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Abstract Predicting the final outcome of an ongoing

process instance is a key problem in many real-life con-

texts. This problem has been addressed mainly by discov-

ering a prediction model by using traditional machine

learning methods and, more recently, deep learning meth-

ods, exploiting the supervision coming from outcome-class

labels associated with historical log traces. However, a

supervised learning strategy is unsuitable for important

application scenarios where the outcome labels are known

only for a small fraction of log traces. In order to address

these challenging scenarios, a semi-supervised learning

approach is proposed here, which leverages a multi-target

DNN model supporting both outcome prediction and the

additional auxiliary task of next-activity prediction. The

latter task helps the DNN model avoid spurious trace

embeddings and overfitting behaviors. In extensive exper-

imentation, this approach is shown to outperform both

fully-supervised and semi-supervised discovery methods

using similar DNN architectures across different real-life

datasets and label-scarce settings.

Keywords Process mining � Outcome prediction � Deep
learning � Semi-supervised learning

1 Introduction

Temporally annotated event logs are generated and main-

tained in an increasing number of companies and organi-

zations, as a precious kind of data concerning the execution

of their business processes. In general, by analyzing these

log data with Process Mining techniques (Van Der Aalst

2011), valuable information and models can be extracted

that help better comprehend, monitor and handle the pro-

cesses that generated them. Predictive (process) monitoring

(Maggi et al. 2014) is a sub-field of Process Mining that

aims at providing process monitoring frameworks with the

ability of making forecasts for any ongoing process

instance, say p, based on its associated trace, i.e., the

sequence of events stored for p up to the moment of pre-

diction. In particular, Outcome Prediction (Teinemaa et al.

2018, 2019; Metzger et al. 2019) amounts to predicting the

outcome class of a process instance p, based on the current

trace of p. Most of the existing approaches to outcome

prediction rely on discovering a prediction model (or pre-

dictor, for short) from historical log traces by using

Machine Learning (ML) methods. In particular, many

state-of-the-art solutions (Kratsch et al. 2020; Mehdiyev

et al. 2018; Tax et al. 2017; Evermann et al. 2017; Navarin

et al. 2017; Hinkka et al. 2018; Teinemaa et al. 2018) in

this context resort to deep neural networks (DNNs), which

allow for achieving good accuracy results (Kratsch et al.

2020; Teinemaa et al. 2019) while requiring minor data

engineering efforts.

1.1 Problem: Discover an Outcome Predictor with Few

Labeled Traces

All the existing learning-based approaches to outcome

prediction (apart from Folino et al. (2019), which is
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discussed later on) assume that the outcome of every

completed process instance p is known with certainty (and

stored in the same information system as p). Unfortunately,

the above-mentioned assumption does not hold in relevant

real-life application scenarios where the kind of outcome to

be predicted, for a process instance p, is related to security,

compliance or quality properties that cannot be assessed in

a fully automated and certain way, based on the data that

are usually gathered during the execution of p. Some

important scenarios of this kind are sketched below:

– Outcomes based on customers’ feedback: Customers’

feedback on the quality of a product/service, usually

acquired through surveys, are taken into account to a

great extent by modern enterprises and organizations.

Based on this feedback, one can define customer-

satisfaction-oriented outcome classes for the instances

of various operating processes (ranging, e.g., from the

production, testing and delivery of a product to service

provision and to the handling of customers’ complaints/

requests), in order to eventually analyze, predict and

improve the behavior of these process instances.

However, this feedback information often suffers from

high non-response rates and reliability concerns (Lin

and Jones 1997), and needs careful assessment by

experts. Moreover, technological obstacles may arise in

merging new traces with their respective (customer-

driven) outcome classes, when these two pieces of

information are kept in different information silos.

Consequently, in this scenario, small numbers of traces

with associated outcome labels are available to train a

model for predicting such a customer-related outcome

accurately.

– Auditing-dependent outcomes: Several discovery

approaches in the field (e.g., those in Maggi et al.

(2014) and Teinemaa et al. (2019), respectively) were

either devised for or applied to settings where the

outcome variable to be predicted concerns the satisfac-

tion of business goals/constraints, under the assumption

that the values of this variable can be evaluated for

every log trace. However, there are many real-life

scenarios where such goals/constraints are not

expressed in a precise way and/or are difficult to be

encoded fully and correctly into a machine-readable

form. This is common when it comes to evaluate the

compliance to complex norms stated in jargon-rich text

(e.g., regulatory laws) (Hashmi et al. 2018). Deciding

the outcome class of a process instance in such a case

entails labor-intensive (post-execution) auditing activ-

ities, typically performed by specialized consultants on

small samples of log data (Chan and Vasarhelyi 2018).

On the other hand, when the outcome class is meant to

indicate the presence of security attacks (e.g., fraud,

information theft/leakage) (Fazzinga et al. 2020), it is

unrealistic to assume that there are rule-sets/models

allowing for assigning the class label exactly to every

log trace. In this case, one can use unsupervised

anomaly detection tools (Nolle et al. 2018) to pre-

classify the process instances automatically as either

conforming/normal or deviant/insecure, but the result-

ing class assignments must undergo careful manual

revisions, which entail costs (in terms of time and of

resources required) that are too substantial to sustain on

large amounts of log traces. Thus, in all these auditing-

dependent contexts, a small number of outcome-labeled

traces are usually available for training an outcome-

prediction model.

The problem addressed: In this work, we want to address

the problem of discovering an accurate and robust DNN-

based outcome-prediction model in ‘‘label-scarce’’ sce-

narios like those described above, i.e., scenarios where the

ground-truth outcome class is available only for a small

fraction of the log traces that can be used to train the

model. This problem is definitely important in the above-

mentioned kinds of application scenarios, where the dis-

covery of good outcome predictors would allow for

implementing proactive run-time support mechanisms in

order to improve the quality of a process instance (in terms

of customer-satisfaction, compliance, or security), and for

activating policies in order to mitigate the impact of

undesired/deviating/insecure outcomes that can no longer

be prevented.

1.2 Limitations of Existing Solutions

The discovery of outcome predictors has been faced so far

as a supervised (machine) learning task, under the above-

mentioned assumption that every log trace has an associ-

ated outcome label. In particular, almost all the existing

approaches to learning a DNN-based predictor (including,

e.g., Kratsch et al. (2020); Teinemaa et al. (2019); Hinkka

et al. (2018); Metzger et al. (2019)) rely on training it only

over the outcome-labeled traces (after splitting them into

training and validation sets), using standard mini-batch

gradient descend methods (Goodfellow et al. 2016).

However, this strategy does not fit application scenarios

like those discussed above, where the few labeled traces

available hardly suffice for training a DNN adequately,

considering the expressiveness of these models and the

huge size of the search space (i.e., all possible configura-

tions of the trainable/free parameters in the DNN). In fact,

DL methods are known to be far more data-hungry (Liu

et al. 2021) than classic ML ones, since they are meant to

extract abstract features automatically from raw data

(without the guidance of heavy manual feature-engineering
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steps), and neural networks tend to have limited general-

ization ability (Xu et al. 2020). Thus, when trained on a

small amount of labeled data, a DNN predictor is very

likely to incur overfitting and to rely on contingent prop-

erties of the data instances in making predictions for them

(Liu et al. 2021).

To the best of our knowledge, the only semi-super-

vised-learning (Van Engelen and Hoos 2020; Ouali et al.

2020) approach to outcome prediction has been proposed

in Folino et al. (2019), where the problem of discovering

an outcome predictor in a label-scarce scenario was

originally stated. This approach consists in using a pure

pre-training procedure, where a DNN model is (i) first

trained over all the log traces (having an outcome label

or not) to predict the next activity of a trace, and then

(ii) fine-tuned over the outcome-labeled traces, in order

to adapt the model to the task of interest (i.e., outcome

prediction), named hereinafter the target task. In line

with the emerging paradigm of Self-Supervised Learning

(Liu et al. 2021), the auxiliary task of activity prediction

is a ‘‘pretext’’ supervised task defined over all the trace

prefixes (for each of which, the ground-truth next-activ-

ity label is known), which can be solved via standard

gradient-descent optimization. Essentially, this auxiliary

task aims at training the (‘‘encoder’’ sub-net of) DNN to

extract general embeddings (i.e., dense representations)

for the traces, so reducing the risk of discovering an

overfitting predictor. This simple pre-training strategy

was empirically shown in Folino et al. (2019) to be more

effective in a specific real-life label-scarce scenario, in

comparison with the traditional fully-supervised learning

approach.

However, the method in Folino et al. (2019) may well

fail to find an optimal balance between the auxiliary and

target tasks, which govern the pre-training and fine-tuning

phases, respectively, in an isolated way. In particular, two

risks threaten it: (a) the pre-training phase leads the DNN

to a region of the parameter space that overfits the auxiliary

task, and prevents the DNN from adapting well to the

target task (a.k.a. representation degeneration), and (b) the

representation-learning skills learned in the pre-training

phase are completely lost in the fine-tuning one (a.k.a.

catastrophic forgetting) (these risks are discussed in

Sect. 5.2 in some more detail). In fact, the limited empir-

ical study conducted in Folino et al. (2019) (on just a single

process log), does not allow for assessing how robust to

these risks this pre-training solution is in wider range of

application contexts.

Let us remark that the peculiarities of process logs

prevent reusing solutions like transferring knowledge

learned in another label-rich domain or augmenting labeled

data artificially, which were successfully employed in

certain deep learning (DL) settings, to cope with the lack of

labeled data (Ouali et al. 2020; Liu et al. 2021).1

1.3 Research Goals, Contribution and Organization

This research work stemmed from our desire of facing the

outcome-predictor discovery problem stated before (in

Sect. 1.1) by exploiting a novel semi-supervised strategy,

different from the pure pre-training one of Folino et al.

(2019) and, hopefully, more robust to the above-mentioned

risks to which the latter is exposed. To this end, we

specifically pursued two main research goals:

– RG0: Devise a semi-supervised discovery method

enabling a more synergistic integration between the

target outcome-prediction task and the auxiliary next-

activity prediction, compared to current semi-super-

vised solutions.

– RG00: Experimentally compare this proposed method

with the other existing semi-supervised ones, assessing

the ability of each method to improve a traditional

supervised approach in situations where a limited

fraction of training traces have an outcome label.

