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Highlights 

• Extended skew-normal distribution is used to model the statistics of coherent MPI 

• Good agreement between coherent MPI histograms and the ESN statistics is obtained 

• The impact of coherent MPI on the performance of PAM signals is studied 

• An MPI level of -24 dB is estimated for achieving a 1-dB Q-penalty in PAM-4 systems 

 

 

Abstract 

We statistically model the coherent multipath interference (MPI) using an extended skew-
normal distribution, with the results showing a good agreement with published experimental 
data. This distribution is very flexible and permits to model data with large skewness 
values, which is a typical feature in coherent MPI histograms. Furthermore, the developed 
model was applied to estimate the impact of coherent MPI on PAM-4 systems, with the 
results showing a 1-dB Q-penalty for an MPI level of -24 dB and a bit error ratio of 10-3. 
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1. Introduction 

Multipath interference (MPI) is present in a great variety of situations encountered 
in optical networks and is originated whenever multiple attenuated replicas of a 
transmitted optical signal propagate over different optical paths and reach the receiver 
with different delays [1]. The MPI is said to be coherent if the differential delay, i.e. the 
difference in propagation time between the signal and its replicas, is much smaller than 
the laser source coherence time; otherwise it is considered to be incoherent [2]. 

In the coherent regime the optical fields propagating over the different paths are 
correlated, and the amplitude of the received optical power in the presence of coherent 
MPI has random fluctuations with time scales that typically are much longer than the 
symbol period. This phenomenon is quite similar to the multipath fading present in 
wireless communications [1] and, in the same way, it can be a source of burst errors. On 
the other hand, the time scales of the power fluctuations due to incoherent interference 
are much shorter than the symbol period and, as a consequence, this impairment is 
inherently a source of random errors. 

The sources of coherent MPI are diverse, ranging from light leakages in WDM 
optical network nodes [3], to mode coupling in both bend insensitive fibers [4] and few 
mode fibers [5]. This impairment is particular relevant when the last type of fibers are 
used in quasi-single-mode operation to explore the large effective area provided by them 
[5]. 

A fundamental question, in order to model and evaluate the impact of this 
impairment, is how to statistically model those slow fluctuations relatively to the symbol 
period. Contrary to wireless communications, where a large number of statistical models 
is available to deal with fading [6], in optical communications the research in this subject 
is incipient and only the Rice and Beta distributions have been proposed in the literature 
[4, 7]. However, it can be shown that the Rice distribution fails to accurately model the 
experimental data previously published [3, 4], while the Beta density, although providing 
a very good fit for the sample data collected from MPI measurement in the context of bend 
insensitive fibers [4], leads to very poor estimates for the results related to the WDM 
nodes [8]. These last results were obtained considering a coherent MPI emulator with 
eight crosstalk paths, all of them with equivalent lengths shorter than the coherence 
length of the laser source, and the results show a strong asymmetric histogram with heavy 
left tails. In this work, we explore the use of the skew-normal (SN) distribution [9] to 
statistically model these results and apply a moment matching method [10] to accurately 
estimate the distribution parameters from the experimental published data [3]. This 
distribution, in particular the extended skew-normal (ESN) distribution, is more suitable 
than both the Rice and Beta distributions, to model data with large skewness values. 

Furthermore, we apply the ESN statistics to evaluate the bit-error ratio (BER) of a 
four level pulse amplitude modulation (PAM-4) system in the presence of coherent MPI. 
PAM systems are having a renewed interest from the scientific and industrial communities 
both in datacenter [11-13] and optical access [14] applications. In the first type of 
application, this modulation scheme can be used for intra-data center interconnections 
[12], where the short distances involved make the direct detection systems based on PAM 
signals more attractive than the ones based on coherent detection, as well as for optical 
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datacenter multicasting [13]. In datacenter interconnection applications MPI is originated 
from multiple reflections due to poor connectors. This interference is inherently incoherent 
and its impact on PAM signals has already been analyzed in the literature [15]. However, to 
the best of our knowledge, no similar studies have been published for coherent MPI, and in 
this way, this work intends to fill this gap. We note that coherent MPI can be originated, for 
example, inside of the optical switches used in optical multicasting or in bending-
insensitive fibers used in optical access networks. 

