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Abstract: The Smart Home (SH) has become an appealing target of cyberattacks. Due to the limitation
of hardware resources and the various operating systems (OS) of current SH devices, existing security
features cannot protect such an environment. Generally, the traffic patterns of an SH IoT device
under attack often changes in the Home Area Network (HAN). Therefore, a Network-Based Intrusion
Detection System (NIDS) logically becomes the forefront security solution for the SH. In this paper,
we propose a novel method to assist classification machine learning algorithms generate an anomaly-
based NIDS detection model, hence, detecting the abnormal SH IoT device network behaviour.
Three network-based attacks were used to evaluate our NIDS solution in a simulated SH test-bed
environment. The detection model generated by traditional and ensemble classification Mechanical
Learning (ML) methods shows outstanding overall performance. The accuracy of all detection models
is over 98.8%.

Keywords: smart home security; anomaly detection; mechanical learning

1. Introduction and Background

Smart Home (SH) is the implementation of Internet of Things (IoT) devices in a home
environment. SH appliances are essentially resource-constrained network devices, and
users can execute predefined automation tasks remotely on these devices. IoT Analytics [1]
estimate that 14.4 billion connected IoT devices are active worldwide at the end of 2022
and forecasts that the number will increase to 27.1 billion at the end of 2025. Telsyte [2]
indicates that 6.3 million Australian households have at least one SH product at the end of
2021. The average number of IoT devices in Australian homes was 20.5 in 2021, which will
increase to 33.8 by 2025. The massive market demand urges manufacturers to develop SH
products with new functionalities as quickly and cost effectively as possible to compete
with others and attract new users. As a result, the security of the product has a lower
priority than its functionality, and, it is often overlooked. Various studies have revealed that
commercial SH devices along with their corresponding software have vulnerabilities [3–6]
that lead to critical security threats to authorization, authentication, key management and
access control [7,8]. Vulnerabilities such as default/weak login, unclosed telnet/SSH port,
backdoor and permission over-privilege commonly exist in most commercial SH products,
which can be easily exploited to launch an attack [9]. The number of captured attacks
targeting SH devices has increased dramatically in the past few years. In 2016, 10,263
different SH devices were remotely controlled to host Mriai [10]. Those botnets are being
used to launch a large-scale DDOS attack to disrupt the services of Krebsonsercurity.com
and Dyn. After the release of Mriai source code, several variants have been identified in a
short time, e.g., Hajime and Satiro. Compared to the IoT-based attack with a traditional
cyberattack, the damage of IoT-based attacks increased simultaneously with the increasing
deployment of insecure IoT devices. Based on the functionality of the targeted SH devices,

Sensors 2022, 22, 5626. https://doi.org/10.3390/s22155626 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22155626
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4224-2377
https://orcid.org/0000-0002-6886-6201
https://doi.org/10.3390/s22155626
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22155626?type=check_update&version=1


Sensors 2022, 22, 5626 2 of 17

the intruders are able to gain access not only to the residents’ private information but also
potentially to enter the physical residential environment. The security issues within an SH
can be described from multiple perspectives. IoT device attacks can be categorized based
on the Traditional ITU-T Architecture (e.g., physical, network, application and protocols
for data encryption) or from a user-provider perspective [11] (e.g., user layer, service layer,
virtualization layer and physical layer). However, the essence of SH attacks is to exploit
the target devices’ vulnerabilities. These vulnerabilities may exist in end point IoT devices,
cloud services and communication protocols. An intrusion of an SH can be described as an
unauthorized user gaining access to the resources of an IoT device within HAN via different
attack vectors (existing vulnerabilities within the device). SH users generally lack security
awareness [12] (e.g., using default or weak passwords, not frequently updating or installing
security patches). Furthermore, due to the hardware resources limitation of current IoT
devices, the implemented defence techniques suffer from balancing the trade-off between
security, cost and performance.Therefore, identifying attacks in an SH at the initial phase is
significant to general SH users, and it is necessary to design and develop a security solution
specifically for the protection of IoT implementations in the case of an SH.

A Network-Based Intrusion Detection System (NIDS) is designed to detect abnormal
events by analysing HAN traffic. Currently, there are two types of NIDSs that exist, which
are signature-based NIDSs (S-NIDSs) and anomaly-based NIDSs (A-NIDSa). An intrusion
can be detected if the monitored HAN traffic breaks the predefined rules or matches with the
known attack signature. Commercial products prefer misuse detection [13] due to efficiency
and accuracy, e.g., Snort [14]. However, S-NIDSs are unable to detect the unknown attack
and require constant updates of the predefined rules or new attack signatures. Hence,
S-NIDSs are not suitable to be implemented in SH. A-NIDSs attempt to quantify the
characteristics of acceptable network behaviours of IoT devices to establish a normal
profile in HAN. An A-NIDS compares the monitored traffic with the normal profile; the
observed deviation will be considered as an intrusion. An A-NIDS [15] is more suitable
to be implemented in SH IoT devices due to: (1) less memory requirement and little
maintenance after system installation; and (2) the ability to detect unknown attacks. Three
modelling techniques are currently being widely used in A-NIDSs to establish the normal
HAN profile [16]: statistic model-based A-NIDS, Machine-Learning-based (ML) A-NIDS
and knowledge-based A-NIDS. Both statistic model-based A-NIDS and knowledge-based
A-NIDS require the user to have a solid knowledge background of network security to
form the normal profile of the SH appliance. Moreover, the detection result highly depends
on the appropriately selected traffic event of SH appliance activities. An ML-based A-NIDS
is suitable for the general SH user; however, some drawbacks need to be addressed before
implementation, such as: (1) lack of training data, commonly used benchmark datasets are
outdated and cannot represent real HAN traffic, e.g., KDDCUP99 [17] and NSL-KDD [18];
and (2) generally, an HAN profile generated by different ML algorithms is computational
costly (high time and space complexity), especially when dealing with large-scale datasets
that have high-dimensional properties or nonlinear feature spaces [19].