We approached RG0 by defining a DNN-discovery algo-

rithm, named SSOP� MTL, that trains a multi-target DNN

in accomplishing the auxiliary and target tasks jointly,

using a shared encoding sub-net to extract suitable trace

embeddings for both tasks. This algorithm extends standard

multi-objective mini-batch training schemes (Goodfellow

et al. 2016) by including specific mechanisms to vary the

relative weight of the two tasks during the training process,

so that the learning bias is made pass from one task to the

other in a gradual way. This facilitates a harmonized

interplay between the two, somewhat diverging, objectives

of ensuring accurate outcome predictions and of using

general enough trace representations, while trying to

curbing both representation-degeneration and catastrophic-

forgetting risks. A detailed description of this algorithm is

given in Sect. 5.3.

In order to address RG00, we devised an experimentation

including, as a reference baseline, a method that trains the

1 In order to apply (cross-domain) transfer-learning methods, one

should find another business process, say P0, such that: (i) P0 is

behaviorally similar to the business process under analysis, and (ii) far

more outcome-labeled traces are available (or can be obtained easily)

for P0. These assumptions rarely hold together in reality. On the other

hand, t.b.o.k. there are no augmentation techniques specifically

devised for process traces. Indeed, consolidated augmentation tech-

niques were widely used on images, videos and speech data (e.g., for

which it is easy to derive novel, surrogate, examples from a labeled

image by modifying the colorization/rotation angle of objects in the

image, while leaving the label of the image unchanged). However,

defining augmentation techniques for categorical data (which play a

key role in process logs) is a challenging research topic.
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DDN-based outcome predictor in a fully-supervised way

(as done by most state-of-the-art methods in the field

(Kratsch et al. 2020; Teinemaa et al. 2019; Hinkka et al.

2018; Metzger et al. 2019)), in addition to SSOP� MTL, the

pre-training-based method proposed in Folino et al. (2019),

and a ‘‘feature-extraction’’ variant of it (also introduced in

Folino et al. (2019)). This empirical study (involving a

wider and more variegate collection of datasets than in

Folino et al. (2019)) shows that the proposed method

SSOP� MTL significantly outperforms both the supervised

baseline and the above-mentioned semi-supervised

competitors.

Organization: Section 2 introduces basic concepts and

notation concerning both process log data and the outcome

prediction problem, as well as some background on self-

supervised learning. An overview of related work (in the

areas of semi-supervised learning and predictive monitor-

ing) is offered in Sect. 3, which also discusses the main

points of novelty of our current proposal. Section 4 presents

an abstract DNN learning framework that encompasses the

semi-supervised discoverymethods proposed in Folino et al.

(2019) and in this work, which all rely on using next-activity

prediction as an auxiliary (self-supervised) task. The training

algorithms employed in these approaches are illustrated in

Sect. 5. After discussing, in Sect. 6, the comparative

experimental analysis performed over different real-life log

data, we finally draw some concluding remarks and direc-

tions for future work in Sect. 7.

2 Background and Problem

2.1 Preliminaries: Events, Traces, Logs

A (process) log is a collection of traces, storing information

on past executions of a business process. More specifically,

each log trace represents the sequence of activity-related

events happened during the execution of a process instance,

and each of these events can have multiple data attributes.

Formally, let E and T be the universes of events and

traces that could be generated by executing the process

under analysis. Each event attribute A is a function A : E !
DomðAÞ that assigns a value in the domain of A to any event

in E. For the sake of generality, let us assume that two lists

of attributes are defined over E: categorical attributes

A1; . . .;Am1 and numerical attributes B1; . . .;Bm2, for some

m1;m2 2 N. Three important kinds of information that are

usually associated with any event e in real process logs are:

(i) the activity executed in e, (ii) the resource/agent involved

in the execution of the activity, and (iii) a timestamp that

allows for ordering the events in a trace temporally.

We hereinafter assume the two former pieces of infor-

mation to be encoded by two categorical event attributes

actðeÞ and resðeÞ, respectively, and the timestamp by a

numerical attribute timeðeÞ.
For any trace s 2 T , let lenðsÞ be the number of events

in s, and s½i� be the i-th event of s, for i 2 ½1::lenðsÞ�.
Moreover, let s½: i� be the prefix (sub-)trace containing the

first i events of a trace s. For any complete trace s, the
prefixes s½: i� represent partial enactments of the same

process instance as s.
For any S � T , let PrefsðSÞ be the set containing the

prefixes of the traces in S, i.e.,

PrefsðSÞ ¼ fs½: i� j s 2 S and 1� i� lenðsÞg.
Finally, a log L is a finite subset of the trace universe T .

2.2 General Formulation of the Problem Addressed:

Discover an Outcome Prediction Model

Let C be a set of outcome-oriented classes defined over the

process instances. The ultimate goal of outcome prediction

methods is to predict the outcome class of any ongoing

process instance at run-time, based on the (usually partial)

trace currently available for the process instance itself. For

the sake of presentation, let us assume that the (full or

partial) traces have an associated (hidden) outcome class.

Let l : T ! C be the unknown function that assigns a

class label lðsÞ to each s 2 PrefsðT Þ.
Then, the general problem addressed in our work con-

sists in discovering an outcome prediction model (or, more

shortly, a predictor) ~l : T ! RjCj that maps any trace s 2
PrefsðT Þ to a discrete probability distribution ~lðsÞ over C,
such that the i-th element of ~lðsÞ is an estimate of the

probability that s belongs to the i-th class in C, and the

elements in ~lðsÞ sum up to 1.

In the literature, this problem, named hereinafter out-

come predictor discovery, has been typically faced as a

supervised learning problem over a given annotated log L,

where each trace is associated with a class label repre-

senting its actual outcome (i.e., the value that l takes on the

trace). This annotated log is turned into a training set for

learning the prediction model, where the prefixes of all s in
L, labeled with the same class as s, are used as distin-

guished training examples. The resulting prediction model

can be used to forecast the outcome lðs0Þ of whatever

novel (unlabeled) trace s0 2 T .

In line with recent literature in the field (Kratsch et al.

2020; Mehdiyev et al. 2018; Tax et al. 2017; Evermann

et al. 2017; Navarin et al. 2017; Hinkka et al. 2018;

Teinemaa et al. 2018; Folino et al. 2019), we adopt a

DNN-based approach to this discovery problem. However,

in order to deal effectively with application scenarios

featuring a relatively small number of labeled traces, we

renounce resorting to pure supervised learning methods

(like those underlying the great majority of the previous
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approaches to the discovery of DNN-based outcome pre-

dictors (Mehdiyev et al. 2018; Tax et al. 2017; Evermann

et al. 2017; Navarin et al. 2017; Hinkka et al. 2018;

Teinemaa et al. 2018)) and try to also exploit non outcome-

labeled traces, by employing the prediction of the next

activity (for unfinished traces) as an auxiliary (self-super-

vised) learning task.

2.3 Self-Supervised Learning as a Form

of Representation Learning

In general, self-supervised learning (Liu et al. 2021) is a

way of learning good low-dimensional embeddings for

complex/high-dimensional data (such as images, videos,

multivariate sequences), which can be reused to perform

other (‘‘downstream’’) learning tasks (e.g., image/text/se-

quence classification). Recently, several self-supervised

learning methods have been used as a valuable means for

improving supervised learning systems (by extracting

knowledge from the unlabeled data) when few labeled

instances are available.

Differently from unsupervised learning, self-supervised

learning relies on devising an auxiliary supervised task

over the unlabeled data instances that generally consists in

recovering information encoded via artificial target vari-

ables that: (a) can be derived from the data instances

themselves automatically, and (b) must be predicted on the

basis of other (i.e., incomplete, transformed, distorted or

corrupted) parts of the data instances. For example, in

Computer Vision, typical self-supervised tasks consist in

rediscovering the rotation angle or colorization that were

applied artificially to example images (in a preliminary

step) (Liu et al. 2021). In natural language processing

(NLP), instead, some popular pretext tasks employed for

self-supervised representation learning are: Center/neigh-

bor-words prediction (Mikolov et al. 2013), neighbor-sen-

tences prediction (Kiros et al. 2015) and iteratively

predicting the next word in a sentence, as a way of learning

a language model (Bengio et al. 2003).2 A self-supervised

approach to learning representations for process traces was

defined in Seeliger et al. (2021), which relies on training a

recurrent neural net over a pretext task consisting in

reconstructing one or multiple global attributes of a process

instance for a completed trace, based on the full sequence

of events in the trace. Interestingly, this self-supervised

approach was shown in Seeliger et al. (2021) to yield

representations that are more suitable for trace clustering,

compared to those obtained with previous approaches to

trace-representation learning.

The momentum gained by self-supervised learning

methods (as an alternative to previous, unsupervised, rep-

resentation-learning methods) mainly stems from the fact

that they can leverage consolidated, efficient and robust

supervised learning algorithms to address the auxiliary

‘‘pretext’’ task, but without needing manually-assigned

data labels. However, since the ultimate goal of this task is

to help recognize useful/transferable domain knowledge, it

must be designed carefully. In particular, a good auxiliary

task should enjoy the following two properties: (P1) it

should be both general and complex enough, in order to

oblige the DNN model to reason on semantical aspects of

the data, and eventually learn general data representations

that can be reused in other learning tasks; (P2) it should not

be overly complex and demanding in terms of amount of

training data, in order to prevent a DNN model trained on

this tasks from incurring overfitting and from relying on

useless data representations.

3 Related Work

3.1 Semi-Supervised Learning

Extending inductive-learning methods with the ability to

apprehend effectively from few labeled examples (as reg-

ularly done by humans) is a hot challenging topic in

machine learning. A consolidated solution approach con-

sists in extracting hidden knowledge from unlabeled data,

usually available in a larger number. This is the general

aim of semi-supervised learning methods (see Van Engelen

and Hoos (2020) and Ouali et al. (2020) for recent surveys

on this topic), which can be divided into three major

categories:

1. Label-propagation methods (Triguero et al. 2013),

which alternate the training of one or multiple

classifiers over labeled instances with the assignment

of labels to unlabeled instances. This category includes

self-training, pseudo-labeling, co-training, democratic

co-learning, tri-training and associated variants (Tri-

guero et al. 2013). In principle, label propagation

methods can be instantiated with any classifier-learn-

ing method. However, they have found little

2 Conceptually, a language model (LM) encodes a probability distri-

bution over word sequences (taken from a language or text corpus). To

learn a LM, one can train a neural network to predict the probability of

each word, relatively to some linguistic context for the word itself.

