may affect the bioavailability of L-dopamine, a 210 

Carbidopa component commonly used to manage PD neurological symptoms (van 211 

Kessel et al., 2019). 212 

 213 

Murine PD models have been used to test the efficacy of diets containing precursors 214 

for neuronal membrane synthesis, such as long-chain omega-3 fatty acids, choline, 215 

uridine, vitamins, and minerals (Perez-Pardo et al., 2018a). Overall, the nutritional 216 

intervention was effective at partially alleviating the rotenone-induced neurological 217 

changes in mice. A further study tested an enhanced experimental diet containing 218 

the same nutrients as before plus prebiotic fibers but introduced it 28 days after 219 

rotenone exposure when adverse neurological changes had already occurred 220 
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(Perez-Pardo et al., 2017). Compared with the control diet, the enhanced prebiotic-221 

rich diet was more effective at normalizing the mice's rotenone-induced motor and 222 

non-motor abnormalities. These findings suggest that dietary treatments can help 223 

reverse neurological changes in mice and that diets that modulate the GM appear to 224 

deliver more benefits than those providing nutritional support (Perez-Pardo et al., 225 

2018b). 226 

 227 

In summary, there is growing evidence for a gut-first model of PD. However, further 228 

robust human studies in target populations are needed to understand the gut-brain 229 

mechanisms involved and identify opportunities for early intervention. 230 

 231 

Underlying mechanisms of depression and the modulating role of probiotics 232 

Another condition potentially influenced by the gut–brain axis is major depressive 233 

disorder (MDD), which affects around 280 million people worldwide and is 234 

characterized by symptoms including depressed mood, anxiety, and insomnia. Dr. 235 

Kazunori Matsuda, from the Yakult Central Institute, Japan, proposed underlying 236 

mechanisms related to the GM and the therapeutic potential of probiotics. 237 

 238 

Gut-brain axis 239 

Bidirectional communication exists between the GM and the brain. The brain 240 

influences the gut via the autonomic nervous system, while the gut, including 241 

microbe-derived molecules, influences the brain via humoral and neuronal pathways 242 

(summarized in Suda & Matsuda 2022). The idea that the GM could be linked to 243 

depression arose from studies where mice receiving an FMT from MDD patients 244 

displayed depression-like behavior compared to control mice given an FMT from 245 
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healthy people (Zheng et al., 2016), which indicates the role of dysbiosis in MDD 246 

development. 247 

 248 

Further evidence came from a systematic review of 17 studies characterizing the GM 249 

of MDD patients (Knudsen et al., 2021), which found reduced numbers of 250 

Faecalibacterium, a producer of butyrate, a SCFA linked to the maintenance of 251 

neurogenesis and anti-inflammatory effects. Other work reported that MDD patients 252 

have a lower abundance of bifidobacteria and lactobacilli than healthy controls 253 

(Aizawa et al., 2016). However, this is not a consistent pattern across studies, 254 

perhaps due to differences in subjects’ backgrounds between the studies.  255 

 256 

Mechanisms 257 

What are the likely mechanisms if gut dysbiosis were influential in the pathology of 258 

MDD? MDD is recognized as a multifactorial condition linked to abnormal stress 259 

response, reduced neurogenesis, and neuroinflammation, pathways where the GM 260 

may impact. Chronic stress is a risk factor for MDD onset, resulting in the 261 

hypothalamus-pituitary-adrenal (HPA) axis-mediated dysregulation of the stress 262 

response. The HPA axis is understood to be a key pathway of stress response 263 

through cortisol secretion. Normally, cortisol regulates its secretion via negative 264 

feedback through the HPA. However, in MDD patients, the feedback system is 265 

impaired, resulting in elevated blood cortisol, while brain exposure to high levels of 266 

cortisol induces chronic inflammation and reduced brain-derived neurotrophic factor 267 

(BDNF) protein – an important regulator of neuronal growth, survival, and plasticity. 268 

 269 
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Animal studies have found that the stress response is pronounced with a lack of GM 270 

when germ-free mice are exposed to physical restraint stress. However, when germ-271 

free mice were inoculated with Bifidobacterium infantis, the exaggerated HPA stress 272 

response was reversed (Sudo et al., 2004). One signaling route from the gut to the 273 

brain is the vagus nerve, and some probiotic strains such as Lacticaseibacillus 274 

paracasei strain Shirota (LcS) have been shown to stimulate the activity of the 275 

gastric branch of the vagal afferent to suppress the stress-induced increase in blood 276 

corticosterone (Takada et al., 2016). 277 

 278 

Reduced neurogenesis, another part of the pathophysiology of MDD, is believed to 279 

be caused by neuroinflammation and excessive stress, demonstrated by a smaller 280 

volume of certain brain regions in MDD patients (Treadway et al., 2015) and lower 281 

BDNF in cerebrospinal fluid (Mizui et al., 2019). This may have a GM link since 282 

germ-free mice have lower hippocampal levels of BDNF relative to specific 283 

pathogen-free mice (Sudo et al., 2004), and SCFAs can upregulate BDNF. 284 

Neuroinflammation, too, has a gut connection since the GM directly affects pro- and 285 

anti-inflammatory responses in the gut, and a leaky gut has been implicated in the 286 

pathogenesis of MDD. Increased gut permeability causes an influx of gut microbial 287 

components such as LPS, resulting in systemic inflammation and consequent 288 

neuroinflammation. 289 

 290 

Could microbiome-based therapies help? 291 

Studies suggest they can. FMT given to patients to treat symptoms of IBS has been 292 

found to have beneficial secondary effects on symptoms of depression (Huang et al., 293 

2019), while a meta-analysis that pooled the results from 34 clinical trials concluded 294 
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that probiotics have modest beneficial effects on depression and anxiety (Liu et al., 295 

2019). Two randomized, double-blind, placebo-controlled trials in this meta-analysis 296 

are explored in more detail. In the first study, 40 MDD patients were treated with a 297 

probiotic capsule (Lactobacillus acidophilus + Lacticaseibacillus casei + 298 

Bifidobacterium bifidum) or a placebo for 8 weeks. Significant improvements were 299 

seen in depressive symptoms, insulin resistance marker, and C-reactive protein in 300 

the probiotic group relative to controls (Akkasheh et al., 2016). In the second study, 301 

81 MDD patients were given probiotics (Lactobacillus helveticus R0052 + 302 

Bifidobacterium longum R0175), prebiotics (galacto-oligosaccharide) or a placebo for 303 

8 weeks, with symptoms of depression significantly improving only in the probiotic 304 

group relative to controls (Kazemi et al., 2019). 305 

 306 

The latest research on LcS supported these observations; a 12-week open-label 307 

study of an LcS-fermented milk drink on patients with depression found improved 308 

depressive symptoms and sleep quality (Otaka et al., 2021). Another study revealed 309 

that 8-week of treatment with an LcS-fermented milk drink significantly attenuated 310 

the stress-induced rise in salivary cortisol in medical students under academic stress 311 

(Takada et al., 2016). These results suggest that some probiotic strains can 312 

modulate stress-induced activation of the HPA axis and the subsequent onset of 313 

depression. 314 

 315 

In summary, the GM is likely involved in the pathophysiology of MDD via several 316 

pathways, and GM modulators, including probiotics and FMT, could be helpful 317 

adjunct therapies. 318 

 319 
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Overcoming the brain barrier: a challenge for bacteria? 320 

Implicating the GM in the pathophysiology of brain diseases and conditions requires 321 

that bacterial substances can access brain tissues. How this might occur was the 322 

topic reviewed by Prof. Roosmarijn Vandenbroucke from the Flanders Institute for 323 

Biotechnology (VIB) and Ghent University, Belgium. 324 

 325 

The brain is protected from the peripheral circulation by central nervous system 326 

barriers, which include the blood-brain barrier (BBB) and the lesser-known blood-327 

cerebral spinal fluid (CSF) barrier, which sits within the brain ventricles. Both barriers 328 

are characterized by being selectively permeable and having several parts to their 329 

structure, including a layer of epithelial cells in the case of the blood-CSF barrier and 330 

endothelial cells in the case of the BBB; both possessing tight junctions which 331 

regulate access. The choroid plexus epithelial cells at the blood-CSF barrier share 332 

similarities with those in the gut and have microvilli at their apical side, enhancing the 333 

surface area. 334 

 335 

Barrier functions 336 

There is a difference in permeability between the two barriers since the capillaries 337 

which sit underneath the choroid plexus epithelial cells that form the blood-CSF 338 

barrier are fenestrated (i.e., leaky). This means no tight junction proteins connect the 339 

choroid plexus endothelial cells to one another (Vandenbroucke et al., 2016). The 340 

purpose of the choroid plexus is to remove waste products from the brain, act as its 341 

gatekeeper, and make CSF, a soup of different molecules, including nutrients, 342 

neurotrophins, and growth factors. The choroid plexus epithelial cells are in very 343 

close contact with the endothelial cells of the capillaries inside the choroid plexus. 344 
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This enables them to respond to triggers from the peripheral circulation, such as 345 

cytokines, and consequently relay these peripheral signals to the brain, but how 346 

does this process occur? 347 

 348 

One answer is via extracellular vesicles, cell-derived nanoparticles that transfer 349 

biological cargoes between cells and can cross the brain barriers bi-directionally, 350 

giving them a powerful influence across the body. Extracellular vesicles may 351 

originate from the body's cells or from bacteria, which potentially explains how the 352 

