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SUMMARY

Primary tumour volume evaluation has predictive value for estimating survival outcomes. Using volumetric data acquired by MRI in 
patients undergoing induction chemotherapy (IC) these outcomes were estimated before the radiotherapy course in head and neck cancer 
(HNC) patients. MRI performed before and after IC in 36 locally advanced HNC patients were analysed to measure primary tumour vol-
ume. The two volumes were correlated using the linear-log ratio (LLR) between the volume in the first MRI and the volume in the second. 
Cox’s proportional hazards models (CPHM) were defined for loco-regional control (LRC), disease-free survival (DFS) and overall survival 
(OS). Strict evaluation of the influence of volume delineation uncertainties on prediction of final outcomes has been defined. LLR showed 
good predictive value for all survival outcomes in CPHM. Predictive models for LRC and DFS at 24 months showed optimal discrimination 
and prediction capability. Evaluation of primary tumour volume variations in HNC after IC provides an example of modelling that can be 
easily used even for other adaptive treatment approaches. A complete assessment of uncertainties in covariates required for running models 

is a prerequisite to create reliable clinically models.
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RIASSUNTO

La valutazione del volume del tumore primitivo ha mostrato un valore predittivo per la stima dei risultati della sopravvivenza. Usando i 
dati volumetrici acquisiti con la Risonanza Magnetica (RM) nei pazienti sottoposti a chemioterapia di induzione (CI), tali risultati sono 
stati stimati nei pazienti con tumore del testa e collo, prima del trattamento radiante. Le immagini RM acquisite prima e dopo CI in 36 pa-
zienti con tumore avanzato della testa e del collo sono state analizzate per valutarne il volume del tumore primitivo. I due volumi sono stati 
correlati utilizzando la regressione lineare locale tra i volume valutati nelle immagini della prima e quelli della seconda RM. Sono stati 
definiti i modelli di rischio proporzionale di COX per la valutazione del controllo locoregionale, la sopravvivenza libera da malattia e la 
sopravvivenza globale. La regressione lineare locale ha mostrato un buon valore predittivo per tutti i risultati di sopravvivenza nei modelli 
di rischio proporzionale di COX. I modelli predittivi per il controllo locoregionale di malattia e la sopravvivenza libera da malattia a 24 
mesi ha mostrato una ottima discriminazione e capacità di previsione. La valutazione delle variazioni dei volumi dei tumori primitivi della 
testa e del collo dopo CI fornisce un esempio di modello che può essere facilmente utilizzato per altri approcci terapeutici. Una valutazione 
completa delle variabili nelle covariate è un prerequisito necessario per la creazione di modelli clinicamente attendibili.

PAROLE CHIAVE: Risonanza magnetica • Tumori della testa e del collo • Chemioterapia di induzione • Modello di sopravvivenza
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Introduction
Treatment of head-and-neck cancer (HNC) now requires 
complex multi-specialistic management and HNC types 
are typically characterised by wide heterogeneity of 
anatomical sites, primary treatment approaches and di-
agnostic pitfalls, the latter increasingly connected with 
procedures of optimisation of radiotherapy treatment 

planning 1-4. Treatment of HNC is mainly based on inte-
grating a chemoradiation approach 5-7, and in this context 
the use of induction chemotherapy (IC) has shown a con-
sistent number of clinical responses before the start of ra-
diotherapy 8. The role of this approach is still under debate 
because of unclear advantages in final survival outcomes 
after definitive radiochemotherapy (RTCT) compared to 
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treatment based only on concurrent RTCT 9. The individ-
ualisation of cancer treatment is an increasingly impor-
tant topic in the medical literature  10. Starting from this 
background, the use of IC provides the chance to analyse 
changes in tumour appearance, where imaging techniques 
can be evaluated moving towards adaptive radiotherapy 
strategies  11. Traditional tumour evaluation approaches, 
such as tumour volume delineation on simulation com-
puted tomography, have already proven to be consistent 
in terms of outcome correlations 12. The aim of this study 
was to evaluate the feasibility and potential outcome clas-
sification for HNC patients undergoing IC, by using MRI 
based primary tumour volume shrinking evaluation after 
IC. After modelling, survival outcomes on imaging data 
a nomogram followed by strict model evaluation are as-
sessed. This evaluation procedure is the main goal of this 
paper, being the base of further evaluations that can be 
extended to other adaptive treatment procedures.

