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General Introduction
Translational cancer genomics

Concepts on cancer are increasingly complex. While some 30 years ago, cancer could be 

presented as a “genetic disease”, the most recent update on “Hallmarks of Cancer” include 

the 10 central hallmarks that describe various primarily genetically driven features and 

primary immunological/microenvironment-driven features. On top of these, entirely 

novel “enabling characteristics” that are neither directly genetic nor immunological/

stromal-related are now introduced (Hanahan 2022). These include differentiation-

regulation, non-mutational epigenetic re-programming, microbiomes and a role for 

senescent cells. Largely, these new concepts underpin the highly complex nature of 

oncogenesis. It will require much time and research until such insights find their way into 

clinical practice and impact on patient management. It is timely, however, to move the 

knowledge on tumor genomics into this phase to apply the aberrant genomic landscape 

to inform patient management on different levels, including diagnosis, prognosis, 

treatment stratification, choice of therapy and disease monitoring. The implementation 

and integration of genomics into routine clinical practice is called translational cancer 

genomics, which is the scope of this thesis and its application is explored in B-cell non-

Hodgkin lymphomas (B-NHL).

Characterization of the genomic tumor landscape by next-generation 
sequencing

Genome alterations in cancers can be classified in 3 main groups i) Point mutations include 

substitutions, insertions or deletions of one or more DNA nucleotides. ii) Chromosomal 

copy number aberrations (CNAs) encompass loss or gain of entire chromosomes or 

chromosomal segments. iii) Structural variants (SVs) are aberrantly rearranged structures 

of one or multiple chromosomes. Together these constitute the genomic tumor landscape. 

To retrieve a comprehensive inventory of the genomic landscape of tumor tissues, next-

generation sequencing (NGS) is the current method of choice (Goodwin, McPherson, and 

McCombie 2016). NGS allows detailed characterization of DNA through massive parallel 

sequencing, resulting in gigabases of generated nucleotide sequences per instrument 

run. Below, the various wet- and dry-lab prerequisites for clinical applications of NGS are 

briefly outlined.  

The starting point is DNA of sufficient quality. Since diagnostic biopsy samples are routinely 

fixed in buffered formalin and embedded in paraffin (FFPE), this material is the logical 

and inevitable source of tumor DNA. Only occasionally, part of diagnostic tumor samples 
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1may be fresh-frozen (FF) or processed to viable cell suspensions and biobanked as such. 

The rich annotation with clinical follow-up data of FFPE-based biobanks make these an 

invaluable resource to study cancer in retrospective studies, including clinical trials as 

well as in daily practice (Blow 2007). A major drawback of FFPE tissue as input material is 

suboptimal DNA quality and quantity, as opposed to FF tissue processing. Formalin fixation 

causes fragmentation and crosslinking of DNA, which causes artefacts on the nucleotide 

level (Do and Dobrovic 2015). These changes interfere with the detection of true mutations 

versus artifacts. Moreover, other factors related to FFPE tissue processing can further 

compromise the extraction-yield of intact DNA molecules, including fixation delay, variable 

formalin fixation methods and archival storage time (Hedegaard et al. 2014). Over the 

past years, we and others have therefore invested in optimizing laboratory techniques to 

overcome these challenges so that FFPE material can be used as a source of DNA for NGS 

to ultimately describe the genomic landscape of cancers.  

Computational approaches and challenges for somatic variant identification

In parallel with the developments for NGS of tumor tissues, the requirements for 

dedicated genomics data processing and interpretation have evolved, which is the 

field of bioinformatics. With much of developments happening within the open-source 

domain, a large amount of bioinformatic tools and pipelines to analyze and interpret 

cancer NGS data is available. It is the specialist role of the bioinformatician to guarantee 

reliable information in clinical translational cancer genomics. Irrespective of the NGS-

application (whole genome sequencing, whole exome sequencing or targeted panel 

sequencing) the challenges focus on 1) distinction between true mutation and artefact, 2) 

distinction between somatic and germline mutations, and 3) distinction between driver 

and passenger mutations. This is especially challenging in a clinical setting, since the DNA 

is more often than not derived from FFPE tissue, and where patient matched-normal 

sample is frequently not available as a reference. In the first phase of this PhD trajectory 

that have led to this thesis, these have been the major challenges to solve before 

meaningful studies could be performed that are described in the various chapters.

B-cell non-Hodgkin lymphoma

B-cell non-Hodgkin lymphomas (B-NHL) form a diverse group of neoplasms with 

respect to cell of origin (various B-cell developmental stages), oncogenesis and clinical 

features. This group of hematologic malignancies usually develop in the lymph nodes 

and other secondary lymphoid organs, where they form solid tumor masses or 

present as a leukemia. The 5th edition of the World Health Organization classification of 



Chapter 1  

10

lymphoid neoplasms recognizes more than 30 B-NHLs entities, which differ in terms of 

morphology, immunophenotype and genetics (Alaggio et al. 2022). The clinical behavior 

of these different lymphoma entities ranges from very indolent to highly aggressive. This 

difference in clinical outcome is exemplified in the 2 most frequently  diagnosed types of 

lymphomas, diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL), which 

are the main focus of this thesis.

Diffuse large B-cell lymphoma, not otherwise specified (DLBCL NOS, hereafter DLBCL) is the 

most frequent lymphoma entity in adults, which is characterized by an extensive biological 

and clinical heterogeneity. The clinical outcome of DLBCL ranges from 5-year survival of 

almost 90% to a mere 30%. Also, the clinical presentation is highly variable (e.g., nodal/

extranodal, specific sites). The cellular morphology differs enormously between cases 

as does the immunophenotype. Age at diagnosis, stage, performance status, number of 

extranodal sites and LDH levels, together as the so-called International Prognostic Index 

(IPI), form the strongest prognostic biomarkers (Shipp and Harrington 1993). IPI provides 

little if any biological information however. In view of the remarkably large heterogeneity 

in so many aspects, one might expect this to be reflected in distinct molecular classes that 

are dominated by very distinct genetic alterations. Recognizing such alterations has proven 

to be more difficult than anticipated. Since 2018, NGS-based studies have initiated a new 

phase in DLBCL classification. The main clinical challenges in DLBCL are to reliably predict 

patient outcome at diagnosis and following therapy, and to find targetable features. Both 

lines of information can contribute to personalized treatment of DLBCL patients. To which 

extent genomic profiling may contribute to these pertinent questions has been the starting 

point for studies on DLBCL described in this thesis. 

Follicular lymphoma (FL), the second most frequent lymphoma entity, is an indolent disease 

with the majority of patients (~80%) showing long survival, with a median overall survival of 

more than 10 years (Tan et al. 2013). FL is characterized by frequent relapses with variable 

remission durations, but these do not necessarily impact on overall survival. However, 

approximately 20% of FL patients have a poor outcome and die within the first few years 

after diagnosis, largely due to histological transformation or refractory disease (Casulo 

et al. 2015). Similarly to DLBCL, the primary prognostic tool is based on clinical factors, 

captured in the Follicular Lymphoma International Prognostic Index (FLIPI; Solal-Céligny et 

al. 2004). However, the FLIPI cannot adequately predict whether or when individual patients 

will progress to the point where treatment is required, which shows that the biological 

and clinical behavior of FL is likely determined by a more complex interaction between 

tumor genetics, microenvironment and patient characteristics. Immunophenotypically, FL 
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1is characterized by a distinct phenotype related to germinal center B-cells (CD10, BCL6, 

AID and others). The characteristic initiating genetic alteration is the t(14;18) translocation 

involving the IGH and BCL2 genes, that results in overexpression of the anti-apoptotic BCL2 

protein (de Jong 2005). The translocation can be found in over 90% of the cases. The fact 

that this translocation is also observed in healthy individuals, supports the notion that 

multiple genetic alterations are required for the development of FL (Limpens et al. 1995). 

In the last decade, large-scale NGS-based studies have elucidated much of the genetic 

landscape of FL, but their prognostic impact remained unclear (Pasqualucci et al. 2014; 

Okosun et al. 2014). Besides genetic alterations, the tumor microenvironment (TME) has 

been shown to play a complementary important role in FL through the crosstalk between 

malignant B cells and non-malignant immune and stromal cells (Dave et al. 2004; Glas et 

al. 2005). The need for improved prognostic models, that involve genetic and TME factors, 

outline the background of the studies on FL described in this thesis.

Primary HHV8-negative effusion-based lymphoma is a rare and particularly indolently 

behaving B-NHL included in this thesis. As a consequence of its rarity, little is known 

about its tumor genomic landscape. Insight in the genomic features that drive this tumor 

entity may give first clues towards the biology of this indolent B-NHL entity and give clues 

towards the heterogenic behavior of FL and DLBCL.

Aims of this Thesis
To improve personalized management of DLBCL and FL, upfront risk-stratification with 

identification of specific high-risk and low-risk patients is critical. Improved and reliable 

tools for patient stratification provide information to avoid overtreatment of low-risk 

patients and to prioritize alternative, possibly more effective approaches in high-risk 

patients.  The required translational genomic studies form the scope of this thesis, which 

is approached through the following two aims: 

1. To develop a comprehensive assay for simultaneous screening of all three 

types of genomic alterations using a limited amount of input DNA derived 

from FFPE biopsy samples without the need of matched normal control DNA, 

optimized to be implemented in clinical practice for lymphoma diagnostics.

2. To improve our understanding of the biological basis of clinical heterogeneity 

of B-NHL and thereby enable improved risk stratification for DLBCL and FL 

patients. We intend to achieve this by applying the assays developed under 

aim 1, to large, selected patient cohorts of DLBCL and FL.
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Abstract
Diffuse large B-cell lymphoma (DLBCL) is a widely heterogeneous disease in presentation, 

treatment response and outcome that results from a broad biological heterogeneity. 

Various stratification approaches have been proposed over time but failed to sufficiently 

capture the heterogeneous biology and behavior of the disease in a clinically relevant 

manner. The most recent DNA-based genomic subtyping studies are a major step forward 

by offering a level of refinement that could serve as a basis for exploration of personalized 

and targeted treatment for the years to come. To enable consistent trial designs and 

allow meaningful comparisons between studies, harmonization of the currently available 

knowledge into a single genomic classification widely applicable in daily practice is pivotal. 

In this review, we investigate potential avenues for harmonization of the presently 

available genomic subtypes of DLBCL inspired by consensus molecular classifications 

achieved for other malignancies. Finally, suggestions for laboratory techniques and 

infrastructure required for successful clinical implementation are described. 
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Introduction 
Molecular diagnostics of cancer has entered a new era, propelled by advances in omics- 

and bioinformatic technologies that provide a new layer of characteristics for tumor 

classification. In general, current state-of-the-art diagnostic pathology categorizes 

tumors using phenotypic macro- and microscopic and immunohistochemical (IHC) 

characteristics, combined with molecular assays for single or limited numbers of markers 

like PCR, and fluorescent in situ hybridization (FISH). Analyses of highly complex omics 

data by bioinformatic technologies have identified molecular patterns and pathways 

that underly biologically distinct, and thereby newly recognized categories. Vice versa, 

accepted diagnostics distinct categories may proof to be molecularly so closely related 

they may even be combined into a single entity. 

Diffuse large B-cell lymphoma (DLBCL), the most prevalent type of non-Hodgkin lymphoma 

and the focus of this review, is characterized by a complex, heterogeneous tumor biology 

that is reflected in clinical heterogeneity (1). This is evident from a wide outcome spectrum 

with cure for 60% of patients treated with standard immune-chemotherapy (R-CHOP) 

and disease progression for the other 40% of which the far majority eventually succumbs 

due to relapsing and/or refractory disease (2, 3). Since 2000, omics information started 

to contribute layers of comprehensive biological information to the diagnosis of DLBCL 

(4). At that time, RNA expression profiling by means of microarray analysis followed by 

unsupervised clustering revealed a relatively simple dichotomous distinction based on 

cell-of-origin (COO) (5). For universal application in daily clinical practice, this distinction 

was translated into various algorithms that relied on classic immunohistochemistry 

(IHC) assay data rather than complex RNA analytics. This undoubtedly aided to have 

DLBCL COO classification to be included in the updated 4th edition of the World Health 

Organization (WHO) Classification for Hematolymphoid Malignancies in 2016 (6). 

Nonetheless, it was never widely applied outside clinical trials, largely since the clinical 

implications ultimately proved to be limited (7–9). Almost 20 years after the RNA-based 

COO classification concept, several independent studies proposed DNA-based subtyping 

by next-generation sequencing (NGS) as an alternative means to capture the biological 

heterogeneity of DLBCL and to supersede or complement COO classification (10– 13). 

The different DNA-subtyping studies bear significant similarities, but also differ in some a 

priori concepts, applied technologies, bioinformatical approaches and ultimately in part in 

recognized genomic subtypes (14, 15). These differences preclude uniform classification, 

which is a quintessential step towards clinical implementation and essential to perform 

meaningful clinical trials (16–18). 
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Molecular classifications of DLBCL 
Classifications based on RNA-expression 

The more than 20-year-old RNA-based COO classification recognizes 2 major molecularly 

distinct classes considered to reflect different stages of B-cell differentiation; activated 

B-cell (ABC) and germinal center B-cell (GCB) while a small group of patients remains 

‘unclassified’. Both in the primary discovery studies and various subsequent validation 

studies, patients with a GCB-type DLBCL consistently showed a better prognosis 

under guideline therapy than patients with an ABC-type DLBCL (4). The differential 

clinical outcomes coupled with distinctive underlying biology served as a justification 

for differential treatment. In the years that followed it became clear however that the 

complex and heterogeneous biology of DLBCL was not fully captured by this simple 

dichotomous classification (5). In particular, phase 2 and phase 3 clinical trials that 

either used COO as an inclusion parameter, or were post-hoc analyzed based on COO 

class, failed to demonstrate differential improvement of outcome for patients receiving 

experimental, targeted treatment alternatives (7, 8, 19). 

This does however not imply that RNA-based information would not provide essential 

information to dissect DLBCL biology, as specific host-immune response signatures could 

already be identified in the early 2000s (20). Most recently, deconvolution algorithms using 

known cell type specific RNA signatures to computationally infer cellular components 

from bulk RNA data have allowed to further dissect information on tumor features as 

well as non-malignant tumor immune microenvironment (TME) features. Thereby, the 

original GCB class was further divided into three to four differentiation phases (germinal 

center, dark zone, precursor memory B-cell, light zone) and ABC into two phases (pre-

plasmablast, plasmablast/ plasmacell). Hence, TME analysis from RNA expression data 

provided complementary signatures that could further and largely independently 

describe DLBCL biology in a clinically meaningful manner (21). 

DLBCL defining DNA-alterations and subtyping approaches 

The first larger DNA-based next-generation sequencing (NGS) studies for DLBCL that 

were undertaken revealed a spectrum of mutations, numerical chromosomal copy 

number aberrations (CNAs) and translocations that were largely characteristic for 

either of the RNA expression-based COO classes (22–27). For example, mutations in the 

chromatin modifying genes CREBBP, KMT2D and EZH2, were described as characteristic of 

GCB-type DLBCL and chromosome 18q gain and MYD88 mutations characteristic of ABC-

type DLBCL. Apart from these few COO-characteristic DNA alterations, the majority was 
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shown to be only limitedly overrepresented in either class, explanatory for the extensive 

genetic heterogeneity of DLBCL. 

In 2018, research groups from the National Cancer Institute (NCI) and the Dana Farber 

Cancer Institute (DFCI) independently and practically simultaneously proposed DNA-

based subtyping approaches based on whole exome sequencing (WES) (1, 10, 11). The NCI 

group made a first step towards harmonization of the two approaches by, like DFCI, also 

including CNAs to their classification which resulted in the LymphGen algorithm (12). The 

DFCI- and NCI studies included retrospectively collected patient cohorts and identified 5- 

and 7 genomic subtypes, respectively. Encouraging is that despite the different cohorts 

and bioinformatical approaches, both defining features and the resulting subtypes 

are largely overlapping (Figure 1 and Box 1). Other groups, with other cohorts using 

overlapping bioinformatical approaches have been able to reproduce these subtypes by 

and large (13, 31–33), including unpublished results by the authors of this review. This 

all provides confidence that a DNA-based characterization of DLBCL has the potential to 

disentangle the biological heterogeneity that underlies DLBCL’s clinical heterogeneity. 
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Clustering
DFCI’s NMF

Classification
NCI’s LymphGen

C0 n=12(4%)

C1 n=56(18%)

C2 n=66(22%)

C3 n=55(18%)

C4 n=51(17%)

C5 n=64(21%)

A53 n=38(12%)

BN2 n=28(9%)

EZB n=37(12%)

MCD n=22(7%)

N1 n=3(1%)

Other n=164(54%)

ST2 n=12(4%)

Figure 1. Sankey diagram comparing the two DLBCL subtypes. A Sankey diagram was constructed 
to illustrate how the LymphGen (12) and NMF (10) subtyping systems compare, as described in Box 
1. Therefore the NGS data of 304 diffuse large B-cell lymphoma (DLBCL) cases published by the 
Dana Farber Cancer Institute (DFCI) (10) was used as input. Left stage: Clustering by means of non-
negative matrix factorization (NMF). Right stage: Classification by means of LymphGen algorithm. 
Flows between the subtypes resemble DLBCL cases and are labelled according to their molecular 
counterpart; C1/BN2, purple; C2/A53, blue; C3/EZB, orange; C4/ST2, green; C5/MCD, red; samples 
not assigned to a cluster (NMF, C0) or unclassified (LymphGen, Other) are in gray. Each subtype with 
numbers of samples (n) and percentage of total (=304). 
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Box 1 Comparison of the LymphGen and NMF subtyping systems. 
The correspondence between the NCI’s LymphGen and DFCI’s NMF subtypes is 75% based on the 
63.1% of patients classified by the LymphGen algorithm (12). If also the LymphGen unclassified 
samples are considered, the overall agreement between the two subtyping systems is around 50%. 
Approaches: Both studies performed comprehensive genomic profiling to detect somatic mutations, 
CNAs and translocations. Because of the lack of matched normal tissue for most samples, both 
studies applied custom computational pre-processing techniques to eliminate sequencing artifacts 
and distinguish somatic and germline variations. The DFCI group performed WES on a series of tissue 
biopsies of 304 patients with primary DLBCL. Samples were from 4 different trials and cohorts, of 
which 55% were derived from FFPE tissue, and 44% had matched-normal tissue availability (10). 
The NCI group performed WES on a series of fresh-frozen DLBCL tissue biopsies of 574 patients for 
which 96.5% were primary DLBCL tissues and the other 3.5% from relapsed or refractory, without 
matched-normal tissue (12). Below is a short summary of the most defining features which the NCI 
and DFCI proposed subtypes have in common. For a more comprehensive overview on details of 
their differences and commonalities we refer to a recent review by Crombie et al. (28). 

i. The C1 subtype recognized by DFCIs NMF algorithm finds its analogue in the BN2 subtype 
recognized by NCIs LymphGen algorithm. Combined, the two algorithms determined 
21 defining genetic alterations, of which eight overlap. Overlapping genes include BCL6 
translocations, alterations in NOTCH2 signalling genes and mutations targeting the NF-kB 
pathway. Furthermore, the C1/BN2 subtype is enriched for, but not restricted to ABC-type, 
and shows a favorable outcome. The C1/BN2 alterations form a genetic basis of immune 
evasion corresponding to mutations seen in marginal zone lymphoma. Non-overlapping 
genes include mutations of B2M, FAS, HLA-B and translocations of PD-1 ligands. 
ii. The NMF-C2 subtype is analogues to the LymphGen-A53 subtype. Both have characteristic 
TP53 inactivation, and a high degree of genome instability as reflected by the prominence of 
genome-wide CNAs. This subtype is not significantly enriched for either of the two COO types, 
which underpins that the original COO dichotomy was indeed an oversimplification of DLBCL 
biology. Overall survival of this C2/A53 subtype under R-CHOP treatment is unfavorable. A 
notable difference between the two subtypes is the high number of discordant subtype-
defining features (36 from 41), including driver alterations such as chromosomal deletion of 
the CDKN2A locus (9p.21). 
iii. The NMF-C3 subtype is analogues to the LymphGen-EZB subtype, with a relatively high 
concordance of subtype-defining alterations (10 out of 18); including translocations of BCL2, 
and mutations in chromatin modifying genes. Discordant features include amplification of 
the REL locus (2p16.1) and mutations of FAS. The C3/EZB subtype represents classic GCB-
type DLBCLs, and the genetic features are to a large extent alike follicular lymphoma (FL), 
which suggest that these DLBCLs represent transformed FL (29). Clinically, C3/EZB subtype 
tumors are considered of most high risk within the GCB-type of DLBCLs. Notably, also the 
RNA-based DHITSig is enriched in this subtype and used to further subdivide EZB. 
iv. The NMF-C4 subtype is analogous to the LymphGen-ST2 subtype. C4/ST2 subtype defining 
alterations affect BCR/PI3K signalling, the JAK/STAT pathway, and histone genes. Most of 
these DLBCLs belong to the GCB-type with favorable outcome. Few alterations linked to 
this subtype are concordant between the two classification systems (6 out of 24). The less 
defined nature of this subtype is further underpinned by a recent study suggesting that this 
subtype may be further subdivided into two subtypes with divergent biology: a TET2/SGK1 
and a SOCS1/SGK1 subtype (13). 
v. The NMF-C5 subtype is analogues to the LymphGen-MCD subtype. Nine of the 24 
characteristic alterations overlap which include mutations in genes associated with extranodal 
involvement (MYD88, CD79B, TBL1XR1). This C5/MCD subtype is highly enriched for ABC-
type DLBCLs and is the subtype with the least favorable survival under R-CHOP treatment. 
Discordant alterations include other markers of immune evasion (mutations of HLA-B and 
translocations of PD-1 ligands) and copy number gains of chromosomal arms 3q and 18q. 
vi. Finally, the LymphGen classification describes the N1 subtype which is characterized by 
NOTCH1 mutations. This subtype occurs in less than 2% of DLBCLs Figure 1 and has the worst 
survival among the LymphGen subtypes. This subtype is not recognized by the NMF algorithm 
with the DFCI cohort. Also, when we extend the DFCI cohort with another 500 DLBCLs treated 
with R-CHOP, the NMF algorithm still does not recognize this class (authors unpublished results). 
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The bioinformatic approaches of the current DNA-based subtyping systems 
for DLBCL 

The DFCI group used unsupervised clustering combined with alteration-centric features 

(Box 2). Driver alterations were discriminated from passengers, thereby reducing the 

genetic dataset to 158 features. Non-negative matrix factorization (NMF), an unsupervised 

clustering algorithm that detects patterns of co-occurring features and assigns a subtype 

to each included tumor, was used. The number of clusters to be identified was predefined 

between 4 and 10, which is actually an arbitrary choice. The NMF algorithm identified the 

optimal stability of clusters to be represented by 5 DLBCL groups of similar sizes, which 

the authors labelled as C1 to C5. 

The NCI group used semi-supervised clustering combined with gene-centric features 

(Box 2). The prior knowledge given were four predefined classes, each composed of 1 or 

2 specific DNA “seed” alterations: MCD (seed is co-mutation of CD79B and MYD88L265P), 

BN2 (seed is NOTCH2 mutation or BCL6 translocation), N1 (seed is NOTCH1 mutation) 

and EZB (seed is EZH2 mutation or BCL2 translocation). Finally, the algorithm selected 

the additional genomic features that had the strongest association with the four classes 

through an iterative approach. All patient samples were included for classification with 

this 4-class algorithm, yet of the entire cohort, only 46% of cases could be assigned (11). 

In the remaining 54% of cases in the NCI cohort recurrent alterations of TP53 (25%), TET2 

(10%) and SGK1 (6.9%) were identified. This prompted the NCI group to refine and extend 

the four classes with two additional classes: A53 (seed is mutation and/or CNA of TP53) and 

ST2 (seed is mutations of SGK1 and TET2), resulting in six seed classes (12). Subsequently, 

a Bayesian predictor model titled “LymphGen” was developed, which calculates for each 

individual tumor the subtype probabilities for each of the six classes based on its genetic 

alterations. Tumors designated as “core” tumors were defined as being attributed to 

one class with a probability score of >90%. Consequently, the Bayesian predictor allows 

tumors to be assigned to multiple classes. Those with a probability score greater than 

90% for more than one class are the so called “genetically composite” tumors. Tumors 

with a probability score of 50%-90% for one single class were termed “extended” class 

members. Tumors with few subtype-specific genetic alterations were left unclassified. 