GM could have an impact on the brain. This was demonstrated in an animal 353 

experiment (Balusu et al., 2016a) where LPS was peripherally delivered, resulting in 354 

systemic inflammation and inflammation in brain cells. An extracellular vesicle 355 

inhibitor was then administered in the brain, which blocked the inflammatory signal to 356 

the brain, suggesting that extracellular vesicles act like a relay between the 357 

peripheral circulation and the brain. Animal studies suggest that a healthy gut 358 

microbiota is essential for the optimal development of the BBB since germ-free mice 359 

display increased BBB permeability compared with pathogen-free controls with 360 

normal gut microbiota (Braniste et al. 2014). There is also evidence that choroid 361 

plexus dysfunction via altered secretory, transport, immune. Barrier function plays a 362 

central role in aging and the risk of developing conditions such as Alzheimer's 363 

disease (Balusu et al., 2016b). Hence, targeting the GM composition, or 364 

administrating SCFAs might have therapeutic potential. 365 

 366 

Bacterial extracellular vesicles and brain diseases 367 

The discovery of extracellular vesicles, especially those derived from bacteria, has 368 

advanced understanding of how gut dysbiosis may influence the initiation and 369 
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progression of chronic progressive brain conditions. One example is the association 370 

between Helicobacter pylori, a gastrointestinal pathogen found in around half of 371 

adults, and an enhanced risk of Alzheimer's Disease. It has been hypothesized that 372 

bacterial-derived EVs, called outer membrane vesicles (OMV), if derived from Gram-373 

negative bacteria, can cross the brain barriers, and initiate pathogenic changes, such 374 

as neuroinflammation or beta-amyloid plaque deposits (Xie et al., 2022). This was 375 

studied by loading H. pylori OMV with cre enzyme and feeding these to tdTomato 376 

reporter mice, genetically engineered mice whose cells turn red when cre is taken 377 

up. This study showed an apparent increase in red astrocytes, confirming that H. 378 

pylori OMV had traveled from the gut to the brain, crossing the brain barriers (Xie et 379 

al., 2022).  380 

 381 

The impact of this was investigated by feeding wild type mice with H. pylori-derived 382 

OMV and studying the activity of cells in the brain (Xie et al.,2023). OMVs were 383 

found to overstimulate the microglia, leading to excessive synaptic pruning, 384 

evidenced by reduced dendrite length. Electrophysiological measurements then 385 

confirmed that H. pylori-derived OMV had detrimental effects on synaptic activity. To 386 

examine the clinical impact of OMV, a mouse model of Alzheimer's disease was 387 

treated with OMV for three weeks. The findings confirmed a significant effect on 388 

plaque deposition with more plaques and a larger plaque area than control mice. 389 

Hence, H. pylori OMV can access the brain and potentially accelerate pathogenic 390 

changes associated with Alzheimer's disease. At this stage, it is unclear how the 391 

OMV are crossing the blood-CSF barrier. 392 

 393 

https://doi.org/10.1017/gmb.2023.4 Published online by Cambridge University Press

https://doi.org/10.1017/gmb.2023.4


Accepted Manuscript 

17 
 

In summary, a functioning blood-CSF barrier requires the presence of a GM and is 394 

strengthened by SCFA-producing taxa. Recent research shows that H. pylori OMV 395 

can enter the brain and accelerate changes associated with Alzheimer's disease, 396 

such as glial activation and plaque deposition. 397 

 398 

IBS: is it all between the ears? 399 

This was the intriguing question asked by Prof. Francisco Guarner from the Teknon 400 

Medical Centre, Spain. Irritable bowel syndrome (IBS) is characterized by chronic, 401 

relapsing diarrhea or constipation with no detectable cause. Bloating and pain are 402 

common symptoms (Lacy et al., 2017), often blamed on intestinal gas, but the 403 

symptoms could be due to heightened sensitivity to abdominal distention. This was 404 

demonstrated in an experiment (Barba et al., 2019) where patients who had reported 405 

reactions after eating lettuce were given an abdominal computer tomography scan 406 

before and after eating this trigger food. Average post-prandial girth increased by 35 407 

mm, representing an 835 ml expansion of intra-abdominal volume, but only 40 ml of 408 

this was due to extra gas, which was within the normal range. It was concluded that 409 

patients felt bloated because consuming lettuce led to a conditioned response of 410 

diaphragm displacement, with computer tomography scans showing an average 411 

diaphragm descent of 7 ± 3 mm. Following behavioral training, patients reduced their 412 

anxiety-related response to trigger foods by learning to control their diaphragm 413 

movement. 414 

 415 

Is dietary restriction necessary for IBS? 416 

The low FODMAP diet, which restricts poorly absorbed short-chain carbohydrates 417 

including fructose, lactose, polyols, fructans, and galacto-oligosaccharides, is a 418 
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favored treatment for IBS and resolves symptoms in 50%-80% of patients 419 

(Staudacher et al., 2017). However, it entails short-to-medium term avoidance of 420 

certain foods, particularly plant-based foods, which may be neither convenient nor 421 

healthy for the patients. Hence, it may be better to employ cognitive behavioural 422 

therapy to condition a more positive response to trigger foods (Black et al., 2020). 423 

This has led to proposals that diet-induced symptoms in IBS are driven by 424 

dysregulation of the gut-brain axis since blinded interventions reveal similar 425 

increases in small bowel motility and colonic gas volume when IBS patients and 426 

healthy controls consume fructans (Wu et al., 2022). 427 

 428 

Gut bacteria create intestinal gas by fermenting carbohydrates which begs the 429 

question: do IBS patients have a particular GM profile? In one study (Manichanh et 430 

al., 2014), patients complaining of flatus were compared with healthy controls before 431 

and after a 3-day challenge diet that was rich in plant foods. Even on the baseline 432 

‘usual’ diet, patients reported more abdominal symptoms and gas than controls, 433 

which worsened in both groups following the challenge diet. Changes in the GM of 434 

patients mirrored the increased symptoms, with Bilophila wadsworthia correlating 435 

with the increased volume of gas expelled. However, the GM of patients reduced in 436 

diversity and changed more radically in response to the challenge diet compared 437 

with the controls, which remained relatively stable. Hence, the GM of IBS patients, 438 

whether due to their habitual diets or other lifestyle factors, appears to be less 439 

adapted to digesting a plant-based diet and more adapted to digesting protein. This 440 

may lead to a predominance of gas-producing taxa. 441 

 442 

Implications for wider health 443 
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While it is difficult to differentiate people with and without gut dysbiosis simply by 444 

looking at their GM, there are associations between digestive symptoms and 445 

particular taxa. Pozuelo et al. (2015) found that patients with IBS had significantly 446 

lower microbial diversity and fewer microorganisms that produce butyrate and 447 

methane. Since these are responsible for disposing of hydrogen in the gut, their 448 

lower abundance in people with IBS could explain the excess of abdominal gas. 449 

Prevotella was more associated with healthier controls; interestingly, these taxa can 450 

digest vegetable matter. IBS is not the only condition characterized by microbial 451 

indicators since a study in 8,208 Dutch adults found that the GM of people with 452 

cancer, diabetes, cardiovascular disease, and neurological conditions share 453 

microbiome commonalities and could be differentiated from the GM of healthy 454 

people (Gacesa et al., 2022). 455 

 456 

If the healthy GM profile favors those species adapted to ferment fiber-rich plant 457 

substrates, could a low FODMAP diet, which typically restricts these foods, drive 458 

unhelpful changes in the GM? This could be true, according to research that finds 459 

that a low FODMAP diet leads to atrophy of taxa adapted to digest vegetables 460 

(Halmos et al., 2015). Hence, alternative therapies are warranted to enable people 461 

with IBS to follow the recommended plant-rich diet for general health and disease 462 

prevention. Huaman et al. (2018) combined a Mediterranean (Med) diet with a 463 

prebiotic (galacto-oligosaccharide), which was tested against a low FODMAP diet in 464 

a randomized controlled trial. Similar reductions in gut symptoms were seen after 4 465 

weeks on both diets, except flatus which was reduced only after the low FODMAP 466 

diet. However, some of these benefits were not sustained, as symptoms reappeared 467 

immediately after patients discontinued the low FODMAP diet. In contrast, the 468 
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benefits of the prebiotic-Med diet combination persisted during the 2-week follow-up 469 

when patients returned to their habitual diets. In addition, the diets had opposite 470 

effects on Bifidobacterium sp., with a decline seen after the low FODMAP diet versus 471 

an increase after the prebiotic-Med diet.  472 

 473 

In summary, as plant-based diets are now widely recommended for health and 474 

disease prevention, it is important that people with IBS are supported to eat these by 475 

employing behavioral strategies, which condition a positive response to trigger foods 476 

rather than managing their symptoms with trigger food avoidance. 477 

 478 

Gut microbial diversity: one health and probiotics 479 

Taking his cue from One Health – the European program which recognizes the 480 

interconnectivity between the environment and human/animal health – Dr. Olaf 481 

Larsen from Vrije Universiteit, The Netherlands, discussed the role of microbial 482 

diversity, particularly of key taxa and guilds in promoting health. 483 

 484 

The worldwide incidence of infectious diseases, including tuberculosis and measles, 485 

declined dramatically during 1950-2000 against a backdrop of rising autoimmune 486 

disorders, such as type 1 diabetes (T1D), Crohn's disease, and asthma (Bach 2002). 487 