Materials and methods

Patient characteristics
Thirty-six locally-advanced HNC patients were retro-
spectively analysed in our institution by selecting cases 
that underwent IC before the administration of definitive 
RTCT (34 patients) or before undergoing surgery (2 pa-
tients with oral cavity cancer, these latter underwent ad-
juvant RTCT after surgery). All patients gave informed 
consent for inclusion in the study. Main selection criteria 
were availability of complete on-site MRI diagnostics in 
patients with locally advanced HNC (stage III or IV, with-
out distant metastases). Patient staging, chemotherapy 
and radiotherapy details are summarised in Table I. All 
patients were evaluated using MRI before and after IC. 
After RTCT patients were evaluated by MRI at 1st follow-
up time to assess response to treatment. Subsequently, 
follow-up was routinely performed using CT, MRI and 
PET-CT to detect loco-regional or distant failures. 

Treatment details
IC was administered using a TPF chemotherapy regimen: 
taxotere 75 mg/m2 (day 1), cisplatin 75 mg/m2 (day 1) and 
5-flurouracil 750 mg/m2 in continuous infusion (days 1-4) 
every three weeks for 3 cycles. Radiotherapy was delivered 
using a linear accelerator, and the dose and technique are 
summarised in Table 1. Lymphatic target volumes for radia-
tion treatment were delineated according to Gregoire’s indi-
cations for neck-positive and post-operative necks 13. Con-
current cisplatin based chemotherapy (2 cycles at 100 mg/
m2 at the beginning of radiotherapy and after 3 weeks) was 
administered in 35 patients, while 1 patient received con-
current cetuximab at 250 mg/m2. The outcomes evaluated 
were loco-regional control (LRC), disease-free survival 
(DFS) and overall survival (OS). 

Magnetic resonance evaluation 
Volumetric evaluation of primary tumours was performed 
using OsiriX Imaging Software (http://www.osirix-view-
er.com): contours of primary lesions were manually out-
lined by two different radiologists who are expert in HNC 
imaging, in order to evaluate the impact of inter-observer 
differences in delineation. Volumes were delineated on 
axial T2w images, also using other sequences, mostly 
T1w images, before and after intravenous contrast injec-
tion, to better refine the delineation (Fig. 1). When both 
radiologists were satisfied with the outlines, tumour vol-
umes were finally calculated.

Statistical analysis
Statistical analysis was performed using R Statistical 
Software (R Core Team 2013. http://www.R-project.
org/). All statistical tests considered an alpha level of 5% 
to indicate statistical significance. The series of volumes 
delineated by each radiologist (labelled ‘a’ and ‘b’) be-

Table I. Summary of patient characteristics and RTCT treatment.

Patient characteristics Number (%)

Primary tumour site Oropharynx 15 (41.7)

Nasopharynx 14 (38.9)

Larynx 3 (8.3)

Oral cavity 2 (5.5)

Hypopharynx 1 (2.8)

Nasal cavity 1 (2.8)

Stage IV* 34 (94.4)

III 2 (5.6)

Dose [Gy]

PTV1  
(primary + margin)

70.2 33 (91.6)

68.4 1 (2.8)

64.8 1 (2.8)

50.4† 1 (2.8)

PTV2  
(positive lymphatic 
compartment)

64.8 15 (41.6)

61.2 2 (5.6)

59.4 16 (44.4)

50.4† 2 (5.6)

36 1 (2.8)

PTV3  
(elective lymph nodes)

64.8 2 (5.6)

59.4 23 (63.8)

50.4 9 (25)

36 1 (2.8)

30.6 1 (2.8)

RT technique IMRT 35 (97.2)

3D CRT 1 (2.8)

Concomitant chemotherapy CDDP 35 (97.2)

