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Costello syndrome (CS) is caused by heterozygous HRAS germline mutations. Most patients share the HRAS variant p.Gly12Ser that
is associated with a typical, homogeneous phenotype. Rarer pathogenic HRAS variants (e.g., p.Thr56lle) were identified in
individuals with attenuated CS phenotypes. The obvious phenotypical variability reflects different dysfunctional consequences of
distinct HRAS variants. We report on two boys with the novel de novo HRAS variant c.466 C > T p.(Phe156Leu). Both had severe
feeding difficulties, airway obstruction and developmental delay, which are typical findings in CS. They showed subtle facial and
dermatologic features consistent with attenuated CS. They significantly differed in their musculoskeletal, cardiovascular and
endocrinologic manifestations underscoring the clinical variability of individuals with identical, in particular rarer pathogenic HRAS
variants. Functional studies revealed enhanced effector-binding, increased downstream signaling activation and impaired growth
factor-induced signaling dynamics in cells expressing HRAS"€'%%_ OQur data further illustrate the molecular and phenotypic

variability of CS.

European Journal of Human Genetics (2022) 30:1088-1093; https://doi.org/10.1038/s41431-022-01139-1

INTRODUCTION

RASopathies are syndromic conditions that result from germline
alterations in genes coding for RAS pathway signaling proteins.
Missense variants in the proto-oncogene HRAS underlie the
RASopathy Costello syndrome (CS). Individuals with CS are
predisposed to cancer and may have distinctive craniofacial
features, cardiac anomalies, growth and developmental delays, as
well as dermatological, orthopedic, ocular, and neurological issues
[1]. Approximately 80% of CS-causing HRAS gene variants result in
a p.Gly12Ser missense change and this variant is associated with
the classic CS phenotype [1]. A more variable, milder or
“attenuated” phenotype occurs with rarer pathogenic HRAS
variants, such as p.Thr58lle, p.Gly60Asp/Val or p.Ala146Thr/Val/
Pro [1, 2].

Disease-associated changes of HRAS amino acid 12 or 13 impair
intrinsic GTPase activity, confer resistance to GAPs and, thereby,
trap HRAS in its active state independently from incoming signals.
This results in increased activation of HRAS downstream signaling
pathways, a functional consequence that is widely used to explain
the pathobiology of CS. However, several studies demonstrated a
more diverse spectrum of molecular defects of CS-associated
HRAS variants, which result in dysregulated HRAS-dependent
signaling dynamics [3-7].

Here, we aimed to characterize the clinical manifestations and
functional consequences associated with the pathogenic HRAS
variant c466C>T p.(Phe156Leu) and to compare our data to
those for previously described CS-related HRAS variants.

MATERIALS AND METHODS
The patients’ parents provided written informed consent for the
participation in the study, clinical data and specimen collection and
genetic analysis according to the Declaration of Helsinki and national legal
regulations. They signed informed consent regarding publishing their data
and photographs.

A description of the laboratory methods is given in the Supporting
Information.

RESULTS

Clinical summaries

Patient 1. The pregnancy was complicated by maternal gestational
diabetes, polyhydramnios, fetal overgrowth and caesarean section
(37 weeks). Birth weight was above the 97th centile, length was on
the 75th centile, and head circumference was greater than the
98th centile (Table 1). Limb shortening, varus posture of wrist
joints, adducted thumbs, elbow contractures, rocker bottom feet,
extended knees, hip dysplasia and macrocephaly were noted
(Fig. 1A). At 5 weeks old the boy showed recurrent severe
obstructive apneic episodes with cyanosis, loss of responsiveness,
seizures and choking episodes during feeding. Pharyngeal and
laryngeal obstruction required supraglottoplasty and recurrent
apneic episodes and aspiration required permanent tracheostomy.
Dysfunctional swallowing and feeding difficulties were noted.
Weight gains improved with small frequent percutaneous
endoscopic gastrostomy feeds. Details on tonic clonic seizures
and treatment are given in the Supporting Results. Abdominal
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obstruction

No

Strabismus (>50%),
Nystagmus (13/30)