Usually, this neural-network classifier is trained, in an auto-regressive

way, to predict the k-thword of anyword sequence s ¼ s1; . . .; sm, based

on the words that precede it in s – i.e., based on the prefix ending on the
ðk � 1Þ-th word. Since minimizing the cross-entropy loss associated

with this prediction task is the same as maximizing the data likelihood,

the resulting model approximates a LM that represents the probability

of all sequences s ¼ s1; . . .; sm in the population of interest via chain-

rule factorization, i.e., Pðs1; . . .; smÞ ¼ Pðs1Þ � Pðs2 j s1Þ � . . . � Pðsm�1 j
s1; . . .; sm�2Þ � Pðsm j s1; . . .; sm�1Þ. Notably, the training of language

models was used recently to address semi-supervised-learning prob-

lems (Qiu et al. 2020; Dai and Le 2015)
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application in DL frameworks, since common proce-

dures for learning a DNN model are too costly to be

embedded in an iterative learn-and-classify scheme.

2. Pre-training methods, which exploit the unlabeled

instances in a ‘‘task-agnostic’’ way (w.r.t. the target

supervised task), in order to obtain meaningful data

representations/embeddings that can be used as a basis

for training the classifier on labeled examples. The

embeddings learnt this way can be either used as such

(as a sort of feature-extraction result) or ‘‘fine-tuned’’

over the given labeled data. Traditional ways of pre-

training a DNN consist in learning some autoen-

coder/generative model (Van Engelen and Hoos 2020;

Ouali et al. 2020). In the last few years, many

successful pre-training approaches leveraged self-su-

pervised learning methods (Liu et al. 2021; Qiu et al.

2020; Dai and Le 2015) to grasp knowledge from

unlabeled data, as already mentioned in Sect. 2.3.

3. Intrinsically semi-supervised learning methods, which

exploit both labeled and unlabeled data in a single

training procedure, according to a multi-objective

optimization strategy. In the case of DNN models,

this means minimizing both a classification loss over

the labeled examples and some auxiliary loss over the

unlabeled ones. Most of the methods proposed in this

field work in a ‘‘task-specific’’ way, with both losses

defined in terms of the predicted class labels. Usually,

the unsupervised loss term is a measure of inconsis-

tency between the predictions obtained by using

different perturbations of an unlabeled instance and/

or different versions of the classifier. Examples of such

methods are: ladder networks (Rasmus et al. 2015), P-

Model (Laine and Aila 2016), temporal ensembling

(Laine and Aila 2016), mean teacher (Tarvainen and

Valpola 2017) and virtual adversarial training (VAT)

(Miyato et al. 2018). These methods were shown

successful in image classification tasks, where the data

instances have a continuous nature that allows for

defining meaningful data perturbation schemes easily.

However, devising approaches of this category for

discrete data (like text and process traces) is an open

research issue.

Conceptually, the discovery method SSOP� MTL we are

proposing here resembles the methods in the last category

hereinabove, owing to its ability of exploiting labeled and

unlabeled log data synergistically, based on minimizing

two different loss functions related to the auxiliary and

target tasks, respectively. However, two important features

of our approach make it different from these methods: (i) it

does not rely on generating perturbed versions of the

labeled data (as it is done, instead, in Rasmus et al. (2015);

Laine and Aila (2016); Tarvainen and Valpola (2017);

Miyato et al. (2018)), and (ii) it automatically modifies the

relative importance of the two losses, across the training, in

order to allow for a gradual passage of bias between the

two tasks.

3.2 Predictive (Process) Monitoring

Predictive process monitoring (shortly, predictive moni-

toring) (Maggi et al. 2014; Metzger et al. 2015) is an active

line of research, which aims at supporting process moni-

toring frameworks with the ability of making per-instance

predictions at run time. Great attention in this field has

been attracted by the prediction of two categorical prop-

erties for a process instance: the next activity (Evermann

et al. 2017; Tax et al. 2017; Navarin et al. 2017; Mehdiyev

et al. 2018; Hinkka et al. 2018; Camargo et al. 2019; Lin

et al. 2019; Pasquadibisceglie et al. 2019; Taymouri et al.

2020), and the final outcome (Teinemaa et al. 2018, 2019).

Since both properties are usually categorical (in particular,

possible outcome values are usually regarded as a prede-

fined set of outcome classes), the solutions proposed for

these prediction tasks look very similar technically, since

they rely on discovering a classification model from a

collection of labeled traces.

The usage of DNN-based methods (Kratsch et al. 2020;

Mehdiyev et al. 2018; Tax et al. 2017; Evermann et al.

2017; Navarin et al. 2017; Hinkka et al. 2018; Teinemaa

et al. 2018; Camargo et al. 2019; Lin et al. 2019;

Pasquadibisceglie et al. 2019; Taymouri et al. 2020)

became widespread in recent years, owing to their ability to

grasp effective trace representations automatically. In

Kratsch et al. (2020), it was empirically shown that DNN-

based methods ‘‘generally outperform classical ML

approaches when it comes to outcome-oriented predictive

process monitoring’’. The superiority of DNN-based out-

come predictors is quite neat against flexible business

processes and/or logs with several event/trace attributes.

Most of the best-performing methods proposed so far

(Mehdiyev et al. 2018; Tax et al. 2017; Evermann et al.

2017; Navarin et al. 2017; Hinkka et al. 2018; Teinemaa

et al. 2018; Camargo et al. 2019; Lin et al. 2019) leverage

LSTM (long short-term memory) architectures (Hochreiter

and Schmidhuber 1997). For example, in the LSTM-based

network proposed in Tax et al. (2017), for predict the next

activity and its associated timestamp, each event e of a

trace is encoded by concatenating numerical features

derived from timeðeÞ with a one-hot representation of

actðeÞ. A pretty similar architecture is proposed in Ever-

mann et al. (2017) for next-activity prediction, which

possibly employs ad hoc embedding layers to encode

information on activities and executors. Several alternative

LSTM-based architectures are proposed in Camargo et al.

(2019) to predict the activity, timestamp and resource of
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the next event, taking account for both categorical and

numerical event attributes. Predicting all the categorical

attributes of the next event is faced in Lin et al. (2019) by

discovering an LSTM-based model including attention

mechanisms for combining the outputs of different LTSM

stacks (one per event attribute).

The LSTM-based outcome predictors evaluated in

Teinemaa et al. (2018) and Kratsch et al. (2020) mainly

look like an adaptation to the outcome prediction problem

of the basic model proposed in Tax et al. (2017) (for next-

activity prediction). Notably, in the extensive experimen-

tations conducted in these works, this simple DNN archi-

tecture was shown to be very competitive against state-of-

the-art ML-based approaches.

All of the methods described above rely on a supervised

learning strategy, which makes them unsuitable for those

outcome prediction contexts (e.g., involving the prediction

of faults, frauds, customer satisfaction levels, etc.) where

the outcome-class labels of many log traces are unknown

or difficult to obtain. Clearly, this problem does not affect

the traditional application scenarios where these methods

are exploited to learn a DNN for predicting information

(e.g., the next activity or some process/performance -re-

lated kinds of outcome) that is regularly stored for every

completed process instance.

3.3 Semi-Supervised Approaches to the Prediction

of Process Outcomes

To the best of our knowledge, the only attempt to exploit a

semi-supervised learning strategy in a predictive-monitor-

ing context has been made in Folino et al. (2019), which

first stated the problem of discovering an outcome pre-

dictor in a label-scarcity setting. Essentially, the solution

method proposed in Folino et al. (2019), named hereinafter

SSOP� PT, consists in applying a pure pre-training pro-

cedure (see Sect. 3.1, category 2), using the prediction of

the next activity of a trace as the auxiliary task. This

method is illustrated in detail in Sect. 5.2, after presenting

its underlying DNN architecture in Sect. 4.2.

As mentioned in Sect. 1, method SSOP� PT may fail to

ensure an optimal trade-off between two diverging objec-

tives: (o1) conserving knowledge coming from the auxil-

iary task, in order to avoid spurious trace embeddings and

overfitting; (o2) fitting well the target task, in order to

eventually yield accurate outcome predictions. This limi-

tation stems from the fact that the two tasks are used (rather

independently) to lead the pre-training and fine-tuning

phases, respectively, and exposes the method to two serious

risks (described in more detail in Sect. 5.2): (r1) the

embeddings learnt in the pre-training phase are messed up

in the fine-tuning phase (a.k.a. catastrophic forgetting); and

(r2) the pre-training phase leads the DNN to a region of the

parameter space that overfits the auxiliary task, and pre-

vents the DNN from fitting well the target task (a.k.a.

representation degeneration).

Unfortunately, the empirical analysis in Folino et al.

(2019) does not allow for assessing the robustness of

SSOP� PT to these risks in a wide enough range of

application scenarios. The extensive experimentation dis-

cussed in Sect. 6 shows that SSOP� PT is not always sig-

nificantly better than a pure-supervised discovery – so

filling the evidence gap in Folino et al. (2019) and enabling

a deeper understanding of the behavior of SSOP� PT.

The discovery method proposed in this work, named

hereinafter SSOP� MTL, addresses the same auxiliary task

and target task as in Folino et al. (2019) but in a joint

fashion, using a multi-task DNN architecture and a totally

different training algorithm (which makes the weights of

the two tasks vary dynamically). In our empirical study,

this novel method is shown to surpass SSOP� PT, pre-

sumably owing to its ability to ensure a better balance

between the goals o1 and o2 mentioned above – and hence

a greater level of robustness to their associated risks r1 and

r2.

The next section presents a semi-supervised formulation

of the discovery problem addressed in this work, with next-

activity prediction used as an auxiliary (self-supervised)

task. Based on this formulation, we will illustrate, in

Sect. 5, the training algorithms implemented by SSOP� PT

and SSOP� MTL.

4 Semi-Supervised Outcome Prediction: High-Level

DNN Architectures

4.1 The Chosen Auxiliary Task: Next-Activity

Prediction

Moving from the basic framework proposed in Folino et al.

(2019), we leverage the core idea of exploiting next-ac-

tivity prediction as an auxiliary self-supervised learning

task for outcome prediction. Essentially, this task consists

in discovering a probabilistic neural-network classifier that,

given any partial trace, is able to predict the activity that

will be executed in the next step of the trace. In what

follows, we first define this task formally, and then discuss

the role that it is expected to play in our approach.

