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Abstract This paper reports on a design science research

(DSR) study that develops design principles for ‘‘green’’ –

more environmentally sustainable – data mining processes.

Grounded in the Cross Industry Standard Process for Data

Mining (CRISP-DM) and on a review of relevant literature

on data mining methods, Green IT, and Green IS, the study

identifies eight design principles that fall into the three

categories of reuse, reduce, and support. The paper

develops an evaluation strategy and provides empirical

evidence for the principles’ utility. It suggests that the

results can inform the development of a more general

approach towards Green Data Science and provide a suit-

able lens to study sustainable computing.

Keywords Green Data Science � Green IT � Green IS �
Data mining � Energy efficiency � Energy-saving � Design

science research � Design principles

1 Introduction

The use of computing power, coupled with the unprece-

dented availability of data, provides ample opportunity to

save energy and improve energy efficiency (Gelenbe and

Caseau 2015). At the same time, the collection, storage,

processing, and application of data constitute an increas-

ingly relevant source of energy consumption and associ-

ated carbon emissions. In 2018, data centers were

estimated to consume about 205 TWh or 1% of energy

worldwide (Masanet et al. 2020), corresponding to the

energy produced by about 100 nuclear power plants.

Data mining is at the core of data science. It contributes

to this consumption and associated emissions. Data scien-

tists use a large pool of computationally costly methods to

extract knowledge and insights from data. Data mining

refers to the processes of knowledge discovery from data

(Han et al. 2011) through activities such as collecting,

cleaning, processing, and analyzing. Using data mining is

now prevalent across various application areas as data

scientists have increasing amounts of data originating from

multiple data sources at their disposal. Data mining is also

one of several processes used in decision analytics to for-

mally analyze and support important managerial decisions

(Suhl and Voss 2014). Systems relying on learning from

data are rapidly gaining importance. The International Data

Corporation (IDC) predicts an annual growth of data

beyond 20% from 2020 to 2025.1

The existing literature on data mining in general (e.g.,

Aggarwal 2015) and data mining processes in particular

(e.g., Kurgan and Musilek 2006) partially addresses com-

putational and storage efficiencies, such as data reduction

and approximate algorithms. Van der Aalst (2016) uses the

term ‘‘Green Data Science’’ to describe technological

solutions that allow to mitigate the effects of data science

on the social environment caused by ‘‘unfairness, undesired

disclosures, inaccuracies, and non-transparency’’ (p. 9).
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Existing literature has also attended to the role of data, data

storage, and data analytics from an environmental per-

spective, e.g., by identifying performance metrics for green

data centers (Wang and Khan 2013) or addressing the

energy efficiency in data center networks (Bilal et al. 2014;

Wang and Khan 2013). Still, to the best of our knowledge,

we are missing insights into ways by which data scientists

can reduce the environmental impact of their practices

across their lifecycles. Such knowledge, however, is

becoming increasingly important as the use of data inten-

sive methods becomes prevalent across industries. Fur-

thermore, Hedman and Henningsson (2016) have shown

that green initiatives in organizations result from a bottom-

up process by individuals such as data scientists. Like

Information Systems (IS), data science is also highly

interdisciplinary, i.e., a data scientist needs both technical

knowledge and business understanding. Thus, a data sci-

entist might be stereotypical for IS and interesting to focus

on. She might be primed as a ‘‘human information sys-

tem,’’ i.e., a person with socio-technical skills acting within

an organization collecting, processing, and distributing

information. In this study, we thus seek answers to the

following research question:

How can data scientists implement greener data

mining processes?

To this end, we conducted a design research (DSR)

study that develops and evaluates design principles for data

scientists to implement green (i.e., environmentally sus-

tainable) data mining processes. In the context of envi-

ronmental sustainability, IS scholars have called for

actionable solutions that reduce energy consumption and

combat climate change (Gholami et al. 2016). Furthermore,

sharing data on ‘‘what works and what does not ‘‘ (Melville

2010, p.2) has been called for in the context of sustain-

ability more than ten years ago, and it is still recited in

current calls for action (Watson et al. 2021). Our design

principles and their evaluation contribute to addressing

these calls.

Design principles (Gregor et al. 2020) are a form of

nascent design knowledge. They can contribute to the

development of a more general design theory of Green

Data Science (Gregor and Hevner 2013). We use the Cross

Industry Standard Process for Data Mining (CRISP-DM)

(Wirth and Hipp 2000) as the overarching framework for

the development of these design principles. It is the most

widely used process for data mining, which we can attri-

bute to its flexibility – the model covers a wide range of

data mining projects from different domains. At the same

time, it is not too generic and thus provides sufficient

guidance. Making decisions about a specific data science

process requires the data scientist to explore a vast problem

space as she chooses from a wide variety of methods. She

needs to make decisions about data preparation, modeling,

evaluation, and deployment. A set of design principles can

assist her in traversing this problem space and in identi-

fying feasible solutions efficiently and effectively. We

hope to provide a set of foundational principles along with

a first evaluation that can guide further research. Devel-

oping a first set of design principles provides an essential

step for developing the emergent field of Green Data

Science.

We will proceed as follows. We first give an overview

of related literature on data mining as well as Green

Information Systems (Green IS) and Green Information

Technology (Green IT). We then describe our research

methodology. Next, we construct a set of principles for

Green Data Mining grounded in a review of the literature.

We develop an evaluation strategy, provide empirical

evidence of the principles’ utility, and highlight general

issues regarding the evaluation of such design principles.

We then discuss our principles and highlight their impli-

cations for research and practice. We conclude by elabo-

rating on limitations and future work.

2 Research Background

We begin by describing typical activities in a data mining

process that involve energy usage. We then describe how

our work relates to the existing discourse on Green IS,

Green IT, and Green Software.

2.1 The Data Mining Process

Various conceptualizations of data mining processes

(Kurgan and Musilek 2006) and machine learning pro-

cesses exist (Amershi et al. 2019), most of which share

common phases. CRISP-DM (Fig. 1) is the most widely

known and practiced model, addressing business and data

understanding, data preparation, modeling, evaluation, and

deployment (Wirth and Hipp 2000). The business under-

standing phase clarifies project objectives and business

requirements, which the data scientist then translates into a

data mining problem such as clustering or classification

(Aggarwal 2015; Han et al. 2011). Data understanding

requires initial data selection or collection. The data sci-

entist first analyzes data in an exploratory fashion to

understand it in the business context. The exploratory

analysis supports the development of hypotheses by iden-

tifying patterns in the data (Behrens 1997). This step allows

the data scientist to get first insights as well as to identify

data quality problems. Data preparation includes using raw

data to derive data to be fed into models. Activities include

data selection, transformation, and cleaning. The data sci-

entist may have to prepare the data separately for each
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model. Modeling involves identifying suitable models as

well as selecting and adapting a model, e.g., by optimizing

its parameters. Computational model evaluation is part of

the model selection process. No clear consensus exists

about which model is best for a task, as indicated by the

‘‘no free lunch’’ theorem, stating that no algorithm out-

performs all other algorithms on all datasets (Wolpert

1996). Consequently, the data scientist often cannot avoid

some form of trial and error. The model choice depends on

many factors such as data characteristics (dimensionality,

number of observations, structuredness), data mining

objectives (need for the best possible expected outcome,

need to explain results), and cost (focus on minimum

human effort to build or operate). From the perspective of

Green Data Science, the data scientist also assesses per-

formance in terms of energy consumption for model

training and model use, e.g., for making predictions. For

the evaluation phase, the main goal is to review all steps

involved in constructing the model and to verify whether

the final model meets the defined business objectives. The

model that best meets the evaluation criteria is deployed.