Strabismus (3/4), Nystagmus (1/
GDM maternal gestational diabetes, Ces. S. Cesarean section, NVD Term natural vaginal delivery, OFC occipitofrontal circumference, ct/ centile, HCM hypertrophic cardiomyopathy, (L)VH (left) ventricular

4), severe myopia (1/4)

Inguinal hernia (1),

Strabismus (1)

Esotropia to right eye, (no

hernia)

Other findings

hypertrophy, PS pulmonic stenosis, VSD ventricular septal defect, PDA patent ductus arteriosus, MR mitral regurgitation, AR aortic regurgitation, DCRV double-chambered right ventricle, MVP mitral valve prolapse,
ASD atrial septal defect, LOR loss of responsiveness, CTH cerebellar tonsillar herniation, ADHD attention deficit hyperactivity disorder, DD developmental delay, /D intellectual disability, FTT failure-to-thrive, FTP

feeding tube placement, GORD gastroesophageal reflux disorder, GH growth hormone, wks weeks, yrs years, N/D not documented, N/R not reported.

Summaries are given for the variants p.Ala146Pro/Val/Thr, p.Thr58lle and p.Gly12Ser: findings present/patients with information on the finding; (n), feature was reported in n individuals. Other findings include

dental, oral, ophthalmologic and genitourinary manifestations.

ultrasound detected no malignancy. The patient was following
visually, smiling and breathing normally. Tracheostomy was
removed at 9 months old. He had generalized developmental
delay, was unable to roll or sit with marked head lag. Deep palmar
and plantar creases were noted. At 2 2/3 years, weight and length
were below the 3rd centile and head circumference was greater
than the 95th centile (Table 1). Cardiac arrhythmia was
documented, seizures persisted. Trio exome sequencing identified
two likely pathogenic de novo variants, c.466 T > C p.(Phe156Leu)
in HRAS (NM_005343.4) and ¢.4907 G > C p.(Arg1636Pro) in SCNTA
(NM_001165963.4). The latter most probably underlies the
seizures in this patient (OMIM *182389).

Patient 2. was recently mentioned [1]. The boy’s weigh and head
circumference were on the 50th centile after a pregnancy
complicated by polyhydramnios (Table 1). Bilious vomiting,
hypoglycemia, macroglossia and poor feeding were noted on
day 1 of life. Daily episodes of hypoglycemia associated with
hyperinsulinism were treated with diazoxide and chlorothiazide.
Severe hypoglycemia persisted with bolus feeds and continuous
feeds were given via gastrostomy, with elemental formula due to
cow’s milk protein intolerance. Laryngomalacia was diagnosed by
endoscopy and echocardiography identified hypertrophy of the
ventricular myocardium and mild thickening of the pulmonary
valve. Metabolic/endocrinological investigations did not yield a
diagnosis for the atypical hyperinsulinism. Glucose levels were
unresponsive to octreotide, were more stable on diazoxide and
improved with prednisone suggesting increased insulin sensitivity
in addition to hyperinsulinism. Subtotal pancreatectomy was
required at 8 months old. During a 5 months hospitalization
hypertrophic cardiomyopathy and severe gastroesophageal reflux
were diagnosed. The boy has subtle CS facial features with a
prominent forehead, long philtrum and full cheeks (Fig. 1B). He
has tight Achilles tendons and shows gait abnormalities.
Dermatologic findings included thickened skin on elbows,
excessive sweating, and sensitive skin. The patient has a mild
ventriculomegaly and moderate global developmental delay.
Unilateral strabismus (esotropia) of the right eye was noted. At 6
2/3yrs old hypoglycaemia episodes were still significant with
several low glucose episodes repeatedly per day caused by any
form of excitement or stimulation. Trio exome sequencing
identified the de novo HRAS c.466 C>T p.(Phe156Leu) variant.