This trend continues in a more recent analysis (Larsen et al., 2022). In particular, 488 

T1D incidence has risen steadily in Europe and the US over the past 40 years. 489 

However, as demonstrated by the SARS epidemics and the SARS-Covid-19 490 

pandemic, infectious diseases are far from being eradicated. 491 

 492 

Old friends 493 
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While the fall in infections is understandable, given vaccines and improved hygiene 494 

standards, the reason for the rise in autoimmune problems is less clear and may be 495 

related to the health of our microbiota. One theory is that humans, especially in early 496 

childhood, have limited exposure to beneficial microbes from food and the 497 

environment – referred to as 'old friends' – which leads to an overreactive immune 498 

system with the propensity to attack the body's own tissues as well as overacting to 499 

harmless microorganisms or antigens. Indeed, studies show that diminished 500 

exposure to microorganisms in early life correlates with an increased risk of atopic 501 

diseases (Von Mutius et al., 2000). 502 

 503 

A deterioration in GM balance in Western countries has been cited as a reason for 504 

their greater burden of Covid-related mortality and higher rates of autoimmune and 505 

chronic non-communicable conditions. GM diversity correlates with risk (Dhar and 506 

Mohanty, 2020) and severity of Covid-19 (Yeoh et al., 2021). It may also influence 507 

the development of metabolic syndrome (Fan and Pedersen, 2021) which increased 508 

in prevalence from approximately 30% to 40% of the US adult population during 509 

2000-2018, emphasizing the immense scale of this issue (Larsen et al., 2022). 510 

Completing the circle of disease risk, SARS-Covid-19 infection has been found to 511 

exacerbate metabolic disease (le Roux, 2021). 512 

 513 

All of this indicates a need for Western populations to improve their exposure to 'old 514 

friends' and regain microbiota eubiosis – considered to be a state of balance in the 515 

GM between beneficial and harmful bacteria, which is normally associated with a 516 

disease-free host. The human gut loses a proportion of the conserved microbiome 517 

with each successive generation, possibly related to incomplete maternal-child 518 
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transmission (due to Caesarean births and lower than ideal breast-feeding rates) and 519 

excessive antibiotic use, which has remained relatively stable despite concerns 520 

about antibiotic resistance (Blaser and Falkow, 2009). New exposures do not 521 

compensate for this decline in beneficial bacteria since society has adopted 522 

unhelpful practices of indoor living and diets lacking in fermented foods. If these 523 

ecosystem losses continue, a catastrophic collapse in the GM is hypothesised 524 

leading to abrupt and possibly irreversible shifts between alternative ecosystem 525 

states (Larsen and van de Burgwal, 2021). Increasing GM diversity increases 526 

functionality, e.g., SCFA production, but only if the right species are introduced. If the 527 

wrong diet and lifestyle are adopted, less favorable species could thrive, reducing 528 

ecosystem resilience and creating functional redundancy.  529 

 530 

Keystone taxa and guilds 531 

A balanced GM includes keystone (core) taxa and guilds. Keystone taxa are: "highly 532 

connected taxa that individually or in a guild exert a considerable influence on 533 

microbiome structure and functioning, irrespective of their abundance, [hence] their 534 

removal can cause a dramatic shift in microbiome structure and functioning.” 535 

(Banerjee et al., 2018). Guilds are small ecosystems where 2-10 taxa work together 536 

as coherent functional units or exploit the same type of resources (Maurice and 537 

Turnbaugh, 2018).  538 

 539 

The absence of specific guilds has been linked with a greater risk of autoimmune 540 

conditions and certain metabolic diseases, but these guilds can be restored with the 541 

right interventions, which may include FMT, probiotics, or dietary fibers. In one 542 

randomized controlled trial in people with type 2 diabetes, diets high in fiber 543 
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promoted SCFA-producing strains at the expense of strains that produced potentially 544 

detrimental compounds such as indole and hydrogen sulfide (Zhao et al., 2018). 545 

These GM changes in the high fiber group were associated with improved 546 

hemoglobin A1c levels. At present, the evidence is insufficient to determine whether 547 

single strain or multistrain probiotics are more effective at restoring eubiosis 548 

(McFarland, 2021) although the theoretical research suggests a higher diversity in 549 

microbial guilds leads to a more efficient system. Hence, the choice of an 550 

appropriate probiotic should be based not on the number of strains in the product but 551 

on evidence-based efficacy trials. There is also an issue with non-responders which 552 

implies that a personalized approach is needed to determine the correct keystone 553 

taxa and guilds.  554 

 555 

In summary, to avoid the risk of catastrophic collapse in the GM, we need to take a 556 

One Health approach to promote microbiota eubiosis. This includes greater 557 

biodiversity and exposure to 'old friends', appropriate substrates from high-fiber and 558 

plant-rich diets, as well as limiting antibiotic use and excessive hygiene.   559 

 560 

Opportunities relating to fermented foods 561 

One source of ‘old friends’ is traditional fermented foods (FF), according to Prof. Paul 562 

Cotter, from the Teagasc Food Research Centre and APC Microbiome Ireland, 563 

Ireland, who reviewed some recent research on this topic.  564 

 565 

FF are “foods made through desired microbial growth and enzymatic conversions of 566 

food components” (Marco et al., 2021). Examples include kefir, sourdough bread, 567 

yogurt, kimchi, and kombucha. The different microbes used to make FF determine 568 
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the fermentation process, flavor, nutrients/bioactive compounds, and potential health 569 

benefits, including nutritive alteration of the ingredients, presence of bioactive 570 

compounds that affect intestinal and systemic function or modulation of the immune 571 

system. However, not all FF work as probiotics and referring to FF microorganisms 572 

as probiotics is misleading unless backed by evidence from human studies. 573 

 574 

Used as a means to preserve foods, FF have a long history of use in nations around 575 

the world (Gänzle, 2022; Jimenez et al., 2022). The expansion of modern research 576 

techniques has helped investigate the microbiota of FF, highlighting differences 577 

across foods and, indeed, different versions of the same food type. This inherent 578 

variability has complicated standardization, an issue further complicated by different 579 

standards and regulations between countries (Mukherjee et al., 2022). As an 580 

example, the term ‘kefir’ is reserved for dairy in some jurisdictions, e.g., Germany, 581 

and cannot be applied to water kefirs. 582 

 583 

Fermented food research 584 

A global initiative was set up to apply shotgun metagenomic sequencing to a diverse 585 

range of FF, eventually sourcing 58 international artisan products (Leech et al., 586 

2020). Food type, e.g., dairy, brine- or sugar-based, was the primary driver of 587 

microbial composition, and foods within these clusters had more similar microbiomes 588 

than those from other clusters. Several FF did not fit with any cluster, including 589 

coconut kefir and soya-based foods for which there are relatively little data. Multiple 590 

potentially novel microbial species were identified, which could represent untapped 591 

functionality resources. 592 

 593 
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Further work (Pasolli et al., 2020) has mapped lactic acid bacteria (LAB) species 594 

found in FF with those present in the human GM, finding that, for some species, 595 

closely related LAB strains occur in both food and gut environments. This provides 596 

new evidence that FF can be a source of LAB for the gut microbiome. The next 597 

phase will look at African FF as these have been under-researched. Africa contains 598 

a wealth of FF examples that contain microbes that differ significantly from those 599 

found in FF from other continents. 600 

 601 

Microbiome Applications for Sustainable food systems through Technologies and 602 

Enterprise (MASTER) is a new initiative that applies analytical techniques to FF 603 

typically used to study the human GM. One MASTER study (Cotter, personal 604 

communication) found specific clusters of microbial genes associated with 605 

colonization, gut survival, modulation pathways, and human health within FF 606 

microbes. Indeed, FF contained significantly more health-associated gene clusters 607 

than non-fermented substrates, indicating the transformative influence of adding 608 

microbes to foods. The work could be used to identify which FF are worth testing 609 

further in human clinical trials.  610 

 611 

The example of water and milk kefir 612 

Kefir grains contain a consortium of bacteria and yeasts, although the specific 613 

microorganisms in water and milk kefir grains are very different. Water kefir is a 614 

fermented beverage made by inoculating water kefir grains into a sugar (sucrose)-615 

rich solution supplemented with fruits. Often made in a household setting, the 616 

mixture is left to stand at room temperature for 1 to 3 days, after which the grains are 617 

filtered out to obtain the final drink. A recent study (Mortensen, personal 618 
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communication) sourced water kefir grains from around the globe and fermented 619 

them with the same substrate. Heat maps based on microbial taxonomy revealed 620 

differences in α-diversity across countries and at least 10 clusters of microbial 621 

communities which could be important for flavor, shelf life, or health. This work could 622 

help define international standards for water kefirs, which tend to differ from country 623 

to country regarding their microbiome. 624 

 625 

Milk kefir is made by fermenting milk with milk kefir grains. Research has identified 626 

specific microbes linked to volatile compounds which could help develop optimal 627 

flavor profiles for new products, for example adding Lactobacillus kefiranofaciens 628 