Thereby, the then 6-class LymphGen algorithm assigned 63.1% of cases of the NCI cohort 

(12). Later, the RNA expression-based MYC double-hit signature (DHITSig), previously 

developed by others (34), was added as a surrogate for MYC translocation status to split 

the EZB class in MYC positive and MYC negative cases. 
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Box 2 Genome feature definition and subtyping algorithms.
The two proposed DNA-based subtyping systems differ in their bioinformatic approaches for i) 
genomic feature definition, and ii) subtype identification (10, 12): 

i. To define genomic features a gene-centric approach can be applied that combines all DNA 
alterations that impact the same gene into 1 feature, independent of whether they are a 
mutation, translocation or CNA. For example, a point-mutation of CDKN2A and a deletion 
of the CDKN2A-locus 9p.21 would be recognized as 1 feature. Alternatively, an alteration-
centric approach regards each DNA alteration type separately, independent of their location 
in the genome. In the example of CDKN2A, the mutation and 9p.21 deletion are regarded as 
two separate features. 
ii. Also machine learning algorithms for patient subtyping can generally be divided in 2 main 
approaches, supervised or unsupervised (30). The supervised approach uses predefined 
classes to construct a classification rule from the features. An unsupervised approach 
leaves it to the algorithm to identify a number of subtypes that are composed of feature 
characteristics prioritized by the algorithm. Semi-supervised learning would be where some 
prior knowledge on classes and or features is given. 

Critical evaluation of the current subtyping approaches for DLBCL 

Despite the different choices in feature identification and machine learning algorithms 
(Box 2), the NCI and DFCI groups recognize a similar and extensive underlying biological 
heterogeneity of DLBCL. Some subtypes are already more similar than others. For 
example LymphGens MCD/NMF C5, LymphGen A53/NMF C2 and LymphGen EZB/NMF C3 
are already relatively consistently defined. An important difference is that the LymphGen 
algorithm does only assign 63.1% of patients to any of their predefined subtypes, whereas 
the DFCIs NMF algorithm defines a number of subtypes to which 100% of the samples in 
the cohort are assigned. The N1 subtype is the rarest subtype and is only recognized by 
the NCI with the NOTCH1 mutation seed given to the LymphGen algorithm (Box 1). 

A small fraction of DLBCL patients (<2%) carry NOTCH1 mutations which infers potential 
specific sensitivity to Ibrutinib, a Bruton’s tyrosine kinase (BTK) inhibitor. Due to its low 
frequency, the N1 subtype is not recognized using unsupervised techniques in relatively 
small series. The size of the currently studied cohorts has been too small, hence 
underpowered, to detect such rare genomic subtypes by unsupervised analysis. Unknown 
small genomic subtypes can only get recognized once the sample size is sufficiently 
large, as exemplified by Curtis et al. for breast cancer (35). Rare subtypes like N1 may 
be characterized by very specific biological characteristics that make them uniquely 
targetable with specific potent inhibitors and thereby highly relevant to be recognized. 
As an example from another cancer entity, in about 1% of metastatic colorectal cancers 
the ERBB2 oncogene on chromosome 17q is amplified, which can be effectively targeted 
by trastuzumab and neratinib and results in high response rates in these tumors (36–38). 
Likewise, 4-5% of non-small-cell lung cancers have a translocation of the ALK gene, which 
can be effectively targeted by the ALK inhibitor crizotinib (39). 
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Not recognized by either NCI or DFCI are the actual high- grade B-cell lymphoma (HGBCL), 

B-cell lymphomas with MYC translocation together with either BCL2 and/or BCL6 

translocation (double hit/triple hit). Unsupervised NMF clustering theoretically might be 

able to recognize this group as a subtype but, like the N1 subtype, it may have remained 

undetected as a result of the limited number of MYC-translocation positive DLBCLs in the 

DFCI dataset. The DHITSig signature used by the NCI is a surrogate marker to recognize a 

MYC subtype and troublesome for various reasons. First it is not DNA alteration derived 

and requires a different assay, namely RNA expression analysis. Second, the name of this 

signature is deceiving since it implies a genetic context of HGBCL, whereas only 64% of 

DHITSig-positive GCB- type DLBCLs actually carry a MYC translocation and 52% are actual 

double hit/triple hit DLBCLs (34). Third, also other lymphoma classes besides HGBCL 

double hit/triple hit such as Burkitt lymphoma score positive for DHITSig. This RNA DHIT 

signature is thus not specific for either MYC translocation or HGBCL (40, 41). 

Besides the choice of subtyping algorithms, the NCI gene-centric versus DFCI alteration-

centric choices for genetic features deserve attention (Box 2). The easiest solved are the 

focal chromosomal CNAs, aberrations smaller than 3Mb (42) which only encompass one 

or few genes, and can therefore be combined in a gene-centric fashion (43). The choice 

between alteration- or gene- centric is not obvious for the larger-scale chromosomal 

CNAs since they harbor hundreds of genes. Rather than rationalizing a choice between a 

gene-or alteration-centric approach, the machine learning algorithms can be offered data 

processed in either manner and side-by-side evaluated for best subtyping performance. 

Although the unsupervised clustering choice is an elegant data-driven approach to 

identify subtypes (17, 44, 45), in the end a classifier, like LymphGen, will need to be built 

to diagnose individual patients in daily clinical practice, which dictates another step 

towards harmonization. 

Towards a unifying classification for DLBCL; Lessons 
learned from other tumor types 
Two steps towards clinical implementation of a DNA-based classification 
of DLBCL 

The currently proposed DNA-based subtypes will be the basis for a unified biological 

classification that may require a two-step strategy (28). Step 1 would involve harmonization 

of the current DNA-subtyping systems into a single unified classification, Step 2 would be 

the development of a reproducible and widely applicable molecular diagnostic assay; 
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certified, as well as cost- and time-effective to enable clinical implementation. This 

exposes various challenges, from the choice of laboratory technique, subtype-defining 

DNA alteration features and interpretation to classification algorithms and bioinformatic 

procedures. 

A universally accepted classification is a prerequisite to improve patient 
management 

Harmonization into a single classification is a first requirement for implementation in 

diagnostic routine. 

Objective, reproducible, and conclusive subtype definition for each patient sample, 

combined with a detailed understanding of the tumor biology of each defined DNA-class, 

will enable to explore clinical consequences of such classification, preferably in clinical 

trials (46). For various organ-specific malignancies molecular classifications for tumor 

families have now been standardized and integrated in the 5th edition series of the 

WHO Classifications and are starting to be implemented in the diagnostic workflow for 

those settings that have access to the technology (47–49). The road towards this level of 

applicability has been achieved with several research groups proposing their individual 

molecular classification as a starting point, at different moments in time and with different 

laboratory and bioinformatical techniques, as is exemplified by the classification of breast 

cancer, central nervous system (CNS) tumors and colorectal cancer (48, 49). 

Lessons learned from classifications that are universally agreed upon for 
other solid malignancies 

Probably breast cancer classification is one of the most successful early examples. An 

RNA-based classification for breast cancer found its way already into the 4th edition of 

the WHO Classifications of Breast Tumours in 2012, which was further expanded upon in 

5th edition (47). it recognizes 5 molecular classes; each with different prognosis but also 

different treatment recommendations. The existing close transatlantic collaborations 

undoubtedly facilitated consensus formation, characterized as “organic” allowing 

different biological and bioinformatical perspectives to converge (46, 50, 51). Once a 

consensus classification was established and reproducible assays were developed, 

exploration of personalized and targeted treatment approaches could be effectively 

explored to identify bespoke treatment modalities, amongst others in the multi-armed 

I-SPY clinical trials (52). 
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From the point of view of development of a molecular-based consensus classification, 

the present WHO classification for CNS tumors is an impressive result of intensive 

collaboration leading to a highly refined molecular classification. In 2014 a group of 

neuro- oncological pathologists, physically converged in 2014 in Haarlem (NLD) and 

prepared a clinically relevant histo-molecular diagnostic consensus classification, whilst 

reducing interobserver variability (53), which soon was implemented in the 4th edition of 

the WHO Classification of CNS Tumors (54). Subsequently, a largely novel approach was 

taken by means of genome-wide DNA methylation analysis where the large spectrum of 

CNS tumors were recognized by methylation profiles combined with a form of dimension 

reduction called t-distributed stochastic neighbor embedding (t- SNE) (55). The t-SNE 

methylation test alone allows for diagnoses of the large majority of CNS tumors, not 

seldomly more detailed and/or reliable compared to the histo-molecular diagnosis, 

resulting in redefinition of these entities. The collaborative effort with inclusion of samples 

and intellectual input from many research groups across the world as well as extensive 

discussions in the Consortium to Inform Molecular and Practical Approaches to CNS 

Tumor Taxonomy (cIMPACT-NOW) (56) has helped a broad acceptance and indeed this 

molecular classification is now also included in the 5th edition of the WHO Classification 

of Central Nervous System Tumours (48, 48). 

To harmonize colorectal cancer (CRC) classification, the Colorectal Cancer Subtyping 

Consortium (CRCSC) was formed to integrate six independently published RNA-

based classifications (49). As opposed to the CNS assembly consensus, a predefined 

mathematical harmonization path was taken with the aim to resolve inconsistencies 

between the various CRC classification systems. This approach culminated in four 

consensus molecular subtypes (CMSs) (49) to which each CRC sample adheres to a higher 

(core samples) or lesser (non-core) extend. Since the context in CRC classification is so 

very similar to the current status in DLBCL, we here provide a summary of this CMS 

approach where three generic methodological steps were involved (Box 3). 

The process to come to a single, harmonized molecular classification for DLBCL may likely 

be the one taken for the development of colorectal cancer CMS. For DLBCL also, a similar 

issue in the underlying biology result in single class (core) tumors, unclassified samples 

and genetically composite tumors (12, 57). What should alleviate the consensus process is 

that for DLBCL two, rather than the six for colorectal cancer, existing DNA-classifications 

as a starting point while still various independent published and unpublished (authors of 

this review) datasets are available. 
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Box 3 Summary of the data-driven bioinformatic path to the four consensus molecular 
subtypes for colorectal cancer. 
Three generic methodological steps are involved in the path taken for consensus classification 
of colorectal cancer. 

i. Independent expert team subtyping prediction on normalized raw data sets: Eighteen RNA-
based CRC gene expression data sets, derived from different continents and research groups 
were assembled from public resources (Gene Expression Omnibus and The Cancer Genome 
Atlas). The data sets were compiled from various genome-wide expression analysis techniques 
(arrays and RNA-sequencing), different sample types (formalin-fixed paraffin embedded and 
fresh- frozen tissue materials) and different study designs (retrospective and prospective 
series, including clinical trials). The first bioinformatics step concerned central pre-processing 
and normalization aimed to obtain expression profiles for each of the patients of the 18 gene-
expression datasets, independent of cohort or technique. Next, each of the six initial participating 
research teams applied their original classification algorithm to each of the 18 data sets. Thus, 
resulting in six classifications, with a total of 27 different subtypes for all 3,962 patients. 
ii. Network analysis for consensus subtype identification: Using the six classification systems 
of the 3,962 patients, a network-based approach was applied to study the association 
between all the 27 subtypes. To detect robust clusters of recurrent molecular subtypes, an 
unsupervised Markov clustering approach was performed, resulting in the identification of 
four consensus molecular subtypes (CMSs). Of the 3962 samples, 3104 (78%) were identified 
as highly representative of a particular subtype and labelled as core consensus samples and 
the remaining n=858 as non-consensus samples. The core consensus samples were used to 
train the novel CMS classifier in the subsequent step. 
iii. CMS classifier construction and application: To allow classifications of individual cases, 
which is mandatory for diagnostic routine, a classification algorithm is required. Since the 
data sets were created using different RNA gene expression profiling techniques across the 
different studies, not all genes were included in all data sets. The CRCSC first converted all 
18 separate data sets into a single data set. The genes that were commonly profiled by all 
separate data sets were selected to allow aggregation of all 18 data sets into a single data 
matrix. To construct the CMS classifier, the single data matrix, CMS classes and consensus 
sample set were used. The consensus samples were randomly split using two-third as training 
and one-third as validation set, and a random forest classifier was generated to calculate 
a prediction value for subtype assignment for each sample, by means of bootstrapping 
with 500 iterations. Application of the CMS classifier on the validation set demonstrated 
an overall accuracy of 90%. The CMS classifier was robust enough to allow assignment of 
40% of the non-consensus samples, while the rest showed heterogeneous patterns of CMS 
subtypes and contained biological information of more than one class. 

From DLBCL genome classification to clinical 
implementation 
DNA alterations required for DLBCL genome classification 

Any consensus classification for DLBCL will include a combination of mutations and structural 

chromosomal variations (CNAs and translocations) (Box 1). Therefore, inclusion of this 

information into a single genome subtyping assay would be highly attractive. Various common 

laboratory and bioinformatics applications are available for mutation and CNA detection by 

NGS. Also NGS-based translocation detection is starting to become a cost-effective alternative 

for routinely used Fluorescent in situ hybridization (FISH) to determine translocations. (Figure 

2). FISH benefits from a choice of worldwide commercially available probes and assays but 

is labor-intensive with a certain level of technical variability and subjectivity in interpretation. 
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Figure 2. A single NGS assay to detect somatic mutations and structural variations, including 
translocations and CNAs, from DNA extracted from FFPE tissue. (A–C) Visualization of the 
detection by NGS of CNAs, mutations, and translocations for a DLBCL sample. (A) Genome-wide 
chromosomal CNAs. x-axis shows chromosomes 1 to 22, from left to right, y-axis shows copy 
number gains (light red) and copy number losses (blue). (B) Screenshot of high coverage (200X) 
NGS sequence reads aligned to the reference genome highlighting a somatic mutation in KMT2D. 
(C) Screenshot of high coverage (200X) NGS sequence reads aligned to the reference genome 
highlighting a translocation breakpoint in MYC. (D) A circular representation of the genome depicting 
mutations (genes denoted in small red letters), translocations (genes denoted with large black letters 
connected by black lines) and CNAs (inner circle: black dots are measurement bins and called losses 
are colored in blue and gains in light red). Green and red arrows point to the position of break apart 
(BA) FISH probes that were used as a control for the translocations detected by NGS. (E) FISH BA 
MYC. (F) FISH BA BCL6. Integrated NGS analysis explains aberrant FISH pattern: a loss (green arrow) 
and a gain (red arrow) at the MYC locus coincide with a single (green arrow) and double gain (red 
arrow) at the translocation partner BCL6 locus. 
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Thereby, NGS outperforms FISH in several ways: it avoids interobserver variability, it 

can be performed with small and histologically compromised materials, and it is able to 

identify exact translocation breakpoints on nucleotide level. An additional advantage of 

some of the NGS approaches is that unknown translocation partners may be identified, 

that may be of clinical relevance for the biological and clinical interpretation of DLBCL 

patients with a MYC translocation (40). Various combinations of NGS and bioinformatics 

platforms have been successfully developed in this direction (58–61). 

Assays for clinical implementation 

World-wide clinical implementation of any diagnostic routine requires relatively simple 

assays that are applicable to routine diagnostic tissue material, such as formalin-fixed paraffin 

embedded (FFPE) specimens. The elaborate laboratory- and informatics infrastructure 

needed for current NGS or array analysis may only be available in selected settings of large 

medical centers or commercial providers as exemplified for CNS tumors. Favorable aspects 

of commercial involvement are the wide availability, extensive standardization, quality 

control and rapid turnover time due to high case volumes. Downsides are amongst others 

worldwide availability, financial dependency and commercial goals, market dominance of 

individual commercial providers, lack of technical transparency and development, lack of 

flexibility to include most recent research developments and generally lack of integrated 

interpretation with other pathology parameters. Another option to bring a genome 

subtyping assay to implementation in daily practice is to “reduce” complex molecular 

information to simpler and widely applicable techniques. The DLBCL-COO classification 

alternative is a good example; genome-wide molecular classification with elaborate 

bioinformatics was translated into several simple immunohistochemistry (IHC) markers, 

of which the Hans classification is most widely used (62). All IHC-based COO assays show 

limited concordance with the gold standard of RNA expression-based assays (63). This 

prompted the development of a digital gene expression assay based on 20 key genes 

that can be applied on FFPE material (64). This Lymph2Cx assay, restricted to equipment 

from the company Nanostring (Seattle, USA), showed high concordance with the original 

RNA expression- based COO classification with a 2% error rate in COO assignment (65). 

These characteristics, together with a short turnaround time of less than 36 hours, allowed 

for rapid molecular characterization of patients, making this assay a suitable middle-

ground alternative for employment in research and clinical trials (19). Similar assays have 

been commercialized by others (66). In view of the expected high-dimensional nature 

of a consensus molecular classifier for DLBCL, simple translation to an IHC is not likely. 

Current NGS techniques are already reliably applicable for FFPE biopsy samples offered by 
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commercial providers. It may be expected that these companies will readily offer products 

for consensus molecular DLBCL classification once this would be developed. 

Assay and turnaround time 

A single genome subtyping assay that detects CNAs, mutations, and translocations in parallel 
would conceivably be most efficient in terms of labor, cost and tissue material. But is this 
also efficient in terms of turnaround time? A recent study showed that real-time molecular 
profiling of RNA-based COO determination of DLBCL is realistic to stratify patients in a timely 
manner, with a median turnaround time of 8 days (8). This would be a desirable timeframe 
for DNA-based DLBCL classification, such that based on tumor vulnerabilities, patients can 
be diverted after 1 or 2 cycles standard R-CHOP treatment, which is a successful approach 
facilitating rapid trial inclusion (67). A recent feasibility study in the Netherlands, which involves 
a WGS specialized non-profit organization, was performed to evaluate implementation of 
WGS into routine diagnostics (68). Meanwhile, they were able to optimize the turnaround 
time from biopsy to DNA report to 7 working days, demonstrating the potential of clinical 
implementation of NGS methods for these purposes. 

Application in daily clinical practice and promising 
future developments 
Bespoke treatment of DLBCL patients 

Once validated, uniform and widely applicable, consensus molecular subtypes of 
DLBCL will be a sound basis to explore more effective, targeted treatment methods 
(1). The potential of DNA-based classification for precision medicine of DLBCL has been 
demonstrated in a recent retrospective analysis of a randomized phase-III trial (69). In 
this study, patients under 60 with two specific DNA subtypes (LymphGen’s MCD and 
N1) that received R-CHOP with Ibrutinib had significantly better survival (both subtypes 
100% 3-year event-free survival) than patients that received R-CHOP alone (42.9% and 
50%, respectively), clearly indicating the potential predictive value of the novel genomic 
subtypes. Next, prospective clinical trials may further explore associations with genomic 
subtypes and associations with targeted compounds, such as NFkB-inhibitors, PI3K 
inhibitors, P53-modulators and apoptosis modulators, as well as immunotherapy such 
as immune checkpoint inhibitors and CAR- T cell therapy. For this purpose, various 
dedicated next-generation designs are now proposed (70). 

It is obvious to further investigate to what extent the integration of the current DNA-

based and RNA/ microenvironmental-based subtyping methods for DLBCL would be of 
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added value. Adding a layer of epigenetic information as for CNS (55) or even germline 

genetic characteristics might be considered (71). Also liquid biopsy strategies measuring 

circulating tumor DNA (ctDNA), will provide other lines of opportunities in diagnosis and 

disease monitoring of DLBCL patients (72–74) Future studies are required to investigate 

the potential integration of these approaches for the management of DLBCL patients. 

Consensus classification serves the DLBCL patient 

The step forward to allow evaluation of new treatment modalities based on DLBCL 

genetics is now impeded by a discordancy between the 2 independently suggested 

genomic subtyping approaches, which dictates the challenge that lies ahead of us. Based 

on various other tumor entities we suggest a blueprint for harmonization of the proposed 

DNA subtypes, which may allow more widespread clinical implementation. Once this 

hurdle is taken, a diagnostic work up, applicable in a clinically relevant timeframe, will 

enable the design of next- generation prospective biomarker-based clinical trials. If 

successful, the precision medicine with targeted therapies that match dependencies of 

the molecular subtypes of DLBCL may be brought forward. 
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Introduction
The wide range in presentation, treatment response and outcome of diffuse large 

B-cell lymphoma (DLBCL) reflects a large underlying biological heterogeneity(1). Various 

molecular DNA-, RNA- and protein based subtyping approaches have been proposed 

over time, but failed to sufficiently capture its biological heterogeneity in a clinically 

sufficient manner, precluding major clinical consequences(2–5). The most recent DNA-

based subtyping studies as independently proposed by the Dana Farber Cancer Institute 

(DFCI) and the National Cancer Institute (NCI) are a major step forward(6,7). These 

subtypes are based on DNA-mutation, genome-wide copy number aberration (CNAs), 

and translocation information. Despite different bioinformatic approaches, the resulting 

5- to 7 subtypes largely recognize similar DLCBL pathogenicities and starts to offer a 

clinically impactful refinement at a level sufficient to serve as a basis for exploration of 

personalized and targeted treatment in the coming years. Its clinical potential already 

paid off with the recent finding that benefit from the BTK inhibitor ibrutinib plus R-CHOP 

is highly specifically associated with two of the genetic subtypes(8). To enable consistent 

trial designs and meaningful comparisons between studies, we consider it pivotal to 

harmonize the currently available DNA-subtyping knowledge into a single classification, 

preferably widely applicable in diagnostic routine. In this perspective we investigate 

harmonization opportunities and suggest potential avenues from a bioinformatics point 

of view. 

Bioinformatics approaches for the current DNA-based DLBCL subtyping

The DFCI and NCI DLBCL subtyping studies are both based on whole exome sequencing 

data but differ essentially in a priori concepts and bioinformatic strategies. In brief, the 

DFCI group used unsupervised clustering combined with alteration-centric features. 

Driver alterations were discriminated from passengers, reducing the genetic dataset to 

158 features. Next, unsupervised clustering by means of non-negative matrix factorization 

(NMF) identified patterns of co-occurring features to define clusters and assign each 

included patient sample. The NMF algorithm uncovered the optimal stability of subtype 

clusters to be represented by 5 groups of similar sizes, which the authors labelled as 

C1 to C5. The NCI group used semi-supervised clustering combined with gene-centered 

features. Prior knowledge was used to define four classes with 1 or 2 DNA ‘seed’ features, 

the a priori assumption. The algorithm subsequently selected additional features with 

the strongest association to those seeds unsupervised by iteration. All patient samples 

were included for this 4-class algorithm, but only 46% of cases could be assigned(9). 
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Recurrent alterations in unassigned cases prompted an extension with two classes. The 

‘seed’ features for one of these additional classes were ‘TP53 inactivation’ and ‘high CNA 

load’, in analogy with DFCIs C2 subtype with p53 mutation and deletion (17p) as its top 

features and a multiplicity of CNAs. This was a first step towards harmonization. The 

resulting Bayesian-based probability score, named Lymphgen classifier, assigned 63% of 

cases(7). Despite the very different designs, most subtypes are remarkably similar with 

similar underlying biology(1,7), though some are more similar than others and some only 

are recognized by one of the algorithms.

Critical evaluation of the current subtyping systems

Prior to applying their subtyping algorithms, the DFCI and NCI groups used different ways 

to convert the detected DNA-alterations into features. DFCIs alteration-centric approach 

regards each DNA alteration type separately be it mutation, translocation, or CNA. 

Hence, a point-mutation of CDKN2A, a deletion at the CDKN2A-locus 9p.21 or the entire 

chromosome 9 arm would each be regarded as separate features. NCIs gene-centric 

approach combines any DNA-alterations that impact the same gene into a single feature. 

Hence, any alteration detected that affects CDKN2A, would be reduced into a single 

feature. These two different ways of handling biological features leads to discrepancy 

in their contribution to subtype assignment that determine biological deregulation and 

clinical impact. For harmonization we argue that focal chromosomal CNAs which only 

encompass only one or few genes(10) can be readily combined with point-mutations in 

a gene-centric fashion as these can be assumed to lead to the same overall biological 

effect(11). The choice is less obvious for large-scale chromosomal CNAs since these 

harbour hundreds of genes such that biological insights remain elusive(12) and maybe 

resolved mathematically by calculating an optimal biological characterization of the 

classes with either feature choice.  

Supervised- and unsupervised (machine learning) algorithms may be chosen for 

subtyping(13). A supervised approach uses predefined classes to construct a classification 

rule from the features, while in an unsupervised approach, the algorithm identifies 

patterns and distinct feature characteristics in unlabelled data. A supervised approach 

precludes recognition of unknown subtypes. Unsupervised clustering is an elegant data-

driven approach that can identify unknown subtypes in high-dimensional data(14–16). 

Yet, due to the high number of features unsupervised clustering requires sufficiently large 

sample sets to recognize rarer subtypes. Rare subtypes are pivotal to recognize since 

targeted treatment may be available exemplified by 3-4% of ALK translocated lung cancers 
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or ERBB2 positive colon cancers that can be targeted with respectively trastuzumab/

neratinib or crizotinib(17,18). Likewise, potential specific sensitivity to Ibrutinib of a small 

fraction of DLBCL patients (<2%) which carry NOTCH1 mutations justifies inclusion as a 

seed by NCI Lymphgen(8). 

Not specifically captured by either of the algorithms are the high-grade B-cell lymphomas 

(HGBCLs) characterized by prognostic features MYC- combined with BCL2 and/or BCL6 

rearrangement(19). As a solution, NCI Lymphgen introduced a previously published 

RNA expression-based signature (DHITSig) as a surrogate for MYC status as an add-on 

to the EZB subtype(20). From a diagnostics point of view this would be suboptimal as 

it requires two separate assays. Also about 35% of all DLBCLs are assigned as DHITSig-

pos whereas genuine MYC double- or triple-hits only occur in about 5% of all DLBCL 

patients(20), indicating that DHITSig is not specific. To resolve the actual relation between 

DNA-subtyping and HGBCL, we argue that unsupervised clustering is the method of 

choice, whereby the NMF algorithm is attractive given its robustness against the high 

number of features. However, to enable NMF to recognize a HGBCL cluster the number 

of patient samples should be enlarged with sufficient MYC positive cases and BCL2 and 

BCL6 features. 