To address the issues described above, we present User-Command-Chain (UCC) as a
novel method to assist ML-based classification algorithms for generating anomaly detection
models in an HAN. The essentials of anomaly detection in an HAN are based on the facts: a
command received by an SH device is different between a legitimate user and an attacker in
three aspects: time, location and payload. The generated response traffic, therefore, will be
different. An End-SH-IoT-Device (EID) executing a predefined task requires receiving the
specific command from the correlated Control Device (CD). In some cases, an SH control
platform may involve forwarding such a command to the EID. From our observation, the
communication among SH devices shares some common characteristics: small payloads,
stable packet length and data exchange entities are normally fixed. Moreover, if the com-
mand is the same, despite the false packets during the information exchange, the network
behaviour pattern is certain. The main aim of this study is to investigate intrusion in the
initial phase of SH environments. We conduct this study with a simple SH environment.
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Our detection model identifies the network anomalies based on users’ commands (used to
interact with specific device functions) by observing the responding network behaviours of
triggered functions in the HAN. Our work first generates a benign model by observing the
communication that delivers one particular command from a CD to an EID within a specific
time slot, and then uses other deployed EID network behaviours as support evidence to
represent the current SH condition and enhance the detection. The contributions of this
study are listed as follows:

1. We propose a new method to pre-process the network packets data for training an
ML-based A-NIDS detection model in an HAN environment. UCC has proposed to:
(1) establish a good understanding of triggered SH IoT device network behaviours
based on the users’ command, and (2) handle imbalance and high-volume data in the
captured HAN traffic datasets;

2. We have set up a test-bed in a home environment to simulate the actual usage of
an SH. We collected traffic data from our experimental test-bed instead of outdated
simulation-based datasets;

3. Three types of network attacks have been used to evaluate the detection method in a
test-bed environment. The result indicates UCC has improved both the accuracy and
efficiency of A-NIDS detection.

The rest of the paper is structured as follow. In Section 2, we will present state-of-the-
art A-NIDS related to our works .We higlight the SH threats and issues within the current
A-NIDS and propose our solution in Section 3. Section 4 evaluates the performance of
the proposed solution. And finally, the conclusion and future works will be presented in
Section 5.

2. Related Works

Network Intrusion Detection Systems (NIDS) have been deployed at strategic points
in the network infrastructure, such as the switch spanning port, network tap (terminal
access point), gateway and router [20]. To detect attacks, the NIDS captures and analyses
the stream of inbound and outgoing packets in real-time. In the scenario where the user
interacts with an SH EID, the normal user behaviour in a certain period of time is regular.
Consequently, legitimate residents’ activity patterns, based on their daily interactions with
all deployed SH devices, can be used as a reference for generating SH security policies and
used for detecting abnormal events within a certain period of time. The corresponding
network behaviour of an EID can be considered as network signatures of the IoT device.
Apthorpe et al. [21] use traffic fingerprint (traffic shape-based device network signature) to
infer SH devices’ activities. Typically, an SH device only communicates with manufacturer-
operated servers based on the assigned tasks; therefore, only a few packets are required
to identify specific activity. PingPong [22] and HomeSnitch [23] use network flow data to
establish a detailed signature based on the event inference. In PingPong, a state machine has
been used to maintain packets’ sequence of the EID event signature. Once the monitored
packets do not match with the predicted packets in modelled sequence, the abnormal event
is detected, and the following packets will then be ignored. In HomeSnitch, Random Forest,
K-nearest-Neighbors and Gradient Boost have been used to establish a normal network
profile of a target EID; any deviation from the normal profile will be considered as the
target EID being under attack.

Machine-Learning-Based Network Intrusion Detection Systems ML algorithms have
been extensively applied in the field of NIDSs, especially classification algorithms such as
Bayesian, Fuzzy Logic and support vector machine (SVM). The NIDS proposed by Puttini
et al. [24] builds a behavioural model with posteriori Bayesian classification. This work
assumes that different traffic profiles based on each event will influence the set of variables
available for monitoring. The main disadvantages of the Bayesian classification-based IDS
are: (1) detection results are highly dependent on assumptions about the behaviour events
of the target system so that a deviation hypothesis may lead to detection errors, and (2)
the dimensional and computational complexity of Bayesian classification IDS will increase
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exponentially with the increase in attributes. The NIDS proposed by Dickerson et al. [25]
uses simple network traffic metrics combined with fuzzy rules to determine the likelihood
of port scan attacks. The network activity is considered as normal if it lies within a given
interval. The main disadvantages of fuzzy-logic-based IDS include: (1) high resource
consumption, and (2) difficult to clearly define the criteria for attack detection; fuzzy rules
are created by experts and may be time-consuming and labour intensive. Jayshree and
Leena [26] have proposed an NIDS model based on an SVM and the best feature set selec-
tion algorithm with NSL-KDD datasets. The main disadvantage of an SVM-based IDS is the
high communication overhead in the distributed environment owing to the need to send
all time series of data from the end node to the analysis centre. Kou et al. [27] compared the
performance of different machine learning methods on KDD CUP 99 datasets. The detect
accuracy of the SVM outperforms Logistic Regression (LR), Naïve Bayes, Decision Tree
(DT) and Classification and Regression Tree (CART).