Cetuximab 1 (2.8)
* No distant metastases at diagnosis.
† One of the two post-operative patients was treated using a two volumes approach 
in CTV delineation, with maximum delivered dose 50.4 Gy. All treatments were 
delivered at 1.8 Gy per fraction.
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ity in delineation between the operators. Afterwards, two 
series of mean values of volumes for each diagnostic step 

were calculated ( , 
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and used to divide patients in subsets to calculate strati-
fied log-rank tests for survival outcomes. To define the 
relationship between volumes in the two diagnostic 
steps, two regression models were calculated, the first 
using linear regression between mV

2
 over mV

1
, and the 

second between mV
2
 over log(mV

1
). Considering the 

higher predictive power of the log-linear regression in 
describing the relationship between mV

2
 and mV

1
 (see 

results) a new score was calculated (Linear-Log-Ratio, 
LLR): 

and used in Cox’s proportional hazards model (CPHM) 
regression together with the values of mV

1
 and mV

2
 to 

find the best significant predictor for survival outcomes. 
Backward elimination process was used for determining 
the entry and removal of variables from the models with 

significance levels, respectively, of 0.05 and 0.15. After 
calculation of CPHMs, we tested the discrimination abil-
ity of the models using Harrell’s c-index 14 calculated by 
bootstrap analysis on 1000 of a randomly created data-
set based on the first. The prediction power of the models 
was defined using calibration plots drawn by resampling 
200 cases for each model and calculating the mean pre-
diction error as difference between observed - predicted 
outcome in the series 14. Considering the problem of in-
ter-subject (but also intra-subject) variations in volume 
delineation that arises from the literature in many ana-
tomical sites and using different delineation procedures 
or imaging modalities  15-24, a procedure to evaluate the 
susceptibility of the model to variations in the delineation 
was defined: we created a function of mV

1
 and mV

2
 that 

gives the value of punctual uncertainty using the concept 
of ‘gradient’ of a function in two variables. The chosen 
function for the analysis was DFS at 24 months, achieved 
by CPHM. Considering the appearance of the survival 
function at 24 months in a three-dimensional coordinates 
space (Fig.  2, DFS at 24  months) as a function of two 
variables (mV

1
 and mV

2
) linked by LLR, we can easily 

find portions of the surface where the slope of the function 
is higher, corresponding to values of survival prediction 
with high susceptibility to variability in volume deline-
ation. In order to provide a quantification of the value of 
this susceptibility the gradient of survival function was 

Fig. 1. Volumetric assessment of primary tumour volume. Squamous cell carcinoma of the oropharynx in a 73-year-old man. (a,d) Axial fat-saturated T2-weighted MR 
images. (b,e) Axial post-contrast T1-weighted fat-saturated MR images. (c,f) Coronal post-contrast T1-weighted fat-saturated MR images with 3D volumetric tumour 
reconstructions. Before induction chemotherapy (a,b,c): MR images show expansive/infiltrative tissue centred on the right glossopharyngeal fold, hyper-intense on T2-
weighted image (a) with slight and faint enhancement on post-contrast T1-weighted fat-saturated MR image (b). The lesion was manually outlined (green closed line in a) 
to obtain a volumetric reconstruction of the tumour (blue volume in c). After induction chemotherapy (d,e,f) MR images show significant volumetric reduction of the lesion.
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calculated using mV
1
 and mV

2
 as parameters of the func-

tion. Being:

 (1)

the value of survival function at time t (it can be used ei-
ther for LRC or DFS) with H

0
t the baseline hazard at cho-

sen time (in our case 24 months), _ the coefficient of the 
covariate calculated with CPHM (see Table  II), we first 
calculated the partial derivatives of S with respect to mV

1
 

and mV
2
 and gave a first order estimate of the variation of 

S as a function of mV
1
 and mV

2
:

 (2)

The result of this equation is function of mV
1
 and mV

2
 

only, and can be used to assess the sensitivity to error in 
volume delineation: it corresponds to the punctual maxi-
mum variation that survival function can show by chang-

ing the values of mV
1
 and mV

2
; looking at the 3D graph 

of survival function it is the module of the vector in one 
point, tangent to the direction of the highest steepness 
of the surface in such point. Using this method it is pos-
sible to determine both the predicted survival result and 
the level of uncertainty that matches the prediction given 
by the model. This last analysis was performed using 
Wolfram Mathematica® 9.0.1.0 (©1988-2013 Wolfram-
Research Inc. Champaign, IL). Finally, a nomogram for 
DFS to directly calculate the predicted outcome using the 
two measures of MRI tumour volume, before and after 
IC (mV

1
 and mV

2
), was created. It was delineated using 

Pynomo, a program to create nomograms using Python 
interpreter (http://www.pynomo.org).