Unsupervised NMF clustering assigns each sample to a cluster, whereas the Lymphgen 

algorithm assigns samples based on probability, and recognizes that not every DLBCL 

sample contains sufficient subtype characteristics. A simple exercise of 1000 NMF 

clustering iterations with each time 80% resampling to determine consensus clustering(21) 

shows that only about 70% of the DFCI patients are consistently assigned to the same 

cluster (Figure 1).  The other 30% do not have (sufficient) specific characteristics to be 

consistently assigned to one or any subtype, like with the Lymphgen algorithm. We 

believe that this reflects the heterogeneous and continuous nature of DLBCL, supported 

by recent studies that included mechanistically different mutation-types and thereby 

further dissect molecular DLBCL classes(22).

While unsupervised clustering is suitable for class identification, ultimately a classifier 

trained by a supervised algorithm, like the one used in LymphGen, will be required for 

diagnosis of individual patients, which dictates another step towards harmonization. For 

training and validation of such parsimonious classification algorithm it will be pivotal to 

only include consistently assigned samples to eventually provide a classification that is 

applicable for any DLBCL sample.
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Figure 1. Cluster adherence of DLBCL samples. Cluster adherence was determined using NMF 
clustering with the 304 DLBCL samples from the DFCI cohort, recapitulating the results from the 
original study, including 5 subtypes (C1, C2, C3, C4 and C5) and identical subtype assignment for 
all samples (left panel). Consensus clustering by resampling(21) illustrates the unstable character 
of NMF clustering, core patients (solid colour, middle panel) and non-core patients (dashed colour, 
right panel). To make this distinction, a stability score was determined by examining co-occurring 
sample pairs in the same subtype through 1000 iterations of NMF clustering. The heatmaps show 
patients by column and genomic features by row. Genomic feature colours in the heatmap indicate 
mutations (green), copy number losses (blue), copy number gains (red) and translocations (purple). 
DLBCL samples are clustered by subtype. The subtype bars on top indicate core DLBCL samples 
(coloured bars) and non-core DLBCL samples (grey and dashed bars). Lymphgen annotation of the 
DFCI samples were taken from Wright et al(7). Left panel: heatmap of all 304 DLBCL samples from 
the DFCI cohort. Middle panel: heatmap of the 70% core samples with a high stability score and 
robust molecular subtypes. Right panel: heatmap of the 30% non-core samples with inconsistent 
subtype assignment throughout the clustering iterations.

Concluding remarks   

Classification for a biologically heterogeneous disease like DLBCL is required for clinical 

trial inclusion to come to bespoke treatment. To achieve any meaningful classification, 

there may be well-defined quantitative criteria by which classification schemas can be 

objectively assessed, but these are inevitably balanced by more subjective choices. We 

describe here that consensus classification depends on choices concerning the incentive 

to recognize rare DLBCL subtypes or recognition that not all DLBCLs may have sufficiently 

specific DNA characteristics to be classified at all. Also, technical choices are to be made 

such as on the nature and weight of DNA-features, and on mathematics with their pros 
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and cons. Most important is the choice if a consensus classification and a common 

classifier algorithm is timely and needed. Thereby, we feel that the added value of the 

achievements of the DFCI and NCI classifications should be exploited by a consensus 

approach. Arguably, this would be preferred over first evaluating their clinical impact in 

clinical trials separately or just starting from scratch on yet another classification. 

Other translational research groups in the solid tumour arena have met with similar 

challenges. Probably breast cancer is one of the most successful early examples of an RNA-

based classification that found its way into the WHO Classification(23). Here, international 

groups converged their biological and bioinformatical approaches through collaboration. 

Once consensus cell-of-origin classification was achieved and reproducible assays were 

developed, personalized and targeted treatment could be explored systematically, 

amongst others in the multiple-armed I-SPY clinical trials(24). Similarly, a consortium was 

formed to integrate six independently published RNA-based classifications for colorectal 

cancer by means of a predefined mathematical approach. The resulting four consensus 

molecular subtypes are now the basis for various international clinical trials(25). 

In our opinion, decisive evaluations of new treatment modalities based on genetics in the 

heterogeneous disease DLBCL is now largely impeded by a discordancy between the main 

molecular subtyping approaches. Progress towards personalized treatment of DLBCL would 

require an international consensus approach for which we have suggested various avenues.
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Abstract 
Summary: Chromosomal copy number aberrations can be efficiently detected and 

quantified using low-coverage whole-genome sequencing, but analysis is hampered 

by the lack of knowledge on absolute DNA copy numbers and tumor purity. Here, we 

describe an analytical tool for Absolute Copy number Estimation, ACE, which scales 

relative copy number signals from chromosomal segments to optimally fit absolute 

copy numbers, without the need for additional genetic information, such as SNP data. In 

doing so, ACE derives an estimate of tumor purity as well. ACE facilitates analysis of large 

numbers of samples, while maintaining the flexibility to customize models and generate 

output of single samples. 

Availability and implementation: ACE is freely available via www.bioconductor.org and at 

www. github.com/tgac-vumc/ACE. 

Supplementary information: Supplementary data are available at Bioinformatics online. 



ACE: estimating absolute copy numbers from low-coverage whole-genome sequencing data

5

97   

Introduction 
Cancer arises through accumulation of genetic and epigenetic changes. The genetic 

changes encompass small somatic mutations and gross chromosomal alterations, 

including translocation and copy number aberrations (CNAs). CNAs are a common trait 

of most cancers (Beroukhim et al., 2010) and are used as biomarkers in prognostic and 

predictive patient stratification (Macintyre et al., 2016). 

Low-coverage whole-genome sequencing (lcWGS, ~0.1X coverage of the genome) is an 

efficient and cost-effective method to detect CNAs. The data yield relative sequence depth 

signals at each genomic location, but does not enumerate chromosomal copies. Determining 

absolute copy numbers would add valuable information on tumor content (cellularity) and 

intratumoral heterogeneity of the samples. Currently available tools that provide estimates 

of absolute copy numbers are mostly limited to data generated by SNP arrays (Van Loo et 

al., 2010), whole exome sequencing or high-coverage WGS (Favero et al., 2015; Riester et 

al., 2016) or require matched normal samples (Gusnanto et al., 2012; Oesper et al., 2014). 

ABSOLUTE (Carter et al., 2012) and ichorCNA (Adalsteinsson et al., 2017) provide cellularity 

and ploidy estimates from lcWGS data, but lack dynamic functionality to visually inspect the 

absolute copy number estimations and select the best fits. We therefore developed a tool 

for Absolute Copy number Estimation, ACE, which includes dynamic data visualization. Using 

simulation data and a published dataset, we demonstrate that its estimates are generally 

more accurate than other software tools. Additionally, it offers an interactive environment to 

evaluate the optimal predicted model besides alternative models. 

Materials and methods 
ACE is an R package. Complete software availability, dependencies and version 

information is available in the Supplementary Material, via www.bioconductor.org and at 

www.github.com/tgac-vumc/ ACE. 

Segment data are obtained from lcWGS reads through the QDNAseq pipeline, which bins 

the mapped sequencing reads, corrects for mappabilty and GC-content (Scheinin et al., 2014) 

and segments the data by incorporating DNAcopy (Venkatraman and Olshen, 2007). For 

model fitting in ACE, errors per segment are calculated based on the difference between the 

segment value and the closest value of an integer copy number, as a function of ploidy and 

cellularity. ACE calculates the error of the fit as the root mean square error (default) or mean 

absolute error (optional) of all segments. To account for segment length, segment errors are 

repeated as many times as the number of bins the segment comprises. To balance sensitivity, 
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specificity and accuracy, ACE features customizable penalty factors for low cellularity and 
divergent ploidies. See Supplementary Material for formulae and further details. 

A fitting procedure is executed over a range of ploidies (Fig. 1A) or one fixed ploidy (Fig. 
1B). Ploidy represents the number of copies associated with the median segment value. 
Error of fits are calculated for each cellularity and the indicated ploidy. Cellularities 
(and ploidies when variable) are reported when the error of the fit reaches a minimum. 
Inversely, absolute copy numbers of segments and bins are calculated using the derived 
cellularity and ploidy (Fig. 1C). 

Figure 1. Results of ACE on a permutation sample with 20% of sequencing reads derived from 
cell line UM-SCC-22A. ACE performs model fitting as a function of both cellularity and ploidy (A) or 
cellularity at a fixed ploidy (B). In (A), the relative error is color-coded and minima are indicated with a 
black dot. The cellularity (and ploidy, 2N in this example) corresponding to the top prediction is used 
to produce an absolute copy number profile with number of copies on the Y-axis and bins ordered 
by chromosomal location on the X-axis (C) 
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Results 
We applied ACE to lcWGS data of DNA from a near-diploid cell line with many CNAs (UM-

SCC-22A), a diploid cell line with few and only single copy CNAs (HCT116), a triploid cell 

line (HT29) and a tetraploid cell line (MOLT-4), using lcWGS data of DNA from exfoliated 

oral cells of a healthy individual as negative control. To assess ACE performance at all 

ranges of tumor cell percentages, we generated in silico admixtures of sequencing reads 

derived from tumor and normal cells, and analyzed these with varying bin sizes, penalty 

and error methods (Supplementary Material). We also estimated tumor cell percentage 

of these admixture permutations using ABSOLUTE and ichorCNA (Table 1). The three 

methods have comparable accuracies between ~30% and 80% tumor-derived reads 

(Supplementary Fig. S1). For all three algorithms, we determined the range of tumor 

DNA percentage at which the algorithm was able to produce an accurate top prediction. 

Overall, ACE performed very well both at low and high cellularity (Table 1), and showed 

the largest range of accurate predictions for the triploid and tetraploid cell lines. More 

details are available in the Supplementary Material. 

Table 1. Prediction accuracy of ACE, ABSOLUTE and ichorCNA on simulated data of three cell 
lines with varying copy number profiles 

UM-SCC-22A HCT116 HT29 MOLT-4
(2N) (2N) (3N) (4N)

ACE  12–100  20–100  14–100  15a–100 
ABSOLUTE  21–100  19–100b  28–100  36–100 
ichorCNA  10–100  16–81  31–91  26–100 

Notes: Numbers indicate the range of tumor DNA percentages at which the specified algorithm 
estimates the correct tumor cell percentage (less than 25% deviation) in at least 9 out of 10 
permutations. 
aOnly 8 out of 10 at 17% and 20% tumor DNA percentage. 
bOnly 8 out of 10 at 95% tumor DNA percentage. 

Increasing the penalty factor for low cellularities improves specificity (no false positive 

estimates) and accuracy of models, but at the cost of decreased sensitivity. To determine 

the lowest penalty at which ACE is still highly specific, we analyzed all permutation 

samples without any tumor DNA for false positive fits. A penalty of 0.1 proved sufficient to 

prevent false positive fits in all healthy control permutations with 10 million sequencing 

reads (Supplementary Fig. S2) and is thus the optimal penalty for high sensitivity in this 

dataset, whereas a penalty between 0.25 and 0.5 is better-suited for optimizing accuracy 

of predictions (Supplementary Fig. S3). 
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Finally, we analyzed a recently published dataset of 253 ovarian carcinoma samples 

(Macintyre et al., 2018). Importantly, the samples varied in tumor purity and were selected 

for their clonal TP53 mutations, of which the frequency was accurately determined. 

This allowed the authors to estimate tumor purity accurately based on both clonal 

mutation data and copy number data. We used their tumor purity determination as gold 

standard and compared it with the estimates corresponding to the best fits of ACE and 

ABSOLUTE based solely on copy number data (see Supplementary Material for details). 

The estimates of ACE are in good concordance with the gold standard over the entire 

range of tumor purity (Fig. 2). The median difference between the gold standard and ACE 

was 0.07, compared to 0.28 for ABSOLUTE. In relative terms, estimates of ACE deviated 

from the gold standard by a median factor of 1.15 compared to a median factor of 1.94 

for ABSOLUTE. Because of ABSOLUTE’s high deviation from the gold standard when 

considering only its highest ranked model, we also tested at which fit ACE and ABSOLUTE 

approximate the gold standard model. Generally, ACE arrives at the correct model with 

fewer fits than ABSOLUTE, illustrating its efficacy in model prioritization (Supplementary 

Fig. S5). 

Figure 2. Tumor purity estimates of an ovarian carcinoma dataset. Segmented copy number 
data from lcWGS was used to derive tumor purity estimates using ABSOLUTE (red) and ACE (green). 
The results of the algorithms (on the Y-axis) are plotted against a manually curated tumor purity 
estimate based on both copy number data and high-depth mutation data (X-axis, gold standard) 
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Discussion 
ACE is a comprehensive tool to produce absolute copy number profiles and arrive at 

estimates of tumor purity and ploidy based on lcWGS data only. ACE’s model fitting 

accuracy performs better than currently available algorithms ABSOLUTE and ichorCNA 

largely irrespective of tumor purity and ploidy, on both simulated data and an ovarian 

carcinoma dataset. On the one hand, ACE facilitates analysis of multiple samples directly 

from mapped reads; on the other hand, it accommodates extensive evaluation of single 

samples. ACE is therefore a well-suited bioinformatics tool to maximize interpretable 

outcome of lcWGS experiments. 

Acknowledgements 
The authors thank Tom Carey, University of Michigan, for cell line UM-SCC- 22A. They also 

thank Geoff Macintyre and James Brenton, Cancer Research UK Cambridge Institute, for 

assistance and discussion on analysis of the ovarian carcinoma dataset. 

Funding 
This work was supported by a Cancer Center Amsterdam institutional grant. 

Conflict of Interest: none declared. 



Chapter 5

102

References 
1. Adalsteinsson,V.A. et al. (2017) Scalable whole-exome sequencing of cell-free DNA reveals high 

concordance with metastatic tumors. Nat. Commun., 8, 1324. 

2. Beroukhim,R. et al. (2010) The landscape of somatic copy-number alteration across human 
cancers. Nature, 463, 899–905. 

3. Carter,S.L. et al. (2012) Absolute quantification of somatic DNA alterations in human cancer. 
Nat. Biotechnol., 30, 413–421. 

4. Favero,F. et al. (2015) Sequenza: allele-specific copy number and mutation profiles from tumor 
sequencing data. Ann. Oncol., 26, 64–70. 

5. Gusnanto,A. et al. (2012) Correcting for cancer genome size and tumour cell content 
enables better estimation of copy number alterations from next-generation sequence data. 
Bioinformatics, 28, 40–47. 

6. Macintyre,G. et al. (2016) Sequencing structural variants in cancer for precision therapeutics. 
Trends Genet., 32, 530–542. 

7. Macintyre,G. et al. (2018) Copy number signatures and mutational processes in ovarian 
carcinoma. Nat. Genet., 50, 1262–1270. 

8. Oesper,L. et al. (2014) Quantifying tumor heterogeneity in whole-genome and whole-exome 
sequencing data. Bioinformatics, 30, 3532–3540. 

9. Riester,M. et al. (2016) PureCN: copy number calling and SNV classification using targeted short 
read sequencing. Source Code Biol. Med., 11, 13. 

10. Scheinin,I. et al. (2014) DNA copy number analysis of fresh and formalin-fixed specimens by 
shallow whole-genome sequencing with identification and exclusion of problematic regions in 
the genome assembly. Genome Res., 24, 2022–2032. 

11. Van Loo,P. et al. (2010) Allele-specific copy number analysis of tumors. Proc. Natl. Acad. Sci. 
USA, 107, 16910–16915. 

12. Venkatraman,E.S. and Olshen,A.B. (2007) A faster circular binary segmentation algorithm for 
the analysis of array CGH data. Bioinformatics, 23, 657–663. 



ACE: estimating absolute copy numbers from low-coverage whole-genome sequencing data

5

103   

Appendix
Supplementary Methods

DNA isolation

UM-SCC-22A tumor cells were obtained from Dr. T. Carey (University of Michigan, Ann 

Arbor MI, USA). HCT116, HT29, and MOLT-4 cells were purchased from ATCC (ATCC 

number CCL-247, HTB-38, CRL-1582). After limited additional expansion in vitro, cells 

were collected in PBS and pelleted. Exfoliated cells from a healthy donor were obtained 

by brushing the cheek mucosa with an Orgenex brush (Rovers medical devices, Oss, NL) 

and collecting cells in PBS. Cells were subsequently pelleted. Genomic DNA was isolated 

from cell pellets using the Purelink genomic DNA isolation kit (Invitrogen, Carlsbad, CA). 

DNA concentration was measured by fluorometric quantitation (Qubit 3.0, Thermo Fisher 

Scientific, Carlsbad CA, USA).

Low-coverage WGS 

DNA (750 ng in 130 µL TE buffer pH 8.0) was sheared to a median fragment size of 200 

base pairs using focused ultrasonication (Covaris S220, Woburn MA, USA). Concentration 

and fragment size were subsequently determined by electrophoresis (Bioanalyzer 2100, 

Agilent Genomics, Santa Clara CA, USA). Sequencing libraries were prepared using 250 

ng of sheared DNA. Samples were end-repaired and A-tailed following manufacturer’s 

instructions (KAPA HyperPrep, KAPA Biosystems, Cape Town, South Africa). Adapters 

(SeqCap Adapter Kit A, Roche Nimblegen, Madison WI, USA) were ligated overnight at 16 

°C. All samples were subjected to 9 cycles of PCR. Resulting libraries were analyzed on a 

BioAnalyzer 2100 for quality control and quantification. Libraries were pooled equimolarly 

in a pool of 24 samples in total and sequenced on a next-generation sequencer (HiSeq 

2500 HTS, Illumina, San Diego CA, USA) using a single-read 50 protocol, according to the 

manufacturer’s instructions.

Data preparation for copy number analysis

Sequence reads were aligned to the human genome (hg19) using bwa-mem (Li and 

Durbin, 2009). Copy number analysis was performed in R using the QDNAseq package 

version 1.12.0 (Scheinin, et al., 2014). In brief, QDNAseq was used for binning the reads 

(30, 100, 500, and 1,000 kilobase pairs), filtering bins, correcting for GC-content, and 

normalization. The segmentation function in QDNAseq requires DNAcopy (Venkatraman 

and Olshen, 2007). The resulting QDNAseq output was used as input for ACE. 
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Model fitting procedure 

Segment data (signal intensity and number of bins) are obtained from the QDNAseq-

object using the R function rle(). For any cellularity (sometimes called tumor fraction or 

tumor purity) between 0.05 and 1 (with increments of 0.01), the expected relative signal 

is calculated for all integer copy numbers between 1 and 12 as follows:

 

In this formula, the standard is the median segment value of all bins, cellularity is the 

fraction of aberrant cells, copies is the integer copy number, and ploidy is the general 

ploidy of the aberrant cells. Thus, each potential cellularity has 12 expected signals 

corresponding with 1-12 absolute copies (0 copies is omitted to prevent unlikely fits with 

many or large completely deleted segments). Subsequently, each segment is fitted to the 

closest expected signal. The difference between the segment value and the closest 

expected signal is the error of the segment. In case of high-level amplification (a segment 

with more than 12 copies), the segment is assigned the maximum error of 0.5. The 12 

copy cut-off is chosen to prevent overfitting at low cellularities and reducing the impact 

of high-level amplifications, which are generally small in genomic span, and their exact 

copy number per cell is more likely to be (highly) variable than small gains. We have 

included an optional parameter to penalize for fits at low cellularity. The segment error is 

corrected as follows: error = error / cellularitypenalty. The default setting of ACE calculates 

the error of the fit as the root mean square error (RMSE) of all segments. To account for 

segment length, segment errors are repeated as many times as the number of bins the 

segment comprises. Alternatively, when mean absolute error (MAE) is chosen as error 

method, the error of the fit is the mean of the absolute segment errors (again segment 

length is accounted for as described above). The result of the procedure is a list of errors 

of fits at each potential cellularity for a given sample at a given general (tumor) ploidy. 

ACE reports cellularities at which the error reaches a minimum. In case of variable ploidy 

as seen in Figure 1A, errors are still calculated using formula (1), but now minima are 

found in a matrix (columns represent cellularity, rows represent ploidy) instead of a list. 

Additionally, it is possible to penalize ploidies for how different they are from 2N: error = 

error * (1 + |ploidy –2|)penploidy, where penploidy is a user-set variable. In this manuscript, 

only the cellularity corresponding with the top prediction (lowest relative error) was used. 

NOTE: from our benchmarking experiments we noted that predictions of cellularity and 

ploidy were accurate without considering subclonal states, despite their obvious presence 



ACE: estimating absolute copy numbers from low-coverage whole-genome sequencing data

5

105   

(for example cell line UM-SCC-22A). It is therefore not included in the core fitting algorithm 

of ACE.

Scaling bin values and segment values to absolute copies

Relative signal intensities for bins and segments derived from the QDNAseq-object are 

converted to absolute copies with the formula: 

Which can be rewritten as:

This is in principle the same formula as formula (1), but solving for copies instead of 

(expected) signal. 

Software

ACE is an R package. The release version is available via Bioconductor (www.bioconductor.

org), and the development version at www.github.com/tgac-vumc/ACE. 

The release version can be installed in R using the Bioconductor installer:

BiocManager::install(“ACE”)

The development version can be installed by downloading the package from GitHub and 

installing it in R, 

install.packages(“<filepath_to_ACE_archive>”, repos = NULL)

or directly using the devtools package in R. 

devtools::install_github(“tgac-vumc/ACE”)

ACE’s dependencies are QDNAseq (Scheinin, et al., 2014), Biobase (Huber, et al., 2015), 

and ggplot2 (Wickham, 2009). We ran ACE using QDNAseq version 1.12.0, Biobase version 

2.30.0, ggplot2 version 2.2.1, and DNAcopy version 1.44.0 (as part of the QDNAseq 

pipeline). 
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Benchmarking ACE versus ABSOLUTE and ichorCNA

To assess tumor cell percentage estimates of ACE, we used lcWGS data of healthy control 

cells (0% tumor, no copy number aberrations), and tumor cell lines (100% tumor), and 

generated in silico admixtures with predetermined tumor percentages of mapped 

sequencing reads assigned to 1,000 kilobase pair bins. We performed benchmarking on 

four independent tumor cell lines with different copy number characteristics. UM-SCC-

22A (Buchhagen, et al., 1996, near-diploid with numerous copy number aberrations), 

HCT116 (diploid with only single gains and losses in a small fraction of the genome), HT29 

(triploid with numerous copy number aberrations) and MOLT-4 (tetraploid). Because 

the sequencing reads represent tumor DNA, expected tumor cell percentage had to be 

converted to correct for the fact that tumor cells may contain more DNA than healthy 

cells:

Ploidy in this case represents the DNA content per tumor cell and is calculated by multiplying 

the general (integer) ploidy with the mean segment value of all bins, divided by the median 

segment value of all bins. Ten permutations were created for all percentages between 0 

and 100 by sampling (with replacement) 10 million reads out of the tumor-derived and 

normal-derived reads (how much of each depending on the intended percentage). The 

resulting permutations were converted to a QDNAseqReadCounts-object. For analysis 

with ichorCNA, WIG-files were created. We verified that binning of reads via QDNAseq 

and via ichorCNA (which uses HMMcopy) resulted in the same number of reads per bin. 

The ichorCNA pipeline performs its own normalization, GC-correction, and segmentation. 

For both ACE and ABSOLUTE, the obtained permutations were subjected to the QDNAseq 

pipeline to obtain segmented data. Segment data were converted to the correct format 

for ABSOLUTE. Algorithms were applied using the following parameters:

ACE: penalty = 0.5, method = “MAE”, ploidy = 2 in case of UM-SCC-22A and HCT116, ploidy 

= 3 in case of HT29, and ploidy = 4 in case of MOLT-4. A modified version of the singlemodel 

function was used that starts model fitting at cellularity 0.01 instead of 0.05, so that fitting 

of ACE on samples with very low cellularity could be examined. We note that we would 

normally not recommend trying fits at cellularities below 0.05. Cellularity with the lowest 

relative error was used for analysis.



ACE: estimating absolute copy numbers from low-coverage whole-genome sequencing data

5

107   

ABSOLUTE: the following parameters were used in the runAbsolute function: sigma.p = 

0, max.sigma.h = 0.015, min.ploidy = 0.95, max.ploidy = 10, max.as.seg.count = 1500, 

max.non.clonal = 0.5, max.neg.genome = 0.05, platform = “SNP_6.0”, copy_num_type = 

“total”, primary.disease = “Head and Neck Cancer” (in case of UM-SCC-22A) and primary.

disease = “Colorectal” (in case of HCT116 and HT29). Primary disease was left blank for 

MOLT-4, because its karyotype is atypical for leukemia. ABSOLUTE heavily penalizes non-

diploid fits for leukemia. Two parameters were changed from their default (i.e. max.non.

clonal and max.neg.genome), which we found improved the estimates in both simulation 

data and the ovarian cohort. The cellularity of the top prediction with the correct ploidy 

(rounds to 2 for UM-SCC-22A and HCT116, rounds to 3 for HT29, and rounds to 4 for 

MOLT-4) was used for analysis. We note that choice of platform has no consequences in 

this analysis, since we provide ABSOLUTE with the segment information.

ichorCNA: runIchorCNA was used with default settings, except that for HT29 ploidy was 

specified to be 3. Cellularity of the top prediction was used for analysis. 