Formulation of the task: Let a1; . . .; am be the activity

labels in Dom(act). Moreover, for each trace s in T , and

every prefix s0 ¼ s½: i� of s (with i 2 ½1::lenðsÞ�), let

nextActðs0Þ be a (unknown) function that maps s0 to a next-

activity label as follows: nextActðs0Þ ¼ actðs½i þ 1�Þ if

i\lenðsÞ, or nextActðs; iÞ ¼ EOS otherwise, where EOS is a

special (dummy) ‘‘end-of-sequence’’ symbol.
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Then, the auxiliary next-activity prediction task consists

in guessing nextActðsÞ, for any s 2 PrefsðT Þ. As for out-

comes prediction, the result of this task is a categorical

probability distribution, specifically representing the

probability that the next activity of s is x, for each

x 2 fa1; . . .; am; EOSg.
Given a set L of completed traces, one can train a DNN

classifier (as, e.g., in Evermann et al. (2017); Tax et al.

(2017); Navarin et al. (2017); Mehdiyev et al. (2018);

Hinkka et al. (2018); Camargo et al. (2019); Lin et al.

(2019); Pasquadibisceglie et al. (2019); Taymouri et al.

(2020)) to accomplish this (pretext) prediction task, pro-

viding it with labeled examples of the form

ðs½: i�; nextActðs; iÞÞ, such that s 2 L and i 2 ½1::lenðsÞ�,
where the next-activity labels play as class labels.

Suitability of this task for our problem setting: As sug-

gested by the preliminary empirical study in Folino et al.

(2019), we are confident in the fact that the above-de-

scribed next-activity prediction task can play as a good

auxiliary task in a semi-supervised outcome-prediction

setting, since it enjoys both of the desired properties

mentioned in the end of Sect. 2.3.

Specifically, as concerns property P1, this task is

expected to force the DNN model to grasp some under-

standing of the business process that produced the log

traces, and to reason in terms of general (non incidental)

properties of them (e.g., linked to business rules, typical

execution schemes, modi operandi, or exception patterns).

Such a semantic/generalization bias will keep the DNN

model away from overfitting, and make it more robust to

the risk of relying on spurious prediction patterns. How-

ever, since, in general, this auxiliary task is not generally

ensured to have some strong correlation to the outcome-

prediction task, we will devise a discovery strategy that

harmonizes the two tasks in a way that balances the need of

guessing the outcome classes on the training examples, on

one hand, and that of avoiding spurious trace embeddings,

on the other hand.

Moreover, next-activity prediction is not too complex

and data hungry (property P2), for it was shown empiri-

cally accurate DNN-based models can be found for this

task using typical (or even very small) amounts of log

traces (Käppel et al. 2021). In our opinion, this property is

hardly exhibited by two, more complex, tasks considered in

the process-mining literature: (i) predicting the cycle/re-

maining time of a process instance, which entails learning a

real-valued function, and (ii) predicting multiple attributes

of the next event.

In principle, one could regard process traces as

sequences of activity labels, and simply define the auxiliary

task as the discovery of a model that predicts the next

activity of a process instance, based on the sequence of

activities that it has been producing so far. Since this task

coincides with the discovery of a language model (where

the language consists of all the possible activity sequences

that can be generated by the process under analysis), this

makes it possible to reuse the large body of solutions

developed in NLP for the discovery of language models

(Qiu et al. 2020; Dai and Le 2015). However, besides

overlooking the peculiarity of process traces and the dif-

ferences between processes and languages (in terms, e.g.,

of vocabulary size, cardinality, long-term dependencies),

we discard such a simplified formulation of the auxiliary

task, because it suffers from a serious drawback: it focuses

only on control-flow aspects, while totally disregarding the

‘‘multi-modal’’ information conveyed by other event attri-

butes (i.e., attributes that do not represent activity labels),

which can be very useful for the activity-prediction and

outcome-prediction tasks (and for deriving informative

trace representations) – and, in fact, all state-of-the-art

methods for the discovery of deep outcome predictors

exploit both these attributes (see Kratsch et al. (2020)).

4.2 DNN Architectures

All the DNN models considered in our framework follow

the abstract encoder-predictor architectures sketched in

Fig. 1, which use the same structure for their encoder sub-

net f. This sub-net is meant to take an event sequence of the

form s ¼ e1; . . .; en as input, and to map it onto a vectorial

representation z ¼ f ðsÞ. The ultimate goal of this subnet is

to extract general trace embedding, which can be suitably

transferred/shared between the auxiliary task and the target

one, so that the latter can benefit from the additional

supervision coming from the auxiliary task.

Different structures can be adopted for the predictor sub-

net, using two basic kinds of blocks: (i) the activity-ori-

ented predictor block gA, which returns a discrete proba-

bility distribution over the set of activity labels augmented

with the special end-of-sequence (EOS) label; and (ii) the

outcome-oriented predictor block gO, which returns a dis-

crete probability distribution over the set C of outcome

classes.

More specifically, we consider three different DNN

architectures (which are at the basis of the semi-supervised

outcome prediction approaches considered in this work):

– MA, consisting of the encoder sub-net f surmounted by

the predictor block gA, which is meant to only support

the auxiliary next-activity prediction task by returning,

for any given trace s, the probabilities Pða j sÞ for each
a 2 DomðactÞ [ fEOSg;

– MO, featuring the encoder sub-net f and the predictor

block gO, which is meant to only support the target

outcome prediction task by returning, for any given

123

736 F. Folino et al.: Discovering DNN-Based Outcome Predictor for Scarcely-Labeled Logs, Bus Inf Syst Eng 64(6):729–749 (2022)



trace s, the probabilities Pðc j sÞ for each outcome class

c 2 C; and

– MOþA, featuring both predictor blocks gO and gA on top

of f, which accomplishes the outcome prediction and

activity prediction tasks jointly, by returning, for any

given trace s, both probabilities Pða j sÞ and Pðc j sÞ,
for each a 2 DomðactÞ [ fEOSg and each c 2 C.

Clearly, in all of these models, the final prediction for any

given trace s is always made on the basis of the repre-

sentation z ¼ f ðsÞ provided by the encoder sub-net.

In principle, the abstract sub-nets f, gA and gO could be

instantiated by using different alternative DNN architec-

tures; this makes the discovery framework described here

inherently parametric with respect to the structure of these

sub-nets. However, for the sake of concreteness and of

comparison, in our experimental analysis we made the

following choices, as done in Folino et al. (2019) and in

Teinemaa et al. (2018): (i) both predictor blocks gA and gO

consist each of a single dense (feed-forward) layer that

returns a vector of probabilities, containing as many

components as the EOS-augmented activity labels and the

outcome classes, respectively; (ii) the encoder block f is a

stack of LSTM layers (plus an event embedding layer), as

discussed in more detail in Sect. 6.1 and 6.3. Following

previous works in the literature, the neural units of gO

(resp., gA) are equipped with a sigmoid (resp., softmax)

activation function. Implementing and testing alternative

choices for the internal architecture of f is left to future

work, as discussed in Sect. 7.

Models MA and MO were already used in the two dis-

covery methods defined in Folino et al. (2019), which are

presented in Sect. 5.2. The hybrid architecture MOþA is at

the basis of the semi-supervised discovery method

SSOP� MTL that we are proposing in this work, and which

is explained in detail in Sect. 5.3.

Before delving into the technical details of these meth-

ods, in the following section, we first introduce a semi-

supervised formulation of the discovery problem addressed

by all these methods.

5 Semi-Supervised Discovery: Existing Methods

and Our Proposal

5.1 Notation: Semi-Supervised Formulation

of the Discovery Problem

In general, the source of information for training DNN

models of the forms described in Sect. 4.2 is a given log L,

which consists of multiple fully-unfolded process traces,

each of which is either equipped with an outcome-class

label (labeled traces) or not (unlabeled traces).

In order to learn a DNN model in a self-supervised way,

a log L must be converted into a training set D of annotated

event sequences that represent all the prefixes of the traces

in L (and hence all the partial executions of the corre-

sponding process instances). Each of these sequences is

annotated with two labels, representing the ground-truth

next activity and outcome class, respectively.

Formally, let us denote each training instance in D as a

triple d ¼ htrace; nextAct; outi, where d:trace 2 PrefsðLÞ is
a (partial) trace, while d:nextAct 2 DomðactÞ [ fEOSg is

the next-activity label associated with d.trace (i.e.,

d:nextAct ¼ nextActðd:traceÞ) and d:out 2 C [ f?g is the

ground-truth outcome class of d.trace (i.e.,

d:out ¼ lðtraceÞ) if available, or ? otherwise.

In what follows, we first describe, in Sect. 5.2, two

existing semi-supervised methods for training a DNN-

based outcome predictor on such a dataset (namely, the

pre-training approach defined in Folino et al. (2019), and a

feature-extraction variant of it), while discussing some

major drawbacks of these methods. In Sect. 5.3, we then

illustrate a novel algorithm, named SSOP� MTL, that

implements the specific multi-task-learning solution we are

proposing in this work.

Fig. 1 Abstract DNN architectures adopted for the self-supervised

discovery of an outcome predictor. Models MA (left) and MO (middle)

are used in the pre-training-based methods SSOP� PT and Base� FE

introduced in Folino et al. (2019), whereas model MOþA (right) is

meant to support the multi-task-learning algorithm SSOP� MTL. See

Sect. 5 for more details on the algorithms
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5.2 Two Existing Semi-Supervised Methods and Their

Points of Weaknesses

5.2.1 A pre-training approach: method SSOP� PT

Provided with an annotated training set D of the form

described above, the method proposed in Folino et al.

(2019), and named hereinafter SSOP� PT, performs the

following two computation phases in a sequence:

1. Unsupervised pre-training: First, a next-activity pre-

dictor of the form MA is trained on D, independently of

the outcome-class labels. To this end, a (locally)

optimal configuration of the network parameters hA �
ðhf ; hgAÞ is found by using a standard mini-batch

gradient descent procedure (see Sect. 6 for details) for

optimizing the following loss function:

LAðhAÞ ¼ � 1

jDj
X

d2D
logP d:nextAct j d:trace; hA

� �

ð1Þ

where, for each trace s and each activity

a 2 DomðactÞ [ fEOSg, Pða j s; hAÞ is the probability

value that MA returns (based on the current configu-

ration of its internal parameters, i.e., DNN weights, hA)

for a, when taking s as input.