Deployment ranges from fabricating a report presenting the

findings in an easy-to-comprehend manner to implement-

ing a long-running system. Such a system might learn

continuously while performing a prediction task.

2.2 Green IS, Green IT, and Green Software

Analyzing data mining processes from a sustainability

perspective is subject of the fields of Green IS, in particular

the subfield of Green Software (Green SW) and Green IT.

Green IT concerns itself with energy efficiency and

equipment utilization of information technology through-

out its lifecycle (Watson et al. 2008). Relevant topics

include computational methods (Albers 2010), their

implementation in software (Capra and Merlo 2009; Hindle

2016), hardware components of computers (Hsu et al.

2005; Roy et al. 2013), data centers (Molla and Cooper

2014), cloud computing (Gelenbe and Caseau 2015; Mal-

hotra et al. 2013), and parallel data processing for big data

(Goiri et al. 2012; Jin et al. 2017). Data centers (Molla and

Cooper 2014) and their hardware as well as cloud plat-

forms provide the necessary infrastructure for data scien-

tists but are themselves not the subject of study in this

work. Practices of (green) data scientists, as well as their

preferred methodology, might inform the design of green

data centers and hardware in general, e.g., green data

centers might make common algorithms used in green data

mining readily available or improve their energy efficiency

through hardware and algorithm co-design. Our work

relates to the type of Green SW that aims at software

consuming less energy to run and being created by using a

process that saves resources and reduces waste (Taina

2011). Data science differs from software engineering in

that it is more computationally intensive since it relies on

learning from or mining large amounts of data. Its out-

comes such as models are often narrower in scope than

software, i.e., a model is typically part of a software pro-

duct, and a model has a smaller source code base because

model behavior is learned rather than programmed.

Green IS concerns itself with the design and imple-

mentation of information systems that contribute to envi-

ronmentally sustainable organizational processes (Watson

et al. 2008). Relevant topics include sustainable procure-

ment (Brooks et al. 2010), the role of information systems

in organizational sustainability transformations (Seidel

et al. 2013), the role of information systems in supporting

more energy-efficient behavior (Loock et al. 2013), or the

generation of organizational benefits by translating envi-

ronmental strategies into Green IS initiatives (Löser,

Recker, vom Brocke, Molla, Zarnekow 2017).

Considering these key goals of both Green IT and Green

IS, our study is at the intersection of Green IT and Green

IS. First, we seek to learn about how data scientists can

improve the energy footprint of IT (in the context of data

science), and our study thus falls into the category of Green

IT. Second, data mining is an organizational practice, and

we are interested in how information systems can help

reduce the environmental impact of this organizational

practice. Our work thus also falls into the category of

Green IS. The implementation of our principles could also

be supported by an environmental management informa-

tion system (EMIS) (El-Gayar and Fritz 2006) that makes

available relevant environmental information for and of

data scientists.

Over the past years, researchers have repeatedly called

for investigations into how information systems should be

Fig. 1 Crisp DM
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designed that support environmental sustainability (Mel-

ville 2010; Seidel et al. 2017; Watson et al. 2010). Our

work contributes to the growing body of design knowledge

on how information systems should be designed for envi-

ronmental sustainability (e.g., Hilpert et al. 2013; Seidel

et al. 2018).

3 Methodology

We derive and evaluate design principles through a DSR

process consisting of five key steps: (1) identify problem;

(2) define solution objectives; (3) design and development;

(4) demonstration and evaluation; and (5) communication

(Peffers et al. 2007). We use the CRISP-DM model as well

as relevant literature on data mining methods to guide our

model development. CRISP-DM provides a general

framework that highlights key data mining stages, each of

which we aim to address by developing respective design

principles. By addressing the key elements and stages of

the data mining process, CRISP-DM serves as an analytical

kernel theory for developing design knowledge (Gregor

and Jones 2007). Kernel theory, broadly, serves as justifi-

catory knowledge in the development of design knowl-

edge2 (Gregor and Hevner 2013), such as in the form of

design principles (Gregor et al. 2020). The literature of

Green IS and Green IT provides a dual perspective that

sensitizes us towards considering both the effects of using

data mining algorithms and the outcomes of using data

mining algorithms to design and implement more sustain-

able work practices. Together, these inputs allow us to

construct a set of design principles for Green Data Mining.

Next, we briefly describe how we implemented the five key

steps of our research design.

We first identified the problem (Step 1 – identify prob-

lem). Approaches to extracting knowledge from data

through data mining are now key analytical processes in a

broad area of applications, ranging from organizational

decision making to the use of personal devices. Using these

approaches consumes energy and thus contributes to an

organization’s environmental footprint. However, we did

not find guidelines on how to consider environmental

aspects in these processes. We thus aimed to address this

problem by developing and evaluating a set of design

principles that data scientists can use to decrease the

environmental footprint of their work.

The solution objectives (Step 2 – define solution

objectives) were that the design principles should (a) target

a key element of data science processes – data mining –

and (b) should be sufficiently abstract to be applied across

contexts.

Our design and development stage ensued, consisting of

the following key activities (Step 3 – design and

development):

1. Identify general design principles to reduce the envi-

ronmental footprint of data mining practices

2. Identify the key factors that determine energy con-

sumption in data mining

3. Refine the principles using the CRISP-DM process by

investigating possibilities for reducing energy con-

sumption in relation to each factor

We limit our analysis to those aspects that data scientists

can directly influence, including the choice of data, its

representation, and processes and techniques the data sci-

entist uses throughout the data mining process. We do not

target the development of novel data mining algorithms for

specific problems or improving hardware or software,

though some of our insights might support doing so.

Our design and development stage is grounded in a

narrative literature review (King and He 2005) on Green

IT, Green IS, and data mining because our goal was to

investigate elementary factors and research outcomes

related to these research areas. Green Data Science is a

novel field. Therefore, it is more amenable to a qualitative

approach such as a narrative literature review than a more

quantitative approach detailing the current state of

research. Our focus was on using established online data-

bases to set the context of our work, i.e., IEEE Xplore,

ProQuest (ABI/INForm), AIS electronic library, and the

ACM digital library. We did not limit ourselves to journals

because scholars often present new ideas first at academic

conferences. A significant body of works, particularly in

computer science, only appear as conference articles. Our

initial search targeted to identify recent works (from 2015

to 2021) that are at the intersection of two topics: (i) energy

efficiency and reduction (in the context of Green IS/IT) and

(ii) data mining (including machine and deep learning).

Furthermore, we aimed to exclude applications of data

mining to foster sustainability as our focus is on making

data mining (and its outcomes such as computational

models) green. Since terminology differs across disci-

plines, we did not use the same search terms for all data-

bases. For the AIS electronic library and ProQuest (ABI/

INForm) we filtered using (‘‘data exploration’’ OR ‘‘data

processing’’ OR ‘‘data mining’’ OR ‘‘machine learning’’

OR ‘‘deep learning’’). In addition, we filtered the abstracts

based on (sustainability OR ‘‘green IS’’ OR ‘‘green IT’’ OR

energy), yielding 238 hits for the AIS library and 406 for

ProQuest. For the IEEE and ACM libraries, where Green

IS and Green IT are not so prevalent, we filtered the

2 Kernel theory was proposed by Walls et al (1992) as ‘‘theories from

natural science, social sciences and mathematics ‘‘ encompassed in

design theories (p. 41). We adopt Gregor and Hevner’s (2013)

perspective of kernel theories as ,,any descriptive theory that informs

artifact construction ‘‘ (p. 340).
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abstract differently, i.e., we required an abstract to include

either ‘‘sustainability OR green’’ and, in addition, ‘‘(power

OR energy) AND (saving OR reduction OR efficiency).’’