Results

The two volume series delineated by each radiologist (la-
belled ‘a’ and ‘b’) before (V

1
a, V

1
b) and after (V

2
a, V

2
b) 

IC analysed using D’Agostino-Pearson test showed non-

Fig. 2. Plot of 3D surface showing DFS at 24 months as a function of mean tumour volume before (mV1) and after (mV2) induction chemotherapy: the slope of 
the surface can vary according to the values of the two volumes, being steeper in the left corner of the plot, where the values of mV1 and mV2 are close to zero.
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normal distribution (in all four series P < 0.0001). Thus, 
non-parametric tests were used to assess correlation be-
tween V

1
a vs V

1
b and V

2
a vs V

2
b (Spearman’s coefficient 

of rank correlation and Kendall’s Tau P < 0.0001 in both 
cases). These tests showed an optimal consistence in 
contouring procedure, and were not biased by different 
operators. All subsequent statistical analyses were car-
ried out using the mean value of volume measures before 
(mV

1
,) and after (mV

2
) IC. Each series of mean values 

was used to determine factors for performing stratified 
Kaplan Meier (KM) analysis for LRC, DFS and OS: us-
ing the median value of mV

1
 and mV

2
 as cut-off (thus 

dividing the population into equal subsets, each one with 
18 patients). 
The KM Logrank test for mV

1
 (cut-off: median 

= 12.9744 cc, range: 2.209 to 96.7385 cc) was not signif-
icant in all tested outcomes, while the same test for mV

2
 

(cut-off: median  = 4.2181  cc, range: 0 to 39.3675  cc) 
was always significant (LRC: P-value  =  0.0003, 
HR  =  8.9437, 95% CI  =  2.9196 to 27.3972; DFS: 
P = 0.0011, HR = 5.9193, 95% CI = 2.1952 to 15.9613; 
OS: P  =  0.0097, HR  =  5.7386, 95% CI  =  1.8458 to 
17.8412). In order to detect a correlation between mV

1
 

and mV
2
 two regression functions were calculated and 

compared: the first, using a straight linear regression (
), showed a significant overall P 

< 0.0001, b P < 0.0001, e P = 0.402 (n.s.), adjusted R2 
= 0.3796; the second, using a regression with log-trans-
formation of variable mV

1
, (

), showed a significant overall P < 0.0001, b P < 0.0001 
and also an e P = 0.00525 (meaning that there is a bet-
ter regression fit using log transformation rather than the 
simple correlation shown with lacking significance in the 
e term for the linear model) and finally a higher predictive 
power shown by higher adjusted R2 = 0.4329. 
Starting from this evidence, which links the concept of 
tumour regression with the biological assumption of frac-
tional killing due to chemotherapy administration 25 26, an 
assumption proven for fractionated radiotherapy  27, we 
considered the possibility to create three different CPHM 
using LRC, DFS and OS as outcome, and both values of 

the volumes (mV
1
 and mV

2
) together with the value of 

linear-log ratio (LLR) as covariates, being such covari-
ates dependent each other from the regression. Using the 
process of backward elimination of covariates we found 
a consistent significance for LLR that measures volume 
shrinkage against all checked survival outcomes, while 
mV

1
 and mV

2
 were no longer significant. 