Class-Imbalanced Issue Sampling, cost-sensitive learning, and one-class learning are
the three main approaches to currently deal with the imbalanced classes issue in machine
learning . Sampling includes over-sampling, under-sampling, and mixed sampling. Over-
sampling is to generate multiple instances from a minority class such as SMOTE [28],
ADASYN [29], and Borderline-SMOTE [30]. Under-sampling is to select some samples from
the majority class such as Tomeklink [31], ENN [32] and NearMiss [33]. Mixed sampling
refers to the combination of under-sampling and over-sampling. The aim of sampling is to
balance the classes in datasets. The disadvantages of sampling include inefficiency, easy
to be affected by noise, and unable to apply to datasets that cannot calculate the distance
of each sample. Cost-sensitive learning assigns unequal cost to different classes, such as
a higher cost to the minority class and a smaller cost to the majority class. Therefore, it
reduces the classifier’s preference for the majority class. One-class learning is not to capture
the differences between classes but focuses on model majority classes. Hence, it changes
the detection problem from binary classification to a clustering issue, which identifies a test
sample belonging to the majority class.

3. Anomaly Detection in Smart Home
3.1. Threat Model and Problem Description

Attack payload execution will negatively influence both the performance and status
of the victim device, e.g., gaining unauthorised access to a service, resource or information.
The traffic generated by such intrusion can be viewed as anomalies. Symptoms of the attack
can be identified by inspecting the payload of network packets, e.g., DoS, probing attacks,
User to Root (U2R) and Remote to Local (R2L). In this paper, we focus on identifying
network anomalies in an HAN that are generated by attacks, which directly affect the
network activities of an EID, or the sign of attack is visible in the HAN.

We assume SH devices contain default credentials, lack security features and have
unpatched vulnerabilities. The attacker can compromise a deployed EID by directly con-
necting to the HAN or using the NAT hole-punching technique. Three types of network
attacks have been selected to evaluate the detection model: port scan attack, SSH brute
force attack and SYN flood attack.

Generally, there are four types of network attacks: DoS, probing attack, U2R and
R2L [34]. The selected three attacks are widely adopted in current malware and attack
scripts and play significant roles in the Cyber Kill Chain proposed by Lockheed Martin [35].
Port scan is a type of probe attack and is commonly used to identify the basic information of
contained IoT devices (e.g., open port, carried OS and potential vulnerabilities). Brute force
is a type of R2L attack and is commonly used to obtain login credentials. SYN flooding is
a type of DoS attack; it can be used to induce the legitimate user to physically reboot the
victim device to finish the malware installation process. As our study focuses on intrusion
in the initial phase, the User to Root (U2R) attack which gains access to the local IoT device
is not included in this study. This is one of the future directions of this study. In general, the
attack packets account for a small proportion of the traffic in long-term network monitoring
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(e.g., 24 h). However, within the short-term network monitoring (e.g., 15 s), for the same
IoT device, the number of traffic packets generated by attacks compared to executing
predefined commands is much larger. All three chosen attacks generate a considerable
number of abnormal traffic packets and cause imbalanced and large-volume issues in the
collected datasets. In highly imbalanced classes of network attack datasets, the classifier
always predicts the most common class, therefore leading to generating inaccurate models
for detection.

3.2. End Device Behaviour and User-Command-Chain

SH IoT devices are generally resource-constrained and designed to perform a specific
function with minimal physical device size. Hence, limited hardware features and software
components are equipped in SH IoT devices. The predefined function of an EID restricts
the tasks that an EID can perform. Therefore, the ways a user interacts with one deployed
SH IoT device are also limited. Moreover, the predefined function feature of an SH IoT
device will not be changed significantly in a short period of time. As a consequence,
the traffic pattern of such an SH IoT device: (1) has fewer communication objects and a
lower frequency of conversations based on predefined function features; (2) the transferred
packets within the traffic between two SH appliances usually contain small-sized payload
and unique packet length; and (3) low packet loss. Based on the above observations, we can
conclude that the network behaviour of an activated EID function generated by the same
user command has a similar traffic pattern, including connected devices/domains, packet
sequences within the communication and individual packet length. Hence, it is possible to
detect deviations from the normal profile when such Sh IoT devices are under attack.