In this paper, in Section 2, we present the coherent MPI model and in Section 3 we use 
the ESN distribution, in our model, to statistically characterize the MPI. We then compare 
our analytical results with the experimental data reported in [3]. In Section 4, we apply the 
referred ESN distribution to model the coherent MPI in a PAM system and assess the impact 
of this impairment in a PAM-4 system by computing the BER and the Q-penalty for various 
values of the MPI. Finally, in Section 5, some concluding remarks are drawn. 

 
 

2. Coherent MPI modeling 

Consider an optical received signal which is impaired by coherent MPI due to the 

presence of 𝑁 multiple propagation paths, and assume that associated with the i-th path 

there is the attenuation factor 휀𝑖
1 2⁄  and the differential propagation delay 𝜏𝑖 measured 

relatively to the signal, in such a way that the MPI level is defined as  

MPI = ( ∑ 휀𝑖
1

2⁄𝑁
𝑖=1   )2. 

In this scenario and considering that the signal has an arbitrary modulation format, 

the complex electrical field of the received signal during the symbol interval [0, 𝑇] can be 
represented as 

             𝐸𝑠(𝑡) = √𝑃𝑜𝑎𝑠(𝑡)exp[𝑗(2𝜋𝜈𝑠𝑡 + 휃𝑠(𝑡) + 𝜙𝑠(𝑡))]  

+ ∑ √휀𝑖𝑃𝑜𝑎𝑠(𝑡 − 𝜏𝑖)exp[𝑗(2𝜋𝜈𝑠(𝑡 − 𝜏𝑖) + 휃𝑠(𝑡 − 𝜏𝑖) + 𝜙𝑠(𝑡 − 𝜏𝑖))]𝑁
𝑖=1    (1) 

where 𝑃𝑜 denotes the average received optical power in the absence of MPI, 𝜈𝑠 the signal 

frequency, 𝜙𝑠(𝑡) the laser phase noise, 𝑎𝑠(𝑡) the signal amplitude restricted to the 

interval [0, 𝑇] (zero elsewhere) and 휃𝑠(𝑡) the signal phase. The first term of the right hand 
part of Eq. (1) is the field corresponding to the main signal, while the second term is due 
to the MPI contributions. The behavior and properties of these contributions depend on 

the laser source coherence time, 𝜏𝑐𝑜ℎ. 
The MPI is called coherent when the differential propagation delay is smaller than 

the laser source coherence time, i.e. 𝜏𝑖 < 𝜏𝑐𝑜ℎ, and 𝜏𝑖 is much less than the symbol period, 

i.e. 𝜏𝑖 ≪ 𝑇, [7]. The first condition implies that 𝜙𝑠(𝑡) is correlated with 𝜙𝑠(𝑡 − 𝜏𝑖) and, so, 

it is reasonable to assume that 𝜙𝑠(𝑡 − 𝜏𝑖) ≈ 𝜙𝑠(𝑡). Furthermore, the second condition, 

𝜏𝑖 ≪ 𝑇, permits to approximate 휃𝑠(𝑡 − 𝜏𝑖) by 휃𝑠(𝑡) and 𝑎𝑠(𝑡 − 𝜏𝑖) by 𝑎𝑠(𝑡). It is also 

assumed that the signal and its replicas are co-polarized. Therefore Eq. (1) can be 
rewritten as [7], 

 