2. Knowledge transfer and supervised fine tuning: The

optimal values found for the parameters hf , at the end

of the previous step, are used to initialize the encoder

sub-net of an outcome prediction model MO, whereas

the other parameters of MO are set randomly. Then, the

pre-trained model MO is adapted to the outcome-

prediction task by training it over the outcome-labeled

traces. Specifically, let Dlab denote the subset of

training instances that have an associated outcome

label, i.e., Dlab ¼ fd 2 D j d:out 6¼ ?g. Then, an

optimal configuration of the parameters hO �
ðhf ; hgOÞ of MO is found by minimizing the following

loss function (still through mini-batch gradient

descent):

LOðhOÞ ¼ � 1

jDlabj
X

d2Dlab

logP d:out j d:trace; hO
� �

ð2Þ

where, for each trace s and each outcome class c 2 C, Pðc j
s; hOÞ is the probability value that MO returns (based on

the current state of its parameters hO) for c, when taking s
as input.

Weaknesses of SSOP� PT: The pre-training strategy

underlying SSOP� PT is exposed to two main kinds of

risks, which may undermine the quality of the discovery

outcome predictors:

– Catastrophic forgetting (Liu et al. 2021; French 1999):

The knowledge gained by MA in the pre-training phase

and transferred to the lower layers of MO vanishes

during the fine-tuning of MO on the outcome-labeled

data, especially if this fine-tuning phase involves many

training steps. In our setting, this means that the data

transformation function learned by the encoder sub-net

through next-activity prediction (and presumed to yield

compact semantic representations of the traces) is

rearranged completely in the fine-tuning phase. This

prevents the model being trained to benefit from the

process-aware understanding abilities acquired in the

pre-training phase, which could turn very helpful when

the labeled data are available for the fine-tuning are few

(and the risk of overfitting them is high).

– Representation degeneration (a.k.a. embedding degen-

eration) (Liu et al. 2021): In the pre-training phase MA

overfits the auxiliary task, with the encoder sub-net

focusing on data representations that undermine the

ability of MO to eventually adapt well to the main

(outcome prediction) task.

As confirmed indirectly by experimental findings presented

in Sect. 6, these two issues can reduce the advantage of

using a self-supervised learning strategy, independently of

how much the auxiliary task adopted is correlated to the

target one. The hybrid architecture MOþA above aims at

mitigating both these risks (and hence better balance

between knowledge conservation and adaptation to the

target task), by enabling a more synergistic interplay

between the two learning tasks.

5.2.2 A ‘‘Feature-Extraction’’ Variant of SSOP� PT:

Method Base� FE

In Folino et al. (2019), a variant of the pre-training method

SSOP� PT was defined where the internal parameters of

the encoder subnet f are kept fixed (‘‘frozen’’), during the

fine-tuning phase, to the value that is found at the end of

the pre-training phase.

This variant, named Base� FE, simply consists in

reusing the pre-trained encoder subnet f as a (non-trainable)

‘‘feature-extraction’’ function returning a dense represen-

tation for any trace, and training the predictor block gO

(acting as a logistic-regression classifier) on such trace

representations. In other words, Base� FE (suffix FE here

stands for Feature Extraction) founds on the idea of just

exploiting activity prediction as a preliminary representa-

tion-learning task, and then reusing the trace representa-

tions so obtained as input features for outcome prediction.
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This method can be regarded as a drastic solution for

preventing catastrophic-forgetting phenomena, In princi-

ple, such an extreme approach could perform better than

SSOP� PT when the latter incurs severe phenomena of this

kind. This is the reason why this sort of ‘‘truncated’’ ver-

sion of SSOP� PT will be considered in the experimental

analysis of Sect. 6 (as done in Folino et al. (2019)).

However, as there is no way for Base� FE to adapt its

internal trace representations to the outcome prediction

task, the risk of representation degeneration exacerbates for

this method. This prevent Base� FE from being an opti-

mal solution for our problem setting – as confirmed by the

empirical study in Sect. 6.

5.3 A Novel Semi-Supervised Method for Outcome

Prediction: SSOP� MTL

It was shown empirically in previous works (see, e.g., Dai

and Le (2015) in an NLP context) that pre-training methods

can be improved (in terms of both convergence and gen-

eralization power) if the auxiliary task adopted for repre-

sentation learning (in some pre-training step) is also taken

into account in the fine-tuning phase. In order to enjoy this

beneficial effect, we propose to adopt a multi-task DNN

model of the form MOþA presented in Sect. 4.2, comple-

menting the outcome predictor gO with a next-activity

predictor gA.

However, we do not want to use such a multi-task-

learning approach just in the fine-tuning phase of a pre-

training-based strategy like the one adopted by SSOP� PT.

By contrast, we propose to train the model MOþA from

scratch, according to a multi-objective training strategy,

which pursues the activity-prediction and outcome pre-

diction in a joint manner, as a concrete way of addressing

the main research goal RG0 stated in Sect. 1.3.

Specifically, provided with a training set D of the form

defined in Sect. 5.1, the discovery algorithm SSOP� MTL

we are proposing here tries to minimize (iteratively, on

different batches of data extracted from D) the following

loss function (which is a linear combination of those in

Eqs. 1 and 2):

LOþAðhA; hOÞ ¼ k � LAðhAÞ þ ð1� kÞ � LOðhOÞ: ð3Þ

Clearly, factor k in Eq. 3 controls the level of bias towards

learning trace representations that really serve the auxiliary

task (the higher k, the stronger the bias). In simple multi-

target learning frameworks, the analyst is in charge of

setting a suitable value for k, which is kept fixed across all

the training process. However, such an approach hardly

leads to the discovery of accurate outcome predictors when

few outcome-labeled example traces are available, even

assuming that the optimal value of k is guessed.

Thus, in the final part of the training procedure, we

propose to pay more attention to the errors made in the

prediction of outcomes than in the prediction of next-ac-

tivity labels; in our vision, the latter labels, indeed, are

meant to offer a complementary source of supervision in

initial/intermediate steps of the training process, to guide

the encoder sub-net towards general trace embeddings

(before eventually adapting these embeddings to the out-

come-prediction task). To this end, we refine the training

(mini-batch gradient-descent) procedure of our discovery

algorithm SSOP� MTL in a way that the weight factor k in

the loss function of Eq. 3 varies dynamically, depending on

the counter of training epochs performed. Two alternative

schemes for implementing such a dynamical weighting of

the tasks are proposed below.

Alternative loss-weighting schemes: hyperparameter

k� sched Let N be the number of training epochs, each of

which entails a complete optimization round over all the

instances of D, grouped in mini-batches. For the sake of

both convergence and efficiency, the value of k is only

changed every dN=Qe epochs in a piecewise way, while

keeping it fixed till the next change point.

The value of k on each training epoch i 2 ½1::N� is

computed by applying one of the two functions defined

below (and sketched pictorially in Fig. 2) to the index j ¼ i

mod dN=Qe:

k2 phaseðjÞ ¼
expðj � N=2Þ

1þ expðj � N=2Þ ð4Þ

k3 phaseðjÞ ¼

expðj � N=3Þ
1þ expðj � N=3Þ if j�N=2

expðj � 2N=3Þ
1þ expðj � 2N=3Þ otherwise

8
>><

>>:
ð5Þ

where mod stands for the modulus operator, and Q ¼ 10

was set in all the tests described in Sect. 6.

Specifically, algorithm SSOP� MTL is equipped with an

ad hoc hyperparameter, named k� sched and ranging over

f2 phase; 3 phaseg, which allows for choosing among

functions k2 phase and k3 phase.

When choosing function k2 phase (by setting

k� sched ¼ 2 phase), model MOþA is initially trained on

the basis of the auxiliary task only, the loss of which is

given the highest weight possible (k ¼ 1) at the first epoch

(while setting the loss of the target task to 0). In the sub-

sequent epochs, the weight k decreases towards 0 accord-

ing to a (upside-down) sigmoidal shape. This allows the

algorithm to simulate a sort of gradual shift from a (self-

supervised) pre-training mode to a (pure supervised) fine-

tuning mode.

Our test results (cf. Sect. 6) confirmed that this solution

often outperforms the pre-training approach of algorithm

SSOP� PT, presumably owing to its ability of reducing the
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risks of catastrophic forgetting and of representation

degeneration mentioned in Sect. 5.2. However, this solu-

tion was not very effective in some of the test scenarios,

where we suspect that the encoder sub-net f overfitted the

auxiliary task in the former half of the training process, and

got trapped in a region of the parameter space from which

it could not move to a point that suits the outcome pre-

diction task well.

The ‘‘hat-shaped’’ function k3 phase (chosen when set-

ting k� sched ¼ 3 phase) is meant to prevent this

behavior by simulating a gradual shift of the optimization

objective across three consecutive phases, which are gui-

ded, respectively, by: (i) the outcome prediction task (low

values of k), (ii) the auxiliary task (high values of k), and
(iii) the outcome prediction task again (low values of k
gradually tending towards 0, so that the model is eventually

fine-tuned on the outcome-labeled data).

6 Experimental Analysis

6.1 Analysis Scope and Objectives: Discovery

Methods and Experimental Hypotheses

6.1.1 Methods Tested: SSOP� MTL, Semi-Supervised

Competitors and a Fully-Supervised Baseline

In order to fully address the research goal RG00 stated in

Sect. 1.3, we experimentally compared the approach pro-

posed here with several alternative ones, over different

process logs, paying special attention to application set-

tings where the ground-truth outcome classes are known

for a relatively small fraction of the training traces.

Specifically, in this empirical study, the following semi-

supervised approaches to the discovery of an outcome

predictor were considered:

– the algorithm SSOP� MTL defined in Sect. 5.3, which

encodes the method proposed in this work;

– the algorithm SSOP� PT described in Sect. 5.2, which

encodes the only existing semi-supervised solution to

the problem (proposed in Folino et al. (2019)):

– the ‘‘feature-extraction’’ variant Base� FE (also

described in Sect. 5.2 and originally defined in Folino

et al. (2019)) of SSOP� PT.

– a fully-supervised baseline method, named Base� S,

which consists in training a DNN-based outcome

predictor of type MO in a supervised way, by

minimizing the loss LO only over the outcome-labeled

instances at hand.

It is worth noting that the latter (baseline) method is meant

to play as an archetype for the broad class of supervised

approaches that dominate the field of outcome prediction

and, more generally, of predictive process monitoring

(Teinemaa et al. 2018, 2019; Kratsch et al. 2020; Hinkka

et al. 2018).