We introduce UCC as a pre-processing method for an ML-based A-NIDS. UCC is a
highly abstract statistic profile of one particular usage intention of an EID function within
the specific time slot. A UCC is composed of three objects from the traffic unit generated
by the triggered EID function: a source CD, a destination EID and a group of support
evidence (the network behaviours of the rest of the deployed SH IoT devices). Collected
packet data will split into groups based on the protocols of different layers of the TCP/IP
model. Packets belonging to the transport layer will transform to flow data following
the rule of IPFIX (IP Flow Information Export) [36]. Packets belonging to the application
layer will count the frequency and be recorded in flow-like structure data. Entropy has
been introduced to the UCC for representing a similar degree of all inbound/outbound
flows/flow-like structure data within different UCC objects. We assume that the first time
a new SH device is deployed in an SH: (1) this new EID will not contain any malware
application; and (2) this new EID will not be selected as the attack target in a short period of
time. Therefore, the traffic generated by triggering such an EID function can be considered
as benign and is used for generating the normal profile. An in-progress IoT attack is
detectable by identifying the deviation from the normal profile of a specific EID function.
Although the detection cannot specify the types of attack, it can indicate the source of attack
and target of the EID and achieve detection of the unknown attack.

3.3. Proposed Solution

The proposed ML-based A-NIDS has three main modules: a traffic collection agent, an
analysis engine and a reporting system. The traffic collection agent deployed at the Home
Gateway (HG) is responsible for collecting traffic data to generate the UCC based on the
observation of the triggered EID function. The analysis engine has been implemented as a
software application at a Raspberry Pi within the HAN. The UCC data generated in the
traffic collection agent are used by the analysis engine as input of a classification-based ML
algorithm to build the detection model. Furthermore, the analysis engine decides whether
or not abnormal activities occur in the current time slot. After identifying the anomalies,
the analysis engine will record the abnormal UCC in a log and forward the detection result
to the report system. Based on the received detection result, the report system will: (1) alert
the SH administrator of such an occurred security incident by email to take further actions
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in response; and (2) forward the abnormal data to security experts for further analysis. The
overall detection model has been shown in Figure 1.

Network-based Anomaly Detection System

Traffic Collect Agent Analysis Engine Report System

File Format 
Conversion

Packet 
Information 

Extraction

UCC Array 
Generation
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Log
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Original Wireshark Pcap File

Figure 1. Network-based anomaly detection system.

3.3.1. Traffic Collection Agent

A traffic collection agent has been installed in HG to collect the inbound and outbound
traffic data in real time. The traffic collection agent contains four main functions: data
collection, file format conversion, packet information extraction and UCC generation.
Wireshark and TCPdump have been used to collect traffic data and store it in a pcap format
file. From the observation of our test-bed, the time interval of a process between one CD
sending a command and an EID finishing the response to such a command is generally
completed within 15 s. In our case, we collected the traffic data every 15 s from HG. Then
the stored pcap file will be converted to csv format. Attributes that exist in the csv file to
describe packets in the traffic unit include No., Time, Source, Destination, Protocol, Length
and Info.

Once file format conversion is finished, we extract the key information from the packet
of the CSV file. First, we split the data into three groups by two-round search: EID group,
CD group and support evidence group. In the first-round search, we identify the triggered
EID based on the existence of an activated function keyword in a packet. All inbound and
outbound packets belonging to same EID will be categorised in a EID group. We identify
the CD using backward trace in the second-round search. The process will terminate if
the source IP equals one of the predefined control devices’ IP address. All inbound and
outbound packets belonging to the same CD will be categorised in a CD group. The rest
of the packets will be stored in the support evidence group based on the EID IP address.
Based on the device group, the collected packets data are governed by:

Device_Group, G = {E, C, SE}, (1)
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where E is the set of packets that belongs to the triggered end IoT device function; C is the
set of packets that belong to the control device which triggered such EID function; and
SE is the set of packets that indicate the current SH condition and can be used as support
evidence to confirm such user interaction.

Second, within each group, collected packets data will transform to flow data or flow-
like structure data based on the protocol attribute; for example, protocols belonging to the
transport layer of TCP/IP model will transform to TCP flow based on five-tuple attributes
( Source IP, Source Port, Destination IP, Destination Port, and Protocol) and UDP flow
based on three-tuple attributes (Source IP, Destination IP and Protocol). A three-tuple-like
structure has been adopted to record the occurring frequency of packets using application
layer protocols. To describe the network behaviour, for each flow and flow-like structure
data, we extracted and recorded the packet information within the traffic unit, including
total numbers of packets, the average length of the packet, the total length of packets and
average time interval of send/receive packet. Moreover, specific string information within
the Info attribute of the packet will be recorded to indicate the communication behaviour,
e.g., 6 types of TCP Flags, 11 types of HTTP response status code, and 14 types of MQTT
command messages.

Once packet information extraction is finished, based on the direction of communica-
tion, all collected flows and flow-like structure data belonging to the same device will be
further split into four sub-groups: internal inbound, internal outbound, external inbound
and external outbound. For each sub-group, three types of information will be collected:
(a) entropy of group flows; (b) general group information that includes (1) number of flows,
(2) number of packets to form flow, (3) average length of flows, (4) average length of packets
to form flow, and (5) average time interval of send/receive of flows; and (c) key info within
different types of flow based on protocols. The extracted sub-group information will be
aggregated to form the UCC array, and the UCC array will send to the analysis engine to
generate a detection model. The final UCC array can be represented as follows:

UCC_Array, U =

{{Eint_in_ f low, Eint_out_ f low, Eext_in_ f low, Eext_out_ f low},
{Cint_in_ f low, Cint_out_ f low, Cext_in_ f low, Cext_out_ f low},
{SEint_in_ f low, SEint_out_ f low, SEext_in_ f low, SEext_out_ f low},
{Entropy_Internalprotocol_1, Entropy_Externalprotocol_1},
· · ·
{Entropy_Internalprotocol_n, Entropy_Externalprotocol_n},
{Label}}.