𝐸𝑠(𝑡) = √𝑃𝑎𝑠(𝑡)exp[𝑗(2𝜋𝜈𝑠𝑡 + 휃𝑠(𝑡) + 𝜙𝑠(𝑡))]    (2) 

with 
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𝑃 ≈ 𝑃𝑜|1 + ∑ √휀𝑖 exp( − 𝑗𝜑𝑖)
𝑁
𝑖=1 |2    (3) 

 
where 𝜑𝑖 = 2𝜋𝜈𝑠𝜏𝑖 is the phase offset of the i-th interfering field due to multipath 
propagation relative to the signal. The phase offset varies in a random manner, as a 
consequence of a number of uncontrollable disturbances, like drifts in the source central 
frequency, variations in the differential delay coming from mechanical and thermal 
fluctuations, as well as from variations in the refractive index, when the MPI is originated 
from mode coupling. In this case, P is no longer constant and it is subject to slow 
fluctuations of random nature. Owing to the correlation between the optical fields, the 
random variables 𝜑𝑖 are not independent, as it is the case of incoherent crosstalk [7]. In 
this last case, the summation in Eq. (3) corresponds to the sum of 𝑁 independent and 
identically distributed (i.i.d.) random variables, and assuming the same attenuation factor 
for all the interferers it can be rewritten as  

 

𝑃 ≈ 𝑃𝑜 + 2𝑃𝑜√𝑀𝑃𝐼𝑋                     (4) 

where 𝑋 is a random variable given by 

𝑋 =
1

𝑁
∑ 𝑐𝑜𝑠𝑁

𝑖=1 𝜑𝑖       (5) 

 
where 𝜑𝑖 is a uniformly distributed random variable over the interval [0, 𝜋] and 𝑋 tends to 
a Gaussian distributed random variable with zero mean as the number of interferers 
increase. In the presence of correlation, the i.i.d. assumption no longer holds and as a 
consequence the statistics of 𝑋, as well as the statistics of the power fluctuations are 
difficult to predict and so the problem of finding an adequate probability density function 
(PDF) to describe these random fluctuations is not tractable in an easy way. Our approach 
to face this problem is to estimate the PDF of the MPI from the experimental data given in 
[3]. For that purpose, we choose a sufficiently flexible distribution, like the extended 
skew-normal (ESN) [9] to model that data, and a moment matching method to estimate 
the distribution parameters [10]. Before proceeding with the statistical characterization of 
the instantaneous received optical power P we rewrite Eq. (4), in a more general form [5], 
as 

 
𝑃 = 𝑃0 + Δ𝑃(𝑋 − 휂𝑋) ,     (6) 

 
where 𝑋 is a continuous random variable to be characterized in the next section, 휂𝑥 is the 

mean of  𝑋 and ∆𝑃 = 𝑏𝑃𝑜√MPI, with 𝑏 being a constant to be estimated in the next section, 
which accounts for the fact of the random variables in Eq. (3) not being anymore i.i.d.  

It is worth to note that the condition 𝜏𝑖 ≪ 𝑇 can impose a limit on the maximum 
transmission rate for which this model can be applied. As a consequence, the differential 
delays between the signal and its replicas must be very small in the sense that can only be 
observed when using integrated OXCs (optical cross-connects) [16]. As an example, for a 
baud rate of 25 Gbaud (T=0.04 ns) the differential lengths between the signal and its 
replicas must be much smaller than 8 mm. 
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3. Statistical distribution used for MPI characterization 

The SN distribution is a generalization of the normal distribution to which a shape 
parameter (α) has been added to regulate the skewness of the distribution. On the other 
hand, the ESN distribution is obtained from the SN distribution by introducing a new 
parameter τ, called truncation parameter [17], and has the advantage of permitting to 
model data with larger values of skewness than the SN distribution [9]. The effect of the τ 
is not independent of the one of α, and both the parameters influence the skewness as well 
as the kurtosis of the distribution. In order to get some insight into the problem let’s 
consider a continuous random variable 𝑋 having the following PDF [9]: 

 

𝑓𝑋(𝑥 ; 𝛼 ; 𝜏) = 𝜑(𝑥)
𝛷(𝜏√1+𝛼2+𝛼𝑥)