We also had a set of exclusion terms that were not sup-

posed to occur in the abstract such as grid and building or

in the full text such as wireless, cellular, cache, city,

quantum, FPGA, microarchitecture, dram, and physics.

This yielded 1055 hits for IEEE and 318 for ACM. Still,

most articles were either about applying data mining to a

problem or addressed a specific energy reduction problem,

e.g., in the context of hardware development. We excluded

most articles based on title and abstract.

We investigated the full texts of 68 articles as a starting

point to develop design principles. We identified important

concepts through open coding (Wiesche et al. 2017) while

we used the CRISP- DM model as a sensitizing device to

guide our analysis. That is, while we used the model’s

overall phases as pointers to what matters in data mining

processes, we were open to discovering codes that would

help us generate prescriptive knowledge about ‘‘green’’

practices within those phases. This process of coding the

literature under consideration of general data mining pha-

ses allowed us to identify ideas that then informed our

analysis and provided the foundation to extract prescriptive

knowledge, considering that our overall goal was to iden-

tify and describe design principles so that they can be

applied by a green data scientist. We could divide the codes

we identified into two broad groups, according to level of

detail. First, high level codes provided the overall theme

that was relevant for classifying codes into more abstract

categories. Low level codes captured more detailed insights

related to specific methods that mattered for a certain

design principle. These codes thus captured the value of a

method, e.g., in terms of energy savings and applicability,

and often helped us refine the overall theme, for instance,

by providing important ideas of the method. For factors

related to energy consumption, we looked for various direct

and indirect costs in the context of data mining and then

reflected on the extent to which they relate to energy costs.

For example, literature identified in our initial search

mentioned labor costs as a financial cost, which caused us

to investigate the relationship between labor and energy,

e.g., how much energy a human consumes over time.

The final principles and factors related to energy con-

sumption resulted from multiple rounds of searching (based

on forward/backward search and previously identified

concepts), coding, and further structuring of coded con-

cepts into principles and factors related to energy con-

sumption, drawing on CRISP-DM as our overall sensitizing

model. Eventually, 36 articles informed the construction of

our design principles.

In the last step (Step 4 – demonstration and evaluation)

we empirically evaluated the design principles. We mainly

discuss two evaluation cases, covering both text and image

data. The evaluation reported in this paper provides a

starting point for a research agenda for evaluating, refining,

and continuously developing prescriptive knowledge on

how to conduct green data mining.

Finally, we communicate the findings from our study

(Step 5 – communication). We contend that design prin-

ciples are an easy-to-access and appropriate way to com-

municate prescriptive knowledge about green data mining

(Gregor et al. 2020). Through sharing the derived expertise

in the form of design principles, we aim to contribute to the

cumulative creation of knowledge, specifically in the fields

of Green IT and Green IS.

4 Principles of Green Data Mining

This section identifies factors determining the ecological

footprint of data mining and develops a set of design

principles that data scientists can apply to reduce this

footprint. We thus apply general ideas related to sustain-

ability and Green IT (Murugesan 2008; Watson et al. 2010)

and Green SW (Calero and Piattini 2015) to the context of

Green Data Mining.

In a first step, we identified three general practices of

greening data science approaches – reusing, reducing, and

supporting (Fig. 2). We derive them from an analysis of the

stages and associated practices of CRISP-DM as well as

from the general idea that environmental sustainability

requires us to consider the source function of any activity

in terms of renewable and non-renewable resources that

provide input to that activity (Goodland 1995). The cate-

gories of reusing and reducing impact the source function –

and thus also the required computation and unwanted

emissions – by decreasing the required energy for gener-

ating data and models and for computing. Finally, support

relates to the application of resources to allow other data

scientists to implement more environmentally friendly

practices. Examples are data and model sharing. The idea

of reuse, reduce, and support (i.e., sharing of knowledge)

has also been discussed for specific cases in works on

Green IT (Löser 2013).

In the second step, based on these three general-level

practices, we identified key factors for energy consumption

in data mining (Table 1) related to the CRISP-DM process

and definitions of energy consumption (Chen et al. 2011).

We derived these factors by investigating the constraints

under which data scientists work and their choices when

they follow the CRISP-DM process by analyzing existing

literature, i.e., these factors are synthesized from the

literature.

A data scientist does not control all factors relevant to

energy consumption (Table 1). Data scientists typically
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have to use given hardware and implement a project

according to the specification provided by business. Data

scientists can influence the energy consumption of data

mining processes by choosing computational methods, data

sets, and models and structuring their work – all of which

determine energy consumption.

Model performance, i.e., model accuracy and inference

time to make predictions, might also influence energy costs

in a more contrived way. A ‘‘green model’’ might trade

prediction accuracy for energy consumption (Han et al.

2016; Li et al. 2017), leading to lower electricity usage due

to less computation. At the same time, prediction errors can

cause additional energy consumption, which only becomes

visible upon model deployment. For example, consider an

image recognition system that does not detect a defective

part. A customer might return a defective part, leading to

additional work associated with carbon emissions. Rework

could have been avoided by immediately detecting the

defect. Energy costs (due to rework) might also depend on

the type and magnitude of the error – analogous to the lost

value due to an incorrect decision as articulated in the

expected value framework (Provost and Fawcett 2013).

A human in an industrial nation such as the US or

Germany consumes more than 100 kWh per day (Snurr and

Freude 2021). Working time by data scientists (and, thus,

energy costs) might rise because considering environmen-

tal aspects in a data mining project poses an additional

workload and leads to larger complexity, thereby increas-

ing the data scientist’s cognitive load. While we shall

discuss such tradeoffs, we acknowledge that the nature of

the impact of tradeoffs is highly problem specific.

Furthermore, energy costs vary across time, as shown in

Fig. 3. Costs in the development phase (including the data

understanding, preparation, modeling, and evaluation

phases of CRISP-DM) are often characterized by high

computational load due to training (many large) models

(Strubell et al. 2020). However, energy costs are highly

project specific. Computational energy costs can vary

strongly during deployment, for example, energy costs for

deployment could be zero if the project’s outcome is

insights from data (rather than a deployed model). Still,

they could be much higher than energy costs during

development if aggregated, but also per unit of time.

Typically, models require updates from time to time

(Tsymbal 2004). Updates are commonly triggered by a

deterioration of model performance if the data distribution

shifts over time (concept drift) or due to the availability of

better models and more data that can improve performance.

Fig. 2 Illustration of key

practices of reuse, reduce, and

support

Table 1 Factors related to energy consumption in data mining

Factor Subfactors

Project objectives and execution Performance specification; Make, Reuse, Share

Labor (energy used by data scientists) Energy to conduct the entire project; Energy to implement design

principles for green data mining

Model performance (energy costs such as rework due to model errors or

waiting for model outputs)

Accuracy; Inference time

Data Quantity; Quality; Representation; Accuracy; Data acquisition

method; Data storage

Computation (analysis) Structuring of computation; Choice and training of models

IT infrastructure Hardware, e.g., CPU, GPU, Storage

Fig. 3 Exemplary energy costs over time, i.e., across the project

lifecycle, depending on direct costs such as computation and labor of

data scientists as well as indirect costs such as model errors. Energy

costs are highly project specific

123

70 J. Schneider et al.: Reuse, Reduce, Support: Design Principles for Green Data Mining, Bus Inf Syst Eng 65(1):65–83 (2023)



The energy consumption-related factors (Table 1) and

the three general practices (Fig. 2) provide the conceptual

foundation for our design principles. We structure the

presentation of the design principles along these three key

practices. Table 2 provides an overview. While the data

scientist might have limited control over the project spec-

ification (i.e., objectives, etc.), she might have more free-

dom in controlling tradeoffs under consideration of

multiple goals. Some principles involve tradeoffs between

energy consumption and other metrics related to project

outcomes. Key decisions the data scientist can make

include decisions about data characteristics and data pro-

cessing, which provide the primary scope of the principles

(Table 2).

