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Abstract: Seagrass meadows are a key ecosystem of the Great Barrier Reef World Heritage Area,
providing one of the natural heritage attributes underpinning the reef’s outstanding universal value.
We reviewed approaches employed to date to create maps of seagrass meadows in the optically
complex waters of the Great Barrier Reef and explored enhanced mapping approaches with a focus
on emerging technologies, and key considerations for future mapping. Our review showed that
field-based mapping of seagrass has traditionally been the most common approach in the GBRWHA,
with few attempts to adopt remote sensing approaches and emerging technologies. Using a series
of case studies to harness the power of machine- and deep-learning, we mapped seagrass cover
with PlanetScope and UAV-captured imagery in a variety of settings. Using a machine-learning
pixel-based classification coupled with a bootstrapping process, we were able to significantly improve
maps of seagrass, particularly in low cover, fragmented and complex habitats. We also used deep-
learning models to derive enhanced maps from UAV imagery. Combined, these lessons and emerging
technologies show that more accurate and efficient seagrass mapping approaches are possible,
producing maps of higher confidence for users and enabling the upscaling of seagrass mapping into
the future.

Keywords: seagrass; Great Barrier Reef; mapping; earth observing; machine-learning; deep-learning;
UAV; spaceborne; map confidence

1. Introduction

Since 11 June 1770 when the Great Barrier Reef (GBR) was first recorded in western
marine charts [1,2], approaches to mapping the GBR and its ecosystems have advanced
significantly. The earliest record of seagrass within the GBR waters was by the British
botanist Robert Brown aboard the HMS Investigator in the early 1800s [3,4]. However, inter-
est in seagrass and seagrass ecosystems was marginalised in the research and assessment
literature of the GBR until well into the 20th century. It was with the recognition of the
importance of seagrasses to dugong (Dugong dugon) and fisheries that attention on the
location and variety of seagrass habitats came to significance [5,6]. This also coincided
with the inscribing of the Great Barrier Reef Marine Park (Figure 1) on the World Heritage
List in October 1981. A key component of the listing was the importance of the region to
species of conservation concern, including dugong and green turtle (Chelonia mydas) and
their habitats, i.e., seagrass meadows. This prompted a critical need for an inventory of the
seagrass meadows of the GBR within the immediate decade.
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Figure 1. Seagrass meadows composite map [7,8], coral reefs [9], the Great Barrier Reef World
Heritage Area, and marine portions of each Natural Resource Management (NRM) region.

Current estimates are that seagrass meadows cover approximately 35,679 km2 of the
seafloor of the GBR World Heritage Area (GBRWHA) [10] (Figure 1); which is a greater area
than that covered by coral reefs. Seagrasses provide critical goods and benefits such as food
for marine green turtles and dugongs, fisheries habitat, coastal protection, nutrient cycling,
improving water quality, and reducing pathogenic bacteria to the benefit of humans, fishes,
and marine invertebrates such as coral [11–15]. In addition, the incorporation of carbon
within seagrass tissues can affect local pH, thereby helping to mitigate the effects of ocean
acidification affecting coral reefs, and the retention of carbon within seagrass meadow
sediments contributes significantly to climate change mitigation as well [16–18]. There-
fore, the ecosystem contributions provided by seagrasses make them a high conservation
priority [19,20].

In recognition of the critical importance of seagrasses, there is a pressing need to
complete and/or improve maps of seagrass spatial extent for conservation and natural
capital accounting. This is particularly challenging in tropical regions where seagrass
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ecosystems are diverse and dynamic, varying spatially and temporally in their distribution
and abundance, often with low seagrass cover, growing in a variety of complex substrates
and optically complex waters [5,21]. As a consequence of the high diversity of seagrass
species across a range of habitats, responses to environmental drivers in the tropics (e.g.,
terrigenous runoff and physical disturbance) can be highly variable across a range of
temporal and spatial scales (e.g., weeks to years, metres to kilometres) [22,23].

Seagrasses within the GBRWHA have been extensively mapped over the last
30 years [10], using a variety of methodologies and requiring significant resources. How-
ever, a review would provide an opportunity to assess the approaches which were applied
and identify what improvements could be implemented for reliable continuous mapping
over large scales in the future. Mapping approaches are driven not only by data needs, but
by available technologies. In the marine environment, the opportunities afforded by new
technologies such as machine- and deep-learning are rapidly expanding and opening new
horizons toward improved seagrass mapping.

In this paper, we explored how seagrass mapping within the GBRWHA has been
conducted previously, examined the approaches and limitations, and evaluated new tech-
nologies available to improve efficiency (including cost) and accuracy using a series of
case studies. To examine new approaches and, where possible, compare with traditional
approaches, we selected a variety of seagrass habitats and conditions as case studies to
conduct trials. Using a critical evaluation, we also recommend a number of improvements
to existing approaches and a future way forward.

2. Materials and Methods
2.1. Study Area

Stretching more than 2300 km along the Queensland coast, Australia, the Great Barrier
Reef WHA is the most extensive reef system in the world, sheltering over 2800 indi-
vidual coral reefs (derived from geomorphic map data down to 20 m depth [24]) and
including 347,800 km2 of seabed which supports extensive areas of seagrass of global
significance [5,10].

Fifteen seagrass species are reported within the GBRWHA [5]: from just above mean
sea level to 76 m deep [8]. They occur in 12 habitat types based on water quality types
(estuary, coastal, reef, and offshore) and water depths (intertidal, shallow subtidal <15 m,
and deep subtidal >15 m) (Table 1).

Table 1. Seagrass habitats of the GBRWHA and the composite seagrass extent. For seagrass habitat
type description, see [25]. Seagrass extent from [7,10,26,27], where * refers to modelled data.

Seagrass Habitat Type Area
(km2)

Percentage
of Total Extent

Estuary intertidal 85.0 0.2
Estuary shallow subtidal 36.5 0.1

Estuary deep subtidal 0.2 0.001
Coastal intertidal 352.2 1.0

Coastal shallow subtidal 2080.5 5.8
Coastal deep subtidal 2811.9 * 7.9 *

Reef intertidal 213.5 0.6
Reef shallow subtidal 83.2 0.2

Reef deep subtidal 10,168.7 * 28.5 *
Offshore intertidal 18.4 0.1

Offshore shallow subtidal 37.6 0.1
Offshore deep subtidal 19,791.2 * 55.5 *

Total 35,679

The most extensive areas of seagrass are reported to occur in the deep subtidal habi-
tats (water >15 m depth) (Table 1); however, these seagrasses are relatively sparse, com-
posed of colonising species, highly dynamic, and not as productive as shallower seagrass
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habitats [28–30]. Intertidal and shallow subtidal seagrass habitats are generally denser and
composed of more foundational species [21]. However, these habitats are also predom-
inately inshore where they are significantly influenced by seasonal and episodic pulses
of sediment-laden, nutrient-rich river flows, resulting from high volume summer rain-
fall [31,32]. Cyclones, severe storms, wind and waves as well as macrograzers (e.g., fish,
dugongs, and turtles) influence all habitats in this region to varying degrees [32]. As
inshore seagrasses are under the greatest pressure [33], they are generally prioritized for
assessments, to provide an understanding of their current state and an evidence base for
coastal management policy and planning.

Intertidal and shallow subtidal seagrass habitats provide the greatest opportunity
for assessments, with their relative ease in accessibility compared to deep, open water
habitats. However, the inshore waters of the GBRWHA are optically complex [34], with
varying degrees of water clarity which can limit the types of mapping approaches and
observing platforms available. Therefore, mapping the seagrasses within the GBRWHA has
many challenges, necessitating a hierarchical approach from fine-scale in situ field point
observations to broad-scale habitat suitability modelling.