NCFB 2797 to increase fruitiness (Walsh et al., 2016). This work is being expanded 629 

to 64 international milk kefir samples to determine theoretically which microbes could 630 

indicate potential health attributes. This is important as while milk kefir has been 631 

linked with several health benefits, including cholesterol reduction and antimicrobial 632 

activity, the quality of evidence is often poor (Bourrie et al., 2016). Notably, some 633 

animal studies evaluating the impact of kefir on obesity, dyslipidemia, and metabolic 634 

diseases suggest that the health-promoting attributes of kefir depend on specific 635 

microbes, which could explain why some kefirs do not produce any health effects 636 

(Bourrie et al., 2020). Indeed, a study to deconstruct the microbes in artisan kefirs 637 

found that Lactobacillus and yeast were essential components for lowering plasma 638 

cholesterol in mice (Bourrie et al., 2021).  639 

 640 

Ultimately, understanding which microbes in FF are important for health could help 641 

inform standards for commercial products and may eventually lead to population 642 

recommendations for specific microorganisms to be consumed through the diet. 643 
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 644 

Living foods: safe salvation for health 645 

Continuing the theme of fermented foods, Prof. Lorenzo Morelli, from the Catholic 646 

University of the Sacred Heart, Italy, described how modern research techniques can 647 

improve the understanding of traditional production methods. 648 

 649 

Since around 7000 BC, humans have preserved protein-rich foods using different 650 

tools, including salt, smoke, and fermentation. The term fermentation comes from the 651 

Latin verb ‘fervere’, which means ‘to boil’, possibly referring to the bubbles seen 652 

when liquids are fermented. An example of a traditional FF is Parmesan cheese 653 

which is still made only with raw milk in copper pots and using the previous day’s 654 

culture – called ‘back slopping’. Commercially available bacteria cultures are not 655 

permitted, and the cheese must be ripened for more than a year for safety. There is 656 

good genetic evidence that these traditional methods have selected a sub-population 657 

of LAB whose chromosomes are adapted to making Parmesan cheese since they 658 

can grow at 51 °C, which usually is high for such bacteria. 659 

 660 

New methods to solve old problems 661 

However, a weak point of traditional back slopping is the undefined age and viability 662 

of the bacterial cells, given that cheese-making requires the correct balance of lactic 663 

acid and viable cells. Older bacteria produce too much lactic acid which eventually 664 

kills the culture. Uncertainty can also be introduced by raw milk, whose composition 665 

and bacterial profile are influenced by different seasons and pastures. Newer 666 

research technologies can be used to address these traditional problems. In one 667 

study (Bellassi et al., 2021), researchers used metabolomics and genomics to 668 
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discriminate between milk produced by cows fed hay and milk from cows fed hay 669 

and fresh vegetables. 670 

 671 

The bacteria used to make FF are multifunctional, transforming raw ingredients' 672 

aroma, flavor, taste, and durability. It has been found that sourdough cultures are 673 

essential for flavor and leavening and act as natural preservatives (Bourdichon et al., 674 

2021). Biopreservation refers to enhanced food safety and extended shelf life of 675 

foods by indigenous and/or intentionally added microbiota, inhibiting the growth of 676 

pathogenic and spoilage organisms due to microbiological competition and 677 

production of antimicrobial metabolites (Shi and Maktabdar, 2022). This is an 678 

important attribute as consumers want foods to have a longer shelf life yet remain 679 

concerned about chemical preservatives and plastic packaging. There is a potential 680 

role for LAB against fungal spoilage of foods (Siedler et al., 2019), as demonstrated 681 

by an experiment that found that breads inoculated with mold were better preserved 682 

after 7 days when made with LAB compared with regular yeast. Modern techniques 683 

could be used to leverage these hitherto unknown benefits of cultures. The 684 

antimicrobial characteristics of several microorganisms are already recognized by 685 

GRAS [generally recognized as safe]. 686 

 687 

Human impact 688 

LAB also interact with our bodies, as first recognized by Russian zoologist and Nobel 689 

laureate Élie Metchnikoff (Mackowiak, 2013), who hypothesized in the early 20th 690 

century that ‘intestinal putrefaction’ shortens life but that lactic acid could be an 691 

antidote. This led him to be the earliest advocate of LAB as therapeutic agents and 692 

he is often considered the 'father' of probiotics. While Metchnikoff's original 693 
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experiments could be described as hazardous – for example, injecting himself with 694 

pathogens or feeding lactic acid to volunteers – he went on to advocate the use of 695 

LAB in fermented foods, stating in 1907: ‘Dependence of the intestinal microbes on 696 

the food makes it possible to adopt measures to modify the flora in our bodies and to 697 

replace the harmful microbes by useful microbes’. 698 

 699 

Metchnikoff incorrectly assumed that colonic bacteria could be modulated using 700 

supplemental lactic acid. Still, it is reasonable to assume that the GM could be 701 

influenced by a range of LAB by-products found in FF, including bioactive peptides 702 

(Ali et al., 2022). These have been associated with anti-hypertensive, angiotensin-703 

converting enzyme (ACE) inhibitory, antioxidant, anti-inflammatory, and 704 

immunomodulatory effects, which could deliver health benefits (Raveschot et al., 705 

2018; Beltrán-Barrientos et al., 2016). Bioactive peptides may also improve mineral 706 

bioavailability (Tenenbaum et al., 2022), which could support healthy aging and the 707 

prevention of osteoporosis. Since the neurotransmitter γ-aminobutyric acid (GABA) 708 

is one of the by-products of LAB metabolism, it has been hypothesised that 709 

fermented foods could influence the brain. The potential anti-hypertensive effects of 710 

reduced sodium sourdough, made with Levilactobacillus brevis CECT 8183, were 711 

investigated in a laboratory study (Peñas et al., 2015). The results showed 712 

significantly increased total antioxidant activity, GABA levels, and ACE inhibitory 713 

effects compared with the control bread, suggesting that innovative breads could be 714 

developed to reduce blood pressure. 715 

 716 
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Hence in summary, while there is a long history of humans using bacteria to 717 

preserve nutrients through fermentation, their interactions in our bodies and potential 718 

impact on health are only beginning to be understood. 719 

 720 

Living drugs: a solution with many benefits 721 

This narrative was continued by Prof. Stephan C. Bischoff, from the University of 722 

Hohenheim in Stuttgart, Germany, who described how FF evolved first into functional 723 

foods and supplement products, then medical applications. These require different 724 

approaches to safety assessment, regulation and methodologies to establish 725 

evidence of efficacy. This is because the purpose of probiotics has evolved from 726 

health maintenance to the prevention, management, or treatment of diseases and 727 

abnormal conditions.  728 

 729 

Oral microbiota therapy can include probiotics, prebiotics, and postbiotics; the latter 730 

being inanimate microorganisms and/or their components that confer a health benefit 731 

on the host (Salminen et al., 2021). For probiotic medical trials, it is crucial to 732 

consider strain, dosage, target population, disease type, and progression. 733 

Understanding mechanisms is also vital to support medical claims and ensure that 734 

the right probiotics are targeted at the right population of patients (Daliri et al., 2021). 735 

Given recent advances in knowledge, relevant pathways of action include the gut-736 

brain axis and the gut-liver axis, with the potential for probiotics to modulate a range 737 

of metabolic, inflammatory, and neurological conditions. So, where is the evidence 738 

currently? 739 

 740 

Respiratory tract infections (RTI) 741 
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Cochrane reviews are a gold standard of independent systematic review and meta-742 

analysis (SRMA). In one of these, probiotics were found to lower the incidence but 743 

not the duration of RTI (OR 0.58; 95% CI 0.36 - 0.92) and reduced antibiotic 744 

prescriptions (0.67; 95% CI 0.45 - 0.98) (Hao et al., 2011). These conclusions were 745 

confirmed in updated reviews of studies on adults and children (Hao et al., 2015; 746 

Quick, 2015). Other SRMAs have concluded that probiotics and prebiotics effectively 747 

improved response to the influenza vaccine (Lei et al., 2017), while fermented dairy 748 

products protected against RTI (Rashidi et al., 2021). 749 

 750 

However, one issue with SRMAs is the heterogeneous approach to probiotic strains, 751 

i.e., dosage and duration of the administration, which can create inconsistencies that 752 

make null conclusions more likely, as already mentioned by Dr Larsen. Another 753 

issue is that SRMAs can be based on several small pilot trials subject to publication 754 

bias. Hence, there is a need to consider well-conducted large randomized controlled 755 

trials (RCTs), of which several now exist: 756 

 A 6-week trial of three probiotics on common cold symptoms in 581 college 757 

students found that B. bifidum increased illness-free days (Langkamp-Henken 758 

et al., 2015). 759 

 A 6-month trial in 171 children found that a probiotic plus vitamin C reduced 760 

coughing, absenteeism, and antibiotic usage (Garaiova et al., 2021). 761 

 Two 12-week trials of fermented milk with Lacticaseibacillus paracasei strain 762 