All these methods were implemented by using the same

LSTM-based instantiation of the encoder sub-net f of the

DNN models, namely MA, MO and MOþA (cf. Sect. 4.2),

employed by the methods. Specifically, we resorted to

nearly the same LSTM architecture (apart from an addi-

tional embedding layer) as in Teinemaa et al. (2018) and

Kratsch et al. (2020) – which was shown to achieve com-

pelling accuracy in the prediction of outcomes, compared

to different ways of combining manually-extracted features

and state-of-the-art ML methods.

All the discovery methods and the evaluation procedure

were implemented in Python 3.7.7, using the popular Keras

and TensorFlow 2.0 deep learning APIs.3

6.1.2 Experimental Hypotheses

The experiments were aimed at assessing two different

hypotheses:

Fig. 2 Functions considered for dynamically changing the weight k of the auxiliary loss over the training epochs: k2 phase (left) and k3 phase

(right). These functions are chosen when setting k� sched ¼ 2 phase and k� sched ¼ 3 phase, respectively

3 The source code (re-using some log parsing and preprocessing

scripts made available in Teinemaa et al. (2018)), can be accessed by

reviewers at the following link: https://tinyurl.com/em7h9fv2.
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– HP’: At least one of the two existing semi-supervised

methods SSOP� PT and Base� FE performs signif-

icantly better than the supervised baseline over the

logs, when the percentage of labeled training data

available is ‘‘small’’..4

– HP’’: The semi-supervised method SSOP� MTL pro-

posed here performs significantly better than the

competitors SSOP� PT and Base� FE and than the

supervised baseline Base� S, when the percentage of

labeled training data available is ‘‘small’’. 4

We pinpoint that, owing to catastrophic forgetting and

representation degeneration issues, we doubted whether

hypothesis HP0 held in reality, whereas we were quite

confident in the validity of hypothesis HP00. Both these

feelings were confirmed by the experimental results, as

discussed in Sect. 6.4.

6.2 Testbed: Datasets and Evaluation Procedure

6.2.1 Datasets: Logs, Outcome classes, Data Pre-

Processing

For the sake of comparison and reproducibility, we reused

five of the outcome-annotated datasets employed in

Teinemaa et al. (2018), which were all derived from real-

life process logs (available at https://data.4tu.nl).

Three of the datasets, named hereinafter La
1, Lc

1 and Ld
1,

were extracted from log BPIC 2012, generated by a loan-

application process of a Dutch financial institute. These

datasets consist all of the same traces, but differ in the

assignment of the outcome labels. In all cases, each trace

was assigned a label based on the final status (namely, i.e.,

accepted, canceled or declined) of the loan application that

originated the trace, according to a binary classification

scheme (positive outcome vs negative outcome) (Teinemaa

et al. 2018, 2019). Precisely, each trace in La
1 (resp. Lc

1, Ld
1)

was labeled as positive iff the final status of the loan

application was accepted (resp. canceled, declined), and as

negative otherwise.

The other two datasets, renamed here L2 and L3, were

derived from the logs Hospital billing and Road traffic

fines, respectively. Each trace in L2, each concerning the

handling of a case in the billing system of a hospital, is

associated with an outcome class indicating whether the

case was actually reopened (positive) or not (negative). By

contrast, each trace in L3, storing the history of a road-

traffic fine (in the database of an Italian local police force),

was assigned a binary (positive vs negative) outcome class

distinguishing whether the fine was either repaid in full or

not (and then sent for credit collection).

Table 1 shows the following kinds of summary infor-

mation on each of these datasets: the number of traces/

events, the average/maximum trace length, the attributes

associated with log traces/events, and the relative fre-

quency of the positive outcome class. Further details on the

datasets can be found in Teinemaa et al. (2018).

Pre-processing log data and turning them into tensors

Before converting each of the datasets into a set of trace

prefixes, we cut every trace s in it by removing the suffix of

s starting with the first event of s disclosing the outcome

class of s, in order to avoid favorable prediction biases (as

done in Teinemaa et al. (2018)).

In order to put the training/test data into a tensorial form,

we had to choose a fixed length (i.e., a fixed number of

events) for all the trace prefixes. For the sake of compar-

ison with Teinemaa et al. (2018), we fixed this length to 40

(resp. 8, 10) for all the versions of log L1 (resp. L2, L3), and

then truncated every (complete) log trace longer than 40

(resp. 8, 10) events, before extracting its prefixes. The

resulting trace prefixes were left-padded with zeros when

containing less than the chosen trace length.

6.2.2 Test Procedure, Evaluation Metrics and Statistical

Test

Test procedure – simulating different label-scarce sce-

narios (via label %): On each dataset, we tested all the

methods under analysis according to an 80-20 temporal

hold-out scheme (as in Teinemaa et al. (2018, 2019)),

using the older 80% of the data instances for training and

the remaining ones for test. This splitting prevents

unwanted forms of future-information leakage (Sheridan

2013). 20% of the training instances were then used, as a

validation set, to eventually select the best DNN model

among those found in different training epochs. To this end

we implemented an ad hoc temporal splitting procedure,

ensuring the resulting validation set to have a balanced

class distribution and contain the most recent examples for

each class.

To test the sensitiveness of any discovery method to the

scarcity of labeled data, we simulated various scenarios

where only the outcome labels of a fraction label% of the

training instances can be used to train the outcome pre-

dictors, while the remaining instances are regarded as

unlabeled – in practice, we masked the labels of the latter

instances by replacing them with the dummy class ?. In

this simulated application scenario, the supervised baseline

method Base� S could only exploit the information pro-

vided by the fraction label% of training instances that were

4 Before testing these hypotheses, we tried to quantify the notion of

‘‘small labeled data’’ pragmatically. To this end we performed a series

of tests with the fully-supervised baseline alone, aimed at identifying

a subset of values for this percentage that represented a critical

application scenario for this method. Details on these preliminary

tests are given in Sect. 6.2.2.
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being considered as labeled, while disregarding all other

training instances. By contrast, the semi-supervised meth-

ods SSOP� MTL, SSOP� PT and Base� FE could take

advantage of all the training instances, including those with

masked outcome labels.

Specifically, we made label% vary in

f2:5%; 5%; 10%; 20%; 40%g and, for each value in this set,

we choose a corresponding number of instances via stan-

dard stratified sampling. Please note that, for some of the

analyses described in the following, we also considered the

ideal scenario label% ¼ 100%, where all the instances in

the training set have an associated (visible) outcome label.

Evaluation metrics: We used two standard metrics to

assess the quality of any discovered outcome predictor: (i)

ACC (accuracy), returning the percentage of test prefixes

classified correctly; (ii) AUC, which measures the area

under the ROC Curve. Note that the threshold-independent

metric AUC is more informative than ACC, and more

reliable over imbalanced datasets, like Lc
1, Ld

1 and, espe-

cially, L2. This is the reason why, hereinafter, we will

consider AUC as the first choice for comparative analyses,

and ACC as a second-level support for comparing methods

achieving very similar AUC scores.

Devising a reference label-scarce scenario – identifying

‘‘small’’ percentages of labeled data: Prior to conducting

our comparative analysis, we had to quantify the notion of

‘‘small’’ percentage of labeled training data. To this end,

we tried to identify a critical application scenario for the

fully-supervised method Base� S, where it performed

significantly worse than in the ideal situation where all the

training traces have an associated outcome-class label. As

described in more detail in Appendix A (available online

via http://link.springer.com), we found that this scenario

can be made correspond to the case where the information

on outcome labels is available for a tenth of the training

traces at most (i.e., when label% 2 f2:5%; 5%; 10%g) –

and the remaining traces are considered as they were

unlabeled. This challenging scenario will be simply deno-

ted hereinafter as label%� 10%. It is worth noting that the

performance degradation of Base� S in this scenario,

compared to the ideal one where label% ¼ 100%, was

assessed to be statistically significant by applying the

Friedman-Nemenyi procedure (described in the following)

to the two series of AUC scores obtained, across the

datasets, in these two usage scenarios. By the way, this

result confirms our expectation that a fully supervised

DNN-based approach to the discovery of an outcome

Table 1 Descriptive statistics and trace/event attributes concerning the datasets used in the experiments

Dataset #Traces #Events Positive

label

ratio

Avg

len.

Max

len.

Categorical attributes (cardinality) Numerical attributes

La
1 4685 155,783 0.48 35 175 Activity (36), resource (63) Hour, weekday, month, event_nr,

timesincemidnight, timesincelastevent,

timesincecasestart, open_cases,

AMOUNT_REQ	

Lc
1 4685 155,783 0.35 35 175 Activity (36), resource (63) Hour, weekday, month, event_nr,

timesincemidnight, timesincelastevent,

timesincecasestart, open_cases,

AMOUNT_REQ	

Ld
1

4685 155,783 0.17 35 175 Activity (36), resource (63) Hour, weekday, month, event_nr,

timesincemidnight, timesincelastevent,

timesincecasestart, open_cases,

AMOUNT_REQ	

L2 77,525 404,721 0.05 6 217 Activity (17), resource (668), actOrange

(3), actRed (3), blocked (2), caseType (9),

diagnosis (1,016), flagC (3), flagD (2),

msgCode (11), msgType (3), state (10),

version (8), speciality	 (23)

Hour, weekday, month, event_nr,

timesincemidnight, timesincelastevent,

timesincecasestart, open_cases,

msgCount

L3 129,615 460,462 0.46 4 20 Activity (10), resource (270),

notificationType (3), lastSent (4), dismissal

(8), article	 (85), vehicleClass	 (4)

Hour, weekday timesincelastevent,

timesincecasestart, timesincemidnight,

month, expense, event_nr, open_cases,

amount	, points	

The cardinality of each categorial attribute is reported within round brackets. Global attributes of the traces are annotated with symbol 	, in order
to allow for easily distinguishing them from event attributes
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predictor is not suitable when having a small number of

labeled traces.

Statistical test of significance: To assess the significance

of the differences observed between methods in a given

series of tests (e.g., for different percentages of labeled

data, or over different logs), we resorted to the Friedman-

Nemenyi test (Demsar 2006; Garcia and Herrera 2009), a

statistical procedure that has been widely used for evalu-

ating classifiers. In this procedure, a (non-parametric)

Friedman test is first used to possibly reject the null

hypothesis H0 that the populations of results (computed at

different percentages of labeled data over all logs) pro-

duced by the different methods have the same mean, so that

they can be considered as statistically different. Whenever

this test rejects H0, a Nemenyi test with a significance level

of 0.05 is used (as post-hoc test) to detect the pairs of

significantly different methods: if a pair of methods is

assigned a p-value under 0.05, these methods are eventu-

ally deemed as significantly different from a statistical

viewpoint.