4.1 Design Principles of Reduce

Design Principle #1 – Reduce data

Store and process data with the minimum precision and volume needed while using a representation 

that minimizes storage and processing. 

The choice of the quantity and precision of data to be

processed is an important decision for energy usage.

Opinions about data need often change as the business

understanding evolves or as a result of the evaluation

phase. For example, a data scientist might notice that the

desired business questions cannot be addressed due to

missing attributes or due to insufficient data quantity. Next,

we describe strategies to limit the number of attributes or

observations, reduce precision, and change data represen-

tation. We detail these strategies in a set of sub-principles.

4.1.1 Design Principle #1.1 – Reduce Number of Data

Items

Models benefit from training data in a non-linear fashion

with decreasing marginal gains through using increasing

amounts of data (Figueroa et al. 2012). Therefore, reducing

the data volume can considerably impact energy con-

sumption in some scenarios but only lead to a minor impact

on other relevant metrics. Standard sampling techniques

(Stange and Funk 2015) can help reduce the amount of

data. One of the simplest but often sufficient approaches is

random sampling – choosing each data point with the same

probability without replacement. For instance, only one-

fourth of the available data was enough for a large dataset

to achieve the optimal tradeoff between accuracy and data

collecting and processing cost (Stange and Funk 2015).

Active learning (Aggarwal 2015), a more elaborate tech-

nique, seeks to acquire relevant samples for learning

incrementally. An active learner can ask explicitly for data

labels that are expected to yield maximal improvement in

learning. This is most beneficial in case such data must be

collected based on energy intense (physical) experiments.

Data valuation strategies, e.g., using data Shapley, allow

removing data that actually diminishes the accuracy of

classifiers (Ghorbani and Zou 2019). That is, removing data

can lead to both energy savings and improvements in

performance. In the context of big data, data deduplication

has been proposed to improve energy efficiency (ur

Rehmann et al. 2016). Data stream mining has also elab-

orated on instance reduction by selecting representative

samples (Ramı́rez-Gallego et al. 2017).

4.1.2 Design Principle #1.2 – Reduce Number

of Attributes

The data scientist can reduce the dimensionality using

feature selection, feature extraction, and type transforma-

tion (Aggarwal 2015; Sorzano et al. 2014). Prominent

dimensionality reduction techniques include singular value

decomposition (SVD), principal component analysis

(PCA), and simple random projections (Sorzano et al.

2014). There are also specific techniques for big data (ur

Rehmann et al. 2016) and data streams (Ramı́rez-Gallego

et al. 2017). This form of data compression typically

implies a loss of precision (Sayood 2017). A technique

might distort some instances more than others. A small

number of different samples in the original context can be

very similar in the lower-dimensional space. This can be

unacceptable for tasks such as outlier detection, where one

needs to identify a few specific data points. Other tasks

such as clustering are typically less impacted by corrupting

a few instances. Many of these techniques require that the

data scientist solves an optimization problem, a process

Table 2 Overview of design principles for green data science

Reduce

Design Principle #1 – Reduce data

Design Principle #1.1 – Reduce number of data items

Design Principle #1.2 – Reduce number of attributes

Design Principle #1.3 – Reduce size of attributes

Design Principle #2 – Reduce operations

Design Principle #2.1 – Reduce trial and error

Design Principle #2.2 – Reduce model

Reuse

Design Principle #3 – Reuse own operations, data, and models

Design Principle #4 – Reuse from others

Support

Design Principle #5 – Share data, models, and skills
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that can be computationally intensive, thus making poten-

tial energy savings case-dependent.

4.1.3 Design Principle #1.3 – Reduce Size of Attributes

Whereas discrete attribute values stem from a fixed set of

values, attributes with continuous values are stored with a

specific precision level. The data scientist can define the

precision of individual attributes and the set of possible

values through the attribute type, e.g., using a so-called

‘‘domain constraint’’ in database systems (Elmasri and

Navathe 2010). She can choose a data type that meets these

requirements and at the same time uses a minimal amount

of storage. For example, selecting an integer type (64 bits)

rather than a (single) byte type (8 bits) for an array of many

values leads to an increase of a factor of eight in memory

demand. Domain constraints depend on the data source, the

range of the data, and the intended application. For sensor

data, the accuracy is given by the maximum precision that

seems achievable in the following years. For financial data,

the needed accuracy might be provided by the smallest

unit, i.e., one cent or one dollar. The idea of attribute size

reduction has also been expressed as feature space sim-

plification in the context of data stream mining (Ramı́rez-

Gallego et al. 2017), where continuous attributes are dis-

cretized and placed into a few distinct categories.

Design Principle #2 – Reduce operations

Minimize model evaluations and parameter tuning. Conduct as few operations on each data item as 

possible. Each operation should be as simple as possible.  

Only the most promising parameters should be used,

models, and energy-efficient algorithms. That is, the data

scientist should only consider model candidates, parameter

settings, and optimization algorithms that are likely to yield

good results in terms of the desired metrics, including

energy efficiency. The principle addresses mainly the

modeling and deployment phase in CRISP-DM. It also

includes the data preparation and evaluation phases, where

a significant amount of overall computation might take

place. The data scientist can preselect models and algo-

rithms based on results from small data samples and the-

oretical and empirical findings. The data scientist should

also consider energy consumption due to training, usage of

models, and data storage as a model assessment metric. A

specific strategy to save energy is ‘‘early stopping.’’ The

idea is to discontinue the training of a model once it

becomes evident that it cannot be better than the best

solution found so far.

4.1.4 Design Principle #2.1 – Reduce Trial and Error

In the context of the ‘‘no free lunch theorem’’ (Wolpert

1996), no one model exists that fits all tasks. Only through

a certain amount of preferably principled experimentation

can one find the best model for a given problem.

Existing literature only gives limited advice on selecting

the best methods for a dataset without trying them on the

dataset at hand. For instance, Manning and associates

(2010) advocate using high bias classifiers in situations

where little data is available. The number of hyperparam-

eters and the effort to optimize these parameters also

impact energy consumption and performance (Thornton

et al. 2013). For optimal performance, hyperparameters

must be tuned. This can be done either manually or auto-

matically by using hyper-optimization algorithms (Luo

2016). Two common algorithms are random search

(Bergstra and Bengio 2012) and Bayesian optimization

(Snoek et al. 2012). Finding the best hyperparameters is

still an active research area. One theoretical insight is that

evident and intuitive techniques such as a systematic grid

search might be inferior even to an unstructured random

search (Bergstra and Bengio 2012) because parameters are

often un- or weakly correlated. For standard classification

problems, existing knowledge on model and algorithm

selection for a particular dataset can be provided by cloud-

based solutions, e.g., Google Cloud AutoML. AutoML

techniques (He et al. 2019) leverage a rich set of knowl-

edge from optimizing similar classification problems.

Using these techniques can help reduce the need for car-

rying out energy intensive experimentation to identify

suitable models. There are also AutoML techniques that

focus on finding models with minimal resource consump-

tion (Fedorov et al. 2019).

Furthermore, model investigation using explainability

techniques (Meske et al. 2021) can help in identifying

model weaknesses, which can be used to select or improve

models rather than relying on assessing different

hypotheses by gathering data through computation in a

trial-and-error manner.

4.1.5 Design Principle #2.2 – Reduce Model

A data scientist can optimize models for energy efficiency.