𝛷(𝜏)
 ,    (7) 

 
where 𝜑(𝑥) is the standard normal density function, and 𝛷(𝛼𝑥) is the cumulative 
distribution function of 𝜑(𝑥) evaluated at 𝛼𝑥. Therefore, the random variable 𝑌 = 𝜉 + 𝜔𝑋, 
with location parameter ξ, the scale parameter ω, has an ESN distribution with the 
parameters (ξ, ω, α, 𝜏), which can be described as 𝑌~ESN(𝜉, 𝜔2, 𝛼, 𝜏). The first four 
moments of the random variable 𝑌, the mean, variance, skewness and excess kurtosis (i.e. 
the distribution kurtosis minus 3, which is the kurtosis value from the Gaussian 
distribution) can then be found, respectively, as follows [9, page 39], 
 
 

휂𝑌 = 𝜉 + 휁1(𝜏)𝜔𝛿 ,      (8a) 
 

𝜎𝑌
2 = 𝜔2{1 + 휁2(𝜏)𝛿2} ,     (8b) 

 

𝛾1𝑌 =
𝜁3(𝜏)𝛿3

{1+𝜁2(𝜏)𝛿2}3 2⁄  ,      (8c) 

 

𝛾2𝑌 =
𝜁4(𝜏)𝛿4

{1+𝜁2(𝜏)𝛿2}2 ,      (8d) 

 

with 𝛿 = 𝛼 √1 + 𝛼2⁄  and the functions 휁𝑖(𝜏) with 𝑖 = 1, . . . ,4 defined in [9, page 30]. 
Assuming, now, that P, given by Eq. (6), is described by an ESN statistic, then its 

PDF can be written as  
 

𝑓𝑃(𝑝 ; 𝛼 , 𝜏) =
1

𝑏𝑃0√MPI
𝑓𝑋 (

𝑝

𝑃0
−1+𝑏𝜂𝑋√MPI

𝑏√MPI
; 𝛼 , 𝜏) ,   (9) 

 
where 𝑓𝑋(𝑥 ; 𝛼 , 𝜏) is the PDF of 𝑋 given by Eq. (7). The PDF of P can also be written in 
terms of the Q parameter, knowing that 𝑄 = 𝑃 2𝜎⁄ , where 𝜎2 is the variance of the receiver 
noise, 
 

𝑓𝑄(𝑄; 𝛼, 𝜏) =
1

𝑏�̅�√MPI
𝑓𝑋 (

𝑄 �̅�⁄ −1+𝑏𝜂𝑋√MPI

𝑏√MPI
; 𝛼, 𝜏) ,   (10) 

 



January 29, 2019  

with �̅� = 𝑃0 2𝜎⁄ , being the Q parameter without MPI. Therefore, we can write that 

𝑄~ESN(𝜉, 𝜔2, 𝛼, 𝜏), where 𝜔 = 𝑏�̅�√MPI and 𝜉 = �̅�(1 − 𝑏√MPI휂𝑋). 
Using the formulas given in Eq. (8a) through Eq. (8d) it is also possible to obtain the 

four theoretical moments of Q: the mean 휂𝑄, the variance 𝜎𝑄
2, the skewness 𝛾1𝑄, and the 

excess kurtosis 𝛾2𝑄 as a function of the parameters 𝑏, 휂𝑋, 𝛼 and 𝜏 that appear in Eq. (10). 

The parameter 𝑏 can then be found by knowing that 𝜎𝑄
2 = 𝜔2{1 + 휁2(𝜏)𝛿2}, so 

 

𝑏 =
𝜔

�̅�√MPI
=

√
𝜎𝑄

2

1+𝜁2(𝜏)𝛿2

�̅�√MPI
 .     (11) 

 

Likewise, the parameter 휂𝑋 can be found by knowing that 휂𝑄 = 𝜉 + 휁1(𝜏)𝜔𝛿, so 

 

휂𝑋 = −
𝜂𝑄−𝜁1(𝜏)𝜔𝛿−�̅�

𝑏�̅�√MPI
 .      (12) 

 
Furthermore, it is also possible to find a pair of parameters (𝛼, 𝜏) by knowing the 
skewness (𝛾1𝑄) and excess kurtosis (𝛾2𝑄) of the Q parameter. 