6.3 Configuring the Structure of the DNN Models

and the Hyperparameters

Structural design choices: As mentioned above, we

restricted all the analyzed methods to use a DNN model

where the encoder sub-net f (sketched in Fig. 3) contains a

stack of D LSTM layers and eventually returns the state of

the rightmost LSTM cell in the top-most layer, as done in

Teinemaa et al. (2018). All these layers have the same

number of units (indicating the dimensionality of their

output space), and are equipped with standard batch-nor-

malization and internal dropout mechanisms. This reflects

our desire of defining the concrete structure of the DNNs in

a way allowing the baseline method Base� S to play as a

good representative for existing fully-supervised approa-

ches to DNN-based outcome prediction.

The good performances shown in Teinemaa et al.

(2018); Kratsch et al. (2020) by LSTM-based predictors

made them natural candidates for our test setting. However,

since we also had to simulate stressing discovery scenarios

affected by a scarcity of labeled examples, we decided to

extend the encoder sub-net with an ad hoc event embedding

layer, in order to reduce the risk of obtaining an overfitting

DNN when using few labeled data. For any given event ei,

the event-embedding layer simply returns the concatena-

tion of the following per-attribute representations: (i) the

(scalar) value BjðeiÞ, for each numerical event attribute Bj;

(ii) either the one-hot representation of AjðeiÞ or a dense

representation of AjðeiÞ, obtained by using a trainable

embedding matrix, for each categorical attribute Aj.

Setting of the hyperparameters: In setting the hyperpa-

rameters (of the DNN models and training procedures), we

did not seek an optimal configurations for each run of a

method, but only a configuration of the baseline method

Base� S meeting two requirements: (r1) in a classic

learning scenario label% ¼ 100%, Base� S performs

equivalently to, or better than, the LSTM-based method in

Teinemaa et al. (2018) and Kratsch et al. (2020; r2)

Base� S is as simple as possible in terms of the number of

parameters to be optimized, in order to reduce the risk of

overfitting small amounts of outcome-labeled data. A

detailed description of the concrete hyperparameter set-

tings used in the tests can be found in Appendix B.

6.4 Test Results

6.4.1 Assessing Hypotheses HP0 and HP00 in the Label-

Scarce Scenario (label%� 10%)

To assess the hypotheses HP0 and HP00, we tested the semi-

supervised discovery methods SSOP� MTL, SSOP� PT and

Base� FE in the critical operating scenario label%� 10%
we had previously identified for the supervised baseline

Base� S (see Sect. 6.2.2, paragraph Devising a reference

Fig. 3 Concrete architecture chosen for the encoder sub-net f of the

DNN predictors (MA, MO, MOþA) employed in the discovery methods

evaluated in the experimentation
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label-scarce scenario . . .). To this end, we ran all these

methods on different data views, obtained by making the

percentage label% of visible outcome labels range over

{2:5%; 5%; 10%}, for each dataset.

A summarized view of the results obtained is offered by

Table 2, which reports the average performance scores

achieved (for each dataset) by the methods, and in Fig. 4,

showing a critical difference (CD) diagram (Demsar 2006;

Garcia and Herrera 2009) for the methods. This CD dia-

gram was drawn considering: (i) the average AUC-based

rankings of the methods (across all the tested combinations

of datasets and values of label%), and (ii) the result of

applying the Friedman-Nemenyi procedure (with a signif-

icance level of 0.05) to the series of AUC scores achieved

by the methods – precisely, the scores obtained by each

method, across different datasets and values of label%,

were considered as the population of results of the method.

Assessing HP0 – the semi-supervised competitors fail to

improve the supervised baseline significantly: We start our

analysis of test results by comparing the behavior of the

two competitors SSOP� PT and Base� FE with that of the

supervised baseline Base� S. Looking at scores in

Table 2, it seems that the semi-supervised method

SSOP� PT proposed in Folino et al. (2019) tends to

somewhat improve the baseline (in terms of both ACC and

AUC), but this does not happen over each of the datasets

and/or in a very neat way. In particular, the average per-

formances of SSOP� PT are worse than those of Base� S

Table 2 ACC and AUC scores obtained by the semi-supervised discovery methods SSOP� MTL and SSOP� PT (Folino et al. 2019) and the

baselines (i.e., Base� FE, and Base� S) when using small percentages of labeled data (i.e., label% 2 f2.5%, 5%, 10%})

Dataset Method ACC AUC

La
1 SSOP� MTL 0.615 0.687

SSOP� PT (Folino et al. 2019) 0.601 0.652

Base� FE (Folino et al. 2019) 0.567 0.583

Base� S 0.582 0.629

Lc
1 SSOP� MTL 0.761 0.693

SSOP� PT (Folino et al. 2019) 0.658 0.652

Base� FE (Folino et al. 2019) 0.452 0.438

Base� S 0.646 0.604

Ld
1

SSOP� MTL 0.819 0.592

SSOP� PT (Folino et al. 2019) 0.718 0.515

Base� FE (Folino et al. 2019) 0.527 0.471

Base� S 0.734 0.546

L2 SSOP� MTL 0.957 0.708

SSOP� PT (Folino et al. 2019) 0.953 0.666

Base� FE (Folino et al. 2019) 0.878 0.543

Base� S 0.955 0.631

L3 SSOP� MTL 0.744 0.800

SSOP� PT (Folino et al. 2019) 0.725 0.799

Base� FE (Folino et al. 2019) 0.716 0.790

Base� S 0.710 0.783

The best score for each dataset is shown in bold

Fig. 4 Critical difference (CD) diagram, drawn on the basis of the

results of the Freidman-Nemenyi test, performed on the AUC scores

obtained by the methods across all the values of label% in

f2:5%; 5%; 10%g and all the datasets. Pairs of methods resulting

not significantly different according to the test (i.e., receiving a p-
value� 0:05) are connected through a horizontal line
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over the datasets Lc
1 and L2 (if considering the ACC metrics

only, in the latter case).

The behavior of method Base� FE (implementing a

naı̈ve feature-extraction solution) is even more disap-

pointing: not only it scored lower than SSOP� PT over all

the datasets, but it performed even worse than the baseline

Base� S over all the datasets but L3.

The diagram in Fig. 4 allows us to draw two observa-

tions for these competitors: (i) though SSOP� PT achieved

an average rank of 2.33 in this series of tests, and per-

formed significantly better than Base� FE (in line with the

conclusions of Folino et al. (2019)), from a statistical

viewpoint the performances of SSOP� PT are not signifi-

cantly different from those of the baseline Base� S (re-

ceiving an average rank of 2.77); (ii) despite using some

form of pre-training, the naive method Base� FE is not

significantly better than the baseline Base� S, and even

obtained an average rank (namely, 3.83) worse than that of

the baseline.

Clearly, these results provide statistically-significant

evidence in support of our hypothesis HP0. In particular,

the bad behavior of Base� FE allows us to affirm that a

pure feature-extraction approach is unsuitable for our

problem setting: the representations learnt by using the sole

next-activity prediction cannot be reused as a fixed set of

features for the traces. In light of this result, we will dis-

regard Base� FE in the rest of our empirical study.

Assessing HP00 – the proposed method SSOP� MTL

outperforms all the other ones significantly: We now move

the focus of our analysis onto the method SSOP� MTL

proposed in this work, as a more sophisticated solution than

the pre-training schemes explored in Folino et al. (2019).

The average scores in Table 2 confirm that SSOP� MTL

always outperforms SSOP� PT, Base� FE and Base� S

over each of the datasets. Only the difference between the

AUC scores of SSOP� MTL and SSOP� PT over L3 some-

what deviates from this pattern. This may be explained by

the fact that over this ‘‘easy’’ dataset all the methods tend

to perform quite well. However, it is worth noting that even

on L3, SSOP� MTL outperformed SSOP� PT in terms of

ACC, which is an appropriate metric for making such a

fine-grain comparison, since this dataset has a balanced

distribution of the outcome classes (differently than the

other datasets).

Interestingly, the CD diagram in Fig. 4 clearly shows

that SSOP� MTL is by far the best performing method (with

an average rank of 1.07), and that its AUC performances

are significantly different from those of all the other

methods.

The findings presented above provide a statistically

significant support of the core hypothesis HP’’, showing

that, in scenarios where the fraction of outcome-labeled

traces is small, the method SSOP� MTL proposed in this

work is neatly superior to both the supervised baseline

Base� S and the two existing semi-supervised methods

SSOP� PT and Base� FE. In other words, this experi-

mental analysis substantiates our claim that the synergistic

multi-task learning strategy implemented in SSOP� MTL

manages to counter-balance the negative effect of label

scarcity in a more neat and more stable way than simply

using next-activity prediction within a pre-training dis-

covery scheme – beside showing that this scheme may

even fail to ensure significant improvements over tradi-

tional fully-supervised approaches.

6.4.2 Detailed Results: Performance Scores Obtained

with all the Outcome-Label Percentages

We next analyze the behavior of methods SSOP� MTL,

SSOP� PT and Base� S (disregarding the bad-performing

method Base� FE, for the sake of brevity) for all the

values of label% in f2:5%; 5%; 10%; 20%; 40%g. The

scores obtained on each dataset, in terms of both AUC (left)

and ACC (right), are shown in Fig. 5 in the form of a bar

chart – the better the score achieved by a method, the

higher its associated bar.

We are mainly interested in investigating the AUC trend

of each method when label% stays under the critical

threshold of 10% delimiting the critical label-scarce range

(named ‘‘range of interest‘‘ in Fig. 5) for it. Higher per-

centages of label% are used here to develop a trend anal-

ysis for the methods.

From Fig. 5, it clearly emerges that all the discovery

methods tend to perform quite similarly when using a

sufficiently large amount of labeled data (i.e., for

label% 2 f20%; 40%g), but the differences among them

become evident when entering the critical range

label%� 10%, as expected.

In particular, no matter the evaluation metric and log,

our method SSOP� MTL always outperforms both

SSOP� PT and Base� S in the range of interest – even

though the differences in terms of AUC are not very neat on

L3, in line with what observed previously. Anyway, even

on L3, the AUC score of SSOP� MTL is substantially higher

than that of Base� S in when using the lowest percentage

of labeled data (label% ¼ 2:5%), and surpasses all the

methods in terms of ACC no matter the value of label% –

let us remind that ACC is a proper evaluation metric for

balanced logs like L3, while it is rather misleading on

imbalanced ones like L2.