Extended analysis of ACE on simulated data

Additional analyses were performed using ACE to further clarify the impact of bin size 

and number of reads, and ACE-specific parameters “method” (RMSE versus MAE) and 

“penalty”. Permutations were made as described above for additional read depths (1, 2, 5 

and 10 million sampled reads) and bin sizes (100, 500, and 1000 kilobase pairs). For model 

fitting, a modified version of singlemodel was used that starts model fitting at cellularity 

0.01 instead of 0.05 as described earlier. Top predictions (cellularities corresponding with 

the lowest relative error) were calculated with  singlemodel using varying values for the 

parameters penalty (0, 0.25, 0.5, and 1) and error method (MAE and RMSE). To address 

the sensitivity of ACE as a function of the penalty factor, we analyzed all permutations 

without any tumor-derived reads. For this analysis, we used the default singlemodel 

function with both error methods (MAE and RMSE) and varying penalty factor (between 

0 and 1 with increments of 0.01). Following this, bootstrapping was repeated once more 

with the default singlemodel function using penalty = 0.1 on permutations of 10 million 

reads, 1,000 kilobase pair bin size, at all tumor read percentages of all three cell lines.

Analysis of a cohort of ovarian carcinoma tumors

Segmented copy number data from 253 ovarian carcinoma samples were kindly provided 

by Brenton and colleagues. Preprocessing of the data and estimation of tumor purity has 
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previously been described (Macintyre, et al., 2018). Segmented data was used as input for 

ACE and ABSOLUTE to estimate tumor purity. ACE: the two main modes for model fitting, 

one using a fixed ploidy and one using variable ploidy, were both assessed. In both cases, 

the error method used was “RMSE” and the penalty factor was set at 0.5. Additionally, 

in case of variable ploidy (using ACE’s squaremodel function), the following parameters 

were used: penploidy = 0.5 (this penalty prevents overfitting at high ploidies), ptop = 4.3 

(the highest ploidy tested), pbottom = 1.8 (the lowest ploidy tested), prows = 250 (number 

of rows, each one representing an increment in ploidy between pbottom and ptop). Only 

the tumor purity estimate of the best fit (lowest error) was used for analysis. Results 

are shown in Supplementary Figure 4. We used the estimates from the squaremodel 

function (variable ploidy) in the comparison with ABSOLUTE. ABSOLUTE: non-default 

parameters were max.non.clonal. = 0.95, max.ploidy = 5, and primary.disease = “Ovarian 

Cancer”. These settings resulted in better estimates than the default settings (not shown). 

Tumor purity estimate of the top ranked model was used for analysis. The comparison 

between ACE and ABSOLUTE is shown in Figure 2. An extended analysis considering all 

produced fits is given in Supplementary figure 5. We note that ichorCNA could not be 

used to analyze the ovarian cancer data, because we only had preprocessed, segmented 

data at our disposal.
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Supplementary figure 1. Benchmarking results of ACE, ABSOLUTE and ichorCNA. (A) Absolute 
copy number profiles of HCT116, UM-SCC-22A, HT29, and MOLT-4 from the “unsampled” data. Total 
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reads analyzed were 9.2*106, 9.7*106, 10.3*106 and 9.8*106 for the respective cell lines.  (B) Accuracy 
of tumor purity estimates of ACE, ABSOLUTE and ichorCNA. In silico admixtures of 10 million reads, 
with the indicated percentage tumor-derived reads, were analyzed with ABSOLUTE, ichorCNA, and 
ACE. The estimated tumor cell percentage of the top prediction calculated by the three programs for 
10 permutations at all tumor read percentages is shown. Expected tumor cell percentage based on 
percentage tumor reads and DNA content of the respective cell lines is shown by a black line. Only 
estimates at the relevant ploidy were considered (2N for HCT116 and UM-SCC-22A, 3N for HT29 and 
4N for MOLT-4). Darkened colors are used for overlapping points of different programs, indicating 
concordant estimates among algorithms. The figure demonstrates that estimates obtained with 
ABSOLUTE are relatively inaccurate at low tumor cell percentages (note that 4N fits were largely 
missing for ABSOLUTE in the analysis of MOLT-4 between until tumor DNA percentage reached 35%). 
In two of four cell lines, ichorCNA produced inaccurate estimates at high tumor cell percentages. 
In polyploid cell lines HT29 and MOLT-4 only ACE gave accurate estimates in the range of 13-28% 
tumor-derived reads (see also table 1). For optimal accuracy, ACE model fitting was performed with 
error method “MAE” and a penalty factor of 0.5 (see also Supplementary figure 3). Parameters and 
results for optimal sensitivity are covered in Supplementary figure 2. 

Supplementary figure 1. Continued
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Supplementary figure 2. Optimization of ACE model fitting parameters for high sensitivity. 
(A) Permutation of only control-derived sequencing reads were tested for false positive tumor 
estimates using the singlemodel function with varying penalty factor and both error methods (MAE 
and RMSE). Each combination of bin size (different panels) and read depth (X-axis) is represented 
by 30 permutation samples. The lowest penalty factor at which ACE did not produce a false positive 
result is plotted. Lines indicate the upper bound of the 95% range of penalty factors. False positive 
results, based on this normal controls sample, are highly unlikely using a penalty factor of 0.1 (dashed 
line). We emphasize that this result represents a high quality, fresh, healthy control DNA sample. The 
penalty factor for optimal sensitivity should be trained using the appropriate control (e.g. FFPE, cell-
free DNA). (B) Benchmarking with ACE was repeated at penalty 0.1. Note that an estimate of 1 (100% 
tumor cell percentage) by ACE generally indicates a negative result, as ACE defaults to 1 instead of 0 
to produce “flat” absolute copy number profiles for samples without CNAs. By default, ACE does not 
estimate lower percentages than 5%. Sensitivity depends on the highest level genomic amplification 
that is still recognized as a segment by DNAcopy, which is why ACE is more sensitive for HT29 than 
for HCT116 (copy number profiles in Supplementary figure 1A). 

Supplementary figure 3. {is available at Bioinformatics online} Benchmarking of ACE 
with varying bin size, read depth, error method, and penalty factor for three cell lines. 
Ten permutations with the indicated amount of sequencing reads (rows) were created for each 
percentage tumor-derived reads (X-axis). Tumor cell percentage (Y-axis) corresponding to the top 
prediction were derived from an adapted version of the singlemodel function that estimates tumor 
cell percentages starting from 1%, not 5%. The black line shows expected tumor cell percentage. 
Columns represent varying penalty factors. Each page contains a combination of cell line and bin 
size. As expected, an increase in read depth has a positive influence on both accuracy (deviation 
from the black line) and sensitivity. Generally, a larger bin size improves sensitivity, but may decrease 
accuracy, depending on the genomic size and abundance of CNAs. Differences depending on error 
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methods can vary due to subtle difference in the CNAs (compare different bin sizes of HCT116), but 
become less notable with higher penalties. When top predictions correspond with the expected 
tumor cell percentage (black line), MAE tends to produce slightly more accurate results. Penalizing 
for low cellularity (penalty) increases accuracy but at the cost of sensitivity (see also Supplementary 
figure 2). Note: due to its size, Supplementary figure 3 is provided as a separate file.

Supplementary figure 4. Performance of ACE’s purity estimation using either fixed ploidy 
or variable ploidy. Tumor purity of 253 ovarian cancer samples was estimated using either ACE’s 
singlemodel function, which uses a fixed ploidy (set to 2 in this instance), or ACE’s squaremodel 
function, which calculates fits over a range of ploidies (from 1.8 to 4.3 in this instance). For both 
functions, the purity of the top prediction was plotted against the tumor purity reported by Macintyre 
and colleagues (see also Supplementary methods). The colored lines in the figure represent the 
linear regression models of the corresponding functions, while the black line represents the ideal 
line (estimated purity equals gold standard). The figure demonstrates that purity estimates using 
variable ploidy (green) are overall slightly better than estimates using fixed ploidy (purple), with 
median absolute differences between the estimate and the gold standard of 0.067 and 0.094 
respectively (p-value 0.0062, Wilcoxon rank sum test). 
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Supplementary Figure 5. Efficacy of model prioritization of ABSOLUTE and ACE on the 
ovarian carcinoma data set, consisting of 253 samples. The tumor purity of these samples 
were previously determined by combining copy number data and deep sequencing of clonal TP53 
mutations (Macintyre et al., 2018). These reported tumor purities were used as gold standard to test 
performance of ACE and ABSOLUTE when applied to copy number data of the ovarian carcinoma 
data set as described in the supplementary methods. For both ABSOLUTE and ACE, purity estimates 
of maximally 20 fits were recorded. For each sample, we determined how many fits were reported 
until the estimated tumor purity came within the indicated range of the gold standard purity 
determination (A, differences smaller than 0.05 or 0.10, or B, relative differences smaller than 1.1-
fold or 1.25-fold). The bar graph summarizes the number of samples (Y-axis) that arrived at the 
correct model (within the cutoff displayed at the top of the graph) at the designated number of fits 
(X-axis). The line graph shows the cumulative number of samples with a correct fit. For example, ACE 
produced a first estimate deviating less than 0.05 from the gold standard for 100 samples (A, left 
panel, leftmost green bar). Of the remaining samples, 37 approximated the gold standard with the 
second estimate, yielding a cumulative 137 samples that were correctly estimated within two fits. 
The “greater than” sign on the X-axis denotes samples for which the correct model appeared at fit 
13 to 20. The NF denotes samples for which no correct fit was given within the maximum of 20 fits.
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Supplementary figure 6. Effect of high-level gains on ACE’s prediction accuracy. Copy number profiles 
were created by sampling “reads” originating from 500 bins divided over 5 segments (A) or 550 bins divided 
over 11 segments (B). The probability to sample from a bin was set proportional to the number of intended 
copies, e.g. 1, 2, 2, 4, 8 for the first variant. In both (A) and (B), a sample with high-level gain (top row) is 
compared to a similar sample without high-level gain (bottom row). The variants in (A) only differ on a single 
segment. The variants in (B) were created in such a way that their “tumor content” is equal. For all variants, 
10,000 permutations were created using either 80% or 30% tumor cell percentage. Tumor percentage 
estimates for all permutations were calculated using ACE and plotted in the histograms. 





Chapter

Wendy B.C. Stevens*, Matias Mendeville*, Robert Redd, Andrew J. Clear, 
Reno Bladergroen, Maria Calaminici, Andreas Rosenwald, Eva Hoster, 

Wolfgang Hiddemann, Philippe Gaulard, Luc Xerri, Gilles Salles, Wolfram Klapper, 
Michael Pfreundschuh, Andrew Jack, Randy D. Gascoyne, Yasodha Natkunam, 

Ranjana Advani, Eva Kimby, Birgitta Sander, Laurie H. Sehn, Anton Hagenbeek, 
John Raemaekers, John Gribben, Marie José Kersten, Bauke Ylstra, Edie Weller, 

Daphne de Jong

*Authors contributed equally

Haematologica, 2017; 102(8):1413-1423

 6
Prognostic relevance of CD163 and 

CD8 combined with EZH2 and gain of 
chromosome 18 in follicular lymphoma: 

A study by the Lunenburg Lymphoma 
Biomarker Consortium



Chapter 6

118

Abstract
In follicular lymphoma, studies addressing the prognostic value of microenvironment-

related immunohistochemical markers and tumor cell-related genetic markers have 

yielded conflicting results, precluding implementation in practice. Therefore, the 

Lunenburg Lymphoma Biomarker Consortium performed a validation study evaluating 

published markers.

To maximize sensitivity, an end-of-spectrum design was applied for 122 uniformly 

immunochemotherapy-treated follicular lymphoma patients retrieved from international 

trials and registries; early failure: progression or lymphoma-related death <2 years versus 

long remission: response duration of >5 years.  Immunohistochemical staining for T-cells 

and macrophages was performed on tissue microarrays from initial biopsies and scored 

with a validated computer-assisted protocol. Shallow whole-genome and deep targeted 

sequencing was performed on the same samples.  

The 96/122 cases with complete molecular and immunohistochemical data were 

included in the analysis. EZH2 wild-type (p=0.006), gain of chromosome 18 (p=0.002), low 

percentages of CD8+ cells (p=0.011) and CD163+ areas (p=0.038) were associated with 

early failure. No significant differences in other markers were observed, thereby refuting 

previous claims of their prognostic significance.  

Using an optimized study design, this Lunenburg Lymphoma Biomarker Consortium 

study substantiates wild-type EZH2 status, gain of chromosome 18, low percentages of 

CD8+ cells and CD163+ area as predictors of early failure to immunochemotherapy in 

follicular lymphoma treated with R-CHOP (like), while refuting the prognostic impact of 

various other markers. 
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Introduction
The disease course of follicular lymphoma (FL) is characterized by multiple relapses with 

variable remission durations, which tend to get shorter after each line of treatment.1-7 

Approximately 15% of patients die within the first few years, largely due to histological 

transformation or refractory disease. In contrast, the majority of patients show prolonged 

survival without relapse and a substantial number of patients never even require 

treatment. Currently, clinical factors captured in the Follicular Lymphoma International 

Prognostic Index (FLIPI)8, 9 and the adjusted FLIPI210 are the primary prognostic tools 

utilized to predict disease progression. FLIPI is based on easily available clinical data 

designed to offer an accurate, yet simple prognostic index. However, the biological 

behavior of FL is likely determined by a more complex interaction between tumor 

genetics, -microenvironment and patient characteristics.

Several gene expression-profiling studies have underlined the major influence of 

characteristics of the non-malignant tumor microenvironment on prognosis in FL.11, 

12 However, evaluation by immunohistochemistry (IHC) of T-cell and macrophage 

populations for their prognostic translational impact have produced valuable yet 

conflicting results.13-25 Contradictory results are likely caused by multiple factors, including 

variable patient selection, heterogeneity of treatments across cohorts,25 insufficient 

statistical power due to underrepresentation of poor-outcome patients, technical issues 

in IHC staining and inter-observer variability in scoring. Previous IHC based validation 

studies of microenvironment cell populations by the Lunenburg Lymphoma Biomarker 

Consortium (LLBC), in both diffuse large B-cell Lymphoma (DLBCL) and FL, have 

highlighted the poor reproducibility of manual scoring even by experienced pathologists 

and advocated computer-assisted scoring as being the more reliable technique.26, 27

Recently, the mutational spectrum of FL tumor cells and their prognostic value have been 

reported.28-30 Most notably, Pastore et al demonstrated the value of combining mutation 

status with clinical FLIPI and performance status to improve upon the prognostic value 

of FLIPI alone (45-55%) to 64-72% for M7-FLIPI, with a comparable negative prognostic 

value.31This method may also be valuable for very high-risk FL cohorts, as reported by 

the same group.32

The objective of the present study of the LLBC consortium was to critically asses, in 

a homogeneously treated patient cohort, whether the previously implicated micro 

environmental and molecular markers of the tumor have clinically relevant prognostic 

value. We hypothesized that the micro environmental and molecular markers, would 
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be most prominent when we compare tissue samples of patients with an extremely 

poor prognosis (i.e. progression or death within 2 years, a well-established criterion for 

poor prognosis in FL)33 with those with a very favorable prognosis (a response to 1st line 

treatment lasting > 5 years). The LLBC gene panel incorporated the, at that time published, 

molecular markers which were frequently mutated as well as markers that were rarely 

mutated such as FAS and MYD88.28-30 Since with our study design we hypothesized to 

reveal prognostic value of also rare mutations.

To avoid interlaboratory technical variations and interpretation, all assays were uniformly 

processed in a single laboratory and IHC was scored using computer-assisted technology 

based on a previous LLBC FL validation study,27 and molecular analysis was performed 

using established next generation sequencing (NGS) procedures for mutation and copy 

number analyses. 

Methods
Patient selection for an end-of-spectrum design

Tumor specimens of patients with FL, histologic grades 1, 2 and 3A were retrieved from 

the randomized Lymphoma Study Association (LYSA) FL2000 study,4, 6 the German low-

grade Lymphoma Study Group (GLSG) GLSG2000 study,3 and the St Bartholomew’s 

Hospital Registry, London. The patients required treatment and the inclusion criteria in 

the trials were comparable. All patients were treated with rituximab, cyclophosphamide, 

adriamycin, vincristine and prednisone (R-CHOP) or R-CHOP-like regimens, with or 

without interferon-alpha (IFN) maintenance for 2 years. Patients were selected for an 

end-of spectrum design as: (1) early failure (EF), defined as: no remission or progression 

or lymphoma-related death within 2 years after start of 1st line treatment or, (2) long 

remission (LR), defined as: a complete or partial remission lasting >5 years after 1st line 

treatment. Patients that fell in between these criteria were not included in this study. 

Availability of complete clinical information at diagnosis, follow-up data until relapse, 

progression or at least 5 years post-treatment if the patient was still in remission and 

availability of formalin-fixed paraffin embedded (FFPE) diagnostic biopsy samples was 

a prerequisite for inclusion. Detailed clinical information on demographic parameters, 

staging procedures, treatment regimens and outcome were collected by the involved 

data centers (LYSA, GLSG and St Bartholomew’s Hospital).
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Microenvironment analysis on tissue micro-arrays using immunohisto-chemistry 
and automated image analysis scoring 

Tissue microarrays (TMAs) were constructed centrally according to LLBC validated 

protocols27 at the Department of Pathology, Würzburg, Germany, from the biopsy part 

identified by the pathologist (AR), using duplicate cores of 1 mm diameter.  Three µm 

slides were stained for CD3, CD4, CD8, CD68, CD163, FOXP3, PD1, and P53 (Supplementary 

Table S1) according to standard procedures at the Bartholomew’s Pathology Research 

Laboratory, London, UK. 

A computerized system with automated scanning microscope and computerized image 

analysis (Ariol SL-8, Leica Microsystems, Wetzlar, Germany) was used for scoring as 

described in the LLBC validation study.27 Macrophages and all T-cell populations were 

scored for the whole core, and in the intrafollicular and interfollicular areas separately, 

as described by Wahlin et al.22 Color- and shape class defined positive- and negative 

nucleated cells, or positive- and negative areas.16 Cores with less than 50% scorable core 

surface (non representative areas or tissue artifacts) were excluded and average scores 

of duplicates were used when available. 

Using the Ariol software algorithm CD3, CD4, CD8, PD1, FOXP3 and p53 positive nucleated 

cells were scored as the percentage of all nucleated cells. For CD68 and CD163 the 

positive area versus the whole area was scored to accommodate the large size and long 

cytoplasmic extensions of macrophages as an optimal determination of cell numbers. 

The typical perifollicular infiltration pattern of FOXP3 was scored manually by three 

observers27 and was considered positive if at least two out of the three pathologists (DdJ, 

AR and MC) identified and counted at least one rim of densely packed positive cells at the 

periphery of a follicle.14 All histopathological assessments were done without insight into 

the patient’s clinical data and outcome.

Gene mutation and copy number analysis using next generation sequencing 
(NGS) 

DNA was extracted from FFPE cores with a QIAamp DNA FFPE Tissue Kit (Qiagen, Hilden, 

Germany) and quantified using a Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Carlsbad 

CA, USA). Of each patient sample 250ng DNA was sheared on a Covaris S2 (Covaris Inc, 

Woburn MA, USA), with settings adjusted to DNA from FFPE tissue.34NGS libraries were 

prepared using the KAPA Library Preparation kits (KAPA Biosystems, Wilmington MA, USA). In 
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short, uniquely 8-bp indexed adapters (Roche Nimblegen, Madison WI, USA.) were ligated to 

the FFPE-extracted DNA, followed by size selection of fragments in the range of 150 to 400bp.

One aliquot of this library was subjected to shallow whole genome sequencing (WGS) 

for genome-wide copy number analysis,34 and another aliquot was subjected to hybrid 

capture target enrichment (Roche Nimblegen, Madison WI, USA) for mutation analysis. 

Eight libraries were equimolarly pooled per capture. The hybrid capture panel covers 122 

exons (~50.000 base pairs) of 11 frequently mutated genes (KMT2D, CREBBP, MEF2B, EZH2, 

EP300, BCL2, FAS, TNFRSF14, CARD11, TNFAIP3 and MYD88) in FL-LLBC-NGS target enrichment 

panel, (Supplementary Table S2). All libraries were sequenced on a HiSeq 2000 (Illumina, 

San Diego CA, USA), 50bp single-end for shallow WGS and 125bp paired-end for mutation 

analysis. All sequence lanes were multiplexed with up to 24barcoded sample libraries.

Shallow WGS data was analyzed using the Bioconductor package QDNAseq (v1.5.1).34  For 

gene mutation analysis, variant calling was performed by VarScan2 (v2.3.7)35 using very 

strict criteria, excluding all germline variants from the Single Nucleotide Polymorphism 

database (dbSNP build142), any synonymous mutation and intronic mutations with low 

predicted impact. For prognostic analysis, only non-silent mutations (missense, nonsense, 

in-frame or frame-shift insertions and deletions) were included. 

For detailed laboratory data analysis procedures see supplementary methods section.

Ethical Committee statement

The study and protocols to obtain human archival tissues and patient data were 

approved by the local ethical committee of the VU University Medical Center, Amsterdam 

(FWA00017598) for all collaborating centers and comply with the Code for Proper 

Secondary Use of Human Tissue in the Netherlands (http://www.fmwv.nl).

Statistics

Uni- and multivariate analyses were used to evaluate the distribution of the biomarkers 

for the two cohorts. For microenvironment analysis, biomarkers were included in 

the analysis using the scoring categories as defined above and the average of the 

biomarker score from two cores was used in the analysis. For mutation analysis, the 

genes were included in the analysis as mutated or wild-type. To correct for multiple 

comparisons, the Benjamini-Hochberg method was used, and p-values less than  0.05 

were considered  significant. Patient characteristics were summarized with descriptive 

statistics. Fisher’s exact test was used to test for association between pairs of categorical 
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variables, and univariate and multivariable logistic regression was used for the binary 

outcome of cohort. Odds ratios (OR) and 95% confidence intervals (CI) were reported, 

The Wilcoxon rank-sum test was used to assess a location shift in the distribution of 

continuous variables between two groups. In a secondary analysis, optimal cut points for 

eight continuous markers were determined using recursive partitioning models a binary 

outcome. To evaluate agreement among the three pathologists for the FOXP3 patterns 

the free marginal Kappa statistics of Brennan and Prediger are reported with a bootstrap 

confidence interval.36, 37  Analyses were performed using SAS Software version 9.3 (SAS 

Institute Inc, Cary, NC; 2005) and R version 3.3.0 (R Core Team, Vienna, Austria; 2016).38

Results
Patient selection and immunohistochemical biomarker assessment

A total of 122 patients fulfilled the selection criteria and had biopsy material available that 

met the input requirements for both immunohistochemistry (IHC) and gene mutation 

analysis (EF, n=49 and LR, n=73). In 105 cases a complete set of IHC markers was available 

(Supplementary Table S3). For NGS analysis, DNA of sufficient quality and with sufficient 

NGS read depth could be retrieved for 111 cases, resulting in the complete molecular 

data for gene mutation analysis and copy number profiles. 

For 96 of the 122 cases (79%) both IHC and molecular data could be generated that met 

our quality criteria and was included for downstream analysis. Table 1 shows the clinical 

characteristics of the 96 patients (Supplementary Table S4 provides the characteristics 

for all 122 patients, with marginal statistical differences for prognostic subgroup 

representation). FLIPI high-risk category was overrepresented in the EF cohort (p=0.009), 

underpinning the validity of the selection criteria for this end-of-spectrum design. 

Impact of microenvironment T-cell and macrophage cell populations by 
cohort 

The distribution of IHC markers per end-of-spectrum prognostic subgroup analyzed in 

the whole core is shown in Figure 1 and Supplementary Table S5 (Supplementary Table S6 

shows the distribution of IHC markers of the 105 cases). Statistically significant differences 

were found in the median percentage of CD8+ nucleated cells (median EF vs LR is 7.9% 

vs. 8.6%, p=0.011) and CD163+ macrophages area (median EF vs. LR is 3.6% vs. 5.2%, 

p=0.038). In logistic regression analyses, the estimated OR for CD8+ cells are 3.9 (95% CI: 

[1.5-12.1], p=0.01) for a decrease of 10% CD8+ cells. For CD163+ area the odds are 2.0 

(95% CI: [1.1- 4.4], p=0.04) for a decrease of 10% CD163+ area (Supplementary Table S7). 
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Table 1. Clinical characteristics of patients with all immunohistochemical and molecular 
markers available.