2.2. Desktop Assessment of Seagrass Mapping in the GBRWHA to Date

To examine the different approaches that have been implemented to map seagrass
meadows/habitats within the GBRWHA, we conducted a systematic review. We used the
preferred reporting items for systematic reviews and meta-analyses (PRISMA) (Figure S1)
framework and protocols [35].

An electronic literature search was first performed from the published literature. We
used Web of Science, PubMed (MEDLINE), and Google Scholar as the primary sources for
the searches. We also conducted broader searches to acquire additional literature (thesis,
technical and consultancy reports) including gray literature, freely accessible seagrass data
portals, and authors’ personal data collections. The primary database searches extended
from 1965 to 2021 and included keywords (exclusively in English) related to occupants
(“seagrass”, OR “sea-grass”), AND map variants (“map”, OR “distribution”, OR “ex-
tent”, OR “spatial”), AND location (v.g. “Great Barrier Reef”, OR “GBR”) OR state name
(v.g. “Queensland”, OR “QLD”), OR specific habitat names (v.g. “coastal”, “reef”, OR
“intertidal”, OR “deepwater”). In total, 1118 records were identified (Table S1).

In the initial phase, titles and abstracts were screened to identify potential mapping
studies within the study area. In the second phase, full texts of the remaining articles were
read to identify if they met the inclusion and exclusion criteria, e.g., included mapping of
seagrass. We included studies and datasets that reported vector (including modelled) and
raster data presented in an illustrative format.

Each eligible study and dataset was then gleaned for information on the approach used
to capture the data and construct the final map. Information included: date and location
of each mapping event; mapping scale and organisation spatial level (Table 2); area of
interest; the earth observing elements and instruments employed for data capture (Table 3);
survey method, type of field validation and measures; type of habitat, seagrass species
present; meadow type, form, and arrangement/organisation (meadow-scape); how the
map was constructed; and the accuracy of the data collected and maps created (Table S1).
We defined remote sensing as the gathering of information about objects or areas without
making direct physical contact with the object.

We used the results of the systematic review to identify temporal and spatial trends in
seagrass mapping approaches within the GBRWHA and its habitats. To spatially quantify
seagrass mapping, each mapping event was overlaid and allocated to 30 min grid cells
(30 nautical miles × 30 nautical miles) [36].

We used a multicriteria analysis approach to semiquantitatively score the confidence
of the mapping product from each mapping event reviewed (Table 4). The criteria (Table S2)
and the approach used follows the method successfully implemented for the Paddock to
Reef integrated monitoring, modelling and reporting program [37]. Each criterion was
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scored, by an expert, using a defined set of scoring attributes (Table 4). The determination
of confidence for each mapping product used five criteria: maturity of methodology, vali-
dation, representativeness, directness, and measured error. For maturity of methodology,
the score was weighted half for this criterion so as not to outweigh the importance of the
other criteria. The strength of this approach is that it is repeatable, transparent, and can
include contributions from a range of sources.

Table 2. Seagrass organisation form, spatial scale, temporal scales, and features measured. Spatial
scale = maximum and minimum area covered by seagrass organisation form; Temporal scale = time
scale on which the seagrass organisation form undergoes changes; Measures = features of the seagrass
organisation form able to be measured. Modified [38].

Seagrass Organisation Spatial Scale Temporal Scale Examples of Measures

Fine (micro)-scale

Patch/Patches 1–100 m Weekly, monthly,
annual

Areal extent, abundance per unit area
(photoquadrats, percent cover and/or
biomass, shoot density), species, shoot
height, rhizome biomass, reproductive

health (flower, fruit, and seed
abundance), macroalgae abundance

Meadow 100 m–1 km
Seasonal

(3–4 months)
to annual

Areal extent, meadowscape,
abundance per unit area

(photoquadrats, percent cover and/or
biomass), species, reproductive health

(flower, fruit, and seed abundance),
macroalgae abundance

Meso-scale

Meso-system meadows
e.g., small bay/estuary 1–10 km

Seasonal
(3–4 months)

to annual, decadal

Areal extent, meadowscape,
abundance (per unit area), species

presence/absence, macroalgae
abundance

Subregional meadows
e.g., large bay 10–50 km

Seasonal
(3–4 months)

to annual, decadal

Areal extent (presence/absence),
meadowscape (categories), abundance

(per unit area)

Regional meadows
e.g., large island group 50–100 km Biannual to annual,

decadal

Areal extent (presence/absence),
meadowscape (categories), abundance

(narrow categories)

Broad
(macro)-scale

Biome meadows
(e.g., dry tropics, wet
tropics, NRM region)

>100 km decadal
Areal extent (presence/absence),

meadowscape (categories), abundance
(broad categories)

Table 3. Earth observing elements including type and data capture approach. Effective resolution is
the size of the smallest feature that is discernible. Spatial extent per observation refers to maximum
resolvable area represented by a single measure/capture.

Observing Type Definition Effective
Resolution

Temporal
Resolution

Approach/
Instrument

Spatial Extent
per

Observation

Direct in situ

Measures taken directly
from the object/feature,

i.e., within human reach.
<3 m On-demand to

seasonal
by foot; diver (free,

SCUBA) 10 m2

Measures taken directly
from the object/feature

via a device, i.e., beyond
human reach.

≥3 ≤10 m On-demand to
seasonal grab, rake, sled 100 m2
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Table 3. Cont.

Observing Type Definition Effective
Resolution

Temporal
Resolution

Approach/
Instrument

Spatial Extent
per

Observation

Near Earth
Observing

Active and passive
remotely sensed data

collected from submerged
sensors at a depth beyond

human reach.

10−2 ≤10 m
On-demand to

seasonal

camera (drop-camera,
Closed-Circuit

Television),
Autonomous

Underwater Vehicle
(AUV), helicopter,

accoustic (from a boat).

100 m2

High Earth
Observing

Near-field passive
remotely sensed data

collected from airborne
sensors at an altitude >10

m above the
object/feature.

10−3 ≤100 m
On-demand to

monthly to
biannual

Unoccupied Aerial
Vehicle (UAV),

Unoccupied Aerial
Systems (UAS),

helicopter, fixed wing
aircraft

5 ha

Earth Observing
from Space

Passive remotely sensed
data collected from

spaceborne sensors, at an
altitude >105 m above the

object/feature.

~1 ≤100 m On-demand to 1
to 10 days [39] satellite, spacecraft 185 km2

Table 4. Mapping confidence scoring matrix. Confidence scoring and categories used: very low, ≤5;
low, >5 ≤7.5; moderate, >7.5 ≤10; high, >10 ≤12; very high, >12. Criteria are weighted relative to
their perceived level of importance for the assessment being addressed. Modified [37]. Scales and
effective resolution adapted from [40–42], ancillary attributes from [43,44].