(2)

3.3.2. Analysis Engine

The analysis engine contains two functions, which are detection model generation
and anomaly detection. As we mentioned previously, we consider the newly deployed
EID only performs benign activities. Therefore, historically collected UCC arrays in the
log file are labelled as normal. We simulated attacks targeting such a device during
user interact with a specific predefined function. The attack UCC arrays are generated
from the collected attack scenario and labelled as abnormal. An analysis engine takes
both normal and abnormal UCC arrays to train different ML algorithm classifiers and
generate the detection model. In our study, the ML classification algorithms used to
generate anomaly-based NIDS detection models include traditional classification methods
(Logistic Regression, Naïve Bayes, Decision Tree, K-Nearest-Neighbors and Support Vector
Machine) and ensemble classification methods (bagging-based method (Random Forest)
and boosting-based method (XGboost)). One hot encoding technique has been adopted to
convert categorical variables data to a form that could improve the prediction of each ML
algorithm. Cross-validation and a hyperparameter tuning method have been applied to
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generate each model. Hyperparameter tuning is used to select the set of well-performing
hyperparameters to configure each model; 10-fold cross-validation is used for avoiding the
over-fitting issue.

During the detection, the currently received UCC array will be used as input of the
detection model. The output predicts whether the current UCC array is classified as benign
or anomalous. An ongoing attack will be detected if the A-NIDS model predicts the UCC
array as an anomaly. Meanwhile, the abnormal UCC array along with its original pcap file
will be sent to the report system for further processing.

4. Performance Evaluation
4.1. Test-Bed Smart-Home Environment and Scenarios

Smart-lamp and security camera have been selected in our simulated experiments
for two reasons: (1) these two SH devices are most commonly deployed in a current SH,
and the network activity patterns are profoundly different; (2) the network behaviours of
these two SH devices can represent most of the current commercial SH appliances. The
smart lamp can be viewed as a wireless switch; the predefined function (turn on/off) will
only be triggered by the controller (e.g., a control hub) receiving the specific command. On
the other hand, security cameras continuously upload the collected information to the SH
control platform or an external server. The simulation scenarios include controlling the
smart light on/off and monitoring the camera images externally: (1) turn the smart lamp
on and off remotely; and (2) access the security camera video via an SH control platform
and simultaneously turn the smart light on/off.

In our experiment, all deployed devices are connected with each other via a Wi-Fi
network (IEEE 802.11ac) with limited communication protocols, such as TCP, HTTP and
MQTT; Frp NAT penetration technique (https://github.com/fatedier/frp, accessed on 10
June 2022) has been adopted in our experiment to connect external servers for local devices.
Two routers have been deployed to achieve NAT penetration: a Vodafone Wi-Fi Hub and a
raspberry pi 3B+ with self-compiled OpenWRT firmware. The Frp client was installed in
pi-router, and the Frp server was installed in a Google Virtual Private Servers (VPS) with
a public IPv4 address. TCPdump tool was also installed in the pi-router to monitor the
inbound and outbound traffic of the HAN. The rest of the deployed SH appliances include
an SH control platform, a smart lamp, a security camera and an Android smartphone. The
SH control platform is made by a Raspberry pi 3B+ with the home assistant firmware; it is
responsible to control and monitor the status of all deployed EID in the HAN. The Smart
lamp is made by Raspberry pi 3B+ with an LED lights module. The security camera is made
by Raspberry pi 3B+ with a camera module. Smart lamp uses an MQTT protocol to receive
the command from an SH control platform, and the on/off status of the LED lights is
controlled by GPIO pins. The security camera continuously uploads video images to a local
server with port 8081. The Android smartphone works as a remote voice control device. A
predefined IFTTT applet is associated with the Google Assistant of the smartphone to send
the commands to the SH control platform. All SH IoT devices have been assigned with
static IP addresses; in this case, the IP addresses of each EID will remain the same after
system reboot. The overall architecture of our test-bed SH has been shown in Figure 2.

https://github.com/fatedier/frp
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Figure 2. The architecture of test-bed SH.

4.2. Data Collection

During data collection, we repeatedly triggered the predefined function feature of the
SH IoT device to collect the traffic data. From our observation, generally, the process of
turning the smart light on/off finishes in 15 s. Hence, a 15-second time interval has been
selected to collect HAN traffic data. The 15-second traffic data will be viewed as a unit and
stored separately. The data unit will be used to represent the packets collected in 15 s of
time interval from the HAN traffic in the rest of this paper. We have collected 300 data
units for each normal scenario, and 600 data units of normal traffic data in total have been
collected (https://console.cloud.google.com/storage/browser/ucc_paper_data, accessed
on 10 June 2022).

The selected attacks include an SYN flood attack, a DOS attack and an SSH brute force
attack. We have launched individual types of selected attacks, respectively, targeting the
smart lamp and the SH control platform. We have collected 100 data units of HAN traffic
for each type of the attack on the mentioned devices, and 600 units of attack traffic have
been collected.