The results of CPHM are summarised in Table II. In order 
to assess the reliability of the models Harrel’s c-index 14 
was calculated for each model. Using a bootstrapping pro-
cedure, over 1000 randomly resampled datasets, we pre-
vented the effect of overfitting by decreasing the value of 
the c-index: the value of optimism as defined by Harrel, 
performance of fitted model compared to that expected 
by chance 14, was always very low (Table II), showing an 
overall good discrimination performance of initially fit-
ted models. The calibration plots 28 of the models showed 
a small underestimation of the predicted outcomes with 
respect to the observed outcomes (Table II). 
Considering as sufficient the number of patients at risk 29 
at 24  months of survival (16  patients), with a median 
follow-up time of 27 months (range 6-46), we developed 
a nomogram for DFS, calculating predicted survival as a 
direct function of mV

1
 and mV

2
 at 24 months. For OS the 

median follow-up time was considered too short to ensure 
a clinically reliable model, despite the significance in the 
modelling procedure, while LRC was considered redun-
dant respect to the DSF evaluation in our case series. No 
stratification of patients according tumour primary site 
was performed, because of lack of significance in Kaplan-
Meier LRC, DFS and OS according to this factor. 
In Figure  3 the nomogram showing predicted DFS at 
24months is shown. The use of this nomogram does not 
require calculating sums, but only placing a ruler connect-
ing the value of the mV

1
 on the right with the value of the 

mV
2
 on the left. The predicted value of DFS at 24 months 

can be read on the oblique line showing the outcome pre-
diction where the connection intersects this line. An as-
pect usually not analysed using current predictive models 
evaluation and nomogram drawing procedures  30 is the 
need to assess the level of uncertainty (that is error) in 

Table II. Summary of Cox’s proportional hazards models for the LLR (Linear-Log-Ratio) covariate. All models and single LLR covariates in each model are 
largely significant (P-Values < 0.05 in all cases). The bootstrap over 1000 resampled series for each model allowed to calculate Harrell’s c-index decreased 
by the ‘optimism’ for preventing model overfitting in starting case series. The performance of models is very close to the original c-index in all cases, meaning 
high discriminating power. The evaluation of the mean error of prediction of survival outcomes at 24 months, through calibration on 200 resampled cases, is 
also provided.

Summary of Cox’s Proportional Hazards Regression models with unique significant covariate

Outcome Model P-value 
(Likelihood ratio 

test)

Standard 
error

P-value 
Pr(> |z|)

Standard 
error

Harrell’s
c-index (c)

Optimism (Op) Corrected 
Harrell’s
c-index

(c – Op/2)

Mean calibration 
error

(24 months 
prediction)

LRC 0.0013060 0.4271 0.000788 0.1272 0.7668 0.0105 0.7615 0.073

DFS 0.0006376 0.3427 0.000234 0.0931 0.7546 0.0034 0.7529 0.056

OS 0.0008928 0.4905 0.000771 0.1458 0.8000 0.0155 0.7923 0.062
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measures of covariates put into the model. Covariates as 
sex, age and similar, used within predictive models, usu-
ally do not need to be evaluated for errors in detecting the 
value (especially when considering simple dummy vari-
ables). Indeed, when managing variables such as the value 
of delineated volume, as in our study, or similar measures 
subject to some kind of detection error, a verification of 
the variability in outcome prediction due to uncertainties 
in covariates should always be considered: as cited previ-
ously, there is much evidence for great variability in vol-
ume delineation procedures, that can vary to according 
anatomical site, imaging modality etc. 15-24 31. 
This situation led us to use the procedure described in the 
previous section to assess the susceptibility of the model 
to variations in volume delineation using the gradient 
function derived from the survival functions calculated by 
CPHMs. The values of the gradient as a function of mV

1
 

and mV
2
 for DFS are shown in Figure 4. This plot directly 

shows the maximum variation of survival prediction for 
small changes in covariates. In every point of the plot, 
the error in the determination can be always considered 
lower than or equal to the value shown by curved lines. 
As shown in Figure 4, only for very small values of mV

1
 

(< 12.5  cc) and mV
2 

(< 6  cc) did the amount of deline-
ation error become significant in affecting the predicted 
outcome, a prediction that can vary more than 5% in a 

very small portion of the parameter space (area shown by 
the continuous line in the down-left corner).