Maturity of Methodology
(Weighting = 0.5)

Validation
(Observing Platforms)

(Weighting = 1)

Representativeness
(AOI)

(Weighting = 1)

Directness
(Mapping Approach)

(Weighting = 1)

Measured Mapping Error
(Weighting = 1)

Score = 1

• new or experimental
methodology

• limited use
• pre-1980s

methodology

Score = 1

• no field validation. or field
validation > 6 months from
image acquisition

• in situ sampler/grab
• Spaceborne or airborne

observing (high altitude,
low resolution)

Score = 1

• less than 10% of
AOI assessed

• prediction area
> 10 times larger
than validation
area

Score = 1

• on screen
interpolation of air-
or spaceborne
imagery

• remotely sensed,
high altitude, low
resolution

• raster resolution
> 10 m

• modelled habitat
suitability

Score = 1

• error not measured or
stated

• scale > 1:100,000
• effective resolution

100–500 m
• <40% correct

classification
• <40% Bootstrap

Probability

Score = 2

• peer reviewed
method (not formally
published)

• used for >10 years
• improvement of

existing method

Score = 2

• survey with some field-
validation or field validation 1 to
6 months from image acquisition

• direct in situ measures, but
unvalidated (e.g., no
photquadrats)

• Near earth observing
• High earth observing (helicopter

or high alt UAV)

Score = 2

• 10–50% of AOI
assessed

• assessment
clumped
throughout AOI

• prediction area
5–10 times larger
than validation
area

Score = 2

• on screen human
interpolation from in
situ data

• field based boundary
mapping from
helicopter

• remotely sensed,
high altitude,
med-high resolution

• raster resolution
> 3 m ≤ 10 m

Score = 2

• >10-fold field accuracy
• scale ≤ 1:10,000 to

1:100,000
• effective resolution > 10

to ≤ 100 m
• 40–70% correct

classification
• meadow-scape

categorised
• ≥40% <60%

Bootstrap Probability

Score = 3

• globally
standardised (e.g.,
[45]), peer reviewed
and used in a
number of peer
reviewed
publications

• analysed following
well published
methods

Score = 3

• direct in situ human-geotagged
photoquadrats or geolocated
quadrat observations

• high earth, low altitude UAV,
high resolution

• field validation within 1 month
of image acquisition

• modelling with comprehensive
validation & supporting
documentation

• supported by expert knowledge

Score = 3

• >50% of AOI
assessed

• assessment spread
throughout AOI

• similar sized
prediction and
validation areas

• expert knowledge
of data source
for AOI

Score = 3

• field based boundary
mapping on foot

• remotely sensed, low
altitude, high
resolution (e.g.,
UAV)

• raster resolution
≤ 3 m

Score = 3

• similar to field accuracy
• scale < 1:10,000
• effective resolution

≤ 10 m
• >70% correct

classification
• meadow-scape

measured
(patches, scars)

• ≥60% Bootstrap
Probability
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2.3. Applied Assessment of Traditional and Enhanced Mapping Approaches

Approaches to mapping seagrass were conducted and compared through three cases
studies, each focusing on a different area of interest (AOI), to demonstrate possible im-
provements to mapping the diverse and dynamic seagrass meadows of the GBR.

2.3.1. Characteristics of Case Study Areas

The selected case studies included a variety of seagrass habitats (coastal, reef, intertidal,
and shallow subtidal) and conditions (clear and optically complex waters) experienced in
the GBRWHA (Table 5, Figure 2). The AOIs included the most commonly mapped habitats
within the GBRWHA, and have been monitored as part of the Seagrass-Watch and the Great
Barrier Reef Marine Monitoring Program (MMP) for over 15 years [21]. The AOIs also
included seagrass communities with abundances representative of the GBRWHA historic
baseline, 22.6 ± 1.2% cover (mean ± SE) [46] (Table 5).

Table 5. Case study (see Figure 2) including coordinates (midpoint, geographic name), observing
platform, habitat (including description of sediment grain size, colour and origin), and seagrass
community (incl. long-term percent cover from 2000 to 2020).

Case Study
(Coordinates, Name)

Observing Platform
(Data Capture Date)

Habitat Type
(Sediment)

Seagrass Community
(Mean Cover ± SE)

Coastal clear water
(16.564◦S, 145.511◦E)

Yule Point

Direct in situ (by foot)
(15 October 2017, 13–14 August

2019, 6 Sepetember 2020)
Airborne (UAV)

(20 July 2020)
Airborne (helicopter)
(5 September 2017)

Spaceborne (satellite)
(5 September 2017, 9 August 2019)

coastal intertidal/
shallow subtidal

(fine sand, light coloured,
terrigenous)

Halodule uninervis, Halophila
ovalis

(15.0 ± 1.6% cover)

Coastal turbid water
(20.635◦S, 148.709◦E)

Midge Point

Direct in situ (by foot)
(17 September 2017)
Airborne (helicopter)

(17 October 2017)
Spaceborne (satellite)

(9 October 2017)

coastal intertidal/
shallow subtidal

(mud/fine sand, dark
coloured, terrigenous)

Zostera muelleri, Halodule
uninervis

(24.9 ± 1.8% cover)

Reef clear water
(16.762◦S, 145.976◦E)

Green Island
(Wunyami)

Direct in situ (by foot)
(25–27 November 2020)

Airborne (UAV)
(25 November 2020)
Spaceborne (satellite)
(5 November 2020)

reef intertidal/
shallow subtidal

(coase sand/sand, light
coloured, biogenous-37%

CaCO3)

Thalassia hemprichii, Halodule
uninervis, Syringodium
isoetifolium, Cymodocea

serrulata, Cymodocea rotundata,
Halophila ovalis

(36.4 ± 2.2% cover)

2.3.2. Data Collection and Mapping for Case Studies

We conducted four mapping approaches in the case studies by, first, using the most
common traditional approaches to collect data and create maps that have been applied
across the GBRWHA over the last century, and then using new technologies of image
capture and machine- and deep-learning.

Approach 1: Field-Based Direct In Situ Boundary Track (by Foot)

Data used
Sections of AOIs were mapped during low spring tides. These sections (e.g., sites)

covered an area of approx. 5.5 hectares, and field survey methodology followed globally
standardised protocols (detailed in [45,47]). Mapping of the meadowscape (including
patches and scars) was conducted on foot using a handheld Garmin GPSMap 64s (accuracy
±1.5–3 m).
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Mapping method
The GPS tracks were imported into ESRI®ArcMap™ 10.7 (Environmental Systems

Research Institute, ArcGIS™ Desktop 10.7). Meadowscape (patches or scars) boundaries
were mapped using the imported GPS track to create a polyline which was then smoothed
using the B-spline algorithm and saved as a polygon.
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Figure 2. Location of each case study: (a) coastal clear water (Yule Point); (b) reef clear water (Green
Island); and (c) coastal turbid water (Midge Point).

Approach 2: Field-Based Direct In Situ Spot-Check and High Earth Boundary Track
(by Helicopter)

Data used
The coastal seagrass meadows (Yule Point and Midge Point) were surveyed at low tide

with observations from a helicopter (Robinson R44/R66). The boundaries of the meadows
were delineated by onboard observers and tracked by helicopter (at 25 ± 5 m altitude)
using the tracks setting on a handheld Garmin GPSMap 64s. Within these meadows,
observational data was collected at an altitude of 1–2 m above the substrate, from three
haphazard placements of a 0.25 m2 quadrat out the side of the helicopter at a number
of haphazardly scattered points (spot-checks, 10 m2) (Figure S2). Seagrass species were
verified using an extendable cultivator rake to collect shoots. The boundaries of the reef
seagrass meadows were mapped by foot as aircraft are restricted within the Green Island
Marine National Park [48].

Mapping method
All field survey data were imported into ESRI®ArcMap™ [49] and seagrass meadow

boundaries mapped from the GPS tracks and by onscreen interpolation based on geolocated
spot-checks (Figure S2), field notes, and geotagged oblique aerial photographs acquired
from the helicopter. Meadow area was determined using the calculate geometry function in
ArcGIS®. The mapping precision using this mapping approach was set at ±10 m either side
of the interpreted meadow boundary, taking into account errors associated with the GPS
and the altitude of the helicopter. A mapping precision estimate was used to calculate a
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buffer around each meadow (using the buffering function) representing error; the meadow
area excluding and including this buffer is expressed as a meadow reliability estimate in
hectares [45].