We are now in conditions to verify the appropriateness of the distribution of Q given 
by Eq. (10) to model the experimental data given in [3]. We use a moment matching 
method to estimate the parameters 𝛼, 𝜏, 휂𝑋 and 𝑏 present in Eq. (10) [10]. According to 
this method the mean �̄�, the variance 𝑠2, the skewness 𝛾1, the excess kurtosis 𝛾2 of the 
samples, computed from the set of experimental data samples {𝑥𝑖}𝑖=1

𝑛  (we used 𝑛 = 100 
samples), are equated to the correspondent theoretical parameters of the distribution of 
Q, i.e. 휂𝑄 = �̄�, 𝜎𝑄

2=𝑠2, 𝛾1𝑄 = 𝛾1, and 𝛾2𝑄 = 𝛾2. Using the data from [3], that has been 

obtained for �̅� = 6 (which was determined from a receiver sensitivity of -34 dBm at a 
BER=10-9, considering the transmission of 2.5 Gb/s non-return-to-zero signals (NRZ) [3]) 
and 𝑀𝑃𝐼 = −30 dB, we get �̄� = 5.516, 𝑠 = 0.312, 𝛾1 = −1.431, and 𝛾2 = 2.73. As seen, the 
sample data exhibits an excess kurtosis of 2.73 which indicates that the PDF tails 
asymptotically approach zero more slowly than a Gaussian distribution characterized by a 
zero excess kurtosis, and a quite large skewness absolute value (1.431), which is an 
indication of a highly asymmetric distribution. This behavior is a clearly indication that 
distributions like the Beta and SN, although being appropriate to describe negative tails, 
cannot be used in this case because they are not able to model skewness absolute values 
larger than 1, as shown in [8] for the Beta distribution scenario. 

The next, and final, step in order to find the suitable ESN distribution to model the 
data from [3] is just to compute an estimate of the parameters 𝑏 and 휂𝑋 that appear in Eq. 
(10), by using Eq. (11) and Eq. (12), respectively. We have obtained 𝑏 = 4.83 and 휂𝑋 =
1.82. Furthermore, it is also possible to find, by a trial and error method, a pair of 
estimates parameters (𝛼, 𝜏) that guarantee 𝛾1𝑄 = 𝛾1 and 𝛾2𝑄 = 𝛾2. For example, the pair 

(−13.51, −1.985) leads to the 𝛾1𝑄 = −1.431 and 𝛾2𝑄 = 2.73, which were referred before, in 

the previous paragraph. 
In Fig. 1, it is plotted the experimental histogram given in [3], with the data 

represented by the red crosses, as a function of the Q parameter, as well as the PDF 
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𝑓𝑄(𝑄 ; 𝛼 , 𝜏), given by Eq. (10), for different values of 𝜏, 𝛼 = −13.51 and 𝑀𝑃𝐼 = −30 dB. 

These PDFs, as described in the previous paragraphs, are computed from the first four 
sample moments (mean, variance, skewness and excess kurtosis) with an estimate of the 
parameters b and 휂𝑋 obtained from Eq. (11) and Eq. (12), respectively, and an estimate of 
the parameters pair (𝛼, 𝜏) that guarantee 𝛾1𝑄 = 𝛾1 and 𝛾2𝑄 = 𝛾2. As can be seen, the 

quality of the fitting is quite good for 𝜏 = −1.985, which is expected since this PDF is 
computed from the sample moments of the experimental histogram. On the other hand, 
the PDF for 𝜏 = 0, with the same estimates for b, 휂𝑋 and 𝛼 used in the previous scenario, 
which corresponds to the SN case, leads to the worst fit, especially in the falling edge and 
in the peak of the curves. 

In Fig. 2 the PDF 𝑓𝑄(𝑄 ; 𝛼 , 𝜏) is plotted again as a function of the Q parameter, but 

for different values of 𝛼 using 𝜏 = −1.985 and the other estimated parameters, b and 휂𝑋. 
As in Fig.1 the best fitting occurs for the parameters estimated from the sample moments 
of the experimental histogram, i.e. 𝛼 = −13.51 and 𝜏 = −1.985. It can, also, be observed 
that when the absolute value of 𝛼 increases the PDF becomes more peaked. On the other 
hand, when this value decreases the PDF right tail widens. 