Optimizing a model for energy efficiency is often not

beneficial for a model serving a one-time decision-making

problem. But it is likely of value for models that are

intended for repeated use. For example, Han et al. (2016)

showed energy savings of more than a factor of 1000 for

deep learning networks using model compression. While

the optimizations in their work might be beyond the

capabilities of an ordinary data scientist due to their reli-

ance on low-level hardware knowledge, other methods are

relatively easy to implement but can still yield considerable

gains. For instance, eliminating neurons with minor con-

tributions to neural networks can save more than 30% (Li

et al., 2017). For deep learning models, one can store
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internal state representations at a low precision with

appropriate rounding strategies, leading to only a minor

loss in performance (Gupta et al. 2015; Hubara et al. 2016).

One can also apply knowledge distillation to train a small,

energy-efficient model based on an ensemble of large

models with little performance loss (Goel et al. 2020).

Models apart from deep learning can also be optimized,

e.g., Kumar et al. (2020) showed a reduction of about

14.4% in energy at the cost of up to 0.48% in accuracy

using automated code optimization of data mining algo-

rithms towards lower energy consumption.

4.2 Design Principles of Re-use

Design Principle #3 – Reuse own operations, data, and models

Reuse temporary results rather than recompute. 

Common operations should only be executed once. A

data scientist should structure computation on data so that

results of identical operations on the same data during

preparation and modeling are reused and are thus only

executed once. The principle of factorizing out common

operations is already known, e.g., in the extract-transform-

load (ETL) process optimization for data warehouses

(Vassiliadis 2009), but also in the context of low-level

implementations of deep learning (Kwon et al. 2019). In

ETL processes, it can be reasonable to store a version of

pre-processed data after the data scientist performs general

transformation and cleaning steps. Storing intermediate

results is also an integral part of the distributed data pro-

cessing for map-reduce jobs. In both cases, the goal is fault

tolerance rather than energy optimization. Writing to and

reading data from a persistent medium such as a hard drive

might require more energy than (re-)computing results.

Therefore, partial results should primarily be stored when

the results stem from complex operations and are reused

frequently.
Design Principle #4 – Reuse from others

Reuse existing knowledge, data, and models from third-party sources. 

The data scientist might control ‘‘make-or-buy’’ and

‘‘make-or-reuse’’ decisions. The principle is of primary

concern for the modeling phase. It also bears relevance for

the data preparation and understanding phases, when the

data scientist makes decisions about what data is needed.

For example, a data scientist could choose to acquire data

from social media channels such as Twitter or Facebook

and analyze it herself for marketing purposes. She could

also acquire models (i.e., software) to conduct the analysis

or consult an external company. From an environmental

perspective, one might prefer outsourcing if the contractor

is more energy-efficient in extracting the demanded infor-

mation, e.g., because of their prior experience and spe-

cialization or more energy-efficient infrastructure. At a

global scale, outsourcing data analysis can involve less

computation and save energy. But even if outsourcing is

not an option, the data scientist might still leverage

empirical and theoretical knowledge made available by

others.

Existing theory on data mining algorithms provides

some, though limited, guidance. Researchers have dis-

cussed models that describe the energy efficiency of sys-

tems and algorithms from different perspectives, such as

power management (Albers 2010), energy per low-level

operation (e.g., low-level operations per Watt (Hsu et al.

2005), or involving hardware components such as CPUs

and memory (Roy et al. 2013). However, data scientists

usually work on a higher level of abstraction than consid-

ering individual hardware components and low-level CPU

instructions. Theoretical computer science analyzes algo-

rithms in terms of running time: the count of abstract,

higher-level operations needed to solve a task. The notion

of time complexity can be applied to a single computer and

a cluster of computers, taking into account costs for com-

munication and idling (waiting for work). For many data

mining models, the number of parameters (i.e., model

capacity) correlates with time complexity and, thus energy

consumption. Theoretical bounds might be coarse and

derived for worst-case behavior limiting their practical

relevance.

It is generally preferable to adjust existing models

rather than to develop models from scratch. The data

scientist can reuse knowledge or parts from existing

models trained for a specific task using a technique called

‘‘transfer learning’’ (Lu et al. 2015; Pan and Yang 2010).

For example, deep learning networks can benefit from

reusing parameters or layers of an already-trained network

(Bengio et al. 2014) to reduce time (and energy con-

sumption) spent on developing a new model. Selecting an

initial model that likely performs well based on perfor-

mance metrics such as accuracy can be done, for instance,

based on academic publications (Caruana and Niculescu-

Mizil 2006).

To the best of our knowledge, a thorough comparison of

learning algorithms for model parameters concerning

energy-related concerns does not exist. Some works pro-

vide empirical results for running time of a few models,

such as in the field of density-based clustering (Schneider

and Vlachos 2017). Running time seems to be a viable

surrogate metric for measuring energy consumption.
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4.3 Design Principle of Support

Design Principle #5 – Share data, models, and skills

A data scientist should support fellow data scientists in saving energy, e.g., by sharing (cleaned) data, 

fitted models, code of analysis and algorithms, experience, and learnings.  

Progress in the field of data science relies on publicly

available data, models, and development frameworks. This

principle applies to all phases of the CRISP-DM process.

Initiatives to make data available by research institutions

(Deng et al. 2009) and governments help create entire

ecosystems (Najafabadi and Luna-Reyes 2017). The green

data scientist should also contribute data, models, and

extensions to frameworks to encourage reuse.

A data scientist can also share her experience to prevent

others from learning through energy-consuming trial-and-

error approaches. Commonly, data scientists share knowl-

edge on dedicated Internet platforms for Q&A, and repu-

tation schemes can incentivize this behavior (Khansa et al.

2015).

5 Evaluation

This section describes our evaluation strategy and provides

empirical evidence for the design principles.

5.1 Evaluation Case Description

We use two scenarios covering two different types of data

and models to evaluate the design principles – image and

text classification. Computer vision and text mining tasks

are popular in academia because of their accessibility as

well as high practical relevance. For instance, medical

applications include image classification to identify health

issues on MRI scans, applications in manufacturing include

assessing the quality of produced parts, and autonomous

driving benefits from identifying obstacles. Furthermore,

applying text and image classification to real-world prob-

lems has gained considerable popularity in recent years

because of much better performance through deep learning

approaches. The machine learning community typically

treats problems from the perspective that the dataset is

given, and the goal is to improve performance by finding

(or tuning) the best-performing model. This view is highly

relevant in practice (and in our evaluation). On its own, it is

too narrow in two ways: (i) it focuses only on optimization

towards performance, neglecting energy consumption; (ii)

it discusses only the modeling part in CRISP-DM, and only

for a single iteration – e.g., measures related to long-term

impact on data collection or model deployment are

neglected. Therefore, we consider model-related design

options and more general design parameters also covering

data quantity and data quality, thereby highlighting trade-

offs between performance and energy consumption as well

as strategies that might not impact performance at all but

help in preserving energy. We propose and use different

evaluation strategies for our design principles (Table 3).

Green data mining often involves a tradeoff between

performance and energy costs. We state the objective to

optimize as:

Minimize energy consumption while achieving at

least a minimum performance level.

This objective demands a minimum performance

threshold but does not necessitate improvements beyond

that threshold. Labor costs involved in creating a more

environmentally friendly setup are a secondary concern.

The above objective is adequate for initial feasibility

studies or competitive assessments to answer questions

such as ‘‘Can we build a smart service that is better than

existing services?’’ It is also suitable for models that

implement services based on Service Level Agreements

(SLA), where the goal is to avoid penalties due to the

violation of a minimum guaranteed performance level.

Next, we describe the evaluation setup, including data

and models, and then detail the design principles’ evalua-

tion according to Table 3.

5.1.1 Data

We used images from a public dataset, the (tiny)-Ima-

geNet.3 This data set consists of images of 64 9 64 pixels.