Functional characterization

The strictly conserved HRAS amino acid Phe'”® is not located
within a distinct functional protein motif (Fig. 1C) [8]. However, it's
part of the a5-helix that is critical for overall HRAS structure [8].
Our functional studies support pathogenicity of the HRAS
p.Phe156Leu variant: We used GST-fusion proteins of interacting
motifs from RAS effectors RAF1, RALGDS, PIK3CA and PLCE1 and
precipitated activated HA-tagged HRAS Protein variants from cell
extracts (Fig. 2A). Oncogenic HA-HRAS®Y'2¥@ and CS-typical HA-
HRASCY'25¢T  put not the dominant-negative variant HA-
HRAS®®"7As" strongly co-precipitated with any effector under
any culture condition tested (Fig. 2A). The amount of HA-
HRAS"he1%6Let \as elevated compared to HA-HRASY' in all
precipitates. These data suggest that HA-HRAST"">6eY accumu-
lates in the active form and forms stable complexes with effectors.

By analyzing binding between HA-HRAS™"'°6%% and the RAS-
specific NF1 GTPase activating protein (GAP), we detected
moderately enhanced GAP binding efficiency compared to HA-
HRAS"T: however, this increase was less pronounced than
observed for HA-HRAS®Y'2%*" and HA-HRAS®Y'2¥e! (Supporting
Results, Figure S1). This suggests that p.Phel56Leu does not
negatively interfere with NF1 GAP binding.

To gain insight into consequences of p.Phe156Leu on signal
traffic, we measured levels of phosphorylated MEK1/2, ERK1/2 and
AKT (Fig. 2B). Expression of HA-HRASSY 12Vl or HA-HRASEY!12%" put
not HA-HRAS>®" 75" promoted MEK1/2 and ERK1/2 phosphorylation

156
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Photographs of patients 1 and 2. A Patient 1. Note macrocephaly, the adducted thumbs and wrist varus posture and congenital

vertical talus. B. Patient 2. Note the prominent forehead, long philtrum and full cheeks. C Schematic representation of HRAS and position of

the p.Phe156Leu variant.

in HEK293T cells under any cell culture condition. Likewise, HA-
HRAGPhe16Leu enhancedmﬁhosphorylatlon of MEK1/2 and ERK1/2
compared to HA-HRAS™' (Fig. 2B). AKT phosphorylation was
marginally increased in HEK293T cells expressmg HA-
HRASPhe156Leu, HA- HRASGIy12VaI or HA- HRASGIy12$er Pp0ﬂ|ng
Results, Fig. S2); however, HA-HRASPe156teu A HRASG 2val
HA-HRASSY 125" induced stronger AKT phosphorylation than HA-
HRAS"WT in MCF-7 cells (Fig. 2B). Our data suggest that the
p.Phe156Leu change intensifies HRAS downstream signal flux.
Impaired signaling dynamics rather than a simple static
hyperactivation of RAS-dependent signaling may underlie the
development of CS [3, 4. We compared the intensity of EGF-
induced signaling over time. EGF addition induced a strong ERK1/
2 phosphorylation response in HA-HRASWT cells after 5min
followed by a decrease after 15 to 30 min (Figs. S3 and 2Q). |
contrast, cells expressing HA-HRASThe'56Lev or HA- HRASG"’”V'"‘I
showed enhanced basal ERK1/2 phosphorylat|on (0 min EGF) and
little further increase (Figs. S3 and 2C). Similarly, AKT phosphor-
ylation was slightly stimulated upon EGF treatment in cells
expressing HA-HRAS™T but not or marginally in cells expressing

European Journal of Human Genetics (2022) 30:1088 - 1093

HA-HRAS®Y'2Va! and HA-HRASPe'6LeY respectively (Figs. $3 and
2C). These data suggest that the HRAS p.Phel56Leu variant
impairs EGF-induced signal transduction efficiency within cells.