Total Early failure Long remission
n = 96 n = 39 n = 57

Group
  Barts 8 (8%) 6 (15%) 2 (4%)
  GLSG 80 (83%) 29 (74%) 51 (89%)
  LYSA 8 (8%) 4 (10%) 4 (7%)
Age at diagnosis
  Median (range) 58 (27-75) 61 (27-75) 58 (32-69)
  < 60 50 (52%) 18 (46%) 32 (56%)
Sex
  Female 47 (49%) 17 (44%) 30 (53%)
Grade
  Grade 1, 2 75 (78%) 28 (72%) 47 (82%)
  Grade 3A 6 (6%) 3 (8%) 3 (5%)
  Missing 15 (16%) 8 (21%) 7 (12%)
Stage
  Stage I-II 2 24%) 1 (3%) 1 (2%)
  Stage III-IV 94 (87%) 38 (97%) 55 (96%)
  Missing 1 (1%) 0 1 (2%)
B-symptoms
  Absent 59 (61%) 23 (59%) 36 (63%)
  Present 35 (36%) 16 (41%) 19 (33%)
  Missing 2 (2%) 0 2 (4%)
ECOG PS
  0 32 (33%) 13 (33%) 19 (33%)
  1 58 (60%) 21 (54%) 37 (65%)
  2 2 (2%) 2 (5%) 0 (0%)
  3 1 (1%) 1 (3%) 0 (0%)
  Missing 3 (2%) 2 (5%) 1 (2%)
FLIPI risk categories
  Low 10 (10%) 1 (3%) 9 (16%)
  Intermediate 35 (36%) 11 (28%) 24 (42%)
  High 46 (48%) 26 (67%) 20 (36%)
  Missing 5 (5%) 1 (3%) 4 (7%)
First line therapy
R-CHOP 87 (91%) 34 (87%) 53 (93%)
R-CHVP-I 9 (9%) 5 (13%) 4 (7%)

Abbreviations: Barts: Bartholomew’s Hospital Registry London, GLSG: German low-grade Lymphoma 
Study Group, LYSA: the Lymphoma Study Association, ECOG: Eastern Cooperative Oncology Group, 
PS: performance score, FLIPI: follicular lymphoma international prognostic index. R-CHOP: rituximab, 
cyclophosphamide, adriamycin, vincristine and prednisone R-CHVP-I: rituximab, cyclophosphamide, 
adriamycin, etoposide, prednisolone and interferon-alpha2a
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Adjusting for other IHC markers without the FLIPI score in a multivariable model, only the 
CD8+ T-cells retained significance (OR=4.5, 95% CI: [1.1-21.2] p=0.04), but with the FLIPI 
score included it does no longer reach significance. No significant differences were found 
for the other markers (CD3, CD4, CD68, CD163, PD1, FOXP3 and p53) between the two 
cohorts (Supplementary Table S7).

Since CD163 was binary scored as positive or negative, a high overall score for the two 
prognostic subgroups might be caused by a higher cell density and/or by larger individual 
cells. Visual assessment by two pathologists (DdJ, MC) was performed and confirmed that 
the higher percentage of positive areas was due to higher cell density. 

A secondary analysis using recursive partitioning was performed to evaluate markers that 
could separate the two prognostic subgroups and to determine the optimal cut points for 
the identified markers for the whole core. The optimal cut points were 12.6% and 6.3% for 
CD8+ and CD163+, respectively. The percentage of patients with low levels of both CD8+ 
T-cells and CD163+ area (defined as lower than the optimal cut points) is 79% (95% CI 64 – 
91%) vs. 39% (95% CI 16 -52%) for EF (n=39) vs. LR (n=57) (p<0.001). Similarly, results were 
obtained if the upper quartiles are used instead of the optimal cut points (12.2% (n=39) vs 
8.4% (n=57) for EF (79% (95% CI: 64 – 91%)) vs LR (46% (95% CI: 32 – 59%)), p = 0.001).  

Impact of spatial distribution and perifollicular pattern of FOXP3 by 
prognostic subgroup 

The spatial distribution of T-cell populations and macrophages has been claimed to be of 
greater influence on prognosis than the overall numbers of infiltrating cells and therefore 
intra- and interfollicular populations were assessed separately.14-17, 19, 22, 39 However, in this 
series, we could not validate this claim for most T-cell or macrophage classes. Except 
in the univariate analysis of the interfollicular population, CD8+ cells and CD163+ area 
are significant, CD8+ cells with an OR 3.6 (95% CI: [1.2-6.4], p=0.03) and CD163+ area 1.9 
(95% CI: [1.1-3.6], p=0.03). Only CD8+ interfollicular populations have a minor influence 
in multivariate analysis without the FLIPI score included (OR3.7, 95% CI [1.2-15.5], p<0.01) 
(Supplementary Tables S8 and S9).

The perifollicular pattern of FOXP3+ T-cells was scored manually by three pathologists 
(DdJ, AR, BS). Agreement between pathologists reached similar levels as in the validation 
study (Brennan-Predigar estimate of 0.78 and 0.83 for cores 1 and 2 in this study versus 
0.85 for validation study). 29 The perifollicular pattern did not differ significantly (p=0.46) 
between the two prognostic subgroups, 10/39 (26%) EF subgroup and 11/57 (19%) LR 
subgroup (Supplementary Table S10).
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Figure 1. Boxplots per immunohistochemical marker. For CD4, CD8, CD3, FOXP3, PD1 and P53 is 
it the percentage of positive nucleated cells of all nucleated cells, and for CD163 and CD68 is it the 
percentage of positive cell area of the total cell area. Early failure n=39, long remission n=57
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Frequency distribution of chromosomal copy numbers and gene mutations 
in FL

Shallow WGS resulted in high quality genome-wide copy-number aberration (CNA) 

plots for all cases. The most common aberrations, detected in at least 10% of patients, 

included complete or partial gains of chromosomes 1q, 2, 7, 8, 12 and 18 and losses of 

1p, 6q and 10q (Figure 2 and Supplementary Table S11). The landscape of CNAs shows 

notable enrichment of FL-related genes, including focal losses of TNFRSF14 (1p36.32), 

TNFAIP3(6p23.3) and FAS and PTEN (10q23.31) and focal gains that harbour FL-related 

oncogenes, like BCL11A and REL(2p16.1).

Genes included in the LLBC-NGS target enrichment panel showed non-synonymous 

mutations in at least 2 FL cases (Figure 3 and Supplementary Table S12). BCL2, a known 

target for aberrant somatic hypermutation (aSHM) in FL, was most frequently mutated 

(88/96, 92%) with 0 to 78 mutations per case. Chromatin modifying genes KMT2D (71%) 

and CREBBP (67%) were mutated with high frequency and epigenetic modifiers EZH2 

(18%), MEF2B (10%), EP300 (7%) at lower rates with non-silent mutations in 1-4 of these 

chromatin modifying genes in 90% of FL patients, consistent with the critical role of 

epigenetic deregulation in the majority of FL. No patterns of co-occurrence or mutual 

exclusivity were observed.  Non-silent mutations were found in TNFRSF14 (30%), TNFAIP3 

(7%), CARD11 (8%), FAS (2%) and MYD88 (2%) (Table 2, Supplementary Table S13 shows the 

distribution of mutations of the 111 cases).

Impact of chromosomal copy numbers and gene mutations by prognostic 
subgroup 

The distribution of CNAs and gene mutations by prognostic subgroup are shown in Figure 

2 and 3. Statistically significant differences after multiple testing correction were only found 

for gain of chromosomal region 18p11.32-q21.33 (gain EF vs LR 49% vs 12%, p<0.001), 

with an estimated OR in logistic regression analysis of 0.15 (95% CI: [0.05-0.44]) and for 

EZH2 mutation status (unmutated EF vs LR 90% vs 72%, p<0.001) (Table 2). The odds ratio 

for unmutated EZH2 is 14.53 (95% CI:[2.06-635.92]). No significant impact was found for 

various markers, previously implicated as (borderline) prognostic such as CREBBP (OR 0.55, 

95% CI [0.20-1.45], p=0.6), EP300 (OR 1.77, 95% CI [0.27-19.52], p>0.99), CARD11 (OR 1.15, 

95% CI [0.21-7.89], p>0.99) and MEF2B (OR 1.03, 95% CI [0.22-5.33], p>0.99). 
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Table 2. Distribution of gene mutation status by cohort (n=96)

Total             
n=96 (%)

Early 
failure 
n=39 (%)

Long 
remission 
n=57 (%)

OR [95% CI] p 
(unadjusted)

p (adjusted)

BCL2
  Mutated 88 (92) 37 (95) 51 (89) 0.46 [0.04 - 2.78] 0,47 0,9
  Unmutated 8 (8) 2 (5) 6 (11)
KMT2D
  Mutated 68 (71) 28 (72) 40 (70) 0.93 [0.34 - 2.47] > 0.99 > 0.99
  Unmutated 28 (29) 11 (28) 17 (30)
CREBBP
  Mutated 64 (67) 29 (74) 35 (61) 0.55 [0.20 - 1.45] 0,27 0,6
  Unmutated 32 (33) 10 (26) 22 (39)
TNFRSF14
  Mutated 29 (30) 10 (26) 19 (33) 1.44 [0.54 - 4.04] 0,5 0,9
  Unmutated 67 (70) 29 (74) 38 (67)
MEF2B
  Mutated 10 (10) 4 (10) 6 (11) 1.03 [0.22 - 5.33] > 0.99 > 0.99

  Unmutated 86 (90) 35 (90) 51 (89)
EZH2
  Mutated 17 (18) 1 (3) 16 (28) 14.53 [2.06 - 635.92] < 0.001 0,006
  Unmutated 79 (82) 38 (97) 41 (72)

TNFAIP3
  Mutated 7 (7) 1 (3) 6 (11) 4.41 [0.50 - 210.74] 0,23 0,6
  Unmutated 89 (93) 38 (97) 51 (89)
EP300
  Mutated 7 (7) 2 (5) 5 (9) 1.77 [0.27 - 19.52] 0,7 > 0.99

  Unmutated 89 (93) 37 (95) 52 (91)

CARD11
  Mutated 8 (8) 3 (8) 5 (9) 1.15 [0.21 - 7.89] > 0.99 > 0.99
  Unmutated 88 (92) 36 (92) 52 (91)
FAS
  Mutated 2 (2) 2 (5) 0 (0) 0.00 [0.00 - 3.62] 0,16 0,6
  Unmutated 94 (98) 37 (95) 57 (100)
MYD88
  Mutated 2 (2) 1 (3) 1 (2) 0.68 [0.01 - 54.63] > 0.99 > 0.99
  Unmutated 94 (98) 38 (97) 56 (98)
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Integrated modelling of immunohistochemical and molecular analysis of 
the prognostic subgroups 

Correlation analysis was performed for molecular- and IHC markers, showing significant 

correlation between mutated CREBBP status and higher level infiltrates of PD1 positive 

T-cells (p<0.005), but not with CD4 and CD8 positive T-cells (Figure 4A). TNFRSF14 mutation 

status showed significant correlation with lower CD4 and CD8 positive T-cell infiltrates 

(p=0.037 and p=0.030) (Figure 4B). Microenvironmental populations were not significantly 

differentially distributed for other molecular markers, including EZH2 (data not shown).

In a multivariable model combining the four markers, CD8, CD163, gain chromosome 

18 and EZH2 mutation, that are statically significant in the univariate analysis, only the 

gain of chromosome 18 (OR 0.27 (95% CI: [0.09,0.79], p=0.019)) and EZH2 (OR 13.76 (95% 

CI: [2.53,264.94], p=0.017)) retain significant. After incorporating the FLIPI score into the 

model, gain of chromosome 18 (p=0.018) and EZH2 (p=0.036) (Table 3) retain significance.  

Table 3. Odds ratio (OR) (95% Cl) for a 10% change in the immunohistochemical markers 
and absent or present molecular markers in univariate analysis, and multivariate analysis 
without and with the FLIPI.

Univariate Multivariable without FLIPI Multivariable with FLIPI
OR P OR P OR P

(95% Cl) (95% Cl) (95% Cl)
%CD8 3.86 0.01 3.15 0.064 2.58 0.13

(1.48, 12.13) (1.03, 11.87) (0.83, 10.02)
%CD163 2.01 0.04 1.54 0.29 1.43 0.38

(1.11, 4.37) (0.75, 3.83) (0.69, 3.52)
CHR 18 0.15 <0.001 0.27 0.019 0.24 0.018

(0.05, 0.39) (0.09, 0.79) (0.07, 0.75)
EZH2 14.83 0.011 13.76 0.017 9.99 0.036

(2.82, 274.07) (2.35, 264.94) (1.69, 192.73)
FLIPI high 0.28 0.005 0.36 0.048

(0.11, 0.66) (0.12, 0.98)
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Figure 4. Correlation molecular markers and IHC markers. A: CREBBP, B: TNFRSF14. Blue bars 
are mutated, grey bars are wild-type. On the X-axis the number of cases per IHC marker, on the 
Y-axis the percentages of positive cells or area. 
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Discussion 
This LLBC study is as far as we know the first to comprehensively explore the combined 

prognostic impact of microenvironment T-cell and macrophage infiltration and tumor 

genetics of FL patients with extremely poor outcome (EF) versus those with a prolonged 

remission (LR). We show poor outcome to be characterized by a lower number of CD8+ 

T-cells, a smaller CD163+ macrophage area (indicative of fewer macrophages), wild-type 

EZH2 and a copy number gain of chromosome 18. These observations in part confirm 

previous studies. The gain of chromosome 18, despite its statistically strong prognostic 

value, was not previously reported. Equally important, cellular densities of various other 

cell populations, such as PD1+ T follicular helper (TFH) cells and FOXP3+ T regulatory (Treg) 

cells, previously claimed to predict clinical outcome, were not confirmed in our study.16, 

22, 24, 39-41

This study was specifically designed to verify the impact of previously published IHC and 

molecular markers in FL in the rituximab-chemotherapy era. Therefore, we implemented 

a dedicated study design to reduce noise such that all cases were retrieved from clinical 

trials and registries which guaranteed complete clinical information at presentation 

and detailed treatment information. This allowed us to make a homogeneously treated 

patient selection, with subgroups at the extreme ends of the prognostic spectrum, the 

EF and the LR subgroups. By balancing inclusion of the rare EF subgroup, we maximize 

the sensitivity to observe clinically relevant differences in the microenvironment and 

mutations, while allowing an overall relatively small patient cohort. To reduce inter-

observer variability, the validated quantitative computerized IHC scoring method of the 

TMA was implemented, which was previously shown to be more reproducible than any 

semi-quantitative method.27

For microenvironment populations, our results of CD163+ area validate those of Kridel et 

al, showing that a higher CD163+ pixel count or CD163+ area are independent predictors 

of prolonged progression free survival (PFS) in patients treated with R-CHOP (p=0.011-

0.030), while the CD68+ macrophages population did not have a significant impact by 

pixel count or area.42 Previous reports provided conflicting data for CD68+ macrophages, 

suggesting correlation with either adverse17, 39, 43, 44 or favorable outcome45.Differences 

in scoring methods and variations in treatment characteristics may explain these 

discrepancies. 

This LLBC study also showed that a lower percentage of CD8+ cytotoxic T- cells, in the 

whole TMA core and interfollicular areas were associated with EF after treatment with 
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rituximab-chemotherapy. This confirms findings in several series using computerized 

scoring or flow cytometry of cell suspensions, both in the rituximab-era and pre-
rituximab-era.15, 22, 46However, inconsistent results were obtained in studies using manual 
scoring, 14, 18, 47corroborating the need for a reliable scoring method of CD8+ T-cells. 

None of the other T-cell markers, including CD3, CD4, PD1 and FOXP3 demonstrated 
a significant prognostic impact. Debates are mostly on PD1+ cells, FOXP3+ cells and 
perifollicular patterns of FOXP3 positive T-cells with conflicting results published. However, 
positive prognostic value of PD1+ cells was seen in studies in which only  some of  the 
patients received rituximab,16, 22 whereas in studies in which the majority of patients were 
treated with rituximab-chemotherapy, no or a negative effect was reported.39, 41

Frequencies of mutations and distribution of alterations in hotspots and functional 
domains of the tested genes are largely in line with those previously reported.28, 31, 48-50 
Almost all FLs are reported to have mutations in one or more histone-modifying genes 
such as KMT2D (reported as 76-89%), CREBBP (reported as 33-68%), MEF2B (reported as 
15%), EP300 (reported as 9-15%) and EZH2 (reported as 7-26%).49Histone-modifying genes 
exert their function largely indirectly via co-activation of various transcription factors and 
thereby their specific role in B-cell oncogenesis and immunological functions is difficult 
to predict.51Gene expression analysis has suggested that mutated CREBBP may down-
regulate major histocompatibility complex (MHC) class II genes, resulting in impaired T-cell 
activation and possibly lower T-cell levels in tumor samples.49  This hypothesis could not 
be supported in the present study showing no association of CREBBP mutation status and 
total numbers of T-cells or specific subsets except for an association of CREBBP mutated 
status with higher numbers of PD1 positive T-cells. It should be noted, however, that the 
differences, albeit statistically significant, take place in a very narrow dynamic range. KMT2D, 
that was mutated in 70% of both EF and LR cases, showed a strong correlation to both 
CD8 and CD163 with high levels of both markers in wild-type cases. KMT2D is known to 
decrease apoptosis and increase B-cell proliferation both directly and indirectly in germinal 
center B-cells.52Conditional mouse models indicate a role in plasma cell and germinal center 
differentiation.53  Regulatory alterations, impacting on immunological interactions with 
T-cells or macrophages have not been described, however. In that line, it is less remarkable 
that the mutation status of TNFRSF14, a protein that is directly involved in immune response 
regulation, does correlate with CD4+ and CD8+ T-cell infiltration in tumor samples. 

By shallow whole genome sequencing, copy number profiles of all tumors were studied 
in both prognostic groups. Of all previously published numerical alterations in FL, only 
gain of chromosome 18 stood out as an independent prognostic marker.



Prognostic relevance of CD163 and CD8 combined with EZH2 and gain of chromosome 18 
in follicular lymphoma: A study by the Lunenburg Lymphoma Biomarker Consortium

6

135   

Our results confirm EZH2 as a strong prognostic markers in FL with wild-type gene 

status associated with poor disease outcome (EF),31, 32but other markers, such as EP300 

and TNFSFR14 that have been implicated to have a significant, though minor impact on 

prognosis, were not substantiated in our study.31, 54 This is likely due to selection bias and 

relative underrepresentation of poor prognosis patients in previous series for which our 

study design was specifically optimized. This LLBC study design precludes integration 

of a complete multifactorial prognostic model such as the M7-FLIPI index, however, the 

prognostic trend of EZH2 as reported by Pastore et al follows the same direction as in our 

study, where statistical significance is reached and lack of significance of 4 other markers 

is confirmed.

Question is if these findings on the prognostic value of microenvironment populations 

and genomic alterations can be translated to application in daily clinical practice. 

The mutations in EZH2 are largely clustered in codon Y646 (Supplementary Figure 

1) and therefore technically very easily amenable to simple PCR techniques, 55  while 

chromosomal gains can be monitored using FISH or NGS.56, 57 This makes that these 

two markers have a high potential for clinical implementation. In contrast to the macro-

environment population markers CD8 and CD163. With the current techniques, even if 

it is optimized, the absolute quantitative differences are too small between these two 

extreme cohorts to become a powerful and clinically useful tool for the scores around the 

cut point. At best the prediction of the extremes can be used for this purpose. 

In conclusion, the literature with regard to IHC prognostic markers in FL has produced 

highly conflicting results, and for mutation analysis only very limited data are currently 

available on prognostic impact. By its unique design in a homogeneously rituximab-

chemotherapy treated group of patients, we confirm that lower percentages of CD8+ 

T-cells, CD163+ M2 macrophage areas, EZH2 wild-type status and gain of chromosome 

18 in the initial tumor biopsy specimen predict a poor prognosis in FL for this treatment 

cohort. Equally important, in this study, we could not substantiate the previously 

reported claim on the prognostic impact of other most commonly mutated genes such 

as TNFRSF14 and EP300, of T-cell populations and macrophages classes, as well as a 

perifollicular distribution of FOXP3+ T-cells for patients treated with R-CHOP (like).14, 16, 18, 

22, 24, 31, 39-41, 54 Moreover, this study provides further insight into the relationship between 

gene mutation status and most relevant micro-environment populations in FL.
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Supplementary methods
DNA isolation and Library preparation

FFPE tissue cores were cut vertically into several smaller fragments to increase surface 

exposure, followed by DNA extraction with a QIAamp DNA FFPE Tissue Kit (Qiagen, Hilden, 

Germany) as previously described.1 Double-stranded genomic DNA was quantified 

using a Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Carlsbad CA, USA) and 250 ng 

was fragmented by ultrasonification with a Covaris S2 (Covaris Inc, Woburn MA, USA), 

with optimized settings for DNA isolated from FFPE tissue.2 Library preparation of the 

fragmented DNA was performed with a KAPA Library Preparation kits (KAPA Biosystems, 

Wilmington MA, USA). Uniquely 8-bp indexed adapters (Roche Nimblegen, Madison WI, 

USA.) were ligated to the FFPE-extracted DNA followed by purification using AMPure 

XP beads (Beckman Coulter, Brea CA, USA), which resulted in a fragment size between 

150 and 400 basepairs. Subsequently, a PCR amplification was performed with 7 cycles 

and library yield was assessed by measuring the DNA concentration using an Agilent 

Bioanalyzer DNA 1000 assay (Agilent Technologies, Santa Clara, CA, USA). Libraries with 

yield below 50ng were excluded for further analysis. 

Shallow whole genome sequencing (WGS) for genome-wide DNA copy 
number analysis

For shallow WGS, up to 24 barcoded samples libraries were equimolarly pooled and 

12.5pM was loaded per lane of a HiSeq Single End Flowcell (Illumina, San Diego CA, USA), 

followed by cluster generation on a cBot (Illumina, San Diego CA, USA). Sequencing was 

performed on a HiSeq2000 (Illumina, San Diego CA, USA) in a single-read 50-cycle run 

mode (SR50).

Shallow WGS reads were analyzed with the Bioconductor package QDNAseq  (v1.5.1) 
2 which infers copy numbers by a depth of coverage approach without the use of an 

external reference signal. QDNAseq aligns sequence reads to the human reference 

genome (GRCh37/hg19) with BWA (v0.7.5), 3 while removing PCR duplicates and reads 

with mapping qualities below 37 and concurrently dividing the genome into equally sized 

bins of 30k base pairs. A 2-dimensional Loess correction for GC content and sequence 

map ability is performed and a blacklist applied based on the 1000 Genomes Project 4 to 

filter out problematic regions and common regions of germ-line copy number variants. 

The resulting copy number profiles were dewaved 5 and segmented. 6 Next, copy number 

aberrations (CNAs) were called into five discreet categories (homozygous deletion, loss, 
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normal, gain, or amplification) accounting for sample-specific tumor cell percentages with 

the Bioconductor package CGHcall (v2.30.0).7 To reduce dimensions of the data set of 84 

000 bins without losing information, CGHregions (v1.26.0; averror setting = 0.0075)8  was 

used resulting in 142 chromosomal subregions. A Wilcoxon rank-sum test using 10 000 

permutations was performed with CGHtest (v1.1)9 to compare the distribution of CNAs 

for each chromosomal subregion. This test includes a permutation-based false discovery 

rate (FDR) correction for multiple testing. Separate analyses were performed for gains 

and losses, and chromosomal regions were considered significantly different between 

cohorts if P < 0.05 and FDR < 0.1.

Deep targeted sequencing for somatic mutations analysis

For target enrichment, sequence libraries were equimolarly pooled with 8 barcoded 

samples to a total mass of 1µg DNA. If this amount could not be reached i.e. due to poor 

DNA quality, a standard of 50ng per patient sample was taken. Libraries were enriched 

by double hybrid capture for a custom targeted panel using SeqCap EZ choice library 

capture reagents according to manufacturer’s procedures (Roche Nimblegen, Madison 

WI, USA), covering 122 exons (~50.000 base pairs) of 11 frequently mutated genes in FL 

(Supplementary table S2).  In case a total amount of 1ug DNA could not be reached, the 

amount of blocking oligonucleotides and EZ enrichment library was adjusted in a linear 

fashion. Enriched sequence libraries were multiplexed with a maximum of 24 libraries 

per lane and sequenced on a HiSeq 2000 (Illumina, San Diego CA, USA) in a paired-end 

125-cycle mode. 

NGS reads were de-multiplexed by Bcl2fastq (Illumina) and adapter sequences trimmed 

by Cutadapt (v1.6).8 Subsequently, paired-end reads were aligned to the human 

reference genome (GRCh37/hg19) with BWA (v0.7.5).3 Mapped reads were then marked 

for duplicates with Picard tools (v1.61) [(picard.sourceforge.net)]. Mutation calling 

was performed with VarScan2 (v2.3.7)9 according to the following criteria: coverage 

depth > 20X, average read quality > 20, variant supporting reads >5 and variant allele 

frequency (VAF) > 10. Mismatches near a stretch of minimally 6 identical nucleotides were 

neglected. Functional annotation and effect prediction of called variants was performed 

with SnpEff (v4.1b)10 Single nucleotide variants (SNVs) and small indels were labeled 

somatic if impact prediction was ‘high’ or if impact prediction was ‘moderate’ and the 

variant single nucleotide variant (SNV) was tagged as ‘uncommon’ according to the Single 

Nucleotide Polymorphism database (dbSNP build 142).11  This classification eliminated 

germline SNVs, any synonymous mutation and intronic mutations with low predicted 
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impact. For BCL2, all SNVs except for those with a ‘common’ dbSNP label were considered 

aberrant somatic hypermutation (aSHM). All downstream analyses were performed in 

the programming language R (version 3.2.1) with custom scripts.