We used 27,500 images from 50 classes, i.e., 22,500 for

training and 5000 for testing. We used the IMDB (Maas

et al. 2011) dataset for text data, which consists of 50,000

movie reviews and sentiment ratings (positive or negative).

We used 40,000 samples for training and the rest for test-

ing. Figure 4 illustrates the two types of data involved in

the two cases – image data (Case A) and text (Case B).

5.1.2 Models and Training

For both tasks, we employed deep learning models for two

reasons. First, they are the best-performing models for

these tasks. Second, they are also known to involve high

energy consumption. We decided to use the smallest and

simplest networks that should allow illustrating general

behavior. For image recognition, we used a visual geom-

etry group VGG-style network (Simonyan and Zisserman

2014) with eleven layers (VGG-11) and a single dense

classification layer. We used the stochastic gradient descent

optimizer for 100 epochs with a common learning rate

schedule, i.e., decaying the initial rate of 0.1 by a factor of

3 https://www.kaggle.com/competitions/tiny-imagenet.
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10 after 50% and again after 75% of all training epochs.

For classifying the textual data, we used a network pro-

vided by Kim (2014). We used the Adam optimizer with

default settings. For hyperparameter optimization we used

the Tree of Parzen Estimators as available through

Python’s Hyperopt library.

5.1.3 Hard- and Software Setup

For the software implementation, we used Google’s open-

source framework TensorFlow (Version 1.15). Our hard-

ware consisted of a server with 64 GB of RAM, 16 cores of

an AMD Threadripper 2950X CPU, and an NVIDIA RTX

TI 2080 GPU.

5.1.4 Metrics for Empirical Evaluation

Our model performance metric is accuracy. To measure

energy consumption, we considered static and variable

parts. Static energy consumption of a computer is caused

by, e.g., memory (RAM) as well as the minimum level of

operation of components (mainboard, CPU, GPU). The

variable part depends on I/O operations (hard drive usage,

network communication) and computation (CPU, GPU,

and cooling). The model we used to measure power con-

sumption hence consists of a variable part and a fixed part.

It is given by:

used power [Wh] = static power [W] � run time

[h] ? Dt [h] �
P

i variable power at time (i�Dt) [W]

For deep learning in general and in our setup, the GPU is

the most energy-consuming component – the GPU we used

can draw up to 260 W.4 It also exhibits most fluctuation

across models with different configurations and changes in

data. It should thus be considered variable. We measure

GPU power consumption in Watts using NVIDIA’s ‘‘smi’’

tool. The tool allows for a sampling interval of about

100 ms. Our AMD CPU with 32 threads remained largely

idle: only one thread was fully (100%) used for text data

and only two threads for the image data analysis. The CPU

requires about 30 W in idle mode and about 55 W in

comparable settings to ours.5 Our mainboard and RAM add

another 45 W of static power consumption. The SSD hard

drive uses about 1 W for our read-dominated usage. Any

operating system controlling the computer’s hardware also

consumes power. We verified that no process caused a

CPU or GPU usage of more than 1% by investigating

running processes before and after running data mining

algorithms. We used the server exclusively for performing

measurements related to this study.

5.2 Evaluation of Design Principles #1.1, #1.2, #2.1,

#2.2 Using Optimization

First, we describe means to obtain information on tradeoffs

between energy usage and model performance for each

Table 3 Evaluation strategies

Design

principles

Evaluation strategy Description/justification

1.1, 1.2, 2.1,

2.2 (Reduce)

Assess energy-performance tradeoffs through

empirical investigation

Understanding the impact of tradeoffs among energy use and data as well as

model-related performance metrics helps with assessing strategic questions

that require a holistic understanding, such as: ‘‘Is it worth spending energy on

model tuning, or should more data be collected?’’ They allow to predict the

outcome of measures for performance improvement and, therefore, enable

selection of measures without energy-consuming trial and error

1.3 (Reduce) Leverage domain understanding and basic

technical understanding

We demonstrate how to reduce energy costs by a more concise specification

of attribute types and their ranges

3 (Reuse) Improve reuse of computational results through

overall process inspection

Model optimization is a repetitive process with many operations being

performed anew in each iteration. We assess the benefits and effort of reusing

partial results. This resorts to understanding the processing of data and model

optimization on a higher level to identify repeated applications of the same

operations and assess whether it is beneficial to store them for reuse

4 (Reuse) Use academic and non-academic literature

covering theoretical and empirical findings

We use existing empirical works to narrow the choice of hyperparameters

related to network architecture and optimization procedures that might

otherwise require energy due to experimentation

5 (Support) Assess sharing of methods and insights with

others

Supporting others incurs effort, which poses a significant obstacle to its

application. We assess the effort to support others applying two commonly

used platforms for Q&A and sharing code and models

4 https://www.nvidia.com/en-me/geforce/graphics-cards/rtx-2080-ti/.
5 https://www.tomshardware.com/reviews/amd-ryzen-threadripper-2-

2990wx-2950x,5725-13.html.
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principle. Second, we discuss how data scientists can assess

these tradeoffs when developing (i) strategies for data

collection and processing and (ii) model optimization. The

idea is to collect measurements to understand tradeoffs

computed using energy-efficient configurations. In turn,

these measurements are used to predict model performance

and energy consumption for less energy-efficient (but more

performant) configurations.

To assess the impact of an energy-relevant design

parameter, we vary one parameter and evaluate its effects

on outcome metrics. We use these measurements to predict

behavior for non-observed parameter values and to decide

on which parameters to alter. For instance, decisions might

be between collecting more data or improving data quality.

The conducted measurements themselves are specified

in a way to keep energy consumption small. For example,

to predict the value of collecting more data, we measure

performance when using �, �, 1/8 of all available data

(rather than all data). We then predict an estimate of per-

formance when using all data and even twice as much data

as available. While we vary one parameter, the other

parameters remain fixed. We chose parameter values that

result in reduced energy consumption but are not expected

to give the best performance. That is, only 50% of the data

samples are used. This contributes to energy reduction. But

it increases inaccuracy in the estimates of model behavior

when a parameter is varied. However, since we are pri-

marily interested in a coarse understanding, some level of

inaccuracy is tolerable. Aside from altering parameters,

one might also opt for using a faster optimizer that might

not result in the best generalization behavior or discarding

data augmentation, which also requires computation and

prolongs convergence.

Our proposed procedure relies on the assumption that

model parameters exhibit predictable behavior and that

many (hyper)parameters are independent (Bergstra, and

Bengio 2012). In machine learning, the amount of data and

model size (as described by hyperparameters) exhibit

diminishing returns (Figueroa et al. 2012).

Figures 5, 6 and 7 visualize tradeoffs. Each data point is

the mean of five runs, with standard deviations indicated by

shaded areas. Note that standard deviations are often small,

i.e., barely visible. For each of these plots, we varied a

parameter related to energy consumption, i.e., related to

data (number of attributes and number of samples) and

training (number of training epochs). Figures 5, 6 and 7

show that all design parameters exhibit diminishing mar-

ginal utility on performance while (often) showing

approximately linear growth in energy consumption. It is

even possible that the utility of a further increase in a

parameter yields adverse outcomes. For instance, training

for too long can lead to overfitting of the data.

For the reduction of the number of attributes (Design

Principle #1.1 – Fig. 5), we can observe that energy con-

sumption increases in parts non-linearly when we change

the number of words. We kept the most common words to

address the task of text classification. The distribution of

words follows a power-law distribution, meaning that a few

words are very common, and the vast number of words is

rare. Thus, increasing the number of words from 2000 to

4000 has a larger impact than increasing them from 10,000

to 12,000 because the former reduces the overall dataset

size more than the latter.

Next, we leveraged tradeoffs for strategic considera-

tions, i.e., to answer questions like ‘‘Is it worth investing a

lot of energy into model tuning, or should one collect more

data or improve the data quality?’’ Let us assume that the

data scientist decides to further improve the initial models

(We shall focus on image recognition in the discussion).