Shirota found prevention of the common cold and influenza in 96 office 763 

workers (Shida et al., 2017), and reduced risk of acute upper RTI in 1003 764 

children (Mai et al., 2021). 765 

 766 
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Moving to the hospital environment, the severe condition of ventilator-associated 767 

pneumonia is a common issue for intensive care patients. Here, too, SRMAs have 768 

confirmed that probiotics have a therapeutic role in this condition, as there is robust 769 

evidence for a 30% reduction (Bo et al., 2014; Ji et al., 2021; Sharif et al., 2022). A 770 

large RCT backs this using a 4-strain preparation (L. acidophilus, Lactiplantibacillus 771 

plantarum, Bifidobacterium animalis subsp. lactis, and Saccharomyces cerevisiae 772 

var boulardii) in 112 trauma patients (Tsilika et al., 2022). However, another large 773 

RCT (n=2653) found no significant benefit of Lacticaseibacillus rhamnosus GG for 774 

ventilator-associated pneumonia (Johnstone et al., 2021). 775 

 776 

Gastro-intestinal disorders 777 

A major indication for probiotics is antibiotic-associated diarrhea. The evidence for S. 778 

cerevisiae var boulardii and Lactoballicus sp. is so well established, with a risk 779 

reduction of more than 50% (Szajewska and Kołodziej 2015a; Szajewska and 780 

Kołodziej 2015b) that further data are unnecessary.  781 

 782 

Probiotics are also recommended in the German IBS guidelines since few effective 783 

drug treatments exist for this condition (Layer et al., 2021). However, the opposite is 784 

true for inflammatory bowel diseases, such as ulcerative colitis and Crohn's disease, 785 

where probiotics offer weak beneficial effects that are inferior to drugs (Kaur et al., 786 

2020). Small intestine bacterial overload results from gut dysbiosis and is 787 

characterized by bloating, pain, and post-prandial diarrhea. A SRMA by Zhong et al. 788 

(2017) found that probiotics could not prevent small intestine bacterial overload but 789 

lowered gut hydrogen levels and improved treatment efficacy, including for 790 

https://doi.org/10.1017/gmb.2023.4 Published online by Cambridge University Press

https://doi.org/10.1017/gmb.2023.4


Accepted Manuscript 

33 
 

abdominal pain. German guidelines indicate that it is best practice to use probiotics 791 

alongside antibiotics and a low FODMAP diet (Layer et al., 2021). 792 

 793 

In medicine, probiotics are most effective for RTI and gastrointestinal conditions. In 794 

the future, probiotics could treat other types of conditions such as metabolic 795 

syndrome, obesity, and neurological diseases but, to do this, new probiotics need to 796 

be discovered and tested in clinical trials. In a recent trial (Gutiérrez-Castrellón et al., 797 

2022) a new patented 4-strain probiotic improved remission rates and viral load in 798 

patients with SARS-Covid-19. Further research and product development are 799 

required to deliver the advantages of living drugs to all parts of the body. 800 

 801 

Safety of microorganisms used as probiotics 802 

Before being included in the food system, microorganisms must be risk assessed to 803 

ensure consumer safety. Is the current system fit for this purpose? This was 804 

discussed by Prof. Pier-Sandro Cocconcelli from the Università Cattolica del Sacro 805 

Cuore, Italy, who identified four trends in risk assessment (RA). 806 

 807 

Microorganisms are deliberately introduced into the food chain to assist food 808 

production (e.g., to create FF) and to benefit animal and human health. RA involves 809 

hazard identification and characterization, exposure assessment, and risk 810 

characterization, but this system was designed with pathogens, not probiotics, in 811 

mind. Hence, adjustment is needed to enable the system to provide adequate 812 

assessment, for example, using dosage data from intervention studies rather than 813 

population exposure. 814 

 815 
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Trend #1: the process of RA is rapidly evolving 816 

Guidance on regulating microorganisms in food and feed has been rapidly evolving 817 

in Europe since 2005 due to the evolution of methodologies which have become 818 

increasingly complex since the advent of genomics. 819 

 820 

Trend #2: increased complexity of microbial RA 821 

The RA system for microorganisms combines taxonomy, genomics, a qualified 822 

presumption of safety (QPS), AMR, virulence, and end-use. QPS is a fast-track 823 

approach that reduces unnecessary extensive safety testing by utilizing the body of 824 

knowledge on the species plus a safety decision tree. It differs from the US system 825 

of GRAS, which is generally limited to a specific application made following a safety 826 

assessment (Franz et al., 2011). 827 

 828 

More than 100 microorganisms have been granted QPS status in Europe, but their 829 

evidence is still updated bi-annually to ensure safety. For new microorganisms, the 830 

decision tree is followed and if QPS is not given, a full safety assessment is required. 831 

Even for QPS microbes, evidence of acquired AMR means that no approval will be 832 

given since the food system should not add to the burden of AMR and enable these 833 

genes to be mobilized in the human or animal gut. In contrast, intrinsic AMR is not 834 

considered a safety concern if this is inherent to wild-type bacterial species.  835 

 836 

Trend #3: genomics is fundamentally changing RA approaches  837 

Some microorganisms have multiple characteristics ranging from pathogen to food 838 

culture, which taxonomy alone does not recognize; hence, genomic methods are 839 

needed. One example is Enterococcus faecium which can be a pathogenic, 840 
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commensal, food culture, or probiotic organism, depending on the clade. While 841 

EFSA has produced guidance on genomics (European Food Safety Authority [EFSA] 842 

2021), it refers to methods rather than purpose. In contrast, microbial RA is 843 

concerned with identification, genetic modification, and finding AMR genes, which 844 

suggests that the guidance on genomics needs updating. 845 

 846 

Genomic techniques provide precise information on microbial phylogenesis but add 847 

complexity, making combining old and new data harder. In the case of E. faecium, 848 

gene sequencing can enable specific AMR genes to be identified. However, it can 849 

also overturn previous taxonomy, as a study (Belloso Daza et al., 2021) concluded 850 

that clade B of E. faecium should be reassigned as Enterococcus lactis. Yet, while 851 

genomics may be suitable for identification, it still cannot tell us if microorganisms 852 

are safe. To do this, RA requires phenotypic testing based on determining a 853 

minimum inhibitory concentration of the potentially resistant gene and whole-genome 854 

sequencing to search for known AMR genes. In the example of E. faecium, whole-855 

gene sequencing found mobilizable AMR genes in a sample taken from ready-to-eat 856 

sausages (Belloso Daza et al., 2022), highlighting the need for constant vigilance. 857 

 858 

Yet, there remain shortcomings in using genomics to determine pathogenicity since 859 

genes for successful gut colonization could act to promote virulence in a pathogen or 860 

survivability in a probiotic. Also, the definition and application of “intrinsic resistance” 861 

are not absolute, and there is a non-alignment between international regulatory 862 

bodies. Hence, an evolving approach to RA is needed. 863 

 864 

Trend #4: new products and applications 865 

https://doi.org/10.1017/gmb.2023.4 Published online by Cambridge University Press

https://doi.org/10.1017/gmb.2023.4


Accepted Manuscript 

36 
 

This impacts RA because it extends the continuum from natural to synthetic 866 

microorganisms. Synthetic biology is the application of science, technology, and 867 

engineering to facilitate and accelerate the design, manufacture, and/or modification 868 

of genetic materials in living organisms (Scientific Committee on Emerging and 869 

Newly Identified Health Risks et al., 2014). As new microorganisms could be 870 

potentially indistinguishable from non-genetically modified versions, RA should be 871 

based on the nature of the final strain and not on the methodology used to get there. 872 

The EU is already considering how to regulate this area since genetically modified 873 

microorganisms are already present in non-EU markets. Another consideration is the 874 

risk assessment of non-viable cells used in the food supply, such as postbiotics, 875 

which could be treated like biomasses or novel foods. 876 

 877 

In summary, the regulatory system is still evolving to ensure proper RA of potentially 878 

useful microorganisms, aided by advancements in methodologies. 879 

 880 

The importance of the responder/non-responder issue for clinical trials 881 

RA and authorization of health claims depend on high-quality evidence. Yet, the gold 882 

standard RCT may not be the most appropriate for nutrition research, including trials 883 

of probiotics, argues Prof. Robert Jan Brummer from Örebro University, Sweden. 884 

 885 

In the hierarchy of medical evidence, the RCT is near the top, only surpassed by 886 

systematic reviews and meta-analyses of RCTs. While these types of studies 887 

undoubtedly work for medicine where drug compounds are standardized, relatively 888 

constant, and produce a large signal-to-noise ratio (i.e., the effect of the intervention 889 

compared with the effect of interpersonal variations), they may not be appropriate for 890 
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other health interventions which are not standardized, e.g., because they are natural 891 

foods or ingredients, or where subtle changes in health are seen in the long term. 892 