Observing Fig. 5, two facts confirm the compelling

robustness of SSOP� MTL to data scarcity: (1) the perfor-

mance of SSOP� MTL tend to remain steady over a wider

range of values of label%, compared to the other methods;

and (2) even when only 2:5% of the traces are labeled, the
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performance degradation of SSOP� MTL is neatly lower

than those of Base� S and SSOP� PT (if excluding the

exceptional case of L3).

Minor improvements with respect to Base� S are

obtained by the competitor semi-supervised method

SSOP� PT, within our range of interest. Indeed, if

SSOP� PT continues achieving pretty better AUC scores

than the baseline method on the datasets La
1, Lc

1 and L2, the

opposite happens on dataset Ld
1. Again, on L3, SSOP� PT

works as better as SSOP� MTL in terms of AUC (but not in

terms of ACC), whereas the ACC score of SSOP� PT on L2

goes slightly below that of Base� S when label% ¼ 2:5%.

Finally, we observe that the superiority of SSOP� MTL

over the supervised baseline Base� S is not a trivial result.

In fact, semi-supervised learning methods are known to

possibly lead to performance degradation when using too

many and/or misleading unlabeled data (Van Engelen and

Hoos 2020). Interestingly, this does not seem to be the case

for SSOP� MTL, which always outperforms Base� S, even

when the fraction of outcome-labeled data is very small.

The ability of SSOP� MTL to also outperform the existing

semi-supervised approaches to outcome prediction (and, in

particular, the pre-training method SSOP� PT proposed in

Folino et al. (2019)) makes our proposal even more sig-

nificant in the current research landscape.

7 Conclusion, Discussion and Future Work

7.1 Summary: Main Contributions and Findings

We have presented a semi-supervised learning method,

named SSOP� MTL, for discovering a DNN-based outcome

predictor in scenarios where a limited number of log traces

are equipped with a ground-truth outcome-class label. The

method leverages a novel multi-task-learning approach,

which employs: (i) a multi-target DNN model addressing

the prediction of both outcomes and next-activities jointly;

(ii) a multi-objective training algorithm that changes the

weights of the two loss functions (one per task) dynami-

cally, in order to balance the opposite goals of fitting the

outcome prediction task and of conserving the data-repre-

sentation skills learnt with the auxiliary task.

Experiments on several real-life logs allowed us to

analyze this method, and to obtain the following two core

findings: (i) both pre-training methods SSOP� PT and

Base� FE defined in Folino et al. (2019) fail to improve

the baseline significantly across different datasets; (ii) the

proposed method SSOP� MTL significantly outperforms

both the baseline and these competitors (i.e., SSOP� PT

and Base� FE).

7.2 Validity Threats and Limitations

In general, extending a supervised learning system with

mechanisms for exploiting unlabeled data is not guaranteed

to always improve the system, since there may be appli-

cation domains where the bias coming from these data can

be useless or even misleading, with respect to the target

task that the system is ultimately meant to accomplish

(Van Engelen and Hoos 2020; Ouali et al. 2020). More-

over, in extreme scenarios where even the number of

unlabeled traces available is small, the auxiliary task itself

can incur overfitting, and exert negative representation-

degeneration effects (Liu et al. 2021). We could have

included smaller logs (e.g., the sepsis and production logs

considered in Teinemaa et al. (2019)) in our experimental

analysis, in order to provide the reader with examples of

such challenging application scenarios. However, for the

sake of presentation, we decided to exclude such straight-

forward use cases, since it does not make much sense to

apply complex DNN predictors to small datasets, for which

traditional ML methods have been proven to work appro-

priately (Teinemaa et al. 2019, 2018). On the other hand,

there may be domains in which forecasting the outcome

class is such an easy task that even very few labeled

example traces suffice to train a good predictor. In such a

case, where supervised-learning methods work well, a

semi-supervised approach hardly brings substantial

improvements – this seems to be the case with dataset L3 in

our experiments.

Though the set of logs used in our experiments is limited

(in part for the sake of reproducibility and comparison with

relevant methods tested in Teinemaa et al. (2018) and in

Teinemaa et al. (2019)), we believe that our experimental

findings represent a significant novel contribution to cur-

rent literature. In particular, it was interesting to discover

that the pure pre-training method SSOP� PT (Folino et al.

2019) is not significantly better than the fully-supervised

baseline Base� S across all the datasets. This result,

together with the weak performance observed for the fea-

ture-extraction method Base� FE, shows that not all semi-

supervised strategies are a valuable solution for the prob-

lem studied here. The limited effectiveness of SSOP� PT

in confronting the lack of labeled examples is likely to

descend from the fact that, on some of the datasets, it may

have incurred representation-degeneration and/or catas-

trophic-forgetting phenomena (Liu et al. 2021). Thus, it is

safe to regard our experimental study as an appropriate way

bFig. 5 AUC and ACC obtained, for different amounts of labeled data

(namely, for label% 2 f2:5%; 5%; 10%; 20%; 40%g), by

SSOP� MTL; SSOP� PT and Base� S on each of the datasets. Each

chart is annotated with the evaluation metric and dataset it refers to,

for the sake of readability
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of showing that there are several real label-scarce scenarios

where a well-devised semi-supervised discovery like

SSOP� MTL can find better outcome predictors than

methods which train the same kind of DNN architecture by

using a traditional supervised approach or a pre-training

one.

Even though our approach is parametric with respect to

the internal structure of the encoder sub-net, in our

experimental study we instantiated it with a stack of LSTM

layers, which is a consolidated popular solution in the field.

However, in principle, the performances of the methods

analyzed in this work might vary when using a different

kind of neural architecture for the encoder.

Minor validity threats may descend from the fact that we

did not perform an optimal tuning of the hyperparameters

in the DNN models, but rather chose them based on the

best-working setting identified in Teinemaa et al. (2018).

This allowed us to find an optimal configuration for the

fully-supervised baseline Base-S, which is not ensured to

also be the most appropriate choice for the multi-target

DNN architecture MOþA employed in the semi-supervised

method SSOP� MTL. Thus, if combining method

SSOP� MTL with ad-hoc hyperparameter optimization, the

method could perform better than in our experimental

study.

7.3 Implications and Future Work

As to the practical implications of our work, we are con-

fident that it can allow for widening the application scope

of DNN-based outcome predictors, encompassing other

relevant contexts (e.g., concerning the prediction of faults,

fraud, normative-compliance violations, missed customer-

satisfaction objectives) where the outcome-labeled traces

available are not sufficient to train a good prediction model

in a supervised way. Replacing these methods with our

semi-supervised method is a more convenient and cheaper

solution for enterprises and organizations, compared to

trying to expand the set of outcome-labeled log traces (e.g.,

by directing more efforts towards manual auditing or

towards customers surveys).

We hope that this work will stimulate theoretical and

experimental research on the challenging outcome-predic-

tion setting considered here. In particular, we foresee the

following promising lines of research: (i) studying the

combination of the proposed semi-supervised approach

with other kinds of encoders (e.g., based on GRU (Hinkka

et al. 2018), convolutional (Pasquadibisceglie et al. 2019)

or Transformer (Vaswani et al. 2017) components); (ii)

devising and testing alternative approaches to the problem,

e.g., employing different auxiliary tasks than next-activity

prediction. (iii) investigating which characteristics (e.g.,

number of labeled data available, degree of complexity/

flexibility of the business process) of an outcome-predic-

tion scenario make it more or less suitable for the appli-

cation of semi-supervised learning solutions.

7.4 Test Reproducibility

The methods and the evaluation procedure employed in the

experiments of Sect. 6 were implemented in Python 3.7.7,

using Keras and TensorFlow 2.0 APIs. Specifically, two

distinct code packages were developed to implement the

proposed method SSOP� MTL, and the remaining ones,

respectively. All the test results in Sect. 6 can be repro-

duced by running these packages on a local copy of the

datasets described in that section. Instructions and material

for reproducing the tests can be found at https://github.

com/francescofolino/semi-supervised_outcome_prediction.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s12599-

022-00749-9.
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Camargo M, Dumas M, González-Rojas O (2019) Learning accurate

LSTM models of business processes. In: Intl. conf. on business

process management (BPM). Springer, Heidelberg, pp 286–302

Chan DY, Vasarhelyi MA (2018) Innovation and practice of

continuous auditing. In: Continuous auditing. Emerald, Bingley

Dai AM, Le QV (2015) Semi-supervised sequence learning. In: Proc

of the 29th intl. conf. on neural inform. processing systems

(NIPS), pp 3079–3087

Demsar J (2006) Statistical comparisons of classifiers over multiple

data sets. J Mach Learn Res 7:1–30

Evermann J, Rehse JR, Fettke P (2017) Predicting process behaviour

using deep learning. Decis Support Syst 100:129–140

Fazzinga B, Folino F, Furfaro F, Pontieri L (2020) An ensemble-

based approach to the security-oriented classification of low-

level log traces. Expert Syst Appl 153(113):386

Folino F, Folino G, Guarascio M, Pontieri L (2019) Learning

effective neural nets for outcome prediction from partially

labelled log data. In: 31st IEEE intl. conf. on tools with artificial

intelligence (ICTAI 2019), pp 1396–1400

123

748 F. Folino et al.: Discovering DNN-Based Outcome Predictor for Scarcely-Labeled Logs, Bus Inf Syst Eng 64(6):729–749 (2022)

https://github.com/francescofolino/semi-supervised_outcome_prediction
https://github.com/francescofolino/semi-supervised_outcome_prediction
https://doi.org/10.1007/s12599-022-00749-9
https://doi.org/10.1007/s12599-022-00749-9
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


French RM (1999) Catastrophic forgetting in connectionist networks.

Trends Cogn Sci 3(4):128–135

Garcia S, Herrera F (2009) An extension on ‘‘statistical comparisons

of classifiers over multiple data sets’’ for all pairwise compar-

isons. J Mach Learn Res 9:2677–2694

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT,

Cambridge

Hashmi M, Governatori G, Lam HP, Wynn MT (2018) Are we done

with business process compliance: state of the art and challenges

ahead. Knowl Inf Syst 57(1):79–133

Hinkka M, Lehto T, Heljanko K, Jung A (2018) Classifying process

instances using recurrent neural networks. In: Conf. on business

process management (BPM), pp 313–324

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural

Comput 9(8):1735–1780
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