Figures 5, 6 and 7 indicate that a 20% or more increase in

performance is unlikely by varying any of the depicted

parameters. We can see this through visual extrapolation in

Figs. 5, 6 and 7 or, more formally, by fitting a model using

the collected performance measurements. In this case, the

data scientist might not even try to improve the model by

hyperparameter tuning but instead fundamentally alter the

model or input data. For medium improvements of about

5–10%, neither higher image resolution nor longer training

time are likely to be sufficient. Additional data samples

yield clear improvements. Therefore, data related tech-

niques for model improvement might be highly beneficial,

including collecting more data, data augmentation, or using

a pre-trained model on a similar dataset (transfer learning).

For minor improvements of 1–3%, both increasing training

data and image resolution are feasible strategies. Higher

image resolution also implies higher energy consumption

during system operation, while increasing the number of

training samples does not impact energy costs during

operation. Doubling data roughly doubles the cost of

energy spent on training (Fig. 6). Data collection might

Fig. 4 Image data (Case A) and

text (Case B)
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also incur energy costs. Doubling image resolution leads to

an energy increase that is slightly less than double because

some parts of the model (upper layers, to be precise)

require the same amount of computation irrespective of the

input size.

Fig. 5 Impact of attribute

reduction on energy and model

performance

Fig. 6 Impact of samples

reduction on energy and model

performance

Fig. 7 Impact of training time

reduction on energy and model

performance
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5.3 Evaluation of Design Principle #1.3

We also assessed Principle #1.3 for the specification of

attributes in the context of our evaluation cases. For ima-

ges, one might reduce color depth. For example, reducing

color depth from 24 bits (* 4 Mio. Colors) to 16 bits

(* 65 k colors) saves about 1/3 of storage capacity with

little impact otherwise. Furthermore, common GPUs like

newer models of NVIDIA allow for training with reduced

precision of numeric value without compromising final

accuracy. For example, reducing from 32 to 16 bits pre-

cision is claimed to half computation time for deep learn-

ing models without negative side effects on model

performance.6 Public repositories often do not leverage this

option of reducing precision. This is surprising since it can

be implemented with less than 5 lines of code, i.e., within a

matter of minutes. While for image data, we could achieve

an energy reduction of about 45% for both training and

evaluation, for textual data, it was only about 25% for

training but 60% for evaluation. Differences were con-

firmed to be statistically significant (p-value\ 0.01) for

both datasets by using a t-test based on 10 samples, i.e.,

energy measurements of 10 models trained with and

without mixed precision. Our evaluation confirmed that

there is no degradation in performance, i.e., a one-tailed

t-test yielded p-values larger 0.2.

5.4 Evaluation of Design Principle #3

We repeatedly down sampled the data in our setup, e.g.,

from 64 9 64 pixels image size to smaller sizes. We also

frequently performed the same pre-processing on textual

data. The simplest implementation applies these operations

in every epoch anew for a total of about 50–200 times per

training a neural network. Storing the data once rather than

recomputing it can have a significant impact. We found

that for images resized to 32 9 32 pixels, energy savings

are between 0.1 and 0.5% of the overall energy spent on

training the network. One can implement storing and

loading data in a few lines of code.

Other ideas require significantly more effort to imple-

ment. For instance, during training with our image data, a

sample is modified for every usage due to data augmen-

tation. That is, an image might be slightly rotated, shifted,

etc. It might be possible to use the same (modified) sample

more than once before creating another modification.

However, this is not readily supported by our framework

(Tensorflow). Thus, it requires more implementation effort.

5.5 Evaluation of Design Principle #4

Identifying the best model requires training a model with

many different hyperparameter configurations. We select

these configurations using a hyper-optimization algorithm.

This still leaves the burden of defining adequate ranges for

hyperparameters with a data scientist. A data scientist

without adequate knowledge must specify large ranges for

each parameter, including values that could be excluded by

a more knowledgeable data scientist. Large ranges lead to a

large search space and training of models with hyperpa-

rameter configurations, which yield poor outcomes. We

assessed reducing computation by narrowing hyperparam-

eter ranges based on existing empirical works. Our evalu-

ation focused on two hyperparameters related to model

regularization. Regularization is commonly done since it

often yields significant accuracy gains. We considered

dropout and L2 regularization, which ensure that deep

learning models do not make decision based on few deci-

sion criteria by setting the outputs of some neurons to 0

(dropout) or by penalizing large weights, indicating strong

dependence on individual characteristics (L2 regulariza-

tion). The two hyperparameters, i.e., dropout rate and the

(L2) regularization constant, are lower bounded by 0. The

upper bound for dropout is 1, and for the L2 constant a

conservative bound is also 1. Thus, a data scientist might

simply use a range of [0,1] for both hyperparameters.

However, by investigating existing literature, she might

arrive at more narrow bounds that are very likely to contain

the best hyperparameters. We gained insights from the

original paper on VGG (Simonyan and Zisserman 2014)

for image classification and from the paper of Kim (2014)

for text classification. Simonyan and Zisserman (2014)

stated for the L2 constant a value of 0.0005 and a dropout

rate of 0.5, whereas Kim (2014) only used dropout with the

same rate of 0.5. An Internet search for common dropout

rates revealed that they do not seem to be above 0.7. Thus,

we narrowed the range for dropout to [0,0.8]. For the L2

constant we assumed a factor of at most 100 difference

from the original, i.e., we chose a range of [0,0.05]. But we

have no evidence that the narrow hyperparameter ranges

still contain the optimal values. If they do not, the returned

hyperparameters would most certainly be close to one of

the limits of the intervals for a parameter. Thus, a data

scientist could simply rerun the optimization with a larger

range. This demonstrates that there is little risk involved in

achieving an inferior model, but too aggressive narrowing

of hyperparameter ranges might yield higher energy con-

sumption overall.

The hyperparameter optimization algorithm was con-

figured to train 150 models with hyperparameters chosen

automatically for each trained model from the provided

ranges. The accuracy of the 150 models is shown in Fig. 8

6 https://docs.nvidia.com/deeplearning/performance/mixed-preci

sion-training/index.html.

123

78 J. Schneider et al.: Reuse, Reduce, Support: Design Principles for Green Data Mining, Bus Inf Syst Eng 65(1):65–83 (2023)

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html


for both datasets in the form of a histogram. It becomes

apparent that using large ranges containing unreasonable

values leads much more often to hyperparameter settings

that yield poor performance. In particular, for text classi-

fication strong regularization tends to render models use-

less, i.e., no better than guessing. Thus, the training of these

poorly performing models constitutes unnecessary or

wasted effort that can be avoided by narrowing hyperpa-

rameter ranges.

5.6 Evaluation of Design Principle #5

We also performed a qualitative analysis. Following Prin-

ciple #5, advocating sharing of code and models, we made

some of our code publicly available.7 While the creation of

the public repository was a matter of minutes, we spent a

few hours documenting, generalizing, and structuring the

code to make it easier to use. While sharing a code is often

a delicate issue due to intellectual property concerns and a

lack of maintenance can be a problem, contributing to

Q&A platforms such as StackOverflow to answer generic

questions is of lesser concern. We replied to 11 questions

related to data mining in 2020, which required a few

working hours. We required on average more time than the

reported median of 11 min in Mamykina et al. (2011).

About 22,000 people viewed our replies. However, it is

difficult to assess how much energy such shared knowledge

saves. As a positive return for the respondents to questions,

the platform provides the privilege to set bounties to users,

which motivates others to answer the respondent’s ques-

tions. Thus, the invested time might be beneficial beyond

saving energy.