Approach 3: High Earth Mapping with Unoccupied Aerial Systems (UAS)
Captured Imagery

Data used
UAS imagery was collected with a DJI Mavic 2 Pro unoccupied aerial vehicle (UAV) at

the coastal clear water and reef clear water AOIs during low spring tides (Table 5). The
UAS used DroneDeploy to manage the UAV at an altitude of 30 m and 100 m in coastal
and reef habitats, respectively (85% sidelap and frontlap). The captured images from each
altitude were meshed into orthomosaics in PIX4D and their resolutions were 0.2 cm/pixel
and 2.45 cm/pixel, respectively.

Mapping method
We created spatially explicit seagrass maps from UAS acquired nadir imagery using

deep-learning techniques, see basic workflow Figure 3a (Supplementary Material S3). The
orthomosaics from the coastal clear water (Yule Point, 57,332 × 57,238 pixels, ~1.31 ha)
and reef clear water (Green Island, 10,098 × 7444 pixels, ~4.51 ha) AOIs were decomposed
into 256 × 256 pixel tiles to be used in deep-learning. A proportion of both the coastal and
reef tiles (0.8% and 29%, respectively) were manually annotated and assigned a seagrass
abundance class (supervised) for training, testing, and validation. This was performed in
the web-based annotation platform Labelbox [50].
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Figure 3. The general workflow of optical imagery acquired by UAV (a) and spaceborne sensors (b),
illustrating the image processing and application of deep- and machine-learning (a and b, respectively)
to produce spatially explicit classified seagrass meadow maps.

For the coastal AOI, due to the lower seagrass density and occurrence of morpho-
logically smaller species, the classes used were: (1) bare sediment, (2) low seagrass cover
(>0 ≤25%), (3) high seagrass cover (>25%), (4) rubble/algae. For the reef AOI, the classes
used were: (1) absence of seagrass (0%), (2) low seagrass cover (1–15%), (3) medium sea-
grass cover (>15–50%), and (4) high seagrass cover (>50%). The resulting annotations were
fairly evenly spread across classes for the coastal (29, 28, 25, and 17%, respectively), but
were more unbalanced for the reef (1, 17, 34, and 47%, respectively).
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Approach 4: Earth Observing from Space with Satellite Captured Imagery

Data used
PlanetScope Dove, with 3.7 m × 3.7 m pixels (nadir viewing) with RGB (red, green,

blue) and for some sensors also half NIR (near-infrared) [51] was acquired from the Plan-
etScope archive [52]. This imagery is captured daily as a result of a constellation of 170+
dove cube satellites. With Blue band 455 nm to 515 nm, green 500 nm to 590 nm, red
590 nm to 670 nm, NIR 780 nm to 860 nm [51]. Imagery was provided orthorectified and
radiometrically corrected to surface reflectance (SR) product [51]. We acquired PlanetScope
images coinciding as close as possible to the field-surveys in 2017, 2019, and 2020 (Table 5).
Field validation data in 2019 and 2020 was collected by foot at haphazard points or along
transects perpendicular to the shoreline (Figure S4). At each point a geotagged photograph
of the benthos (1 m × 1 m) was captured using a GoPro HERO9 Black or Olympus TG5.

Mapping method
We created spatially explicit seagrass maps from the imagery, and conducted the clas-

sification in R [53] using a machine-learning model (random forest) with the ranger pack-
age [54]. The basic workflow is shown in Figure 3b (see also Supplementary Material S3).
Classified polygons (reference segments) were created by segmenting the image in Ar-
cGIS Pro [55] and then manually assigning a label through expert interpretation of the
imagery and field data (Figures S2–S4). We used an 80–20% random split of the classified
pixels to train and validate the model, respectively [56]. This process was repeated over
100 iterations for which each model output metrics (out-of-bag (OOB) error rate, class error
rate, and validation accuracy) and model predictions for the whole image were compiled by
taking the average. This method, known as bootstrapping, had the advantages of making
sure the random split was not leading to a biased model (e.g., if unique classified segments
are low or if the segments are too large and heterogeneous) and that each pixel prediction
had a probability associated to it. The final model predictions were then gathered into
separate rasters, based on four bootstrap probability thresholds: 100, 90, 80, and 60%.
The final rasters were cleaned using a majority filter algorithm, to eliminate stray pixel
predictions in R (focal function from raster package) using a moving window between
3 and 9 pixels depending on the size of the imagery.

2.3.3. Comparison of Mapping Approach Outputs

To compare the different mapping approaches and enhancements, we assessed the out-
put maps created at both fine- (patch to meadow) and meso-scales (meso-system meadows).
We compared the areas of seagrass mapped (in hectares, including reliability, probability,
and confidence) and meadow characteristics (including abundance and meadowscape)
using each approach and type of observing platform, within each of the different seagrass
habitats (case studies).

3. Results
3.1. Desktop Assessment of Seagrass Mapping in the GBRWHA to Date

We identified 395 individual seagrass mapping events having occurred within the
GBRWHA up until December 2020 (Table S1). The earliest verified record of seagrass within
the GBRWHA was in 1802 [3]; however, the inclusion of seagrass in maps did not appear
until 1931 when reef flat Thalassia and Halophila habitats were mapped at Low Isles during
the Great Barrier Reef Expedition 1928–1929 [57,58]. In the decades following, maps of
seagrass were small scale and principally research focussed. The first broadscale inventory
of the seagrass meadows of the GBR was achieved within the 1980s (Table S1). Since then,
seagrass mapping has continued at various scales and has been predominately driven by
management needs. The accessibility to Geographic Information Systems (GIS) and digital
imaging has also progressed cartography beyond paper maps to a digital format, enabling
maps to be created by a wider variety of actors for an even greater diversity of users.
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3.1.1. Earth Observing Platforms and Mapping Approaches

The most popular observing platform employed to create maps of seagrass meadow
extent within the GBRWHA was in situ human (84% of mapping events), followed by in
situ sampler, high earth, near earth, and spaceborne, respectively (Figure 4a).
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Within the GBRWHA, a number of approaches have been used to map seagrass mead-
ows, varying from field-based to habitat suitability modelling (Figure 4b). The approaches
can include in situ field-validation methods which range from direct human observation to
remote sensing. Field-based approaches dominated across the mapping events (Figure 4b),
with onscreen interpolation and hand-digitisation of meadow boundaries by the user
(based on the presence or absence of seagrass at a field validation point, e.g., spot-check and
expert interpretation) being the most popular cartographic technique. These approaches
have been mostly applied at the meso-system meadows organisational level (Figure 4a).

Although approximately 40% of mapping events included high earth observing, this
was for the most part where aerial photographs (from fixed wing aircraft) were used only
to assist with the map presentation (e.g., background).

Earth observing from space was reportedly used in 14% of mapping events; however,
similar to the high earth, these were predominately only to visually assist with human
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interpolation, and images were not classified. Attempts to use classified spaceborne
imagery to map inshore seagrass meadows on the GBR were first reported in 1980–1981,
however, these were hampered by the coarse spatial resolution (e.g., 80 m) of the scanner
and the poorer spectral range [59]. Since that time, we found only five events (excluding
the present study) where spaceborne imagery, coupled with field validation data, has
successfully produced a spatially explicit seagrass map within the GBRWHA (Table S1).
Similarly, we found only three events where habitat suitability modelling, using supervised
machine-learning methods, has produced spatially explicit seagrass maps (Table S1). Both
of these approaches were only successfully applied in the last decade (2010–2020).

3.1.2. Mapping Characteristics

Mapping events were geographically focussed predominantly to the inshore waters
of the GBRWHA, with the greatest frequency associated with industrial ports and urban
centres (Figure 5). A disproportionate number of sampling events (27%) mapped seagrass
in the vicinity of Cairns (Figure 5) relative to other locations within the GBRWHA.
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Figure 5. Frequency of seagrass meadow mapping events, within 30 min grids, within the Great
Barrier Reef World Heritage Area over the last century (1920–2020).