All collected data units are converted to UCC arrays following the process we de-
scribed in the previous section. In our experiment, each unit of UCC data represents a com-
plete device function activation, which includes full workflow of the control device sending
a command and of the end device responding to the command. In a real-world case, the
weekly trigger amount of a single device function is generally less than 300 times.Therefore,
in this study, we use 300 units of normal UCC array and 300 units of abnormal UCC array
to train our classifier. A vector of 791 attributes describes the network behaviours of four
devices in then test-bed environment. Smart lamp is the end device, an SH control platform
is the control device, and both pi-router and security camera are support evidence devices.
Three types of protocols have been considered in this case: TCP, HTTP and MQTT. A
detailed explanation of the 791 UCC attributes is listed as follows:

EDTotal_Attributes = EDTCP_Attributes + EDHTTP_Attributes + EDMQTT_Attributes

= (12× 4) + (17× 4) + (20× 4) = 196.
(3)

CDTotal_Attributes = CDTCP_Attributes + CDHTTP_Attributes + CDMQTT_Attributes

= (12× 4) + (17× 4) + (20× 4) = 196.
(4)

SE1Total_Attributes = SE1TCP_Attributes + SE1HTTP_Attributes + SE1MQTT_Attributes

= (12× 4) + (17× 4) + (20× 4) = 196.
(5)

SE2Total_Attributes = SE2TCP_Attributes + SE2HTTP_Attributes + SE2MQTT_Attributes

= (12× 4) + (17× 4) + (20× 4) = 196.
(6)

https://console.cloud.google.com/storage/browser/ucc_paper_data
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UCC_array, U = EDTotal_Attributes + CDTotal_Attributes + SE1Total_Attributes

+ SE2Total_Attributes + Entropy_InternalTCP + Entropy_ExternalTCP

+ Entropy_InternalHTTP + Entropy_ExternalHTTP

+ Entropy_InternalMQTT + Entropy_ExternalMQTT + Label

= 196 + 196 + 196 + 196 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 791.

(7)

4.3. Experiments Evaluation

To evaluate our proposed solution, we consider three criteria: (1) different victims
with the same triggering scenario; (2) same victim but different involved SH IoT devices;
and (3) the amount of data used for training the data models. The measurement used in
this paper to indicate include accuracy, precision, recall and F1-score from the confusion
matrix. We also consider the time cost to generate the UCC array and the detection model.

Accuracy =
TP + TN

TP + TN + FP + FN
. (8)

Precision =
TP

TP + FP
. (9)

Recall =
TP

TP + FN
. (10)

F1_Score = 2× Precision× Recall
Precision + Recall

. (11)

4.3.1. Anomaly Detection under Different Conditions

The first experiment aims to validate that the A-NIDS detection models trained with
UCC array data are able to identify attacks under different settings, including:

1. HAN traffic is generated by triggering the smart lamp on/off remotely, meanwhile,
the smart lamp is the only victim targeted by the three types of attacks;

2. HAN traffic is generated by triggering the smart lamp on/off remotely, however, the
SH control platform is the only victim targeted by the three types of attacks;

3. HAN traffic contains two types of EID network activities: (1) remotely requesting the
security camera images; and (2) remotely triggering the smart lamp on/off. The smart
lamp is the only victim targeted by the three types of attacks in this case.

Result Analysis

Table 1 shows the detection performance of identifying different attacks targeting the
smart lamp scenario (we report the average results of 10 rounds of experiments, the same
applies in the rest of this paper); 300 units of normal UCC array (triggering smart lamp
on/off) and 300 units of abnormal UCC array (different attacks target smart lamp) are used
to train each abovementioned ML classifier. Logistic Regression, K-Nearest-Neighbors and
SMV perform best in detection, but Logistic Regression and K-Nearest-Neighbors take a
longer time to generate the model than others. XGboost takes the longest time to generate
a detection model, 3571.6873 sec. Naïve Bayes is the most efficient algorithm, which only
took 5.127 sec. SVM with a linear kernel has the best performance among all models.
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Table 1. Detection performance of identifying different attacks target smart lamp scenario.

Accuracy Precision Recall F1-Score Time(s)

Logistic Regression 1 1 1 1 165.5239

Naive Bayes 0.9950 0.9942 0.9970 0.9956 5.1247

Decision Tree 0.9950 0.9973 0.9932 0.9952 26.6726

K-Near-Neighbors 1 1 1 1 375.1953

Support Vector Machine 1 1 1 1 54.2111

Random Forest 0.9983 1 0.9970 0.9985 58.8310

XGboost 0.9983 1 0.9970 0.9984 3571.6873

Table 2 shows the detection performance of identifying different attacks targeting
an SH control platform scenario. The settings are the same as in the previous experi-
ment. The performance of the detection model generated by Logistic Regression, Decision
Tree and SVM are the best. Decision Tree is the most efficient algorithm to generate the
detection model.

Table 2. Detection performance of identifying different attacks target an SH control platform scenario.