6 Discussion

The principles we developed are a form of nascent design

knowledge (Gregor and Hevner 2013). Such knowledge is

formal enough to be applicable across contexts so that

researchers can further develop it into more abstract,

mature, and complete design knowledge, e.g., in the form

of a design theory for data mining. To move toward a

comprehensive and integrated prescriptive framework for

Green Data Mining, we will next discuss the interaction

among principles and project goals.

6.1 Interaction among Principles and Project Goals

In data mining, several conflicting goals exist, resulting in

tradeoffs such as costs vs. quality and completion time vs.

costs (Kerzner and Kerzner 2017). Following Green Data

Mining principles can positively affect project goals

because the fastest way is often the least energy-consum-

ing. Fast algorithms typically require less energy, are often

simpler, and are more interpretable and transparent but

sometimes approximate, leading to lower model perfor-

mance. Model performance is a key goal for any data

mining project. Thus, it is likely that a data scientist cannot

make compromises with respect to model performance for

the sake of energy savings due to project objectives set by

business stakeholders. Regulatory intervention or more

pressure from customers is likely needed to change this.

Similarly, sharing knowledge is generally not within the

company’s interest. Furthermore, while energy costs due to

computation seem relatively easy to measure, overall

energy costs, including costs due to lowered model per-

formance as well as the energy gains due to sharing of

knowledge, can be challenging to estimate. Furthermore,

following green data mining increases project complexity

for a data scientist. Thus, it might lead to higher labor

costs, prolonged projects, and an increase in the risk of

errors. For example, the principle of reducing often relies

on previous knowledge gathering from large experiments

by using statistical analysis and estimates. For instance,

model performance can be estimated on all data when

training only on a subset of data. Statistical estimates come

with a small risk of exceptionally large deviations.

In this light, we have critically reflected on our evalu-

ations (see summary in Table 4) as examples of possible

concrete implementations of our design principles within a

Fig. 8 Impact of

Hyperparameter Ranges (left

panel: image data; right: text):

‘‘Non-Green’’ ranges yield more

trained models with poor

performance

7 https://github.com/MBasalla/Principles-of-Green-Data-Science/.
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company in terms of energy savings, impact on model

performance, and costs to implement. We conclude that

principles #1.1, #1.2, #2.1, #2.2, all aiming to ‘‘reduce,’’

tend to lead to lower model performance. They are also

non-trivial to implement, and energy cost savings are not

guaranteed. In contrast, principles #1.3(reduce), #3(reuse),

#4(reuse) tend not to impact model performance, and they

take at most a few hours to implement with very likely,

often even large energy savings.

Thus, some of our evaluations are of immediate practi-

cal value. But going beyond the proposals and finding new

implementations of the principles is often far from trivial.

This requires a mindset that focuses on energy saving. Data

scientists must also think differently and more holistically

to adapt the given principles. They must factor in energy

costs and break with the prevalent paradigm that more data

and computation are always better. They must anticipate

the implications of project requirements for models as well

as what happens beyond model deployment, e.g., to

understand the implications of model errors for energy

costs as illustrated in Fig. 3. Data scientists need to

understand the impact of their implementation choices on

energy consumption, which is rather uncommon in data

mining. They must also be able to apply a range of

evolving techniques to implement the principles suggested

in this paper, ranging from active learning to hyperpa-

rameter optimization.

To move Green Data Mining forward we envision an

EMIS, i.e., a recommendation engine supporting a data

scientist, e.g., by suggesting energy-efficient models and

data processing analogous as done for data structures in

software engineering (Oliveira et al. 2021). An EMIS

might also support transparency of models’ energy con-

sumption to raise awareness as EnergyVis (Shaikh et al.

2021).

6.2 Contribution to Green IS / Green IT Literature

Developing prescriptive knowledge, next to explanatory

knowledge, is a key obligation in the IS field in general

(Gregor and Hevner 2013) and for Green IS scholarship in

particular, as environmental degradation requires concrete

solutions to remedy the problem (Seidel et al. 2018). With

this paper, we contribute to the emergent stream of litera-

ture on prescriptive knowledge of Green IS. We contend

that Green Data Science has two key aspects that fall into

the categories of first and second order effects (Hilty et al.

2011). First, Green Data Science needs to consider the

environmental impact of the involved resources (first order

effects). Second, Green Data Science can help design more

environmentally sustainable processes (second order

effects). Grounded in our analysis of Green Data Mining,

we define the broader area of Green Data Science as

follows:

Green Data Science is the application of methods to

extract knowledge from data that (a) seeks to mini-

mize the environmental impact of this activity and

(b) aims to leverage this knowledge to implement

more environmentally sustainable business processes

and afford more environmentally sensible decision

making.

Our study has some limitations. First, we are addressing

one specific area of data science – data mining. Still, we

contend that data mining involves a set of key data science

practices. Future research can thus seek to extend our

principles towards a more general understanding of data

science. Our principles can also be enhanced beyond the

scope of a data scientist. For example, a company might

provision computing infrastructure to data scientists only

when green energy (e.g., from solar panels or wind) is

amply available (Niu et al. 2016), or a company might

introduce incentive mechanisms for being green.

Deriving principles from literature also has its limita-

tions since it does not allow to foresee or propose princi-

ples that cannot be derived from considered literature.

Thus, our principles are likely non-exhaustive. For exam-

ple, we did not include principles such as ‘‘design for

maintainability and longevity of a model’’ since there was

Table 4 Evaluation summary

Design

principles

Summary of evaluation

Reduce The evaluation demonstrated that understanding existing tradeoffs among performance metrics, input, and model parameters

can improve model performance in a principled, energy-efficient manner by focusing on promising parameters and replacing

trial and error through a more informed approach. Tradeoffs can be assessed in an energy-efficient manner by reducing all

energy contributing parameters to the extent that still suffices to make reliable predictions. Attribute specification is arguably

the easiest strategy to implement, with considerable potential for energy saving

Reuse and

support

Reuse of results that are computed multiple times was shown to save energy with little effort. (Re)using theoretical insights is

often not possible since they are scarce. Empirical knowledge can be helpful to limit the parameter search space and start from

promising model architectures. While sharing insights is technically easy, it also requires time for a data scientist, and it might

not be in the interest of a company
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no literature with content specific to data mining but only

for software.

We conducted the evaluation of the principles based on

only two cases. Still, it is important to highlight that we

grounded the principles on findings from previous literature

that have been empirically tested. We thus build upon

previous works. Further, we have designed a technical

setup, evaluated principles empirically, and provided some

learning based on our analysis. We have thus prepared the

ground for more research on evaluating, refining, and

extending our set of design principles.

The field of data mining is quickly evolving. Thus, while

we believe that our principles are generic enough to be of

long-term value, details of our technical evaluation are

likely to become outdated within a few years.

Our work is limited to those actions a green data sci-

entist can take during her work. As such, it does not deal

with all possible aspects that can be supportive of Green

Data Mining but are not part of the daily routine of the

green data scientist. For instance, it does not consider the

development of tools facilitating the implementation of our

principles. Besides, our focus is on the data scientist rather

than organizational aspects, such as incentivization and

adoption barriers of Green Data Mining practices. Our

work provides a foundation for future studies using

empirical cases involving data mining practitioners that can

refine, further develop, and deepen our findings.

7 Conclusion

Environmental sustainability, and climate change in par-

ticular, are key societal challenges of our time. As we live

in the digital age where more and more data are available,

it is crucial to understand how one can design the processes

involved in collecting, storing, processing, and extracting

knowledge from this data in an environmentally responsi-

ble way and use this data to make better, more environ-

mentally friendly decisions. While the second field yields

greater potential, we deem it necessary to attend to

immediate impacts of data science, which is where the

present study contributes.
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