The mapping of seagrass meadows within the GBRWHA shows a temporal bias—an
unbalanced occurrence of mapping in some years or parts of a given year (Figure 6).
Historic mapping events (pre-1960) were generally during the lowest daytime spring tides,
which occur toward the middle of each calendar year along the Queensland east coast
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(Figure 6a). Post-1960s, mapping gradually spread throughout the year, and from the
mid-1990s, was biased more toward the latter months of the year, peaking in November
(Figure 6a). Two-thirds of the mapping events occurred during the austral growing season
(August–January for most Australian tropical seagrass species) (Figure 6a). Temporal trends
in seagrass mapping were also not consistent across seasons within each of the marine
Natural Resource Management regions (NRMs) of the GBRWHA (Figure 6b).
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Figure 6. Temporal occurrence in seagrass meadow mapping events within the Great Barrier Reef
World Heritage Area: (a) within and across years, where each dot represents a mapping event, with
the colour gradient representing recent years with colder colour tones, and older years represented
by warmer colour tones; (b) intra-annual trends within each Natural Resource Management region,
where the blue line around each temporal plot represents mapping frequency in monthly intervals
(scaled to monthly maximum) over the last century (1920–2020) and the value in the centre of each
plot is the total number of mapping events. Source data are provided in Table S1.

Mapping events were biased to intertidal and subtidal coastal habitats of the GBR-
WHA, particularly in the last three decades (Figure 7). Conversely, offshore habitats were
the least mapped over the last century, occurring mainly in the 1980s and 1990s (Figure 7).

3.1.3. Mapping Confidence

Confidence for the maps of seagrass meadow extent produced by the mapping events
varied depending on the habitats, observing platforms, and approach (Table S2). Approx-
imately half (49%) of the mapping events produced seagrass extent maps of moderate
confidence. These mapping events followed standardised approaches, including sufficient
field validation (e.g., in situ point assessments using helicopter, diver, camera, grab) with
some measure of field accuracy, but meadowscapes were categorised rather than mapped
and the meadow boundaries were visually interpolated and digitised by hand onscreen.
Over a third of the mapping events produced maps of low to very low confidence, with
only the remainder (14%) of high to very high confidence.
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3.2. Applied Comparison of Traditional and Enhanced Mapping Approaches

The case studies occurred within the two NRM regions which had the highest mapping
frequency in the GBRWHA (Figure 6b) and included the most often mapped habitats:
coastal and reef (see Figure 7).

3.2.1. Fine-Scale Mapping—Patch to Meadow (AOI = 5.5 ha)

Traditional direct in situ boundary mapping by foot resulted in comprehensive maps
of seagrass extent and meadowscape (patches and scars) of very high confidence, for
both types of intertidal seagrass communities (Figure 8). Maps produced by high earth
boundary mapping using a low flying helicopter, however, were of low confidence and
lacked meadowscape details (e.g., scars and patches), especially in the Zostera muelleri
dominated community (Figure 8). Mapping from spaceborne-captured imagery produced
reasonably comprehensive maps of seagrass extent and meadowscape of high confidence,
across both intertidal seagrass community types (Figure 8). The area of seagrass measured
within the AOI was similar or slightly higher when mapped using spaceborne approaches
compared to in situ boundary mapping by foot (Table 6). When using the spaceborne
approach, the difference between the areas of seagrass mapped with either the 100% or 60%
bootstrap probability threshold was less than 5% (Table 6). The areas of seagrass measured
using a low flying helicopter were consistently higher than both the in situ field-based and
spaceborne approaches, with the differences ranging from 11 to 55% and 3 to 102% greater,
respectively (Table 6).
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Table 6. Area of seagrass (hectares) mapped within each AOI in 2017 using different earth observing
platforms and approaches to create fine- and meso-scale spatially explicit seagrass maps for coastal
clear and turbid water habitats in the GBRWHA. The range in seagrass area is based on estimate of
reliability (*) or bootstrap probability. n.a. indicates a boundary could not be delineated within the
AOI due to the type of earth observing platform used.

AOI Mapping
Scale

Site
(ha)

Earth Observing
Platform

Resolution or
Bootstrap Probability

Seagrass Area

ha Range

Coastal clear
water

(Yule Pt)

Fine-scale YP1 Direct in situ—by foot high 2.86

(4.58) High earth—helicopter low * 3.95 3.34–4.43

Spaceborne—satellite 100% 2.19
2.19–2.3360% 2.33

YP2 Direct in situ—by foot high 4.44

(5.09) High earth—helicopter low * 5.05 4.93–5.08

Spaceborne—satellite 100% 4.69
4.69–4.7860% 4.78

Meso-scale (193.08) High earth—helicopter low * 144.06 134.61–151.85

Spaceborne—Satellite 100% 105.32

105.32–14.63
90% 110.55
80% 112.45
60% 114.63

Coastal turbid
water (Midge Pt)

Fine-scale MP2 Direct in situ—by foot high 4.7

(5.27) High earth—helicopter low * 5.268 n.a.

Spaceborne—Satellite 100% 4.43
4.43–4.4860% 4.48

MP3 Direct in situ—by foot high 4.89

(5.27) High earth—helicopter low * 5.268 n.a.

Spaceborne—Satellite 100% 4.76
4.76–4.7860% 4.78

Meso-scale (130.05) High earth—helicopter low * 117.79 114.36–120.93

Spaceborne—Satellite 100% 96.68

96.68–100.44
90% 98.88
80% 99.55
60% 100.44

3.2.2. Meso-Scale Mapping—Meso-System Meadows (AOI = 130 to 317 ha)

High earth boundary mapping using a low flying helicopter was able to cover the
entire coastal AOIs within the tidal window and produce a map of seagrass meadow extent;
however, the maps were of moderate confidence and lacked meadowscape details due
to the low accuracy delineating boundaries of individual patches and scars (Figure 8).
Spaceborne-captured imagery produced reasonably comprehensive spatially explicit maps
of seagrass meadowscape of high confidence, across both coastal seagrass habitats (Figure 8).
The average accuracy across the 100 random forest models produced were 98.78 ± 0.01
and 98.69 ± 0.01 at the coastal clear water and coastal turbid water meadows, respectively
(Table S3). We found that the areas of seagrass measured in each AOI using a helicopter
were consistently higher than when measured using the spaceborne approach, for both the
100% and 60% bootstrap probability thresholds (Table 6). No in situ boundary mapping by
foot was possible at meso-scale due to the limited tidal window available (3–4 h) for access.

We found that high earth mapping using a helicopter consistently overestimated
seagrass extent by 24.5% on average (range 6 to 80%), depending on the complexity of the
meadowscape, i.e., the greater the complexity, the greater the overestimate.
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Figure 8. Comparison of traditional (in situ by foot and high earth by helicopter) and enhanced
(spaceborne) approaches to mapping extent of coastal seagrass communities at meso- and fine-scales
in 2017 within the GBRWHA: (a) coastal clear water Halodule uninervis with Halophila ovalis meadows
at Yule Point in 2017; (b) coastal turbid water Zostera muelleri meadows at Midge Point in 2017. Left
column is meso-scale across banks, and right column is fine-scales within sites. From top: row 1,
direct in situ by foot; row 2, high earth by helicopter; row 3, spaceborne by satellite, showing 100%
bootstrap probability; and bottom row, spaceborne by satellite, showing 60% bootstrap probability.