Discussion and conclusions
The evaluation of response in patients undergoing to treat-
ment for different tumour types is one of the key-points in 
adaptive radiotherapy (ART), but the study of geometrical 
or volumetric changes in tumour volume and their subse-
quent impact on survival outcomes are still poor. 
MR and CT are non-invasive imaging techniques that have 
an important role in assessing response to therapy, evalu-
ating both morphological and “functional” parameters 32. 
These parameters, as described in the literature, can be 
useful tools in oncological management. In fact, it is pos-
sible to characterise tissue cellularity by evaluating the 
motion of water molecules on MR diffusion-weighted im-
aging (DWI) and to provide information regarding tumour 
perfusion and permeability with MR perfusion-weighted 
imaging (PWI) or perfusion-CT (PCT) studies. DWI is 
described to be a predictor of response to therapy and a 
good tool to differentiate between recurrent tumours from 
post-radiation changes 3 33-34. PWI may play a role in de-
tecting residual disease and predict patient outcomes 35 36. 
PCT, as well, may be helpful to differentiate between 
post-therapeutic changes and tumour recurrence, to moni-
tor patients after radiotherapy and/or chemotherapy and 
predict response after induction chemotherapy  37  38. In 
this study, we highlight the meaningful contribution of 
morphological MRI through the assessment of changes 
in tumour volume before and after CI to predict survival 
outcomes of HNC patients undergoing definitive RTCT.
This approach can be considered an assumption to be ad-
dressed by other types of strict radiotherapy ‘adaptive’ 
approaches. Indeed, despite the relative small number of 
cases, the relationship between survival outcomes and 
changes in tumour volumes shown by this analysis is con-
sistent in HNC patients undergoing CI.
The modelling of CPHM using a non-linear relationship 
between two observed volumes allows to overcome the 
problem of co-linearity 39 when analysing parameters that 
are related each other, as the two volumes are. Further-
more, the use of LLR implies identification of the effect of 
treatment on tumour volume, as calculated by considering 
the possibility of tumour shrinkage rather than no change 
or enlargement in tumour volume. From a clinical point 
of view, this correlation has stronger predictive value than 
using the simple values of mV

1
 and mV

2
, because as a con-

sequence of the assumptions of CPHM the two volumes 
should be independent in conditioning the outcome  40, 
but this assumption cannot be considered feasible in this 
model. The possibility to obtain a consistent ‘benchmark’ 
to refer the outcome prediction in a single predictor, being 
the definition of the LLR based on biological and clinical 
assumptions, confirms the result despite the small number 

Fig. 3. Nomogram for calculating disease-free survival (DFS) at 24 months. 
Two vertical lines show the values of mean tumour volume before (mV1) and 
after (mV2) induction chemotherapy. Using a ruler to draw a straight line con-
necting the values of the two volumes on the oblique outcome line the pre-
dicted survival probability can be directly read.
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of cases and heterogeneity of the patient cohort. In the 
literature, there are already examples of correlations be-
tween survival outcomes and tumour volume assessment, 
but in HNC have been limited to diagnosis 12 41-43. In cervi-
cal cancer, there is evidence of a semi-logarithmic rela-
tion between tumour volume at diagnosis and subsequent 
measures achieved by weekly MRI  44, and this relation 
was confirmed in our study for HNC after CI. As stat-
ed before, the semi-logarithmic volume reduction is the 
mathematical translation of the fractional killing phenom-
enon 25-27, due to constant proportion between the number 
of killed and surviving tumour cells for each therapeutic 
event that is the single radiotherapy fraction 44 or the sin-
gle chemotherapy administration as in our study. The real 
value of the modelling procedure described in this work is 
not in the predictive value of the model itself, which gives 
only the evaluation of the results for this single case series 
and not yet validated by any external dataset, but rather it 
is in the method chosen for data analysis and evaluation of 
the pitfalls hidden in the volume assessment. 
In this case, considering the small number of patients, bet-
ter performance could be achieved by increasing the num-
ber of cases or refitting the models by introducing other 
clinical covariates that can improve the predictive power 
of the survival functions. The results of this study imply 
that measurement of the tumour volume can be consid-
ered a good predictor for patients undergoing CI and the 
strong correlation among outcomes and LLR can be an 
helpful parameter to be evaluated in perspective studies 

with ‘adaptive’ approaches to treatment. Hopefully, a 
similar approach to evaluate measures achieved by dif-
ferent diagnostic procedures could be used to better refine 
the actual impact of survival models in describing out-
comes based on imaging studies.
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