Data availability
All sequence data has been uploaded to the European Genome-phenome Archive (EGA; 

accession number EGAS00001002049).
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Supplementary tables
Table S1. Antibodies used for immunohistochemistry for T-cell subsets, macrophage subsets 
and tumorcell markers. 

Antibody Company Working dilution
CD3 Labvision CD3-SP7 20:10 000
CD4 NCL-CD4-268 20:10 000
00CD8 Dako M7103clone CD8/144B 1:500
FOXp3 Abcam 10:1 000
PD1 Abcam 1:100
CD68KP1 Daco code M0814 clone KP1 2:16 000
CD163 Novacastra NCL-L-CD163 20:50 000
P53 Dako code M7001 clone D07 1:3 000
CD20 Dako code M0755 clone L26 10:20 000

Table S2. Custom LLBC hybrid-capture target enrichment panel.

Gene Target
KMT2D/MLL2 Entire CDS
CREBBP Entire CDS
MEF2B Exons 2, 3, 4, 9
EZH2 Exons 16, 18
EP300 HAT domain (exons 24-30)
BCL2 2800bp around TSS
FAS Exon 7-9
TNFRSF14 Entire CDS
CARD11 Exon 5-9
TNFAIP3 Entire CDS
MYD88 Exons 3-5

Table S3. number of cases per immunohistochemical markers, which could be scored in the 
TMA (n=122), in 105 patients all immunohistochemical markers were scored on either core.

Marker  No. of patients 
with core 1 not 
scored

No. of patients with 
core 2 not scored

No. of patients 
with both cores not 
scored

No. of patients with 
either core scored

CD3 20 18 12 110
CD4 17 20 12 110
CD8 18 18 13 109
FOXP3 21 18 13 109
PD1 24 19 15 107
P53 20 18 12 110
CD163 20 15 11 111
CD68 18 16 11 111
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Table S4. Clinical characteristics of all 122 patients with immunohistochemical and/or 
molecular markers available. 

Total Early failure Long remission p
n = 122 n = 49 n = 73

Group 0.08
  Barts 8 (7%) 6 (12%) 2 (3%)
  GLSG 99 (81%) 39 (80%) 60 (82%)
  LYSA 15 (12%) 4 (8%) 11 (15%)
Age at diagnosis 0.11
  Median (range) 60 ( 27 - 75) 62 (27 - 75) 58 ( 32 - 71)
  < 60 61 (50%) 21 (43%) 40 (55%)
Sex 0.58
  Female 64 (52%) 24 (49%) 40 (55%)
Grade 0.43
  Grade 1, 2 90 (74%) 35 (71%) 55 (75%)
  Grade 3A 7 (6%) 4 (8%) 3 (4%)
  Missing 25 (20%) 10 (20%) 15 (21%)
Stage 0.41
  Stage I-II 5 (4%) 2 (4%) 3 (4%)
  Stage III 35 (29%) 11 (22%) 24 (33%)
  Stage IV 81 (66%) 36 (73%) 45 (62%)
  Missing 1 (1%) 0 1 (1%)
B-symptoms 0.57
  Absent 73 (60%) 28 (57%) 45 (62%)
  Present 47 (39%) 21 (43%) 26 (36%)
  Missing 2 (2%) 0 2 (3%)
ECOG PS 0.23
  0 41 (34%) 14 (29%) 27 (37%)
  1 73 (60%) 29 (59%) 44 (60%)
  2 4 (3%) 3 (6%) 1 (1%)
  3 1 (1%) 1 (2%) 0 (0%)
  Missing 3 (2%) 2 (4%) 1 (1%)
FLIPI risk categories 0.009
  Low 12 (10%) 2 (4%) 10 (14%)
  Intermediate 47 (39%) 14 (29%) 33 (45%)
  High 57 (47%) 31 (63%) 26 (36%)
Missing 6 (5%) 2 (4%) 4 (5%)
First line therapy 0.52
R-CHOP 106 (87%) 44 (90%) 62 (85%)
R-CHVP-I 16 (13%) 5 (10%) 11 (15%)

Abbreviations: Barts: Bartholomew’s Hospital Registry London, GLSG: German low-grade Lymphoma 
Study Group, LYSA: the Lymphoma Study Association, ECOG: Eastern Cooperative Oncology Group, 
PS: performance score, FLIPI: follicular lymphoma international prognostic index. R-CHOP: rituximab, 
cyclophosphamide, adriamycin, vincristine and prednisone R-CHVP-I: rituximab, cyclophosphamide, 
adriamycin, etoposide, prednisolone and interferon-alpha2a 
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Table S6. distribution of investigated markers in the whole core, interfollicular and 
intrafollicular compartment in the two subgroups (n=105). (this table can be found on the website 
of Haematologica). 

Table S7. Odds ratio (OR) (95% CI) for a 10% change in the IHC markers from univariate 
analysis, and multivariate analysis without and with the FLIPI of the whole core (n=96).

Univariate Multivariate without FLIPI Multivariate with FLIPI
OR P OR P OR P
(95% Cl) (95% Cl) (95% Cl)

%CD4 1.36 0.13 1.2 0.6 1.21 0.5
(0.92 2.06) (0.7, 2.2) (0.65, 2.28)

%CD8 3.86 0.011 4.5 0.041 3.63 0.084
(1.48, 12.13) (1.1, 21.2) (0.89, 17.08)

%P53 0.15 0.16 0.9 0.27 0.84 0.23
(0.0, 1.10) (0.6, 1.1) (0.57, 1.06)

%PD1 1.00 >0.99 1.0 >0.99 1.13 0.9
(0.39, 2.58) (0.3, 3.3) (0.32, 4.06)

%CD163 2.01 0.042 1.74 0.17 1.69 0.19
(1.11, 4.37) (0.9, 4.2) (0.83, 4.17)

%CD68 1.33 0.7 0.8 0.8 1.24 0.8
(0.31, 6.09) (0.1, 5.7) (0.16, 9.38)

%FOXP3 1.45 0.5 0.9 0.9 1.13 0.9
(0.47, 4.85) (0.2, 4.1) (0.25, 5.53)

%CD3 1.30 0.16 0.8 0.37 0.70 0.31
(0.91, 1.91) (0.4, 1.4) (0.34, 1.39)

FLIPI, high 0.28 0.005 0.31 0.016
(0.11, 0.66) (0.12, 0.79)

Table S8. OR (95% CI) for a 10% change in the markers from univariate analysis, and multivariate 
analysis without and with the FLIPI of the interfollicular compartment (n=96).

Univariate Multivariable Multivariable
without FLIPI with FLIPI

OR (95% CI) p OR (95% CI) p OR (95% CI) p
%CD4 1.33 (0.91, 1.99) 0.14 1.37 (0.80, 2.4) 0.26 1.34 (0.77, 2.41) 0.30
%CD8 2.59 (1.16, 6.36) 0.03 3.72 (1.18, 13.52) < 0.01 3.18 (0.98, 11.81) 0,07
%P53 0.08 (0.00, 1.41) 0.19 0.11 (0.00, 2.26) 0.23 0.08 (0.00, 2.09) 0.20
%PD1 1.10 (0.42, 2.95) 0.85 1.24 (0.35, 4.52) 0.74 1.22 (0.32, 4.7) 0.77
%CD163 1.92 (1.14, 3.63) 0.03 1.67 (0.92, 3.4) 0.12 1.59 (0.85, 3.31) 0.17
%CD68 0.81 (0.23, 2.92) 0.75 0.50 (0.09, 2.56) 0.41 0.68 (0.11, 3.78) 0.66
%CD3 1.15 (0.82, 1.63) 0.42 0.68 (0.37, 1.21) 0.20 0.71 (0.38, 1.27) 0.26
FLIPI, high 0.28 (0.11, 0.66) < 0.01 0.33 (0.12, 0.83) < 0.01
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Table S9. OR (95% CI) for a 10% change in the markers from univariate analysis, and multivariate 
analysis without and with the FLIPI of the intrafollicular compartment (n=96).

Univariate Multivariable Multivariable
without FLIPI with FLIPI

OR (95% CI) p OR (95% CI) p OR (95% CI) p
%CD4 1.36 (0.94, 2.04) 0.12 1.58 (0.90, 2.91) 0.12 1.64 (0.91, 3.11) 0.11
%CD8 2.03 (0.91, 5.94) 0.13 2.28 (0.65, 9.46) 0.22 1.98 (0.53, 8.79) 0.33
%P53 0.27 (0.02, 1.16) 0.16 0.24 (0.02, 1.12) 0.14 0.22 (0.01, 1.18) 0.15
%PD1 1.16 (0.53, 2.55) 0.71 1.41 (0.51, 4.09) 0.51 1.58 (0.53, 4.98) 0.42
%CD163 1.54 (0.82, 3.73) 0.24 1.21 (0.58, 3.16) 0.64 1.26 (0.59, 3.34) 0.58
%CD68 1.72 (0.37, 9.15) 0.50 1.43 (0.20, 11.21) 0.73 2.51 (0.31, 22.75) 0.39
%CD3 1.18 (0.84, 1.72) 0.37 0.58 (0.26, 1.23) 0.16 0.55 (0.23, 1.21) 0.15
FLIPI, high 0.28 (0.11, 0.66) < 0.01 0.26 (0.10, 0.65) < 0.01

Table S10. FOXP3 perifollicular patterns by cohort based on agreement scores of three 
independent pathologists 

FOXP3 perifollicular pattern Total n=96 Early failure n=39  Long remission n=57 P
  Positive 21 (22%) 10 (26%) 11 (19%) 0.46
  Negative 75 (78%) 29 (74%) 46 (81%)

Table S11. Frequencies and statistics of copy number gains and losses per chromosomal 
region by subgroup (this table can be found on the website of Haematologica). 

Table S12. Somatic variants from targeted resequencing (this table can be found on the website of 
Haematologica). 
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Table S13. Distribution of gene mutation status by subgroup (n=111) 

Total             
n=111 (%)

Early failure 
n=47 (%)

Long remission 
n=64 (%)

OR [95% CI] p (unadjusted)

BCL2
  Mutated 103 (93) 45 (96) 58 (91) 0.43 [0.04 - 2.57] 0.46
  Unmutated 8 (7) 2 (4) 6 (9)
KMT2D
  Mutated 80 (72) 35 (74) 45 (70) 0.81 [0.31 - 2.04] 0.7
  Unmutated 31 (28) 12 (26) 19 (30)
CREBBP
  Mutated 72 (65) 34 (72) 38 (59) 0.56 [0.23 - 1.35] 0.17
  Unmutated 39 (35) 13 (28) 26 (41)
TNFRSF14
  Mutated 33 (30) 13 (28) 20 (31) 1.19 [0.48 - 2.99] 0.8
  Unmutated 78 (70) 34 (72) 44 (69)
MEF2B
  Mutated 12 (11) 5 (11) 7 (11) 1.03 [0.26 - 4.42] > 0.99
  Unmutated 99 (89) 42 (89) 57 (89)
EZH2
  Mutated 23 (21) 4 (9) 19 (30) 4.48 [1.34 - 19.59]  0.008
  Unmutated 88 (79) 43 (91) 45 (70)

TNFAIP3
  Mutated 9 (8) 2 (4) 7 (11) 2.74 [0.49 - 28.30] 0.30
  Unmutated 102 (92) 45 (96) 57 (89)
EP300
  Mutated 7 (6) 2 (4) 5 (8) 1.90 [0.29 - 20.78] 0.7
  Unmutated 104 (94) 45 (96) 59 (92)
CARD11
  Mutated 9 (8) 4 (9) 5 (8) 0.91 [0.18 - 4.88] > 0.99
  Unmutated 102 (92) 43 (91) 59 (92)
FAS
  Mutated 4 (4) 4 (9) 0 (0) 0.00 [0.00 - 1.08] 0.030
  Unmutated 107 (96) 43 (91) 64 (100)
MYD88
  Mutated 2 (2) 1 (2) 1 (2) 0.73 [0.01 - 58.52] > 0.99
  Unmutated 109 (98) 46 (98) 63 (98)
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Figure S1. Y646 hotspot in EZH2. All mutations in EZH2. Missense mutations are depicted in green. 
Mutations are visualized by Mutation Mapper from cBioPortal.
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In rare instances, malignant lymphomas present as a body-cavity based effusion, without an 
identifiable tumor mass. Most frequently, this concerns primary effusion lymphoma (PEL), 
a Human Herpes Virus-8 (HHV8)-positive B-cell lymphoma, that typically occurs in Human 
Immunodeficiency Virus (HIV)-positive patients. PEL has a characteristic phenotype, lacking 
pan-B-cell markers (CD19, CD20, CD79a), but often positive for activation and plasma cell-
related markers (CD30, CD38, CD138) and generally co-infected with Epstein-Barr Virus 
(EBV). Prognosis is poor with a median overall survival (OS) of 6 months.1 

Recently, HHV8-negative effusion-based lymphoma (HHV8-negative EBL) has been 
described that has a very different epidemiology, generally presenting in patients 
over 70 years of age and outside the HIV-context.2 The majority of these patients have 
an underlying condition causing fluid overload, such as chronic heart failure, renal 
insufficiency or liver cirrhosis. The disease course of HHV8-negative EBL is mild and 
survival is largely determined by co-morbidity and high age at diagnosis. In contrast to 
HHV8-positive PEL, HHV8-negative EBL has a complete mature B-cell phenotype and 
is generally EBV-negative, similar to conventional DLBCL. Therefore, the differential 
diagnosis with DLBCL may be challenging and largely depends on staging information, 
excluding the presence of disseminated disease at time of diagnosis. 

Thus far, a limited number of HHV8-negative EBL cases have been reported.2–5 In these 
documented cases, treatment varied from drainage alone to chemotherapy and stem cell 
transplantation, with remarkable good outcome in those treated with drainage only. This 
underpins the importance to distinguish HHV8-negative EBL from secondary effusion 
of DLBCL, which has a poor prognosis and requires an essentially different therapeutic 
approach.6 

Genomic data of a limited number of HHV8-negative EBL has been reported that do not 
show a consistent or characteristic pattern2–5, precluding conclusions on their role in 
oncogenesis. In this study, we aim to delineate the genomic landscape of HHV8-negative 
EBL using established next-generation sequencing (NGS) procedures. 

All cytological aspiration specimens of pleural, pericardial and abdominal effusions with 
a recorded diagnosis of lymphoma diagnosed between 2000 and 2017 (n=81) were 
selected from the VU University Medical Center Amsterdam. All secondary lymphoma 
effusions based on clinical staging information or histological diagnosis were excluded. 
Complete pathology workup was performed (supplemental Table 1), identifying 10 fully 
diagnostic cases of HHV8-negative EBL. One additional case was received from the 
University of Würzburg, Germany. Cell-of-Origin (COO) was determined using the Hans 
and Tally algorithms.7 
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Genomic DNA was extracted with QIAamp DNA FFPE Tissue and Mini Kits (Qiagen, Hilden, 
Germany), according to the manufacturers recommendation. NGS library preparation 
was done using KAPA Library Preparation (KAPA Biosystems, Wilmington MA, USA).  
Single-read 50bp shallow Whole Genome Sequencing (WGS) for copy number analysis 
and paired-end 150bp targeted sequencing with SeqCapEZ probes (Roche Nimblegen, 
Madison WI, USA) for mutation and translocation analysis was performed on a HiSeq 
2500 (Illumina, San Diego CA, USA). Sequencing reads were aligned and duplicates 
removed. Copy number analysis was performed using QDNAseq8 and LoFreq9 was 
used for mutation calling. For translocation detection, BreaKmer, GRIDDS, Wham and 
novoBreak were used.10–13 Translocations detected by at least two tools were selected. 

All sequence data has been deposited at the European Genome-phenome Archive under 
accession number EGAS00001002743. For more detailed information see Supplemental 
Methods.

We studied a series of 11 cases of HHV8-negative EBL with clinicopathological features 
as listed in Table 1. The mean age of patients at diagnosis was 83 years (range 60-92 
years). Six patients presented with pleural effusions causing dyspnea and one as a 
pericardial effusion causing a cardiac tamponade. Seven patients had a history of chronic 
heart failure, supporting the concept that chronic fluid overload states are an important 
pathogenic factor in HHV8-negative EBL. At the time of primary diagnosis, the majority 
of the patients was diagnosed as DLBCL. However, none of the patients were treated 
as such, due to comorbidity and/or personal preference because of advanced age. Six 
patients died of their underlying disease within 7 months, 4 patients survived for 14-
99 months (mean: 42 months), of which 3 are still alive. For 1 patient the vital status is 
unknown. No patient died of lymphoma, underpinning the indolent behavior of HHV8-
negative EBL. Of 10 available cases, 9 were classified as nonGCB and 1 as GCB.

For 8/11 cases, genomic profiles were derived using shallow WGS and targeted 
sequencing (supplemental Figure 1). We observed a high number of mutations, including 
characteristic patterns of somatic hypermutation (PIM1, BCL2, KLHL14)14 in 4/8 cases, 
indicating a (post-) germinal center character (Figure 1). The most recurrent mutations 
were found in HIST1H1E and MYD88. Of the 4 MYD88 mutations, 3 affected MYD88L265P 
and co-mutation with CD79B was found in one case. These aberrations are typically 
found in ABC-type DLBCLs, and enriched in extranodal (testis, CNS) DLBCL.15 In 6/8 cases, 
truncating mutations were found in BTG1 and/or BTG2. IRF4 and SYNE1 were mutated in 
4/8 cases. Other recurrently mutated genes included chromatin modifying genes (e.g. 
CREBBP, KMT2D, MEF2B), which are more frequently found in GCB-type DLBCLs.16
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HHV8-negative EBL showed an overall complex copy number landscape with a mean of 

33.6 copy number aberrations (CNAs) per case (range: 6-133, stdev: 34.7). This number 

of CNAs is  similar to that reported for conventional DLBCL.17  Large CNAs that occurred 

in at least 2/8 cases included gains of chromosomes 1q, 2q, 7, 8q, 10p, 12q, 13q and 18q, 

and losses of chromosomes 6q and 15p (Figure 1; supplemental Figure 2; supplemental 

Table 2). These findings are in line with classical karyotyping and comparative genomic 

analysis in the reported HHV8-negative EBL cases.2–5 

The copy number landscape of HHV8-negative EBL showed a remarkable enrichment 

of focal CNAs. Specifically, focal deletions at 3p14.2 and 6q21 were present in 6/8 cases 

(supplemental Figure 2; supplemental Table 3). Both loci were heterozygously deleted in 

5 cases, and homozygously deleted in 1 case. Focal deletion of chromosome 6q21 has 

not been described for HHV8-positive PEL, but is observed in DLBCL, albeit at relatively 

lower frequency (57/304 [19%])15. The 6q21 locus contains PRDM1/Blimp-1, a master 

regulator of plasma cell differentiation.18 Furthermore, PRDM1 was mutated in 2 cases 

that had a heterozygous deletion of 6q21, resulting in bi-allelic inactivation of PRDM1 in 

3/8 cases (Figure 1; supplemental Figure 1). The 3p14.2 focal deletion has been described 

in a subset of DLBCLs (7/57 [12%])19, but it occurred at a significantly higher frequency 

in HHV8-negative EBL (6/8 [75%], p=0.0005). In HHV8-positive PEL, a similar frequency 

(85%) of FHIT deletions is reported.20 FHIT is involved in maintaining genome stability, and 

disruption may lead to an accumulation of genomic damage. 21

The most frequent translocations were observed at the MYC, BCL2 and BCL6 loci. The 

presence of these translocations has been previously described in a subset of HHV8-

negative EBL.2–5 We demonstrated the involvement of non-Ig translocation partners in 

addition to Ig translocation partners. Furthermore, previously undescribed translocations 

involving TP63, EXOC2 and KMT2D were identified (supplemental Figure 1).

Analogous to findings in other clinically indolent B-cell lymphomas, we expected 

HHV8-negative EBL to have a relatively simple genomic landscape with low levels of 

mutations and CNAs.22 However, we observed that HHV8-negative EBL is characterized 

by a complex genomic landscape with frequent mutations, copy number aberrations and 

translocations, often found in aggressive ABC- and GCB-type DLBCL and PEL. Despite an 

abundance of known adverse prognostic features in HHV8-negative EBL, such as MYC 

translocations, the clinical course is remarkably indolent. The non-aggressive behavior 

of these tumor cells may be caused by the micro/macro-environment in the primary 

anatomical localization, restraining progression.23 For daily practice, clinicopathologic 

correlation, excluding the presence of disseminated disease, remains essential. 
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Figure 1.  Distribution of genomic aberrations in HHV8-negative EBL. Each column represents an 
individual case (HHV8-negative EBL 001-008). Rows depict genomic aberrations, including mutations, 
copy number aberrations and translocations. The bar graph on the right shows the percentage of 
each aberration in the full cohort. Variant categories include missense mutations (grey), truncating 
mutations (black), low level copy number gains (red), high level copy number gains (dark red), low 
level copy number losses (blue), high level copy number losses (dark blue), translocations with Ig 
partners (dark green) and translocations with non-Ig partners (light green).
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Supplemental Methods
Patients and materials 

From the files of the department of Pathology, VU University Medical Center Amsterdam 

(VUmc), all cytological aspiration specimens of pleural, pericardial and abdominal 

effusions with a recorded diagnosis of lymphoma of any class diagnosed between 2000 

and 2017 (n=81) were selected. First, all secondary lymphoma effusions based on clinical 

staging information and/or a recorded previous or subsequent histological diagnosis of 

lymphoma at a lymph node or organ site were excluded. Complete pathology workup 

for all remaining cases was performed according to standard procedures, including 

immunohistochemistry (CD20, CD79a, PAX5, CD3, BCL2, BCL6, CD10, CD138, MUM1, 

CD30, MYC, HHV8), EBER in situ hybridization and immunoglobulin heavy and light chain 

clonality analysis (BIOMED2), identifying 10 fully diagnostic cases of HHV8-negative EBL. 

One additional fresh-frozen case was received from the Institute of Pathology, University 

of Würzburg, Germany. To determine Cell-of-Origin (COO) status, Hans classification was 

used.1 On cases that scored as GCB (n=3), additional Tally classification was done using 

GCET, LMO2 and FOXP1 immunhistochemistry.2 Pathological revisions excluded 3 out of 

11 cases for further genomic profiling due to low tumor cell content, precluding sufficient 

DNA yield.

DNA isolation and Library preparation

Genomic DNA was extracted from all VUmc tumor biopsies with a QIAamp DNA FFPE 

Tissue Kit (Qiagen, Hilden, Germany) and quantified using a Qubit 2.0 Fluorometer 

(Thermo Fisher Scientific, Carlsbad CA, USA). The additional fresh-frozen case was isolated 

with the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany). For each patient sample, DNA 

was sheared by ultrasound with a Covaris S2 (Covaris Inc, Woburn MA, USA), with settings 

adjusted to DNA from FFPE tissue, as previously described.3 NGS-libraries were prepared 

with an input of 250ng sheared DNA using KAPA Library Preparation (KAPA Biosystems, 

Wilmington MA, USA).  In short, uniquely 8-bp indexed adapters (IDT, Coralville IA, USA) 

were ligated to the FFPE-extracted DNA, followed by size selection of fragments in the 

range of 150 to 400bp.

Shallow whole genome sequencing (WGS) and copy number analysis

For shallow WGS, 125ng of the created NGS-libraries were equimolarly pooled and 

12.5pM was loaded on one lane of a HiSeq Single End Flowcell (Illumina, San Diego CA, 

USA).
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Sequencing was performed on a HiSeq 2500 (Illumina, San Diego CA, USA) in a single-

read 50-cycle run mode (SR50). Copy number analysis was performed as described 

previously.4 Shallow WGS reads were aligned to the human reference genome build 

GRCh37/hg195 with BWA 0.5.96. PCR duplicates were marked with Picard 1.61, and 

filtered out with SAMtools 0.1.187, together with reads with mapping qualities lower 

than 37. The Bioconductor package QDNAseq 1.5.13 was used to divide the genome into 

nonoverlapping bins of 100kb, followed by correction of GC content and mappability, and 

filtering of problematic regions and regions of common germ-line copy number variants 

based on the 1000 Genomes Project8. Subsequently, the resulting copy numbers were 

segmented using DNAcopy9 and called into five discrete categories (high level gain, low 

level gain, normal, low level loss, or high level loss) using CGHcall 2.30.010. Segments with 

more than 2 extra copies were labelled as high level gains, segments with 1 or 2 extra 

copies were labelled as low level gains. Segments with 1 lost copy were labelled low level 

loss, and segments with 2 lost copies were labelled as high level loss. Recurrent copy 

number aberrations (CNAs) were visualised in a frequency plot (supplemental Figure 2). 