3.3. Applied Assessment of Enhanced Mapping Approaches

To assess possible improvements in mapping seagrass extent and abundance (in
diverse seagrass communities and habitats) using emerging technologies, we focussed
on remote sensing approaches using near-field (e.g., UAV) and spaceborne (e.g., satellite)
observing platforms.

Using machine-learning technologies, we successfully mapped seagrass abundance
classes from the spaceborne-captured imagery in optically clear shallow waters in both
coastal and reef habitats (Figures 9 and 10) with an average model accuracy of 93.67 ± 0.01
and 94.70 ± 0.01, respectively (Table S3). The area of seagrass for each abundance class
was calculated at each level of probability, and the respective areas for probabilities be-
tween 90 and 60% were relatively similar (Table 7), indicating that the most conservative
values representing mapping accuracy would be the bootstrap probabilities of 60 and 100%
(Figure 10).
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Table 7. Area of seagrass abundance classes (hectares) mapped within each AOI at reef and coastal
clear water habitats using imagery captured with satellite (PlanetScope) and UAV. BP = bootstrap
probability, * = below bootstrap probability (bBP). AOI for meso-scale spaceborne-captured imagery
can differ due to kernelling at the margins of the AOI. n.a. = not assessed. NB: reef clear water
meadow covers entire AOI, with no meadow boundary mapped by foot.

AOI
Earth

Observing
Platform

Map Figure Area
(ha) BP

Seagrass Abundance Class Rubble/Algae
or bBP

Total
Seagrass

AreaAbsent Low Medium High

Coastal
clear
water

(Yule Pt)

by foot Figure 9b(ii) 0.8020 n.a. n.a. n.a. n.a. n.a. n.a. 0.7053

UAV Figure 9b(iv) 0.8020 n.a. 0.1192 0.4854 n.a. 0.1701 0.0273 0.6555

satellite Figure 9a(ii) 49.65 100% 22.71 15.60 n.a. 5.18 6.21 * 20.78
(meso-scale) 49.65 90% 24.45 17.46 n.a. 5.86 1.95 * 23.32

49.65 80% 24.90 18.02 n.a. 6.08 0.71 * 24.09
Figure 9a(i) 49.65 60% 25.12 18.36 n.a. 6.21 0.03 * 24.57

Reef
clear
water

(Green Is)

UAV Figure 10f 4.512 n.a. 0 2.193 0.429 1.887 0 4.512

satellite Figure 10d 4.512 100% 0 0.071 2.594 1.685 0.162 4.512
(fine-scale) Figure 10c 4.512 60% 0 0.072 2.695 1.745 0 4.512

satellite Figure 10b 316.62 100% 79.13 26.59 71.49 63.25 32.17 * 316.75
(meso-scale) 316.66 90% 82.8 31.09 80.12 66.05 6.7 * 316.82

316.73 80% 83.24 32.17 81.48 66.57 2.07 * 316.89
Figure 10a 316.86 60% 83.45 32.89 81.92 66.67 0.08 * 316.99
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Figure 9. Machine- and deep-learning approaches to meso- and fine-scale mapping of seagrass
abundance classes in a coastal clear water habitat (Yule Point) in 2019–2020: (a) meso-scale map from
spaceborne-captured imagery showing seagrass abundance classes with (i) bootstrap probability
of 60% and (ii) 100%; (b) fine-scale maps showing (i) UAV-captured image of AOI; (ii) presence of
seagrass mapped in situ by foot; (iii) abundance classes of seagrass mapped using deep-learning;
(iv) presence of seagrass mapped using deep-learning, within highlighted section of AOI.
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Figure 10. Machine- and deep-learning approaches to fine-scale mapping of seagrass abundance
classes in an intertidal/shallow subtidal reef habitat, Green Island, in 2020: (a) abundance classes
of seagrass mapped with bootstrap probability of 60%, from spaceborne-captured imagery using
machine-learning; (b) abundance classes of seagrass mapped with bootstrap probability of 100%,
from spaceborne-captured imagery using machine-learning; (c) highlighted AOI showing detail of
machine-learning derived map with bootstrap probability of 60%; (d) highlighted AOI showing detail
of machine-learning derived map with bootstrap probability of 100%; (e) highlighted AOI showing
the UAV-captured imagery; (f) highlighted AOI showing abundance classes of seagrass mapped with
deep-learning from UAV-captured imagery.

Using trained deep-learning models (Figures S5 and S6), we successfully mapped the
area of seagrass and each abundance class from the UAV-captured imagery within each
of the AOIs (Figures 9 and 10). The accuracy of the deep-learning model (represented by
the intersection-over-union (IoU) score) was 0.78 and 0.74 for the coastal and reef clear
water seagrass habitats, respectively. The UAV-captured imagery had a higher ability to
differentiate low and medium abundance classes than the satellite imagery (Table 7). The
resolution and resulting meadow–scapes mapped from UAV-captured imagery were also
significantly greater and more detailed than could be differentiated using spaceborne-
captured imagery or by foot (Figure 10).

4. Discussion

In this study, we completed the most comprehensive systematic review of seagrass
mapping conducted within the GBRWHA to date, as well as presented several innovative
approaches using machine- and deep-learning to produce seagrass maps of high to very
high confidence at fine- and meso-scales from airborne and spaceborne imagery.
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4.1. Tradional Mapping Approaches

Although there have been several previous spatial data compilations for the GBRWHA
(e.g., [60]), the most detailed from 1984 to 2018 included less than half of the mapping events
identified in our assessment for the same period [8]. When conducting our assessment,
a key challenge was developing and defining a standardised terminology. We found
substantial irregularities in the technical language used in relation to earth observing
elements (platforms and types), mapping approach, scale, resolution, and seagrass meadow
organisational level. Careful examination of mapping events in the PRISMA eligibility
stage (Figure S1) identified instances where authors reported mapping meadows which
did not exist. For example, authors conducting “meadow-scale” monitoring theoretically
mapped meadows and reported the extent as zero, rather than surveying for seagrass within
a defined area and reporting seagrass as absent. The development of a comprehensive
glossary of globally standardised terminologies applicable to seagrass ecosystems, mapping,
and assessment would benefit future data syntheses both within the GBRWHA and globally.

Our review of mapping events within the GBRWHA highlighted geographic, temporal,
and habitat biases. Geographic biases were predominately a consequence of data needs
in areas of greatest risk from human activities, e.g., ports [61]. Temporal biases were a
consequence of tropical seagrass seasonal growth: to capture seagrass extent when at its
annual peak. This was particularly important for annual seagrass species that complete
their lifecycle in a single growing season. For example, deep-water Halophila tricostata may
only persist as a seed bank through the cooler months of the year when light conditions are
less favourable [62–64].

We found that the most commonly used mapping approach for intertidal meadows
within the GBRWHA was field-based, where GPS tracks and spot-checks captured from
helicopters were used to draw boundaries and define meadow characteristics (e.g., species
composition, cover, and type of meadow). The resulting products were meso-scale maps of
moderate confidence and fine-scale maps of very poor confidence; overestimating the area
of seagrass by 6 to 80%, due to the lack of meadowscape measures beyond narrative (e.g.,
description of continuous, aggregated patches, or isolated patches). We have shown that
such approaches could be significantly improved by coupling spot-checks with spaceborne
imagery, to produce maps of high confidence.

4.2. Improving Machine- and Deep-Learning Approaches for Seagrass Mapping

Using a machine-learning pixel-based (PB) classification coupled with a bootstrapping
process, we were able to significantly improve mapping of seagrass meadows particularly
in low density (cover), fragmented, and complex substrate habitats for our case study
areas. The resulting probabilities from the bootstrapping process not only provided more
accurate measures of seagrass meadow spatial extent, but the inclusion of meadowscape
configuration was a significant improvement.