Hence, the RCT model only works effectively to provide evidence of efficacy where 893 

certain assumptions can be made. These are: 894 

 External validity – being able to generalize the findings of RCTs to a defined 895 

population; 896 

 Independence of effects – where the observed effect is most likely due to the 897 

intervention and not a confounding variable; 898 

 Adequate characterization of the intervention and placebo (Zeilstra et al., 899 

2018). 900 

 901 

These assumptions may not always be valid for nutritional interventions, such as 902 

dietary interventions or probiotics, which can often yield inconsistent results in RCTs, 903 

which are then amplified in meta-analyses. 904 

 905 

External validity 906 

To be clinically useful, nutritional interventions must work in a definable group of 907 

people (age, sex, health status, nutritional status) in a particular public health or 908 

hospital setting. Lack of external validity is one explanation for the widespread 909 

underuse in the routine practice of many treatments that were shown beneficial in 910 

trials and are recommended in guidelines (Rothwell 2006). Inter-individual variation 911 

in participant response is a barrier to external validity because, unlike 912 

pharmaceuticals, nutritional interventions often have subtle effects which can be 913 

overwhelmed by the background ‘noise’ created by many individual variations in 914 

clinical response. A larger sample size does not help since this often increases the 915 
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heterogeneity of the study population and inter-individual variation. One example is a 916 

hypertensive drug which would be expected to deliver a fall in systolic blood 917 

pressure of 10-15 mmHg (Paz et al., 2016), considerably greater in magnitude than 918 

the anticipated 4 mmHg fall from a 4g reduction in salt intake (He et al., 2013) which 919 

would be a significant dietary shift for the target population. Hence, in the presence 920 

of non-compliance and intra-individual variation, the dietary intervention must work 921 

harder than a pharmaceutical treatment to achieve a statistically significant result. 922 

 923 

Independence of effects 924 

It would be illogical to combine all brands of hypertensive drugs into one RCT. Yet, 925 

trials of probiotics often mix species and strains into one intervention, reducing the 926 

chances of a clear, unambiguous result. This is then compounded by systematic 927 

reviews and meta-analyses that pool studies using various strains. Different strains 928 

of probiotics have different clinical effects, making it necessary to understand the 929 

mode of action to select the correct outcome variable and patient group. It is also 930 

essential to control the potential for bias, particularly from the rest of the diet. 931 

 932 

Adequate characterization 933 

It is a fundamental error to assume that they are standardized because probiotics 934 

can be put into capsules like drugs. Probiotics are living organisms that evolve once 935 

they reach the recipient’s colon, depending on the available substrates provided by 936 

the diet, e.g., the amount and types of fermentable carbohydrates and proteins. This 937 

means that the same product does not imply the same treatment in every individual 938 

recipient; thus, in the case of probiotics, the idea that the treatment is well-defined 939 

may be questionable (Zeilstra et al., 2018). 940 
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 941 

Way forward  942 

Three concepts may be considered to address the issues of inter- and intra-943 

individual variation. Firstly, by considering responsive nutrition, which aims to target 944 

interventions by identifying likely responders through machine learning analysis of 945 

health, genetic, drug, and dietary data. This could create a phenotype for optimal 946 

responsiveness, which could help target probiotic interventions to those most likely 947 

to respond. Responsive nutrition differs from personal nutrition. The latter focuses on 948 

providing the best dietary intervention on an individual basis. Secondly, by trying to 949 

limit intra-individual variation as far as possible. This could be done by conducting 950 

many trials, on fewer people with a stable background pattern of the primary 951 

outcome measure, rather than one trial on many people with unspecified intra-952 

individual variation (Larsen et al., 2020). Thirdly, surrogate biomarkers can show 953 

short-term changes predictive of a health effect instead of medium-term disease 954 

markers, which other lifestyle factors may influence. One example is functional brain 955 

imaging which, in a 4-week RCT of probiotics (Rode et al., 2022), demonstrated 956 

significant changes in brain morphology and resting-state brain function linked to 957 

stress management of the brain. 958 

 959 

In summary, non-response and intra-individual variation hamper a clear 960 

understanding of the efficacy of probiotics, and we need to look beyond the classic 961 

RCT design to overcome this challenge. 962 

 963 

Development of the infant microbiota 964 
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Turning from foods back to the human body, Prof. Christoph Lacroix, from ETH 965 

Zurich, Switzerland, described the acquisition of the microbiome in infanthood and 966 

discussed how different lifestyle and environmental factors can influence which taxa 967 

thrive, hence, which functions are expressed. 968 

 969 

From the sterile environment of the womb, the infant's gut is rapidly colonized by 970 

pioneer microorganisms (Khan et al., 2015), evolving in terms of taxa and diversity 971 

over the first few years. This remains relatively stable until old age, when diversity 972 

declines. Modern techniques like metagenomics enable us to look at microbial 973 

function over the life course, which is more important than taxonomy. 974 

 975 

GM acquisition 976 

Initially dominated by LAB, the infant gut microbiome changes most rapidly between 977 

the ages of one and six months with the cessation of breast-feeding, rather than the 978 

introduction of solid food, correlating with maturation into an adult-type microbiota 979 

(Bäckhed et al., 2015). Building on this research, Roswall et al. (2021) conducted a 980 

longitudinal cohort of 471 healthy Swedish children to track the development of the 981 

GM from birth to five years, noting four discrete trajectories for different microbes. 982 

The greatest changes occurred in the first year of life, and by the age of 3-5 years, 983 

the child GM was closest to that of adults, although still evolving. 984 

 985 

Roswall et al. (2021) identified four major trajectories for individual genera in the 986 

developing gut microbiota of infants and young children, with some genera peaking 987 

at 4-12 months, others increasing rapidly between 4-12 months before stabilizing by 988 

3 years, and a final group increasing in relative abundance after 12 months and 989 
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continuing to increase until five years. These shifts were linked to the cessation of 990 

breast feeding, the introduction of solids, increased socialization outside the family 991 

and increased diet diversity. 992 

 993 

Both vertical (from the mother) and horizontal (from the birth environment) 994 

transmission determine which pioneer species colonize the post-natal gut. Factors 995 

include maternal diet and health, vaginal vs. Caesarean birth, skin-to-skin contact, 996 

breast or bottle feeding, and antibiotic use (Marques et al., 2010). Molecular 997 

methods have revealed the presence of more microorganisms in human milk than 998 

previously believed, such as skin bacteria, Bacteroidota phylum, and clostridia 999 

(Selma-Royo et al., 2022). Indeed, the bacterial diversity of human milk may even 1000 

exceed that of neonatal feces (Jost et al., 2013). However, this could be explained 1001 

by different population densities and structures and the limited resolution of the 1002 

sequencing methods. There is also evidence of bacterial translocation through the 1003 

entero-mammary pathway since similar strict anaerobe species and strains have 1004 

been found in maternal feces, breast milk, and infant feces (Perez et al., 2007). 1005 

 1006 

Beneficial role of microbes 1007 

A comprehensive study tracked the impact of breastfeeding on GM changes in 1008 

seven healthy neonates aged 4 to 30 days (Jost et al., 2012). Neonate feces were 1009 

dominated either by Bifidobacterium or Bacteroides sp. Strict anaerobes 1010 

outnumbered facultative anaerobes within the first days, which was earlier than 1011 

assumed, but major adult-type butyrate producers, such as Roseburia and 1012 

Faecalibacterium, were not detected. While most infant gut bacteria are lactate 1013 

producers from the main dietary carbohydrate lactose, some species must 1014 
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metabolize lactate, potentially toxic if allowed to accumulate, mainly into propionate 1015 

(Chassard et al., 2014). Sulfate-reducing bacteria can remove hydrogen, a 1016 

secondary metabolite produced by different taxa of the infant gut such as clostridia 1017 

and Veillonella that may be linked to bloating and colic.  1018 

 1019 

Such findings have led to the hypothesis that infants with colic may have more 1020 

bacteria producing hydrogen and/or fewer bacteria that can metabolize lactate and 1021 

hydrogen. This was demonstrated in a 2-year prospective cohort study of 40 infants, 1022 

including 8 with colic, which also found that peak lactate production occurred when 1023 

infants were 2-3 months (Pham et al., 2017). Further research revealed a switch 1024 

between the lactate-utilizer, hydrogen-producer Veillonella in the first year of life to 1025 

the lactate-utilizer butyrate-producer, Anaerobutyricum hallii, in the second year of 1026 

life, which was associated with weaning (Pham et al., 2022).  1027 

 1028 

This was tested further in a gnotobiotic model (Rocha et al., 2022) where rats were 1029 

inoculated with feces from healthy infants or those with colic. After milk formula 1030 

feeding, rats with colic-associated microbiota produced significantly more hydrogen 1031 

in feces and had a higher abundance of Veillonella than healthy controls. 1032 

Supplementation of the lactate-utilizer and propionate-producer Cutibacterium 1033 

avidum P279 to rats with the colic-associated microbiota reduced gut hydrogen 1034 

levels compared with animals receiving a placebo. The results confirm the benefit of 1035 

cross-feeding between bacteria in the infant's gut and suggest that targeted 1036 

probiotics could help manage colic in human infants. 1037 

 1038 
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In summary, these studies suggest a broad window of opportunity for dietary 1039 

interventions tailored to support the evolving infant GM. A good example is the 1040 

promotion of taxa involved in lactate and hydrogen cross-feeding to help address 1041 

infant colic. However, more research is needed to understand better the 1042 

mechanisms and functions of the infant GM, particularly from low- and middle-1043 

income countries.  1044 

 1045 

Microbiota composition from 1 till 100 1046 

Beyond infanthood, the GM continues to change, with implications for long-term 1047 

health, as discussed by Prof. Gaspar Pérez Martínez from the Institute of 1048 

Agrochemistry and Food Technology (CSIC), Spain. 1049 

 1050 

The microbiome clock 1051 

While the GM of infants and adults differ in species, diversity, and functionality, a 1052 

quantitative theory of intestinal aging remains elusive because there are no 1053 

recognised step changes in GM during adulthood. Some older adults have a GM 1054 

similar to younger people, and there is an overlap between clusters of signature 1055 

species linked to decades of life. 1056 

 1057 

In a study of 367 healthy Japanese volunteers (Odamaki et al., 2016) from 1058 

infanthood to very old age, bifidobacteria dominated in early life, but the relative 1059 

abundance of Actinomycetota (formerly the Actinobacteria) substantially declined 1060 

after weaning and was progressively replaced by Bacillota (formerly the Firmicutes). 1061 