For each focal CNA region, here defined as <15 Mb11, that occurred in at least 3 of 8 

cases (37,5%) all human genes were retrieved from Ensembl v745. Next, the Catalogue of 

Somatic Mutations (COSMIC v76)12 was used to annotate these recurrent regions of CNAs 

with potential oncogenic genes (supplemental Table 2).

Panel design, targeted capture and deep sequencing for mutation and 
translocation analysis. 

To detect mutations and translocations of interest, a custom targeted panel was 

designed using NimbleGen design software (Roche). The capture panel targets all exons 

of 369 genes and 12 translocation targets, including genic and intergenic regions (Roche 

ID 43712). The capture was performed according to NimbleGen EZ  SeqCap  library 

protocol (Roche Nimblegen, Madison WI, USA). From all 8 NGS-libraries, 125ng was used 

to create equimolar pools with a total mass of 1µg DNA. The captured NGS-libraries 

were sequenced on a HiSeq 2500 (Illumina, San Diego CA, USA) in a paired-end 150bp 

mode. This resulted in a mean target coverage of 617x. Paired-end 150bp reads were de-

multiplexed by Bcl2fastq (Illumina) and adapter sequences trimmed by Seqpurge.13 Next, 

paired-end reads were aligned to the human reference genome (GRCh37/hg19) with BWA 

mem (v0.7.12).3 Mapped reads were realigned with ABRA (v0.96)14 and duplicate reads 

were flagged with picardtools MarkDuplicates (v2.4.1). Mutation calling was performed 

with LoFreq (v2.3.7).15 Functional annotation and effect prediction of called variants was 

performed with SnpEff (v4.1b)10. Single nucleotide variants (SNVs) and small indels were 
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labeled somatic if impact prediction was ‘high’ or if impact prediction was ‘moderate’ 

and the variant single nucleotide variant (SNV) was tagged as ‘uncommon’ according 

to the Single Nucleotide Polymorphism database (dbSNP build 142).8 For translocation 

detection, four bioinformatic tools were combined including BreaKmer, GRIDDS, Wham 

and novoBreak.16–19 Translocations detected by at least two tools were selected for visual 

confirmation using the Integrative Genome Viewer (IGV).20 

All downstream analyses were performed in the programming language R (version 3.2.1) 

with custom scripts.

Data availability

All sequence data has been uploaded to the European Genome-phenome Archive (EGA; 

accession number EGAS00001002743).
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Supplemental Figure 1. Circular representation of HHV8-negative EBL genomic profiles. A) Circular 
representation of all detected genomic aberrations of in HHV8-negative EBL case #1, including regions of copy 
number gains (light red), regions of copy number losses (light blue), truncating mutations (black), missense 
mutations (grey), genes targeted by somatic hypermutation (orange; with number of mutations between paran-
theses) and translocations (green). Black lines connect translocation partners. B) Circular representation of all 
detected genomic aberrations of in HHV8-negative EBL case #2, details as in A. C) Circular representation of 
all detected genomic aberrations of in HHV8-negative EBL case #3, details as in A. D) Circular representation 
of all detected genomic aberrations of in HHV8-negative EBL case #4, details as in A. E) Circular representation 
of all detected genomic aberrations of in HHV8-negative EBL case #5, details as in A. F) Circular representation 
of all detected genomic aberrations of in HHV8-negative EBL case #6, details as in A. G) Circular representa-
tion of all detected genomic aberrations of in HHV8-negative EBL case #7, details as in A. H) Circular represen-
tation of all detected genomic aberrations of in HHV8-negative EBL case #8, details as in A. 

Supplemental Figure 1. Circular representation of HHV8-negative EBL genomic profiles. A) 
Circular representation of all detected genomic aberrations in HHV8-negative EBL case #1, including 
regions of copy number gains (light red), regions of copy number losses (light blue), truncating 
mutations (black), missense mutations (grey), genes targeted by somatic hypermutation (orange; 
with number of mutations between parantheses) and translocations (green). Black lines connect 
translocation partners. B) Circular representation of all detected genomic aberrations of in HHV8-
negative EBL case #2, details as in A. C) Circular representation of all detected genomic aberrations 
of in HHV8-negative EBL case #3, details as in A. D) Circular representation of all detected genomic 
aberrations of in HHV8-negative EBL case #4, details as in A. E) Circular representation of all detected 
genomic aberrations of in HHV8-negative EBL case #5, details as in A. F) Circular representation 
of all detected genomic aberrations of in HHV8-negative EBL case #6, details as in A. G) Circular 
representation of all detected genomic aberrations of in HHV8-negative EBL case #7, details as in 
A. H) Circular representation of all detected genomic aberrations of in HHV8-negative EBL case #8, 
details as in A. 
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Supplemental Figure 2.  Copy number gains and losses in HHV8-negative EBL. 
Distribution and percentage of copy number gains (red) and losses (blue) in 8 HHV8-
negative EBL cases. X-axis: chromosomal regions, ordered by genomic coordinates 
of chromosomes 1 to 22. Y-axis: percentage of cases showing CNAs. Vertical dotted 
lines: boundaries between chromosomes.  
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	

Supplemental Figure 2.  Copy number gains and losses in HHV8-negative EBL. Distribution 
and percentage of copy number gains (red) and losses (blue) in 8 HHV8-negative EBL cases. X-axis: 
chromosomal regions, ordered by genomic coordinates of chromosomes 1 to 22. Y-axis: percentage 
of cases showing CNAs. Vertical dotted lines: boundaries between chromosomes. 
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Summary
In Chapter 1, the field of translational oncology in general is introduced, with a focus 
on computational approaches to study molecular alterations in non-Hodgkin lymphoma. 
This chapter concludes with a description of the aims of this thesis.

Chapter 2 reviews the current state of the art of molecular subtyping of DLBCL and 
investigates potential avenues for harmonization of the presently available molecular 
subtypes. To this end, we examine how consensus molecular classifications have been 
established in other malignancies, such as breast, central nervous system and colorectal 
tumors. This chapter concludes with proposed suggestions for laboratory infrastructure 
required for successful clinical implementation.

Chapter 3 evaluates the two recently proposed DNA-based classifications for DLBCL 
from a computational perspective and thereby takes the questions lead out in chapter 2 
one step further. We show that irrespective of the computational methods 70% of DLBCL 
can be robustly assigned to one of the 5 DLBCL clusters, while the other 30% have not 
sufficient specific characteristics to be consistently assigned to a subtype, indicative of 
underlying heterogeneous biology of the disease as a cause. In this opinion paper, we 
argue why a consensus approach is required in order to develop a molecular DLBCL 
classification to meaningfully evaluate new treatment modalities for DLBCL and examine 
the computational challenges that will be encountered in that process.

In Chapter 4, we perform extensive genomic profiling on 2 large cohorts of DLBCL 
patients to recapitulate the novel molecular subtyping systems described in Chapter 2 
and 3. The aim of this retrospective study is to explore if molecular subtyping has added 
value for outcome prediction of DLBCL patients by integration   with the established 
outcome prediction parameters International Prognostic Index (IPI) and disease activity 
monitoring by PET/CT during and after conclusion of standard treatment. We identify a 
group of patients with a particular DNA subtype (C5/MCD), which have an unfavorable 
prognosis and moreover in which complete metabolic response as demonstrated by 
a negative PET/CT scan is not sufficiently predictive of favorable outcome to standard 
immunochemotherapy in contrast to the other molecular subtypes. These findings, 
which we validate in 2 independent DLBCL cohorts, demonstrate that risk stratification 
of DLBCL patients is improved through integration of upfront molecular profiling and 
PET/CT imaging as disease monitor during and at end of treatment. Moreover, this 
data supports the notion that current treatment protocols are insufficient for C5/MCD 
patients and that these patients therefore may be eligible for additional treatment even 
after apparently reaching complete remission as concluded from a negative PET/CT scan.
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In Chapter 5 we have developed a computational approach for estimation of absolute 

copy numbers from shallow whole-genome sequencing data which method we called 

“ACE”. This bioinformatic tool, which is made available as a R-package in Bioconductor and 

Github, scales relative copy number signals from chromosomal segments to optimally fit 

absolute copy numbers, without the need for additional genetic information. In doing 

so, ACE provides an accurate estimate of tumor purity and ploidy, which can help to 

improve interpretation of somatic mutations from bulk tumor tissue. ACE was also used 

as a quality control in Chapter 4, samples that had less than 20% tumor cell content 

based on ACE and variant allele frequencies of mutations below 10% were excluded.

Chapter 6 is a study on prognostic biomarkers in biopsy specimens from patients with 

Follicular Lymphoma (FL), an incurable and indolent form of non-Hodgkin lymphoma 

characterized by multiple relapses with variable remission rates. Through investigation 

of microenvironment-related markers with immunohistochemistry and tumor cell-

related markers with shallow-WGS and a small gene panel, we identify four genomic 

features related to early failure (i.e., progression of lymphoma-related death < 2 years) 

in FL patients treated with standard immunochemotherapy: EZH2 wild-type, gain of 

chromosome 18 and low percentages of CD8+ cells and CD163+ areas.

In Chapter 7, we perform genomic profiling of 8 cases of HHV8-negative EBL Human 

herpesvirus 8-negative effusion-based lymphoma (HHV8-negative EBL), a rare and 

distinct B-cell non-Hodgkin lymphoma (B-NHL) entity related to fluid overload states 

generally caused by underlying medical conditions. HHV8-negative EBL follows a 

mild clinical course but is easily misdiagnosed due to a phenotypical resemblance as 

secondary diffuse large B-cell lymphoma (DLBCL), which follows a more aggressive 

clinical course, underpinning the importance to differentiate between the two entities. 

Analogous to other indolent B-cell lymphomas we expected a relatively simple genomic 

landscape, with low levels of genetic alterations. However, we observed high levels 

genomic features that are commonly found in more aggressive B-cell lymphomas, like 

MYC translocations and MYD88 mutations. These seemingly contradictory results in 

terms of tumor behavior underpin that B-NHL aggressiveness is thus an interplay with 

the micro/macroenvironment in the primary anatomical localization, which somehow 

restrains progression for HHV8-negative EBL.  Our findings assisted to genetically 

characterize a distinct lymphoma entity, which is recently included in the 5th edition of 

the WHO Classification of Haematolymphoid Tumors, under a new name: fluid-overload 

associated large B-cell lymphoma (Alaggio et al. 2022).
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Discussion
Challenges in using clinical tumor tissue material for genomics

Formalin-fixation and paraffin-embedding (FFPE) is the worldwide standard of tissue 

processing for diagnostic pathology. Pathology archives that date decades back provide 

a wealth of material for translational research and clinico-pathological studies. However, 

technologies are not always easily and readily applicable to FFPE biopsy material as 

has been the case for immunohistochemistry in the early 1990s, fluorescent in situ 

hybridization and techniques such as Southern blotting in the late 1990s and gene-

expression profiling in the early 2000s. This is no different for the current NGS technologies 

for cancer genome studies; FFPE biopsy material has its challenges associated with 

suboptimal DNA quality and related artifacts, as pointed out in Chapter 1. Alternative 

forms of tissue processing that may provide higher quality DNA for molecular studies 

may have been regularly discussed but can only be an alternative in very specific settings 

of (clinical) research. 

This thesis shows that the technical difficulties related to FFPE tissue samples can 

mostly be overcome for targeted NGS experiments that interrogate the cancer genome. 

Chapters 6 and 7 show that extensive targeted sequencing assays are feasible on FFPE-

derived DNA to test all main types of clinically relevant genomic alterations in non-

Hodgkin lymphomas. In Chapter 4, an even more comprehensive sequencing yet still 

targeted assay, whole-exome sequencing, was successfully applied on FFPE samples 

from a large cohort of DLBCL patients, with only 8% (n=19/235) of cases excluded 

because of insufficient material for NGS and 5% (n=12/235) due to low tumor purity 

(<20%). In addition, it has been reported that even WGS, the most extensive NGS 

application, is technically feasible to FFPE specimens, with 98% of clinically actionable 

variants detected despite a considerable level of persistent artefacts (Robbe et al. 2018). 

These developments show that most challenges for the use of FFPE material in diagnostic 

NGS DNA-based assays for daily practice may be solved at a sufficient level. It should be 

noted that FFPE is not the only source of artefacts in sequencing data. Other laboratory 

procedures, such as the deliberate fragmentation of DNA as part of a sequencing library 

preparation, can also introduce artifacts albeit to a lesser extent, even when applied to 

FF material (Tanaka et al. 2020). Therefore, rigorous QC steps will always remain pivotal 

at any step of NGS data processing, irrespective of the source. 

Also from a research point of view, FFPE may now arguably be preferred over FF tissue 

to determine DNA mutations, translocations and CNA, since tumor cell enrichment can 
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readily be performed (van Essen and Ylstra 2012) such that the background normal 

DNA fraction gets eliminated. However, for WGS, FF tissue is still the preferred source 

of DNA, to allow biomarker discovery and to unravel oncogenetic mechanisms. In an 

ideal scenario and especially where WGS testing is preferred, effort should still be put in 

building biobanks to optimally fulfill various needs in parallel: intact histo-morphology 

for detailed architectural and cellular histopathological examination, DNA/RNA quality 

for the optimal molecular diagnostics and viable cell suspensions for functional studies. 

Thereby, multiple biopsies may be needed and separately stored. A recent prospective 

study has shown that such protocols can be successfully implemented in a clinical setting 

e.g. in a study in which 1200 patients with metastatic cancer were successfully subjected 

to both forms of tissue processing techniques (Samsom et al. 2022). The additional costs 

associated with processing and storing both FFPE and FF tissue are dwarfed by the average 

cost of care for a patient requiring systemic cancer treatment, which in the Netherlands 

is estimated to be at least 50-100k euro per patient. It is precisely these patients who 

arguably benefit most from the most advanced molecular diagnostic techniques, such 

as WGS, which substantiates the need for FF preserved biopsy material and possibly for 

viable cell suspension biobanking.

Clinical implementation of NGS applications

Translational cancer genomics has the potential to become more routinely available in 

the clinic, since prices are expected to drop further and even down to $100 per genome 

in the near future due to more efficient technology and increasing market competition, 

challenging the existing major player in the field (Almogy et al. 2022). 

NGS assays with smaller targeted gene panels of several 10’s to 100s of genes have 

shown to be able to effectively determine genetic alterations on clinical tumor material, 

including FFPE tissue samples, as shown in Chapters 4, 6 and 7. These are currently 

still most cost-effective and proven to be clinically implementable. In rare instances, it 

may suffice to screen only for few specific biomarkers that are directly associated with 

response to specific treatment compounds. However, the molecular basis of cancer is 

generally much more complex. Extensive and detailed large-scale sequencing efforts 

that go beyond the analysis of individual mutations, CNAs and translocations are more 

generally needed to provide meaningful information (Degasperi et al. 2022). Currently, 

the level of knowledge in malignant lymphoma is relatively disappointing though, and 

more in-depth knowledge on oncogenesis of large patient populations is needed.
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WGS plays an important role in this, by comprehensively analyzing all possible alterations 

in the DNA, including mutational load, mutational signatures, microsatellite instability, 

homologous recombination deficiency, viral integration and germline mutations that 

confer cancer susceptibility (Berger and Mardis 2018). WGS is arguably not required to 

inform treatment decisions of the majority of current cancer patients, in which situation 

an NGS panel approach for currently actionable targets would suffice. However, it 

contributes to the development of knowledge on the long-term, thereby potentially 

improving disease management of future patients. For this purpose, a self-learning care 

system is currently implemented in the Netherlands by the Hartwig Medical Foundation 

(HMF), a non-profit organization that performs WGS in collaboration with Dutch hospitals. 

A recent study that deployed HMF’s infrastructure demonstrated the feasibility, validity, 

and value of WGS in routine clinical practice by comparing WGS to standard of care (SOC) 

diagnostics (i.e. SOC assay of choice depended on tumor type) in this specialized referral 

center on 1200 patients with metastatic cancer (Samsom et al. 2022). In 70% of cases 

WGS was successfully performed, with low tumor purity (<20%) as the main reason for 

failure. The performance of WGS compared to SOC in terms of detected biomarkers was 

similar (both >99% of the in total 896 biomarkers found in regions covered by both tests). 

Importantly, with an average turnaround time of 11 days, WGS was demonstrated to be 

feasible within a clinically relevant timeframe. 

Besides reduced costs and technical feasibility, the incentives for clinical implementation 

of NGS applications increase, as the clinical consequences of broad genomic 

characterization becomes more apparent. Gradually, molecular diagnostics are adopted 

into the WHO guidelines for tumor classifications. The classification for Central Nervous 

System tumors (Louis et al. 2021), soft tissue sarcomas (Sbaraglia, Bellan, and Dei Tos 

2021) and various pediatric tumors (Pfister et al. 2022) are at the forefront, while hemato-

lymphoid cancers lag behind (Alaggio et al. 2022). This is a direct consequence of the 

lack of knowledge that precludes meaningful dissection of molecularly-based tumor 

types as well as the lack of predictive marker-treatment combinations. In patients 

with a metastasis of which the primary cancer is of unknown origin, extensive genetic 

characterization by NGS has shown its added value both for diagnostic purposes as for 

identification of actionable targets. A recent study has demonstrated that in 75% of the 62 

studied cancers with unknown primary, WGS enabled identification of the primary tissue 

from which the tumor originated, which led to indications for actionable treatment in half 

of the patients (Jiao et al. 2020). Targeted treatment in oncology both within and outside 

clinical trials are increasingly informed by tumor molecular characteristics and growing 

reference databases of genetically actionable targets and their related compounds/drugs 
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(Chakravarty et al. 2017). This is exemplified by a study in which WGS was applied to 2520 

tumors from patients with metastatic cancer, in which actionable genetic alterations were 

identified in 62% of patients for which approved therapies or clinical trials are available 

(Priestley et al. 2019).

Novel insights into the pathology of non-Hodgkin lymphoma 

Non-Hodgkin lymphoma encompasses many different entities with a clinical behavior 

ranging from very indolent to highly aggressive. Diffuse large B-cell lymphoma, not 

otherwise specified (DLBCL NOS) is not only the most frequent entity in adults, but in 

respect to molecular classification possibly the most challenging. The 5 molecular 

classes described by Chapuy and colleagues and the 7 classes described by Wright and 

colleagues largely overlap, but differ in various essential parameters to preclude sufficient 

consensus on definitions of classes and driver genes. Thereby, NGS-based classification 

shows its potential, but is still far away from implementation as discussed in Chapter 2 
and 3, in which a strategy towards a consensus classification is given.

An anticipated DNA-based consensus classification may not be the final destination in 

disentangling the molecular heterogeneity in DLBCL. The observation that currently 30-

40% of cases cannot unambiguously be assigned to a single molecular subtype and that 

this is not a result of computational inadequacy, but of underlying biology, may require 

further multiparameter refined stratification and even larger cohorts (Mendeville et al. 

2022). In addition to the genetic alterations of DLBCL, non-malignant cell types in the 

DLBCL tumor microenvironment (TME) have also been described to impact the observed 

molecular heterogeneity in this disease entity (Lenz et al. 2008). In a recent study, a 

large-scale systemic analysis of the DLBCL TME was performed through integration of 

deconvoluted bulk transcriptome sequencing data and single-cell RNA sequencing (Steen 

et al. 2021). The authors identified 5 different transcriptional cell states of malignant 

B-cells and 12 other different cell types that make up the TME. Together, these malignant 

cell states and TME-related immune cells form multi-cellular communities, called DLBCL 

ecosystems, that portray unique associations with clinical outcomes. 

Contributions of molecular diagnostics for improved disease management 
for DLBCL and FL

How do we envision the role of molecular diagnostics to shape the near future of disease 

management for patients with non-Hodgkin lymphoma? As molecular classification will 

be expected to mature, also in management of malignant lymphoma, multidisciplinary 
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Molecular Tumor Boards (MTB) that include experts that can translate molecular findings 

to clinical indications will find their place as so successfully done in solid oncology (Luchini 

et al. 2020). Chapter 4 shows already that integration of genomic subtypes combined with 

existing clinical risk predictors improves outcome prediction and vice versa that currently 

accepted outcome predictors may be interpreted differently depending on genomic 

subtypes. More reliable assessment of DLBCL patients provides arguments to support 

treatment intensification for high-risk patients and treatment de-escalation for low-risk 

patients. Importantly, since the novel proposed DLBCL subtypes are biologically-driven, 

they have the potential for precision-based therapy, as exemplified by a recent post-

hoc analysis of a randomized phase-III trial. Patients under 60 with MCD-and N1-type 

DLBCLs showed significantly better outcome, with a 100% 3-year event-free survival (EFS) 

in both subtypes than patients that received R-CHOP alone (3-year EFS 42.9% and 50%, 

respectively) (Wilson et al. 2021). Importantly, this study was the first to finally describe 

a predictive value of molecular subtypes, as acclaimed molecular-stratified clinical trials 

thus far had failed to show any such impact.

Given the yet unresolved heterogeneous behavior of the disease, the next step would be 

to investigate to what extent the integration of the current DNA-based classification with 

other molecular characteristics would be of added value to inform patient management 

for DLBCL. Evaluation of other layers of molecular characteristics, that go beyond the 

genomic nucleotide code like epigenetic features, could also be considered. The non-

coding genome has also been demonstrated to be largely involved in oncogenesis and 

thus could provide therapeutic relevance also for DLBCL and FL. For example, a recent 

study identified hypermutation of super-enhancers that deregulate gene targets that 

have potential therapeutic relevance in DLBCL (Bal et al. 2022). Furthermore, through the 

improved understanding of the TME, as discussed earlier, new therapeutic possibilities 

are identified, with several TME-related targets for immunotherapy shown to have 

promising results in early clinical studies (Sehn and Salles 2021). With this large range of 

available treatment modalities for DLBCL and the developments of modern prospective 

clinical trials (Woodcock and LaVange 2017), there is new hope for effective personalized 

treatment for the 40% of DLBCL patients that respond badly to standard first-line therapy.

For Follicular lymphoma (FL), an indolent yet still incurable disease, the main clinical 

challenge is to predict the small group of patients (~20%) that have early progression and 

short overall survival (Casulo et al. 2015). As shown in Chapter 6, specific gene mutations 

and CNAs can inform prognosis, thereby aiding to identify patients at risk of relapse. 

Others have described similar strategies for risk stratification, through integration of 
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clinical risk parameters (FLIPI) with the mutation status of 7 genes (Pastore et al. 2015). 

However, of the FL patients with progression of disease within 24 months after first-

line immunochemotherapy, only 50% are correctly predicted by this clinico-genomic risk 

model (Jurinovic et al. 2016). This warrants further improvement of risk stratification 

and validation in larger and homogenously treated FL cohorts. Clinical heterogeneity in 

FL is partly determined by the interaction with the TME, but to date, an unambiguous 

TME profile in patients related to (poor) outcome has not been identified. A recent 

study identified 4 populations of infiltrating T-cells that may be linked to survival (Han 

et al. 2022). Once independent validated this may provide opportunities for targetable 

immune checkpoints. Despite the fact that no convincing prognostic molecular-informed 

model for improved risk stratification in FL patients has yet been described, the various 

studies have led to a renewed understanding of the pathogenicity of FL, allowing new 

treatment targets to be devised (e.g., EZH2 inhibitors, BCL2 inhibitors).

Concluding Remarks

What have we achieved of the aims that were defined for this thesis? 

Aim 1: To develop a comprehensive assay for simultaneous screening of all three types 

of genomic alterations using a limited amount of input DNA derived from FFPE biopsy 

samples without the need of matched normal control DNA, optimized to be implemented 

in clinical practice for lymphoma diagnostics.

We successfully developed an all-in-one targeted NGS assay for FFPE biopsy material, with 

a bioinformatics pipeline to detect all genetic alterations relevant for lymphoma. Despite 

the challenges in the clinical setting, including the frequent lack of matched-normal 

reference samples and the suboptimal DNA quality of FFPE biopsy material, somatic 

mutations, copy number aberrations and translocations were identified. Therefore, 

adaptations were customized to the specific needs of FFPE-derived DNA for wet- and 

drylab procedures. In addition, a new algorithm was introduced, ACE, that allows for an 

accurate measure of tumor cell percentage, which in turn has been applied to quality 

select samples on basis of tumor cell percentage. The various drylab implementations 

have been converted to pipelines and were publicly made available for reuse. 