Accuracy Precision Recall F1-Score Time(s)

Logistic Regression 1 1 1 1 167.9524

Naive Bayes 0.9967 1 0.9938 0.9969 5.0668

Decision Tree 1 1 1 1 25.9433

K-Near-Neighbors 0.9983 1 0.9970 0.9985 375.6157

Support Vector Machine 1 1 1 1 55.4796

Random Forest 0.9983 1 0.9970 0.9985 52.9531

XGboost 0.9983 1 0.9970 0.9985 3523.0033

Table 3 shows the detection performance of two types of EID triggered simultaneously.
The performance of the detection models generated by Logistic Regression, SVM and
Random Forest are the best. SVM with the linear kernel is the most efficient algorithm to
generate the detection model.

Table 3. Detection performance of two SH IoT devices triggered simultaneously.

Accuracy Precision Recall F1-Score Time(s)

Logistic Regression 1 1 1 1 172.6651

Naive Bayes 0.9967 1 0.9926 0.9962 5.3940

Decision Tree 0.9967 1 0.9935 0.9967 28.1749

K-Near-Neighbors 0.9983 1 0.9966 0.9982 367.3423

Support Vector Machine 1 1 1 1 51.0684

Random Forest 1 1 1 1 55.2915

XGboost 0.9983 1 0.9970 0.9985 3351.2208

In conclusion, the detection rates in the above three scenarios indicate that the detection
model of A-NIDS generated by UCC data with classification ML algorithms are able to
detect the attacks in an SH scenario, and the detection rate of all models has achieved over
99.5 %. Moreover, the SVM model is robust for all SH usage cases and is very accurate and
efficient in detecting attacks.
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4.3.2. Comparisons with Other Under-Sampling Methods

The second experiment aims to show that the A-NIDS detection model trained with
UCC data is more efficient and accurate than other methods. We compared the performance
of our UCC with other under-sampling methods as a pre-processing approach to generate
a detection model in the scenario of a smart lamp being remotely being turned on/off;
meanwhile, the lamp is also the only victim targeted by attacks.

Benchmark Datasets

The benchmark datasets are also generated from our collected HAN packets data.
The k-means has been adopted as the under-sampling method of the benchmark A-NIDS
pre-processing approach. The centroid of the k-means cluster of each data file has been used
to represent the unit of the HAN network data. Collected packets data will be converted
to flow data based on the protocols. Flow data are composed of: (a) protocol-based
flow information, (b) file index, and (c) label (normal/abnormal). Protocol-based flow
information includes: (1) flow index, (2) flow identity, (3) general flow information, and
(4) flow content. General flow information has four attributes, including total number of
packets, the average length of the packet, the total length of packets and the average interval
time of send/receive packet. TCP flow contains five-tuple attributes as flow identity and
six attributes of Flags information as flow content. We also consider the application layer
protocols in this case in which HTTP flow contains 3-tuple attributes as flow identity and
11 attributes of response status code as flow content, and MQTT flow contains 3-tuple
attributes as flow identity and 14 attributes of command message as flow content. We
implement k-means for each protocol group. The selected number of clusters is five, and the
k-means cluster centroids of each protocol will then be aggregated with the file index. Each
unit of k-means flow data involves 59 attributes. A detailed explanation of the k-means
flow data unit is shown below:

TCP_Flow_In f o = f low_index + TCP5_tuple + TCPgeneral_ f low_in f o

+ TCPf low_content

= 1 + 5 + 4 + 6 = 16.

(12)

HTTP_Flow_In f o = f low_index + HTTP3_tuple + HTTPgeneral_ f low_in f o

+ HTTPf low_content

= 1 + 3 + 4 + 11 = 19.

(13)

MQTT_Flow_In f o = f low_index + MQTT3_tuple + MQTTgeneral_ f low_in f o

+ MQTTf low_content

= 1 + 3 + 4 + 14 = 22.

(14)

k−means_Flow_Unit, K = TCP_Flow_In f o + HTTP_Flow_In f o

+ MQTT_Flow_In f o + f ile_index + Label

= 16 + 19 + 22 + 1 + 1 = 59.

(15)

Result Analysis

The performance of each model using k-means flow data has been shown in Table 4.
The time costs of pre-processing by k-means and UCC are shown in Table 5. The time costs
for overall processes of k-means A-NIDS and UCC A-NIDS are shown in table 6.
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Table 4. Result of k-means A-NIDS detection.

Accuracy Precision Recall F1-Score Time(s)

Logistic Regression 0.9983 0.9980 0.9987 0.9983 74.8578

Naive Bayes 0.5577 0.5322 0.9926 0.6922 2.9718

Decision Tree 0.9297 0.9311 0.9313 0.9293 14.2706

K-Near-Neighbors 0.9923 0.9946 0.9899 0.9922 228.8329

Support Vector Machine 0.9999 0.9987 0.9993 0.9990 29.4634

Random Forest 1 1 1 1 83.6420

XGboost 1 1 1 1 1277.3039

Table 5. Pre-processing time of k-means A-NIDS and UCC A-NIDS (in seconds).

K-Means Flow K-Means Unit Data UCC Unit Data

Normal datasets 15.3300 14.5081 17.3926

Attack Datasets 4908.8561 10,481.1166 4953.8402

Table 6. Overall processing time of k-means A-NIDS and UCC A-NIDS (in seconds).