Traditionally, high earth or earth observing from space has been used for land cover
classification, using a PB analysis approach. However, when attempting per-pixel clas-
sification for the purposes of mapping land classes such as vegetation cover types at a
subregional to broad scale, spectral heterogeneity can result in a large number of misclassi-
fied pixels appearing within classes, creating a ‘salt and pepper’ effect [65]. Consequently,
there has been a recent shift towards an object-based image analysis (OBIA) approach
which uses the spectral and spatial properties of groups of pixels that make up segments
and divide the image into objects. OBIA classification techniques have been particularly
successful for mapping meadows of structurally large seagrass species in coastal and clear
water environments [66–70], making mapping possible for submerged meadows. However,
those techniques do not appear well-suited for intertidal meadows with lower abundance,
structurally smaller species and highly diverse communities and habitats within the GBR-
WHA. Additionally, the high turbidity of the coastal waters of the GBRWHA restricts the
capture of high and moderate spatial resolution imagery to when the meadows are exposed
during low spring tides to be suitable for mapping. All these settings may explain why,
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to date, less than 1% of all seagrass mapping events within the GBRWHA, excluding the
present study, have been conducted using air- and spaceborne imagery.

While there are significant advantages to using the OBIA approach, we found that
it was not well-adapted to the seagrass meadow classification we attempted for our case
studies. The main factor was that these meadows were highly heterogeneous on ac-
count of high levels of fragmentation. Therefore, when OBIA was tested, it resulted in
an over-simplification of the seagrass meadowscape which resulted in either over or un-
der predicting the seagrass area. Consequently, we decided to use a PB classification
which led to greater resolution and more accurate results, in particular accounting for
meadowscape configuration.

To the best of our knowledge, our study was also the first to use deep-learning
models to derive seagrass maps from high earth UAV imagery. UAVs, commonly re-
ferred to as drones, are becoming popular platforms for spatial assessment of ecological
phenomena [71–74], effectively bridging the gap between satellite and onground data col-
lection [75]. These high earth observing platforms have the capacity for acquiring remotely
sensed imagery of very fine spatial resolution (0.01–5 cm), have increased flexibility for
image acquisition, and generally have lower operational costs. So far, OBIA with machine-
learning techniques has been the most commonly used method to derive maps from UAV
imagery [76–78]. Deep-learning techniques such as convolutional neural networks (CNN)
have emerged as a new effective approach that can identify seagrass [79,80] or specific
features such as dugong feeding trails [81], but until now, had not been applied for oper-
ational mapping. Here, we used the semantic segmentation technique, which had been
previously used for seagrass coverage estimation in underwater photoquadrats [82], and
demonstrated its promising potential for fine-scale seagrass mapping. Indeed, coupled
with very high-resolution UAV imagery, deep-learning allows for the rapid and highly
accurate production of maps to be used to assess important metrics such as meadowscape
(e.g., fragmentation).

4.3. Improving Accuracy and Confidence of Maps for Users

We recognized there appears to be some confusion by map users regarding the confi-
dence in the final map product. Measures of accuracy can often be confusing, as they can
relate to different elements of a map, and not the final product. For example, the boundary
accuracy [45] is a subjective measure estimated by the map creator, based predominately
on the accuracy of the GPS, the spatial extent per observation and the mapping approach.
However, this does not account for the size of the AOI relative to the field validation (i.e.,
representativeness) or the interpolation method employed (i.e., directness). Similarly, the
use of a confusion matrix on its own for the assessment of seagrass cover classification
accuracy, is insufficient to represent the confidence of the final map as it does not account
for representativeness of the AOI or the extent of the field validation. Throughout the
process of the writing of this study, it became clear that careful appraisal of the final map
output is crucial. The appraisal should aim to assess if the final map product is plausible
and based on multiple lines of evidence, such as expert knowledge of seagrass physiology
and growth requirements and marine benthic ecology or historical knowledge of the AOI.
The outcome of the appraisal can be used as a feedback loop to rectify errors and rerun the
process (i.e., components of the workflow) if needed, until optimal results are reached.

Another major source of potential bias and error for the remote sensing techniques
occurs when matching in situ validation data to georectified imagery. For example, when
using photoquadrats (0.25–1.0 m2 area) that are geotagged (geospatial information captured
in the metadata) or geolocated using a handheld GPS (i.e., points), map creators must
acknowledge a spatial positioning error of 1.5 to 3 m for the point. When aligning a
point to satellite-captured imagery of 3 m pixel resolution, it is possible for a point to
potentially match with at least 9 pixels which represent an area of 9 m2. If that seagrass
area is heterogeneous and the photoquadrat not representative of the overall 9 m2, this
can lead to conflicting training information for the machine-learning model and ultimately
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an unreliable output. Therefore, field validation data design is paramount and needs
to be thoroughly revealed and explained alongside the results to ensure validity and
confidence in the mapping product. Furthermore, as technology progresses, access to
real-time kinematic positioning (RTK) UAVs will be more affordable and may alleviate
these issues.

4.4. Improving Field Data Capture

As the intertidal areas of the GBRWHA extend over 2500 km of coastline, helicopters
have been the most cost-efficient observing platform for conducting in situ field validation
(spot-check measures) in remote regions. During seagrass mapping, a field spot-check
generally includes recording single or replicate measures (e.g., three 0.25 m2 quadrats) at
a point (10 m2) to capture seagrass variance. These spot-checks have traditionally only
been conducted by human observation but could be greatly improved by migrating to
geotagged photoquadrats, e.g., GoPro cameras mounted to the helicopter skid crossbar for
nadir image capture. However, using helicopters as the observing platform does not come
without challenges. Of concern is downdraft, which obscures observations, and greenhouse
gas emissions; helicopters used for mapping emit 60 to 100 kg CO2 h−1 [83]. An alternative
is UAVs, which provide an excellent observing platform for capture of both orthophotos
and in situ spot-checks, particularly where meadows can be examined within visual line-
of-sight of the operator; up to approximately 500 m radius [84]. A UAV at 3 m altitude
can capture a standardised nadir image covering an area of approximately 3 × 4.5 m. By
classifying three or more random nonoverlapping pixel-clusters (equivalent to the size of a
0.25 m2 quadrat) within each UAV-captured image and taking the average would ensure
capture of seagrass heterogeneity. An optimal flight plan would enable spot-checks to
sufficiently cover large intertidal areas using a UAV. For orthophotos, larger areas can be
assessed in fine detail by multiple operators simultaneously mapping a grid design using
small UAVs [85]. Alternatively, larger UAVs can be operated beyond visual line-of-sight
(BVLOS); however, this requires a remote pilot licence (RePL). We envision at some time in
the future, when battery technologies enable extended flight times, that squadrons of both
small and large BVLOS UAVs can be tasked to capture higher altitude orthophotos and/or
conduct low altitude spot-checks/phototransects for validating imagery and mapping the
intertidal and clear shallow water seagrasses of the entire GBRWHA within a single austral
growing season.

4.5. Improving Mapping for Policy and Management Decisions

We considered that the use of the confidence scoring using defined categories provides
a more transparent process and understanding of a seagrass map for users. Users are
predominately environmental practitioners and managers, who use the maps as evidence
upon which policy and management decisions can be made. Our study demonstrated
that emerging technologies and enhanced analysis techniques can greatly improve the
accuracy and confidence in the final mapping product. These improvements are not only
applicable to future seagrass mapping events but may afford improvements to previous
mapping. For example, we re-examined a mapping event conducted in 2001 which used
traditional approaches (e.g., helicopter) [86], and found, using the original spot-check data
and aerial imagery, that the area of seagrass was approximately half what was originally
reported (Figure S7, Table S4). This was primarily a consequence of the original mapping
not accounting for meadowscape within the measure of area. The use of a narrative to
describe meadowscape is generally lost on a map user, as it is not clear how it should be
interpreted or used, particularly when assessing change over time. Until the inclusion of
meadowscape measures is routine, we recommend the incorporation of a correction factor
depending on the level of meadow fragmentation. A key priority will be to educate marine
environment managers on how to interpret the confidence and meadowscape measures.