A further change occurred around 70 years when increases were seen in the relative 1062 

abundance of Bacteroidota and Pseudomonadota while Bacillota declined. Using 1063 
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samples from 1165 adults, a machine learning model could predict a healthy 1064 

person’s age from their GM to an accuracy of fewer than 6 years. However, this did 1065 

not work for patients with T1D who exhibited microbiome age acceleration (Galkin et 1066 

al., 2020). In a different study (Bian et al., 2017) with 1000 healthy Chinese 1067 

volunteers, GM patterns showed remarkable similarities between healthy aged and 1068 

younger adults for overall GM composition, a fact observed in previous studies 1069 

(Odamaki et al., 2016). In this case, health was a better predictor of GM aging than 1070 

years of life. Interestingly, this study also revealed a stable diversity across all age 1071 

categories, with a shift in GM profiles around 19-24 years of age which could reflect 1072 

changes in hormones or lifestyles, e.g., going to university or the army. 1073 

 1074 

Factors affecting GM composition across life 1075 

Five factors were outlined: environment, diet, genetics, antibiotics, and health. 1076 

 1077 

Environment: Children exposed to less urbanized environments have a lower risk of 1078 

autoimmune conditions. Studies in Finnish and German children (Kirjavainen et al., 1079 

2019) found a reduced incidence of asthma in farm-raised children, with the indoor 1080 

dust of farmhouses having a lower abundance of Streptococcaceae. Asthma risk in 1081 

children who did not live on farms decreased as their home microbiota composition 1082 

became more like farm homes. Studies on tribal people have found a distinct and far 1083 

richer GM diversity compared to industrialized populations (Clemente et al., 2015; 1084 

Conteville et al., 2019), which could reflect the absence of antibiotics and differences 1085 

in physical activity, diet, and exposure to outdoor microorganisms. People who 1086 

exercise have a greater alpha diversity than sedentary people but few differences in 1087 

taxa. The largest difference is in the metabolomics profile since regular exercisers 1088 
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have higher fecal SCFAs and harbor a greater proportion of phyla that break down 1089 

carbohydrates, probably reflecting their habitual diets. 1090 

 1091 

Diet: the GM responds to diet as it determines available substrates. A multi-center 1092 

metagenomics study (Arumugam et al., 2011) found three distinct clusters of GM 1093 

composition associated with substrates rather than nationality. Subsequent studies 1094 

collapsed these into two distinctive groups correlated with animal fat consumption: 1095 

protein and simple sugars (Bacteroides group) or vegetables, complex 1096 

carbohydrates, and fiber (Prevotella group). This was seen in practice when the GM 1097 

was studied in people with different diets (De Filippis et al., 2016). Prevotellaceae 1098 

were more abundant with plant-based diets, while Bacteroidota were more abundant 1099 

in vegans and vegetarians than in omnivores. However, higher fecal SCFAs were 1100 

seen with high dietary compliance, even in omnivores, when split by adherence to 1101 

the Med diet. Changing the diet from meat-based to vegetarian, or vice-versa, can 1102 

alter the GM, but only while the diet is maintained. Habitual vegetarians return more 1103 

quickly to their baseline GM after resuming their usual diets (David et al., 2014). 1104 

Consuming a functional drink based on Cyperus esculentus L. (tiger nuts) also 1105 

shifted the GM pattern towards SCFA producers, but this depended on the baseline 1106 

microbiome of each individual (Selma-Royo et al., 2022). 1107 

 1108 

Genetics: A study of UK twins (Goodrich et al., 2016) uncovered familial hereditary 1109 

lineages with greater similarities within the Ruminococcaceae and Lachnospiraceae 1110 

families for monozygotic compared to dizygotic twins. An analysis of fecal samples 1111 

from 71 individuals found that the diversity and composition of bifidobacteria were 1112 

strongly associated with the histo-blood group ABH secretor/non-secretor status, 1113 
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which appears to be one of the host genetic determinants for GM composition 1114 

(Wacklin et al., 2011).  1115 

 1116 

Antibiotics: While having an overall positive influence on human health, antibiotics 1117 

nevertheless inflict ecological disaster on the GM, wiping out helpful species 1118 

alongside pathogens. The GM does regrow but typically does not achieve the same 1119 

balance of species, particularly in people taking repeated antibiotic courses. Some 1120 

individuals never recover their baseline GM (Chng et al., 2020). A SRMA (Duong et 1121 

al., 2022) of observational studies found an increased long-term risk of auto-immune 1122 

conditions and obesity in children given multiple antibiotic courses. 1123 

 1124 

Health: Certain conditions have an impact on the GM. Coeliac disease changes the 1125 

balance of GM species and increases diversity, while the time window between 1126 

seroconversion and T1D in genetically susceptible children is characterized by 1127 

reduced alpha diversity and a higher prevalence of species linked to inflammation 1128 

(Kostic et al., 2015). These observations fit with the broader theory of gut dysbiosis 1129 

affecting the etiology of several chronic diseases, which could also be bi-directional, 1130 

as demonstrated by the finding that sepsis induces low-grade inflammation and 1131 

oxidative stress in the gut via such as TNF-α and interleukin-1β. This adversely 1132 

changes GM balance since Reactive Oxygen Species have selective antibacterial 1133 

effects (Cernada et al., 2016). At the other end of the age spectrum, there are 1134 

associations between GM changes and the initiation of immunosenescence 1135 

(Candore et al., 2008). 1136 

 1137 

Gut microbiota changes in the young and old 1138 
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Continuing the theme of looking at society’s oldest people, Prof. Patrizia Brigidi, from 1139 

the University of Bologna, Italy, discussed the GM of centenarians using data on 1140 

individuals from four distinct age groups (young, elderly, centenarians, and semi-1141 

supercentenarians) living in the same geographical area of Italy (Biagi et al., 2016). 1142 

 1143 

Age is a key variable that impacts GM composition and function and represents an 1144 

adaptive trajectory across the human lifecycle (Rampelli et al., 2020). GM changes 1145 

provide the host with ecological services calibrated to each stage of life. For 1146 

example, the relative importance of vitamin biosynthesis, fermentation, RNA 1147 

degradation, and bile salt metabolism varies with age (Lynch & Pedersen 2016). In 1148 

particular, age-related changes in lifestyle and nutritional behavior, prescribed drug 1149 

use, changes in gut physiology and functionality, i.e., reduced intestinal motility and 1150 

increased intestinal permeability, impact on the GM composition and its crosstalk 1151 

with the host, nurturing inflammageing, a chronic low-grade inflammatory status 1152 

characteristic of the old age, immunosenescence and metabolic disorders. 1153 

 1154 

Healthy semi-super centenarians, aged 105-109 years, represent a good model for 1155 

studying healthy aging as they have survived for 20 years longer than their 1156 

demographic cohort and have somehow escaped the major chronic age-related 1157 

disorders and causes of mortality. The GM of this age group was compared with 1158 

three other sub-groups with mean ages of 100, 72.5, and 30.5 years based on 16S 1159 

rRNA amplicon sequencing analyses (Biagi et al., 2016). The GM composition in the 1160 

youngest and oldest groups could be clearly differentiated, with the middle age 1161 

groups having some overlap and biodiversity declining with age. A core of highly 1162 

prevalent bacteria, mostly belonging to Ruminococcaceae, Lachnospiraceae, and 1163 
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Bacteroidaceae families were detected whose abundance decreased during aging, 1164 

leaving space for the growth of subdominant species. 1165 

 1166 

Further research has observed that the GM of long-lived individuals is characterized 1167 

by a rearrangement in the Bacillota population, with a decline in Faecalibacterium 1168 

prausnitzii and enrichment in facultative anaerobes, notably pathobionts, which 1169 

correlates with an increase of the inflammatory status (Lynch & Pedersen 2016). 1170 

Similar findings have been reported from other longevity areas of the world (Ren et 1171 

al., 2021; Kim et al., 2019). However, the GM of the semi-supercentenarians had 1172 

greater enrichment of health-associated groups (e.g., Akkermansia, Bifidobacterium, 1173 

and Christensenellaceae); a key difference from the GM of centenarians. 1174 

 1175 

Metagenomics has been used to examine the functions of bacteria in the GM of 1176 

older people (Lynch & Pedersen 2016). This has revealed a rearrangement in 1177 

metabolic pathways related to carbohydrate and amino acid metabolism in 1178 

agreement with the loss of Eubacterium and Faecalibacterium and the increase of 1179 