K-Means A-NIDS UCC A-NIDS

Logistic Regression 15,494.6686 5136.7567

Naive Bayes 15,422.7826 4976.3575

Decision Tree 15,434.0814 4997.9054

K-Near-Neighbors 15,648.6437 5373.1007

Support Vector Machine 15,449.2742 5052.1165

Random Forest 15,503.4528 5056.7364

XGboost 16,697.1147 8569.5927

In general, the detection accuracy of the UCC A-NIDS with the traditional classification
ML algorithm is better than the k-means A-NIDS. However, it takes a longer time to
generate the detection model. The detection accuracy of the k-means A-NIDS is better
than the UCC A-NIDS with ensemble classification ML algorithms. Random Forest took
a longer time to generate the detection model. XGboost is more suitable tp use flow data
pre-processed by k-means, which requires less time, and the model detection accuracy,
recall and f1-score are higher. The data pre-processing is very time-consuming and depends
on the volume of datasets. Therefore, when we combine the time of pre-processing and
model generation, The UCC A-NIDSs are better than the k-means A-NIDS. In summary,
SVM with the linear kernel using UCC data performs best both in detection and time cost.

4.3.3. Minimum Training Requirement of Detection Model

The last experiment aims to identify the minimum training data required for our
proposed solution. In the general SH usage case, the frequency of the SH appliance under
attack is lower than those when performing predefined tasks normally. Therefore, we
randomly selected 25%, 50%, and 75% of 300 units of the attack smart lamp UCC array
as the abnormal data, and 300 units of the trigger the smart lamp on/off remotely as the
normal UCC array data to generate detection models.

Result Analysis
The performance of different detection models is shown in Tables 7–9. In general,

the detection accuracy and the time cost of model generation are reduced along with the
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attack datasets reduction. However, SVM with linear kernel can improve the efficiency and
remain the same detection accuracy.

Table 7. Result of 25% attack data.

Accuracy Precision Recall F1-Score Time(s)

Logistic Regression 1 1 1 1 94.0099

Naive Bayes 0.9947 0.9931 1 0.9965 3.9892

Decision Tree 0.9866 0.9964 0.9861 0.9912 22.0705

K-Near-Neighbors 1 1 1 1 205.7956

Support Vector Machine 1 1 1 1 5.7967

Random Forest 0.9973 1 0.9966 0.9982 52.2401

XGboost 0.9947 0.9969 0.9966 0.9967 2583.2389

Table 8. Result of 50% attack data.

Accuracy Precision Recall F1-Score Time(s)

Logistic Regression 1 1 1 1 113.3000

Naive Bayes 0.9977 1 0.9970 0.9985 4.4048

Decision Tree 0.9822 0.9898 0.9829 0.9861 22.2011

K-Near-Neighbors 1 1 1 1 250.4543

Support Vector Machine 1 1 1 1 15.1883

Random Forest 0.9978 1 0.9970 0.9985 56.8939

XGboost 0.9956 0.9968 0.9970 0.9968 3028.6145

Table 9. Result of 75% attack data.

Accuracy Precision Recall F1-Score Time(s)

Logistic Regression 1 1 1 1 135.0208

Naive Bayes 0.9962 0.9962 0.9967 0.9964 4.6284

Decision Tree 0.9904 0.9908 0.99323 0.9920 24.2143

K-Near-Neighbors 1 1 1 1 300.4641

Support Vector Machine 1 1 1 1 32.6009

Random Forest 0.9981 1 0.9967 0.9983 55.1996

XGboost 0.9962 1 0.9935 0.9967 3296.4205

4.4. Discussion

In summary, we have simulated the most common SH IoT device usage scenario and
attacks. Three experiments have illustrated that the detection model generated by the UCC
with classical ML classifier has high accuracy in detecting anomalous network activities.
The detection results indicate our method is robust to defend network-based attacks in
complex IoT-based SH HAN environments. Considering the trade-off between detection
performance and resource consumption in SH IoT devices, the SVM with linear kernel
function is the most suitable classification algorithm for the analysis engine.



Sensors 2022, 22, 5626 15 of 17

5. Conclusions and Future Work

This study proposed a joint training model that combines the UCC method with
classification ML algorithms. Instead of using a single IoT device’s network activities to
generate a profile, we use SH’s current conditions to profile the overall traffic under a user’s
command. The detailed information of packets from both transport and application layer
protocols has been used for generating the UCC array and further training the detection
model; this enables us to handle the enormous volume of traffic data and reduce the
training time for generating the model. Thus, our proposed work can achieve near real-
time intrusion detection in the HAN environment. We evaluate the detection performance
in a simulated test-bed environment; the results indicate that our solution is superior to
others in terms of detection accuracy and efficiency. The detection model generated by the
SVM linear kernel with UCC data is robust, efficient and accurate for identify attacks in
IoT-based SH HAN environments.

Some limitations will be solved in future work. First, we have not covered different net-
work topologies and protocols in this manuscript. We plan to extend the SH environment
to more complex environments incorporating more smart devices. Second, our detection is
based on identifying the device-specific communication packets during executing prede-
fined tasks; how to automatically identify the status of the current device by identifying the
critical communication packet requires further study. Last, there are peaks and troughs in
SH appliance usage scenarios; generating a detection model that simultaneously identifies
multiple users’ interactions with different IoT devices needs further exploration.
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CD Control Device
EID End Smart Home IoT Device
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OS Operating Systems
SH Smart Home
S-NIDS Signature-based Network Intrusion Detection System
UCC User Command Chain
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