Our improved approaches not only provide users/environmental managers with more
accurate measures of seagrass meadow spatial extent, but the inclusion of meadowscape
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configuration enables enhanced measures of seagrass ecosystem goods and benefits. For
example, in blue carbon accounting, measures should factor for the effects of meadowscape
when estimating seagrass blue carbon stocks, as a large, continuous meadow stores more
blue carbon than an equal area of small patches [87–89]. To account for this, it is recom-
mended that the area of a meadow within the first 10 m from an edge should be excluded
to avoid overestimation [89]. When applying this consideration to our meso-scale mapping
exercises, the estimation of carbon stocks from maps constructed using the traditional high
earth observing method (e.g., helicopter, which does not include meadowscape measures)
were almost double that of the estimation produced from our improved spaceborne method,
which included greater meadowscape detail.

4.6. Improving Mapping Using Habitat Suitability Modelling

In the last decade, modelling approaches have shown some promise; however, the
underlying data remains limited and spatially biased. Carter et al. [90] identified 88,331 km2

of potential seagrass habitat in intertidal and subtidal areas of the GBRWHA using random
forest and multivariate regression tree models to assign seagrass probability (≥0.2) and
community type (36 identified) to individual pixels (900 m2). However, as we showed
in our current analysis, existing GBRWHA mapping data which underlies the potential
seagrass habitat model [90] is heavily spatially biased and predominately focussed on
locations where seagrass are known or suspected to occur, which can compromise model
performance [91]. As a consequence, this type of modelling approach could be improved
if field data that drives the model is more representative, particularly for locations where
the absence of seagrass is underrepresented [10]. For example, shallow subtidal habitats
on coral reefs have been poorly assessed across the GBRWHA, as these habitats are either
colonised by coral and/or predominately consolidated sediments, which are unlikely to
provide suitable habitat for seagrass colonisation (with the exception of Thalassodendron
ciliatum). Shallow subtidal reef habitats are also poorly represented in the existing sediment
databases (which are modelled), and the reef geomorphology database is outdated [24]. To
improve the potential seagrass habitat model (particularly for underrepresented habitats),
additional lines of evidence should be included, such as data capture from citizen science,
traditional ecological knowledge, and the coupling of spot-checks with airborne and/or
spaceborne imagery in optically clear waters.

4.7. Improving Mapping for Deeper Subtidal Habitats

Although our study focussed on intertidal and shallow subtidal meadows in mostly
optically clear waters, we believe the approaches currently used to map subtidal seagrasses
in deep (>10 m) and optically complex waters can similarly be improved. At the elemental
level, these improvements include increasing the quantity and spread of field validation
points, including direct visual spot-checks, photoquadrats, or samplers (e.g., grab). As
new technologies emerge, we will see improved methods for data/image capture and
analysis, and positional accuracy. Continuous improvements in AI and deep-learning
technologies will expedite analysis of imagery for seagrass occurrence, abundance, and
species forms/characteristics. Much like UAVs, autonomous underwater vehicles (AUVs)
are rapidly advancing with extended deployment times and improved sensors for image
capture and analysis. Soon, AUVs will be able to swath map large areas of the seabed,
and when coupled with increased positional accuracy, will provide orthomosaics which
can be used to produce spatially explicit maps of high confidence. In preparation for such
developments, we are currently researching deep-learning models to provide a subtidal
seagrass detector to optimise routine analysis of the captured imagery.

4.8. Improving Mapping through Increased Collaboration

Finally, mapping seagrasses in the optically complex and deep waters of the GBRWHA
can be greatly improved by accessing field data gathered by a broader range of providers,
including stakeholders, industry, traditional owners (First Nations peoples) and citizen
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scientists, i.e., big data [92]. Although big data can be difficult to analyse/manage with
traditional means, as the data sets are so large and collected so rapidly, continued advances
in deep-learning techniques and increased access to high end and cloud computing will
enable the mainstreaming of big data for routine assessments of large study areas such as
the GBRWHA. This will build on initiatives such as SeagrassSpotter, where users contribute
geotagged photos via a smartphone app, which provides invaluable in situ spot-check data
for mapping validation and citizen engagement [93]. Support for continued development
of technologies is key, but this will also require improved outreach and engagement,
highlighting the benefits of increased collaboration.

4.9. Recommendations for Future Seagrass Mapping Events in the GBRWHA

• Ensure routine collection of geolocated/geotagged photoquadrats to support new and
repeated field data collection for training and validation, and provide ability to revisit
images for alternate analysis over time;

• Prioritise airborne or spaceborne imagery for seagrass mapping of those environ-
ments where seagrass features can be differentiated, such as intertidal and shallow
subtidal habitats;

• Transition to UAVs and all-electric observing platforms to improve capture of high-
resolution imagery while also reducing greenhouse emissions;

• Maximise use of low altitude and high-resolution image capture (e.g., UAVs) to provide
in situ field validation (e.g., spot-checks) where possible;

• Operationalise the routine inclusion of meadowscape metrics in all seagrass maps,
• Ensure all maps of seagrass meadow spatial extent include a measure of confidence,

determined using a clear process where all key measures of accuracy, precision, and
resolution are transparent to the map user;

• Ensure habitat suitability models for seagrasses are based on comprehensive data
and include multiple lines of evidence, such as expert knowledge and coupling with
remotely sensed imagery;

• Encourage participatory seagrass mapping, including in situ field validation data,
with First Nations peoples and citizen scientists to provide big data solutions.

5. Conclusions

In this paper, we completed the most comprehensive systematic review of seagrass
mapping conducted within the GBRWHA to date. We demonstrated how existing ap-
proaches to map seagrass meadows in intertidal and shallow optically complex waters
can be improved using new and emerging technologies. We used case studies to harness
the power of machine- and deep-learning for seagrass cover mapping with PlanetScope
and UAV-captured imagery in three very different settings: coastal clear and turbid water,
and reef clear water habitats of the Great Barrier Reef. Using a machine-learning pixel-
based classification coupled with a bootstrapping process, we were able to significantly
improve maps of seagrass meadows, particularly in low density (cover), fragmented, and
complex substrate habitats. To the best of our knowledge, our study was also the first to use
deep-learning models to derive maps from high earth UAV imagery. To better inform map
users, we also proposed a multicriteria approach to semiquantitatively score the confidence
of a mapping product. Overall, these improvements are applicable not only for ongoing,
routine monitoring and time series analysis at fine- and meso-scales, but to GBR-wide and
potentially global extents.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs14112604/s1, Table S1: Seagrass mapping events in the GBRWHA, Table S2: Map con-
fidence evaluation criteria [37], Table S3: Summary of machine–learning model outputs, Table S4:
Cairns Harbour seagrass area comparison, Figure S1: PRISMA [35] flow diagram, Figure S2: Valida-
tion points and segments for coastal AOIs 2017, Figure S3: Validation points and segments for coastal
AOIs 2019, Figure S4: Validation points and segments for reef AOIs 2020, Figure S5: Deep-learning
output from coastal UAV 2019, Figure S6: Deep-learning output from reef UAV 2020, Figure S7:
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Cairns Harbour mapping approaches comparison [86,94]. Section S3: Additional machine- and
deep-learning methods and results [95,96].
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