Pseudomonadota sp. This shift from a saccharolytic to a proteolytic profile induces a 1180 

marked decrease in SCFA production and availability of tryptophan and an increase 1181 

in indolic metabolites, which correlate with cognitive impairment, inflammation, and 1182 

cancer. The aged GM was also enriched in microorganisms capable of generating 1183 

unique secondary bile acids, which could be involved in reducing the risk of infection 1184 

with pathobionts (Yuko Sato et al., 2021). Interestingly, compared with younger 1185 

individuals, the GM of the Italian elderly over 100 years had more genes for 1186 

xenobiotic metabolism, particularly for chemicals deriving from the industrial 1187 

manufacturing of many indoor products, such as synthetic fibers, resins, and 1188 
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synthetic leather (Lynch & Pedersen 2016). This could reflect an adaptive response 1189 

to increased exposure to these anthropic pollutants over a lifetime. 1190 

 1191 

Looking specifically at GM characteristics that could be a marker of longevity, 1192 

Christensenellaceae is worthy of further study as it is more abundant in long-lived 1193 

people independent of their culture, diet, and lifestyle (Kong et al., 2016; Tuikhar et 1194 

al., 2019). Research in different age groups has revealed that a greater abundance 1195 

of Christensenellaceae is associated with lower body mass index, visceral adipose 1196 

tissue and inflammation, more favorable lipid traits (lower total cholesterol, Apo B 1197 

levels, triglycerides), and higher levels of fecal SCFAs (Waters et al., 2019). Hence 1198 

Christensenellaceae could be a future candidate as probiotic. 1199 

 1200 

Dietary modification could also encourage the acquisition of beneficial species for 1201 

healthier aging. In the NU-AGE study, Ghosh et al. (2020) recruited 1250 healthy, 1202 

pre-frail adults aged 65-79 from five European countries and randomized them to a 1203 

12-month nutritional intervention consisting of a Med diet with vitamin D 1204 

supplementation versus a control diet. The GM was analyzed in 612 participants 1205 

before and after the intervention. Adherence to the intervention diet enriched specific 1206 

GM taxa that were positively associated with cognitive function markers and 1207 

negatively associated with frailty and inflammatory markers, including C-reactive 1208 

protein and interleukin-17. The diet-modulated GM changes were also associated 1209 

with increased SCFAs and lower production of secondary bile acids. 1210 

 1211 

In summary, age group separation of the GM composition is evident, and longevity 1212 

adaptation seems linked to the enrichment of health-associated GM species, 1213 
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including Akkermansia, Christensenellaceae, Bifidobacterium, and 1214 

Odoribacteraceae, involved in the establishment of new homeostasis. These 1215 

bacterial taxa could be promoted using dietary interventions to improve the 'health 1216 

span' of the elderly. 1217 

 1218 

Probiotics and the aging immune system 1219 

The final presentation of the Yakult International Symposium was given by Dr. 1220 

Caroline Childs at the University of Southampton, UK, who examined the role of the 1221 

GM in immunosenescence. 1222 

 1223 

How does the immune system age? 1224 

The thymus is responsible for manufacturing immune cells, such as T-cells, but this 1225 

ability declines sharply with age after the peak thymus activity in childhood. By age 1226 

50, active thymus tissue is significantly replaced with adipose cells, resulting in lower 1227 

production of naïve immune cells and a higher proportion of memory T-cells with a 1228 

low functional capacity. The function of immune cells in vitro correlates with clinical 1229 

outcomes, so it is no surprise that the coronavirus pandemic – representing a novel 1230 

immune challenge – disproportionately affected older populations. Aging is 1231 

characterized by chronic, low-level inflammation (inflammageing) and a greater risk 1232 

of morbidity and mortality. Older people are more likely to get infections, and their 1233 

immune system responds less effectively to these and vaccinations, e.g., only 30-1234 

50% of elderly adults gain protection from influenza vaccinations (Demicheli et al., 1235 

2018). 1236 

 1237 
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T-cells fall into two categories; cytotoxic T-cells, which fight infections, and helper T-1238 

cells which act like project managers. However, T-cell aging is not automatically 1239 

linked to chronological age. Some 70-year-olds may have the T-cell functionality of 1240 

30-year-olds, and vice versa (Kaczorowski et al., 2017), which correlates with the 1241 

findings noted by previous speakers describing the overlap in GM composition for 1242 

different age groups. Building on this point, a study of 178 older adults (Claesson et 1243 

al., 2012) found that the fecal microbiota composition clustered by diet and with 1244 

participants residing in care homes or the community. The care home GM was less 1245 

diverse and correlated significantly with measures of frailty, co-morbidity, and 1246 

inflammatory markers of inflammation. Interestingly, moving from the community to a 1247 

care setting changed the diet immediately, but it took around a year for the GM to 1248 

respond (O'Toole & Jeffery 2015). 1249 

 1250 

One key change in the aging GM is the shift away from Bifidobacterium (Arboleya et 1251 

al., 2016), a genus associated with immuno-modulatory properties. An in vitro study 1252 

(You & Yaqoob, 2012) found that exposure of human mononuclear cells to probiotics 1253 

from bifidobacteria and lactobacilli strains produced immunomodulatory effects, but 1254 

the response was also significantly influenced by the age of the volunteer. 1255 

 1256 

How can immune ageing be measured? 1257 

Flow cytometry can measure and differentiate immune cells from human samples 1258 

and determine immune age by looking at the relative proportions of naïve cells and 1259 

different types of memory cells, i.e., central, effector or terminally differentiated 1260 

effector. Accumulation of T EMRA cells is characteristic of aging. Other biomarkers 1261 

of cell ageing include the CD28 marker on T-cells, which helps to stabilise their 1262 
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interaction with B cells, which produce antibodies. CD28 is progressively lost with 1263 

aging while, in contrast, the CF57 marker, which is linked to the immune response to 1264 

viruses and cancer cells, appears on the T-cells and natural killer (NK) cells of older 1265 

adults. This is thought to indicate cell exhaustion. A study (Tae et al., 2015) in 1266 

patients the morning after having a myocardial infarction revealed that the frequency 1267 

of CD57 in their CD8 T-cell population positively correlated with cardiovascular 1268 

mortality 6 months later. In other research, CD57 was a marker of a poor NK cell 1269 

response to influenza vaccination in older subjects which could not be offset by 1270 

supplementation with a synbiotic containing B. longum (Przemska-Kosicka et al., 1271 

2018). 1272 

  1273 

Another marker of immune aging is T-cell receptor excision circles (TRECs). These 1274 

circles of DNA form when T-cells are created in the thymus and are exported to the 1275 

cell cytosol.   TRECs decline in concentration with each round of cell division as T-1276 

cells replicate and mature (Lang et al., 2011). Hence, one may see more TRECs in 1277 

the T cells of younger people and those with younger immune systems than in older 1278 

or immunosenescent people (Mitchell et al., 2010). Seropositivity to viruses which 1279 

disrupt immune function, such as cytomegalovirus or even SARS-Covid-19, is also a 1280 

helpful marker. 1281 

 1282 

Probiotics are beneficial for immune function as they lower the burden of certain 1283 

infections and reduce antibiotic use (Hao 2015), potentially saving health systems 1284 

millions of Euros (Lenoir-Wijnkoop et al., 2015). However, the data have a high level 1285 

of heterogeneity, lowering the overall evidence quality. A review of the impact of 1286 

probiotics, prebiotics, and synbiotics on immune response in older adults found 1287 
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evidence of improved vaccine responsiveness, NK cell activity and phagocytosis, 1288 

and a reduced incidence of infections (Childs & Calder, 2017). However, only two 1289 

studies used specific markers of immunosenescence, reporting increases in naïve T 1290 

cells and TRECs after probiotics, and a third of the studies were not randomized 1291 

controlled trials. 1292 

 1293 

A SRMA of six eligible trials (Gui et al., 2020) found that probiotic use ranging from 3 1294 

to 12 weeks significantly increased NK cell activity in healthy older adults but 1295 

concluded that the overall results were insufficiently convincing given the small 1296 

sample sizes and very large heterogeneity. A systematic review (Chenhuichen et al., 1297 

2022) of nine RCTs and one secondary analysis assessed a broader range of 1298 

parameters relating to immunity, metabolic health, GM, and cognitive function, 1299 

finding overall benefits for probiotics and prebiotics, although the risk of bias in 1300 

studies was considered high. Further studies should take account of immunological 1301 

age at baseline to reduce heterogeneity and utilize markers of immune cell aging 1302 

and function. 1303 

 1304 

Conclusions 1305 

The evidence for the role of the GM in acute and chronic human health is now 1306 

substantial, with indications that the influence of our microorganisms goes well 1307 

beyond the gut to include the immune system, metabolism, and brain. While aging 1308 

and genetics impact on the composition and diversity of the GM, it is nevertheless 1309 

clear that modifiable factors, such as diet, antibiotic use, exercise, and exposure to 1310 

outdoor-type microbes, may be more important for achieving microbiota eubiosis. 1311 

This provides people with the chance to adopt more gut-friendly lifestyles. Still, it also 1312 
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raises several challenges including gathering the proper evidence to ascertain which 1313 

microbiota interventions are right for which population groups, understanding the 1314 

mechanisms involved, developing effective probiotic and prebiotic products, and 1315 

ensuring that these are appropriately regulated. As outlined in this fascinating 1316 

symposium and summarised in Figure 1, there is now a tantalising opportunity to find 1317 

ways to live in harmony with our GM, which could offer widespread human health 1318 

benefits. 1319 

 1320 

INSERT FIGURE 1 1321 
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