 
 

 

Fig. 1:  PDF of the Q parameter for different values of the parameter 𝜏 with MPI=-30 dB 
and 𝛼 = −13.51. The experimental data obtained from [3] is also represented. 
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Fig. 2:  PDF of the Q parameter for different values of the parameter 𝛼 with MPI=-30 dB 
and 𝜏 = −1.985. The experimental data obtained from [3] is also represented. 

 

Fig. 3: PDF of the Q parameter for different values of MPI, with  = -13.51, and  

 = -1.985. 

 
Using the previously obtained parameters that characterize the distribution of Q it is 

now possible to understand how the MPI values affect the PDF shape. Fig. 3 shows the 
PDF of the Q parameter for different values of MPI (-20, -25, -30 and -32 dB) considering 
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𝛼 = −13.51, and 𝜏 = −1.985, which are the values obtained from the sample moments of 
the experimental histogram. It can be observed from Fig. 3 that the MPI variation deeply 
impacts the shape of the PDF curves. These curves become less peaked and broader for 
increasing values of MPI, what potentially contributes to degrade the system 
performance, as we will analyze in the next section. On the opposite way, for decreasing 
values of MPI, the PDF shape become more peaked and narrower, and in the limit when 
there is no MPI impact the value of the Q parameter tends to 6, in accordance with the 
data from [3]. 

In order to compare the fitness of different statistical distributions to model the type 
of MPI under study, it is plotted in Fig. 4 the PDF of the ESN distribution, as well as the 
Beta and Rician distributions for a 𝑀𝑃𝐼 = −30 dB. The experimental data obtained from 
[3] is also represented. The ESN distribution uses the parameters 𝜏 = −1.985 and 𝛼 =
−13.51, that better approximate the experimental histogram, as discussed previously. 
Likewise, the Beta and Rician distributions parameters are chosen to mimic the 
histogram. The PDF of the Q parameter when the Beta distribution is used to model the 
coherent MPI is obtained from [8], with the parameters 𝛼 = 2.24, and 𝛽 = 1.41. In the 
same way, the PDF of the Q parameter when the Rician distribution is used to model the 
coherent MPI is obtained from [7]. From Fig. 4 we can observe that the Rician 
distribution is clearly not appropriate to describe neither the left nor the right tail of the 
histogram. In what concerns the Beta distribution, although describing better the 
histogram right tail, it also clearly fails to describe the left tail of the histogram. 

 

 
Fig. 4:  PDF of the Q parameter obtained with ESN, Beta and Rician statistics for 𝑀𝑃𝐼 =
−30 dB. The experimental data obtained from [3] is also represented. The ESN 
distribution uses 𝜏 = −1.985 and 𝛼 = −13.51, and the Beta distribution uses 𝛼 = 2.24, and 
𝛽 = 1.41 [8].  
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4. Impact of coherent MPI on the performance of a PAM system 

In this section we illustrate how the MPI modelled by the ESN distribution, 
described in the previous section, impacts the system performance in a PAM system. We 
start the analysis with the well-known formula for the BER for a PAM-M system without 
MPI, which is given by [18], 
 

𝐵𝐸𝑅𝑤𝑖𝑡ℎ𝑜𝑢𝑡 MPI =
𝑀−1

𝑀

1

𝑙𝑜𝑔2𝑀
erfc (√

3𝑙𝑜𝑔2𝑀

(𝑀2−1)
𝑄) ,   (13) 

 
where M is the number of symbols, erfc(. ) is the complementary error function, and Q is 
the Q parameter. 

 

 
 

Fig. 5: BER of a PAM-4 system as a function of the Q parameter for SN ( = 0) and ESN  

( = -1.985) distributions with  = -13.51, considering 4 values of the MPI level, without 
MPI, -30 dB, -25 dB and -20 dB. 