DISCUSSION

Phenotype associated with HRAS c.466 T > C p.(Phe156Leu)
Our patients presented with prenatal polyhydramnios, severe
feeding difficulties, musculoskeletal manifestations as well as
gastroenterologic, endocrinologic and metabolic findings, which
are common or frequent findings associated with both the typical
CS-associated p.Gly12Ser variant and rarer HRAS variants (Table 1)
[1-3, 7, 9-16]. Hyperinsulinism and hypoglycemia have been
repeatedly reported in individuals with CS;[1, 5] however, in
patient 2 these findings are uncommonly severe in terms of
clinical presentation, management challenge and durability.
Respiratory and otolaryngologic findings as well as cardiovascular
abnormalities have also been described in patients with CS
(Table 1) [1]. Notably, airway problems requiring tracheostomy has
been reported as rare complication in patients with CS and
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Fig. 2 Functional consequences of HRAS p.Phe156Leu. A HRAST"®1°6LeU o precipitates with RAF1, RALGDS and PLCE1, PIK3CA. HRAS
variants were expressed in HEK293T cells under serum-starved condition, normal growth condition, or serum-starved condition followed by
20 min EGF stimulation. HA-HRAS was precipitated from extracts by using GST-fused effector peptides and subjected to immunoblotting.
B Expression of HRASP"®1°6Le4 enhances downstream signaling. HRAS variants were expressed in HEK293T and MCF-7 cells. Cells were cultured

under serum-starved, basal and stimulated conditions. Lysates were subjected to immunoblotting. C Ex

ression of HRASPM156Y impairs

epidermal growth factor sensitivity. HEK293T cells transiently expressing HRASYT, HRASCY!2Val or HRASPhe'E&‘e” were stimulated with EGF for
various times (5, 15, 30 min) or left untreated (0 min) and phosphorylation levels were determined by immunoblotting (Fig. S3). Values are
relative to maximum levels and represent the mean of three experiments; for untreated cells significance levels are specified between data

points [*, P<0.05; (two-tailed t test)].

different HRAS variants;[1, 14, 17] thus, this finding is not related to
specific (rare or common) variants. On the other hand, both
individuals showed milder facial features than patients with HRAS
p.Gly12Ser; this is more in keeping with findings seen in
individuals with rare HRAS variants affecting residues Thr8,
Gly®°, Lys""” or Ala'*® (Table 1) [1-3, 5, 7, 9-11, 18]. The same is
true for the dermatologic findings in both children (Table 1);
however, since the skin phenotype varies with age, a final
assessment should only be made in adulthood. Body length and
height was in a normal range in patient 2, which has also been
reported for individuals with HRAS variants p.Thr58lle, p.Gly60Asp
and p.Gly13Cys (Table 1) [5, 7, 10, 19]. Overall, the phenotypic
presentation of the individuals described here may be best
classified as less severe, with the exception of otolaryngology
involvement, attenuated CS similar to that previously described
for rare pathogenic HRAS variants [1-3, 5, 7, 9-11, 18].

Functional consequences of HRAS p.Phe156Leu

Our data demonstrate that p.Phe156Leu results in the accumula-
tion of active HRAS and dysregulated HRAS-dependent signaling
dynamics. Phe'*® is located in the a5-helix within the hydrophobic
core of HRAS and, hence, it has a crucial role in its structural
stability [8]. Structural considerations suggested that substitution
of HRAS Phe'*® by leucine affects contacts with surrounding
residues and changes intrinsic functions of HRAS [20]. Indeed,
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p.Phe156Leu induced major structural changes, weakened HRAS
contacts with Mg®" and guanine nucleotides and increased GDP/
GTP dissociation rates and levels of GTP-bound HRAS [8]. This is in
contrast to the typical CS-associated HRAS p.G12S variant that
perturbs GTPase activity. The germline variant p.Phe156Leu has
also been identified in KRAS of patients with RASopathy and
functional consequences of KRASM€'>6LeY \yere determined
(Supporting Discussion). Summarizing available data, the main
molecular defect of HRAS™'*%%! is 3 strong acceleration of
nucleotide exchange, but interaction with effectors and regulators
is still functional. We conclude that HRAS c.466 T > C p.(Phe156Leu)
is pathogenic. The p.Phe156Leu variant reduces growth factor
sensitivity of HRAS, which is detectable as decreased stimulus-
dependent increment of downstream signaling pathway activa-
tion. This is a common finding for CS-associated HRAS variants and
underscores that impaired signaling dynamics is the central
pathomechanism for CS (and related RASopathies) [3, 4].
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