Aim 2: To improve our understanding of the biological basis of the clinical heterogeneity 

of DLBCL and FL and thereby enable improved risk stratification for these patients. We 

intend to achieve this by applying the assays developed under aim 1, to large, selected 

patient cohorts of DLBCL and FL.
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We successfully applied the all-in-one assay for several studies as part of this thesis and 

for studies of colleagues in the research team (Los-De Vries et al. 2020; Los-de Vries et 

al. 2022). This has led to improved insights into the molecular basis of these diseases 

with improved risk stratification, and clues for molecular-informed clinical trial designs 

and tailored treatment approaches as consequences. Our studies of larger patient 

populations in DLBCL and in selected patients with uncommon presentations of FL 

show that the a priori recognition of a heterogeneous disease course of patients can 

be improved by molecular profiling. Moreover, in depth molecular characterization of 

HHV8-negative effusion-based lymphoma has contributed to a more refined definition 

of the disease and has found its way into the recent 5th edition of the WHO Classification 

(Alaggio et al. 2022). There is however still room for improvement to disentangle the 

underlying complex oncogenesis of malignant lymphoma that may go beyond molecular 

features and to eventually tailor personalized treatment options accordingly.
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Nederlandse samenvatting
DNA is een complex molecuul dat zich in elke cel van een levend organisme bevindt. 
Een mens bevat per cel ongeveer 2 meter aan DNA. Alle cellen van een mens bij elkaar 
opgeteld levert zelfs 74 miljoen kilometer aan DNA op. Dit DNA bevat de benodigde 
bouwinstructies voor de cellen om te ontwikkelen, groeien en te reproduceren. Het 
wordt daarom ook wel de blauwdruk van het leven genoemd. 

Kanker is een complexe ziekte die in veel gevallen ontstaat door een opeenstapeling van 
afwijkingen in het DNA tijdens het leven. Deze afwijkingen veranderen de bouwinstructies, 
waardoor cellen ongecontroleerd gaan groeien en delen. Als gevolg hiervan vormt zich 
een gezwel van kankercellen: een tumor.

Dat er DNA-afwijkingen zijn, is een karakteristieke eigenschap van alle kankers. 
Verschillende soorten kankers hebben echter wel hun eigen, typische patroon van 
afwijkingen (DNA-profielen); de DNA-afwijkingen van een borstkankercel zijn anders dan 
de DNA-afwijkingen van een huidkankercel. Ook tussen patiënten met hetzelfde soort 
kanker zijn er verschillen; de ene borstkanker is de andere niet. Om elk soort kanker te 
begrijpen en de variatie (heterogeniteit) tussen patiënten te bevatten, is het daarom van 
belang om zoveel mogelijk gedetailleerde data te verzamelen. 

Met behulp van moderne laboratoriumtechnieken (‘DNA sequencing’) en computeranalyses 
(het veld van de ‘bioinformatica’) zijn er de laatste decennia tienduizenden DNA-profielen 
van patiënten gedetailleerd in kaart gebracht en bestudeerd. We bevinden ons nu in 
een fase waarin de opgedane kennis kan worden vertaald naar klinische toepassingen, 
zoals diagnose (bepaling van kanker soort of subgroep), prognose (voorspelling van 
ziektebeloop), stratificatie (bepaling van behandelplan), predictie (voorspelling of 
de behandeling aanslaat) en monitoring (meting van reactie op behandeling). Deze 
waardevolle informatie vormt de basis voor ‘therapie op maat’; een gerichte behandeling 
gebaseerd op het individuele DNA-profiel van een patiënt. 

In dit proefschrift worden verschillende klinische toepassingen van DNA-profilering 
onderzocht voor patiënten met een non-Hodgkin lymfoom. Deze groep van 
hematologische kwaadaardige tumoren ontstaat door ongeremde deling van witte 
bloedcellen, genaamd lymfocyten, die onderdeel vormen van het afweersysteem. Non-
Hodgkin lymfoom ontwikkelt zich meestal in de lymfeklieren, het beenmerg of andere 
lymfeorganen (zoals de thymus en de milt), waar het een gezwel vormt. Aangezien 
lymfocyten zich van nature door het hele lichaam verspreiden wordt non-Hodgkin 
lymfoom ook vaak aangetroffen in andere organen, zoals in de arm, long of huid. Dit 
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worden extranodale localisaties genoemd. Volgens de Wereldgezondheidsorganisatie zijn 
er meer dan 30 soorten non-Hodgkin lymfoom. Deze soorten onderscheiden zich van 
elkaar op basis van morfologie (cel- en weefselstructuur), immunofenotype (eiwitten in 
de cel en op het celoppervlak) en genetica (DNA-afwijkingen). Ook het ziektebeloop van 
verschillende lymfoomsoorten varieert in agressiviteit. Dit verschil in klinische uitkomst 
komt tot uiting in de twee meest voorkomende soorten lymfomen: diffuus grootcellig 
B-cellymfoom (DLBCL) en folliculair lymfoom (FL). Dit proefschrift richt zich voornamelijk 
op deze twee soorten lymfomen.

Hoofdstuk 1 beschrijft, na de algemene introductie, de twee doelstellingen van dit 
proefschrift:

1. Het ontwikkelen van een uitgebreide DNA-test, van laboratoriumtechniek 
tot en met de bijbehorende geautomatiseerde computeranalyse. Deze test 
heeft als doel om relevante DNA-afwijkingen voor non-Hodgkin lymfomen 
te karakteriseren, en dient toepasbaar te zijn op tumorweefsel materiaal dat 
standaard in de kliniek wordt verzameld. 

2. Het in kaart brengen van de variatie aan DNA-afwijkingen (DNA-profilering) 
dat voorkomt in non-Hodgkin lymfoom, met als doel om het ziektebeloop 
beter te kunnen voorspellen vanaf het moment van diagnose. 

Dit wordt in Hoofdstuk 2 gevolgd door een wetenschappelijke literatuurstudie 

(overzichtsartikel) die de meest recente ontwikkelingen beschrijft omtrent de 

onderverdeling (classificatie) van diffuus grootcellig B-cel lymfoom (DLBCL) in 

subgroepen, op basis van DNA-afwijkingen. Hoofdstuk 3 sluit hierop aan met een 

opiniestuk, waarin wordt beargumenteerd wat de benodigde stappen zijn alvorens deze 

nieuwe kennis toegepast kan worden in de kliniek. Hierin benadrukken wij de urgentie 

om de verschillende classificatiesystemen die ontwikkeld zijn terug te brengen tot één 

systeem middels een consensusbenadering. Hierdoor wordt het mogelijk om nieuwe 

behandelmogelijkheden gestructureerd te evalueren, in het belang van de patiënt.

In Hoofdstuk 4 voeren we de uitgebreide DNA-test (doelstelling 1) en classificaties (volgens 

Hoofdstuk 2 en 3) uit op twee grote groepen van DLBCL-patiënten. Het doel van deze 

retrospectieve studie is om te onderzoeken of classificaties op basis van DNA-afwijkingen 

toegevoegde waarde hebben voor het voorspellen van het ziektebeloop van DLBCL-

patiënten na standaardbehandeling (immuno-chemotherapie). Daarbij onderzoeken we 

ook hoe beeldvorming van actief tumorweefsel door middel van PET/CT-scans tijdens en 

na beëindiging van de standaardbehandeling kan bijdragen aan de prognose. 
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We identificeren een subgroep van hoog-risico patiënten, op basis van specifieke DNA-

afwijkingen. De patiënten in deze groep hebben een kortere overlevingsverwachting dan 

de overige patiënten, ondanks dat ze dezelfde behandeling ondergaan. Een opmerkelijke 

bevinding is dat deze groep patiënten aanvankelijk goed lijkt te reageren op de therapie: 

op de PET/CT-scan is geen actief tumorweefsel meer zichtbaar al vroeg tijdens en direct na 

afloop van de standaardbehandeling die direct volgt op de diagnose. Echter, bij deze groep 

patiënten komt de tumor uiteindelijk toch vaak terug (of is nooit helemaal weggeweest). 

Deze bevindingen, die we bekrachtigen in twee onafhankelijke groepen DLBCL-patiënten, 

tonen aan dat het voorspellen van het ziektebeloop wordt verbeterd door de combinatie 

van voorafgaande DNA-profilering en PET/CT-beeldvorming tijdens en na behandeling. 

Bovendien ondersteunen deze gegevens het idee dat de huidige behandelprotocollen 

ontoereikend zijn voor de geïdentificeerde groep hoog-risico patiënten en dat deze 

patiënten daarom mogelijk in aanmerking komen voor aanvullende behandeling, zelfs 

nadat ze ogenschijnlijk goed hebben gereageerd op de standaardtherapie.

Om de diagnose lymfoom te kunnen stellen wordt er middels een biopsie een lymfeklier 

of andere tumorlocalisatie (deels) verwijderd uit het lichaam van een patiënt. Dit biopt 

bevat naast kwaadaardige kankercellen ook gezonde lichaamscellen. Hoe lager het 

aantal kankercellen, hoe lastiger het wordt om een succesvolle DNA-test uit te voeren. 

Het is daarom van belang om de fractie aan kankercellen uit het biopt accuraat te kunnen 

meten ter ondersteuning van de interpretatie van de DNA-test of ter kwaliteitscontrole. 

Voor deze doeleinden hebben we een softwarepakket ontwikkeld genaamd “ACE”, wat 

wordt beschreven in Hoofdstuk 5. “ACE” kan door iedere onderzoeker worden gebruikt 

doordat we het vrij toegankelijk hebben gemaakt.

Hoofdstuk 6 is een studie met als doel om het ziektebeloop te kunnen voorspellen 

aan de hand van DNA-afwijkingen in tumoren van patiënten met folliculair lymfoom 

(FL). FL is een ongeneeslijke maar niet-agressieve vorm van non-Hodgkin lymfoom die 

wordt gekenmerkt door meerdere recidieven (terugkomen) met variabele perioden van 

remissie (afwezigheid van ziekte). In dit onderzoek identificeren we twee DNA-afwijkingen 

die verband houden met het ziektebeloop bij FL-patiënten behandeld met standaard 

immuno-chemotherapie. (1) Een extra kopie van chromosoom 18 is sterk geassocieerd 

met een slechte prognose (d.w.z. ziekteprogressie of sterfte door ziekte binnen 2 jaar). 

(2) Een mutatie in het gen EZH2 is sterk geassocieerd met een gunstige prognose (d.w.z. 

afwezigheid van ziekte langer dan 5 jaar vanaf begin van behandeling).
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Hoofdstuk 7 richt zich op de DNA-profilering van een weinig voorkomende soort 

lymfeklierkanker met een exotische naam: humaan herpesvirus 8-negatief effusie-

gerelateerd lymfoom (HHV8-negatief EBL). 

De interesse werd gewekt doordat de tumorcellen van dit lymfoom onder de microscoop 

sterk op DLBCL lijken, maar het ziektebeloop en de verschijningsvorm duidelijk anders is. 

Waar DLBCL een agressieve vorm van kanker is, lijkt deze soort minder agressief te zijn. 

Daarnaast wordt dit type lymfeklierkanker niet zoals gebruikelijk gevonden in lymfklieren of 

organen, maar alleen in het vocht van lichaamsholtes, zoals rondom het hart of rondom de 

longen. Vanwege de vaak (heel) hoge leeftijd van de patiënten en een vaak onderliggende 

hart- of leveraandoening willen artsen deze patiëntengroep liever geen zware chemotherapie 

geven. Het in kaart gebrachte DNA-profiel heeft bijgedragen aan een verfijnde definitie van 

dit type kanker en heeft daarmee bijgedragen aan de recent gepubliceerde laatste editie van 

de Classificatie van Hematolymfoïde Tumoren van de Wereldgezondheidsorganisatie.

Hoofdstuk 8 bevat een samenvatting van de hoofdstukken uit dit proefschrift en een 

discussie. Daarnaast wordt beschreven in welke mate de doelstellingen zijn behaald. 

Allereerst is er op succesvolle wijze een test ontwikkeld waarmee wetenschappers DNA-

afwijkingen in kaart kunnen brengen, met gebruik van tumorweefsel dat standaard in de 

kliniek wordt verzameld. Ten tweede is deze test succesvol toegepast binnen de studies 

uit dit proefschrift en andere studies van collega’s uit onze onderzoeksgroep. Dit heeft 

geleid tot een kennistoename over de DNA-afwijkingen van lymfekliertumoren en een 

betere voorspelling van het ziekteverloop bij patiënten. 

De discussie plaatst het onderwerp van dit proefschrift in een bredere context van het 

onderzoek naar lymfekliertumoren en de behandeling ervan. Door DNA-profilering 

kunnen we mede dankzij de resultaten beschreven in dit proefschrift beter onderscheid 

maken tussen DLBCL- en FL-patiënten met een goede en slechte prognose. De DNA-

profielen bieden mogelijkheden voor therapie op maat. In de toekomst kunnen er nieuwe 

medicijnen of behandelmethodes worden getest bij patiënten op basis van deze nieuwe 

inzichten. Dit biedt hoop voor patiënten, specifiek voor hen die nu in een hoog risicogroep 

vallen. Momenteel wordt er in de wetenschap niet alleen naar DNA-afwijkingen gekeken, 

maar worden er ook studies gedaan naar de cellen van het afweersysteem rondom de 

tumor. Bij immuuntherapie worden de afweercellen geïnstrueerd om de kankercellen 

aan te vallen. Er zijn stappen gezet, maar er is ook vervolgonderzoek nodig om het 

ontstaan en de ontwikkeling van het lymfoom volledig te begrijpen en daar therapie op 

maat voor te kunnen ontwikkelen.
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Dankwoord
Met deze woorden sluit ik een bijzondere fase in mijn leven af, waarin ik veel heb geleerd 

over de inhoud van mijn onderzoek, over het leven en niet in de laatste plaats over 

mezelf. Voor deze ervaring ben ik heel dankbaar. Alle mensen die betrokken zijn geweest 

wil ik bedanken voor de steun die ik heb gevoeld, alsmede de kennis en ervaring die zij 

hebben overgebracht.

Allereerst natuurlijk mijn promotoren Daphne en Bauke. Ik wil jullie oprecht bedanken 

voor het krijgen van deze kans en het vertrouwen in mij. Zonder jullie enthousiasme, 

drive en passie voor de wetenschap zou ik nu niet op dit punt hebben gestaan. En 

natuurlijk ook de gezelligheid tijdens onze werkoverleggen. Jullie hebben mij laten zien 

dat wetenschap en humor heel goed hand in hand gaan.

Daphne, bedankt voor het delen van al je mooie verhalen en levendige anekdotes over 

uiteenlopende onderwerpen, vaak gevolgd door prachtige uiteenzettingen over jouw 

expertise, die onze experimenten in context plaatsten. Je opbeurende en motiverende 

woorden op momenten dat het even tegenzat, zal ik niet snel vergeten. Ook herinner ik 

me ons allereerste gesprek. Je vroeg me abrupt: ‘kan je goed koken?’ Ik antwoordde in 

de strekking dat ik niet de snelste kok ben, maar dat ik door een precieze afweging van 

smaken en handelingen ik uiteindelijk zeker iets kwalitatiefs kan presenteren. Ik zie een 

verband met de totstandkoming van dit proefschrift. Ik ben benieuwd of je deze vraag 

vaker stelt bij sollicitatiegesprekken om te weten wat voor vlees je in de kuip hebt.

Bauke, wat was het fijn dat ik na een succesvolle stageperiode definitief aan de slag kon 

gaan als PhD-student in jouw lab. Zonder jouw aanbeveling bij Daphne was mijn pad 

anders gelopen. Het samen opzetten van het DNA-onderzoek voor lymfomen was een 

hele waardevolle ervaring. Door jou heb ik kritisch naar resultaten leren kijken. Van het 

opzetten van valide experimenten tot aan het verwoorden van de kernboodschap; jij 

was voor mij een inspirerende mentor. Ik bewonder je visie en doorzettingsvermogen. 

Op momenten dat ik twijfels had over de ingeslagen weg, zette jij door. Dit heeft ons 

uiteindelijk een aantal prachtige publicaties opgeleverd. Ik heb altijd het gevoel gehad 

dat je deur open stond. Deze toegankelijkheid en behulpzaamheid hebben mij er tot in 

deze laatste fase van mijn promotietraject doorheen gesleept.

En dan mijn paranimfen. Marit, vanaf het moment dat je bij de TGAC kwam werken 

merkte ik gelijk wat voor een geweldig waardevolle toevoeging jij was voor ons team. Wat 

een kennis bracht jij mee uit Boston! Een echt wetenschappelijk talent. Maar bovenal 

een superfijn en gezellig mens. Geen wonder dat je de populairste collega was, waar 
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iedereen het liefst een kantoor mee deelde. Zelf heb ik helaas nooit dat privilege gehad ;) 

Jouw aanwezigheid is altijd zeer motiverend geweest en ik voel me dan ook vereerd dat 
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Tim, waar moet ik beginnen? Bij het begin natuurlijk: op de 14e in de Jordaan, gevolgd 

door het Barlaeus, daarna allebei een PhD, sinds kind af aan al samen op voetbal en 

still going strong. Bijzonder hoe onze levens met elkaar verbonden zijn. En dan nu zelfs 

allebei een zoon op komst, bijna gelijk uitgerekend! Wel loop ik altijd iets op je achter: 
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tijdens het afronden van mijn proefschrift. Ik hoop dat ik over een jaartje eindelijk een 
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eentje het drylab- én het wetlab-werk voor ons project kon uitvoeren. Met jouw bijdrage 
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Tjitske, met de door jouw ontwikkelde SV-calling hadden we tegen het einde van je stage 

een essentiële nieuwe toepassing aan onze genoomanalyses toegevoegd; een prachtige 

opstap naar een welverdiende promotieplek in de lymfoomgroep van de TGAC. Zonder 

jouw doortastendheid zou ik hoogstwaarschijnlijk zijn verdwaald in het doolhof van 

sample verwisselingen. Hiervoor, en voor onze aangename en productieve samenwerking 

in het algemeen, ben ik je erg dankbaar. Inmiddels heb je ook een prachtig boekje af 

en rest voor jou ook nog slechts de verdediging. Ik heb er al het vertrouwen in dat dit 

helemaal goed komt! Jurriaan, wat mochten wij in ons handjes knijpen dat jij bij de TGAC 

terecht kwam voor jouw stage. Met een verbluffende snelheid heb jij je ingewerkt in 

ons onderzoek. Met behulp van jouw skills en toewijding is het ‘DLBCL-radiogenomics’ 

artikel tot de huidige staat gebracht, waar we allemaal heel trots op zijn. Ik wens je veel 

succes met het vervolg van je PhD. En hoop dat ik je DJ-skills binnenkort ook een keer 

kan bewonderen. Yongsoo, I thank you for your private machine learning lectures, your 

contribution to the DLBCL-radiogenomics project, for always being so cheerful and 

positive and for your homemade kimchi!  Erik, bedankt voor je bereidheid om altijd te 

helpen, de gezellige en goed getimede koffiepauzes en je humor. Echt leuk dat we weer 

collega’s zijn!

Aan alle overige (ex-)collega’s van de TGAC: Thomas, Tanya, Jamie, Barbara, Jacqueline, 
Hedde, Irene, Daniëlla, Jeroen, Liping, Francois. Bedankt voor alle gezelligheid op het 

werk, tijdens de lunch, bij borrels en teamuitjes. Het was een genoegen om met jullie in 

dezelfde groep te werken! Aan de groep van Renske: Lise, Barbara, Wina, Iris, Sander, 
Ramon, Birgit, Lisanne. Het was fijn om de ups en downs van het promotietraject met 

jullie te kunnen delen. Alle betrokkenen bij de VUmc-lymfoom groep: Michiel, Esther, 
Monique, Nils, Chantal, Danijela, Vera, Martine, Hilma, Yvonne, Josée, Corine, 
Coreline. Bedankt voor alle interessante presentaties en multidisciplinaire overleggen. 

Josée, Corine en Coreline, bedankt voor de fijne samenwerking op het radiogenomics 

project. Saskia, bedankt voor je positieve feedback op mijn onderwijswerkzaamheden, en 

voor de gezelligheid op kantoor. Marcel, jouw getoonde betrokkenheid en motiverende 

woorden waardeer ik enorm!

To all members of the Lunenburg Lymphoma Biomarker Consortium: thank you for 

the great cooperation. I really enjoyed our annual meetings, including the memorable 

Boston duck tour (quack! quack!).

I would like to thank all not yet mentioned co-authors who contributed to chapters in this 

thesis: Julia, Wolfram, Diego, Arjan, Elly, Anke, Alexander, Stefan, Ulrich, Andreas, 
Arjen, Ruud and Mari.
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Ik wil Hartwig Medical Foundation bedanken voor het genereren en beschikbaar maken 

van de hoogkwalitatieve data die voor een deel van dit proefschrift gebruikt is. Ook wil 

ik mijn huidige collega’s bij Hartwig bedanken voor het warme welkom en de getoonde 

interesse in mijn promotie én uiteraard het bijbehorende feestje.

Tot slot, mijn vrienden en familie, die de laatste jaren van onschatbare waarde zijn 

geweest. Bedankt voor alle gezelligheid en support op de momenten dat ik het nodig 

had om even los te komen van het harde werk en weer op te laden. Ik prijs me heel 

gelukkig met een grote groep vrienden waarop ik op een “aardig niveautje” (lees: nét geen 

kelderklasse) nog regelmatig een balletje kan trappen: Etkin, Philipp, Hendrik, Marius, 
Quirijn, Thomas, Wessel (2x), Killian, Julian, Arne, Josse, Jaco, Jorrit, Daan, Sjoerd, 
Tonnie, Jules, Koen, Wout, Frans. Ik hoop dat we deze sociale en sportieve uitlaatklep 

ondanks onze leeftijd en de bijkomende issues nog lang volhouden. Ook al pieken we 

vooral tijdens de derde helft en de epische teamuitjes!

Berno, onze gymsessies waren de ideale manier om elkaar geregeld te zien in onze 

krappe schema’s en vormden een bron van broodnodige afleiding en motivatie. Bedankt 

voor de reps, biri’s en adviserende en opbeurende woorden. Hetzelfde (ogenschijnlijke) 

gemak waarmee jij door je PhD bent gevlogen als waarop jij pull-ups doet is verbluffend. 

Ik ben heel benieuwd wat een man met even brede skills als armen nog meer in zijn 

mars heeft! Jim en Youri, mede door jullie aanmoedigingen bij het programmeren 

van Mastermind ben ik op het spoor gekomen van de (bio)informatica. Stefan en Ali, 
de Hollandsnieuwe posse! Ik verheug me op nog vele borrels, etentjes en concerten. 

Rafaella, met jouw artistieke ontwerp voor de vormgeving van mijn boekje heb je 

geholpen om mijn promotie letterlijk tot een “mooi” einde te brengen. Ik ben heel erg blij 

met het resultaat!

Familie Kemp, ik heb bergen aan werk verzet tijdens mijn schrijfretraite in de 

Rembrandthoeve. Een jaar eerder was ik ook in jullie warme nest toen ik het nieuws 

kreeg te zijn aangenomen voor mijn huidige baan. Zo vormen jullie een onmisbare 

schakel binnen deze reis.

Annefie, jouw creatieve ingevingen en verrassende verbanden daagde mij altijd uit om 

mijn onderzoek vanuit een andere invalshoek te bekijken en uit te leggen. Jan en Jos, 

bedankt voor jullie steun en interesse in mijn promotietraject en alle heerlijke diners 

waarmee jullie ons hebben verwend!
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Mi querida familia Chilena, aunque vivimos al otro lado de esta tierra y no nos vemos a 

menudo, siempre se sienten cerca. Estoy orgulloso de que pronto tendré el mismo título 

que Tata. Espero con ansias nuestra próxima reunión familiar, donde con suerte estarán 

representadas las cuatro generaciones.

Pablo, in de periode tijdens mijn promotieonderzoek waarin ik mijzelf beter heb leren 

kennen, heb ik jou ook beter leren kennen. Ik vind het krachtig en inspirerend om te zien 

hoe jij jezelf ontwikkelt, vasthoudend aan je eigen kompas.

Ramón, wat ben ik trots op jou als ik je op het podium zie en jij onze muzikale opvoeding 

recht aandoet. Jouw muziek motiveert en helpt me er op moeilijke momenten doorheen. 

Ook de momenten met Luna geven me veel energie. Ik verheug me enorm op alles wat 

nog gaat komen als Luna er straks een neefje bij heeft!

Pap en mam, jullie hebben mij altijd gestimuleerd om naast muziek en sport te blijven 

studeren. Jullie onvoorwaardelijke steun, liefde en vertrouwen zijn altijd heel belangrijk 

voor me geweest. Ook jullie perfectionistische aard heeft een belangrijke bijdrage 

geleverd aan de totstandkoming van dit proefschrift. Het tot vervelens aan toe repeteren 

van toonladders en akkoordenschema’s op de piano hebben mijn oog (en oor) voor detail 

enorm gestimuleerd. Ik heb het maar getroffen met jullie!

Lieve Roos, eindelijk is het dan zover! Al die jaren heb je mij moeten delen met mijn PhD, 

waarin je mij zo vaak hebt horen zeggen dat het schrijven bijna klaar was, terwijl er in 

werkelijkheid nog stapels werk te verzetten waren. Dat was niet altijd even makkelijk, 

maar je bleef gelukkig in me geloven. Dank voor al je geduld en onvoorwaardelijke liefde. 

Ons volgende avontuur staat inmiddels al voor de deur. Ik kan niet wachten om dat 

samen met jou te beleven! Fuiste, eres y serás, el amor de mi vida.