 
In the presence of MPI Eq. (13) must be modified leading to  

 

𝐵𝐸𝑅 =
𝑀−1

𝑀

1

𝑙𝑜𝑔2𝑀
∫ erfc (√

3𝑙𝑜𝑔2𝑀

(𝑀2−1)
𝑄) 𝑓𝑄(𝑄; 𝛼, 𝜏)𝑑𝑄

∞

0
 ,   (14) 

 
where 𝑓𝑄(𝑄; 𝛼, 𝜏) is the PDF of the MPI given by Eq. (10). Note that a similar analytical 

formalism was also used in [19], but for assessing the impact of the atmospheric 
turbulence in PAM systems. 

In order to quantify the effect of the MPI in a PAM system we focus our analysis on a 
PAM-4 system, which is commonly used in datacenter and optical access applications [11-
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15]. Using Eq. (14), in combination with the estimated parameters explained in Section 3, 
one can obtain the results depicted in Fig. 5 for four values of the MPI level (without MPI, 
-20, -25 and -30 dB). Note that, despite the parameters used in Eq. (14) are obtained 
considering NRZ signals, we have assumed here that the statistic of the coherent MPI for 
the PAM-4 formats is the same, since for a given differential delay 𝜏𝑖 and the same bit 
rate, the condition 𝜏𝑖 ≪ 𝑇 is easily verified in PAM systems due to larger symbol periods. 
The results from Fig. 5 confirm the previous predictions, i.e. the BER degrades 
significantly when the MPI increases, resulting even in the appearance of error floors in 
the curves. Another relevant conclusion, we can get from this figure, is that the SN model 

(i.e.  = 0) significantly underestimate the MPI impact on the BER performance, 
especially in the error floor region. Note that the curve without MPI can also be obtained 
with Eq. (13) and is a well-known curve that states that for a BER= 10-3 the Q parameter 
must be 11.2 dB [18]. 

 
Fig. 6: Q-penalty (@ BER= 10-3 and BER= 10-10) as a function of the MPI level for PAM-4 

systems considering the ESN and SN distributions. 
 

In Fig. 6 the Q-penalty (@ BER= 10-3 and BER= 10-10) is plotted as a function of the 
MPI level for a PAM-4 system, considering the SN and ESN models. For a BER=10-3 the 
discrepancy between the results of the SN and ESN models is almost negligible, but for 
BER=10-10, which corresponds to the floor region in Fig. 5, the first model predicts an MPI 
value about 1.5 dB higher than the second one for a 1-dB penalty, which means that the 
SN model is more tolerant to MPI. We also observe that for a BER=10-3 an MPI level of  
-24 dB provides a penalty of 1 dB and this penalty doubles for an MPI level 3 dB higher 
(i.e. -21 dB). On the other hand, for a BER=10-10, an MPI level of -29 dB is needed for a 
1dB Q-penalty for the ESN model, whereas for an MPI of -28 dB this penalty is already  
2 dB. As a final remark, we note that the impact of coherent MPI in a PAM-4 system is less 
harmful than the one imposed by incoherent MPI, which was analyzed in [15]. In the 
referred study the authors concluded that for a 1 dB penalty the incoherent MPI should be 
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-30 dB (@BER=10-3), so there is a 6 dB penalty difference between these two 
impairments. 
 

 

5. Conclusions 

In this work we have investigated the problem of statistically modelling the optical 
power fluctuations due to coherent MPI in optical communications systems. We have 
used the ESN distribution to perform this task because it provides very good estimates 
for experimental data with highly asymmetric behavior and consequently with large 
skewness values, which are typical in a WDM optical network node scenario [3]. Other 
distributions, like the Rice and Beta distributions, have been tested in prior works to 
model the coherent MPI, but none of them have the flexibility in terms of the capacity to 
describe asymmetric behaviors like the ESN described in this paper. 

The developed model, based on the ESN statistics, has been used to assess the 
impact of coherent MPI on the performance of PAM signals, by being able to predict the 
BER and the Q-penalty due to this impairment. The results obtained revealed that the 
BER degrades significantly when the coherent MPI increases, and the appearance of 
error floors in the BER curves is noticed. We have also found that for a Q-penalty of  
1 dB (@BER= 10-3) the MPI level should be at most -24 dB for a PAM-4 system. 
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