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Abstract: The design of new metallocage polyhedra towards pre-determined structures can offer
both practical as well as intellectual challenges. In this mini-review we discuss a selection of recent
examples in which the use of the metalloligand approach has been employed to overcome such
challenges. An attractive feature of this approach is its stepwise nature that lends itself to the design
and rational synthesis of heterometallic metal–organic cages, with the latter often associated with
enhanced functionality.
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1. Introduction

Starting with an initial report of the synthesis of a metal–organic cage (MOC) more
than three decades ago [1], creativity, often coupled with serendipity, has played a major
role in the construction of a vast array of MOCs displaying diverse topologies that are often
associated with interesting properties. The resulting MOCs consist of hollow polyhedral
3D structures in which the metal ion nodes are commonly linked by bi- or multi-functional
organic linkers that also serve to define the sides of the polyhedron.

Such cages include both homo- and heterometallic derivatives, with the majority
incorporating d- and/or f-block transition or (less commonly) main group metal ions as
structural elements [2–8]. The nature of the metal ions, including their size, charge, elec-
tronic configuration, stereochemical preferences, kinetic labilities, and donor–atom binding
preferences are all parameters available for use in “tuning” individual cage structures and,
hence, also their properties. MOCs have been demonstrated to show varying degrees of
porosity as well as some degree of flexibility. Such porosity/flexibility has long been known
to be an important factor influencing the ease of ingress and egress of guests into and out
of the cavity [9]. Indeed, the host–guest chemistry of MOCs continues to receive extremely
wide attention [10–22], with individual cages frequently displaying a range of properties
that include both photoactive [23–26] and magnetic [27–33] behaviours.

Many promising applications for individual cages have now been investigated [34–37].
These include applications for sequestering a wide range of both ions and molecules [38–41];
for molecule and ion sensing [23,42–55]; for the stabilisation of reactive species [56,57]; for
catalysis where the cage acts as a “reaction vessel” in which, for example, the proximity of
the reactants (amongst other influences) act as a driver for promoting enhanced reaction
rates [58–75]; as well as for use in biochemical applications [76,77] that include MRI imag-
ing [78], photodynamic therapy [79], and ion/molecule (including drug) transport [80–84].

Over recent years the complexity, diversity, and functionality of reported MOCs have
all tended to increase, in part resulting from the availability of an expanded array of
innovative synthetic protocols [85–96] that include the metalloligand approach [97–100].
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In this mini-review, recent examples of the design, synthesis, and properties of selected
discrete heterometal–organic cages whose assembly involves the use of a metalloligand
strategy are discussed. Metalloligands have now been widely employed for the rational
assembly of an extensive range of MOCs; in particular, this “complex as a ligand” approach
lends itself to the construction of heterometallic cages, consequently engendering both
additional complexity and potential functionality to such systems. The following discussion
is designed to be illustrative rather than comprehensive, with emphasis given to systems
chosen from the more recent literature.

2. Metalloligand Strategies for the Assembly of MOCs

Metalloligands typically employed in polynuclear cage assembly formation can be
grouped into two main categories [97]. The first group corresponds to systems in which
the metalloligand’s bound (primary) metal ion acts to orientate initially non-bonded donor
atoms so that they are suitably aligned for binding to further (secondary) metal ions and
lead to cage formation. This process may also involve the use of co-ligands, if needed,
to satisfy the coordination requirements of the secondary metal ions involved in cage
formation. The second category consists of metalloligands that incorporate a bound primary
metal ion (or ions) with the latter not primarily involved in orienting further unbound
metal–ion donor sites for cage formation. Systems of this latter type are not included in the
following discussion.

2.1. Metalloligand Systems Incorporating a Bound Primary Metal Ion That Sterically Organises
Initially Unbound Secondary Donor Atoms for Cage Formation

In situ 2:1 Schiff base condensation reaction between 1-(pyridine-4-yl)-1H-imidazole-
4-carbaldehyde and 1,4-diaminopropane in the presence of copper(II) nitrate in acetonitrile
results in formation of the V-shaped Cu(II) complex 1. Inherent in the design of this species
is the presence of two fully conjugated moieties linked by a flexible trimethylene bridge such
that, on binding to Cu(II), the two terminal 4-pyridyl groups are oriented in a divergent man-
ner such that, on acting as a metalloligand, they are unable to bind simultaneously to a sin-
gle metal ion. The use of 1 as a metalloligand has been shown to generate a [Pd4Cu8]24+ par-
tially face-centred cubic structure of type [Pd4(CuL)8(H2O)6(DMSO)2](NO3)24 (2) [where
CuL2+ = metalloligand 1 and DMSO = dimethyl sulfoxide)] [101]. This was achieved by
a 2:1 reaction of 1 with Pd(II), with the latter having a well-documented propensity for
pyridyl nitrogen coordination as well as for the adoption of a square planar coordination ge-
ometry. The crystal structure of this cationic cage resembles a cubic box with two opposing
faces not capped by Pd(II) ions (see Figure 1).Chemistry 2022, 4, FOR PEER REVIEW 3 

 

 

 
Figure 1. Structural details of the cubic cation in [Pd4(CuL)8(DMSO)2(H2O)6](NO3)24 (2), where 
[CuL]2+ is the metalloligand 1. (a) Schematic representation of the metal ion sites in the partially face-
centred cube. (b) Crystal structure of the cubic cation showing the square pyramidal coordination 
of each copper(II) centre and the square planar geometry of each palladium(II) centre which is 
bound to four pendent 4-pyridyl groups. Hydrogen atoms, lattice solvent molecules, and nitrate 
counterions are not shown [101]. 

Clearly, this outcome reflects the presence of only two secondary donor sites 
available in each metalloligand of type 1 rather than the three present in the tripodal 
metalloligands discussed later in this section (and which form fully face-centred M6M’8 
cube structures).  

 
Each copper(II) centre adopts a 5-coordinate square-pyramidal geometry with the 

basal plane defined by four pyridyl nitrogen donors while each axial position is occupied 
by an oxygen donor from a water or dimethyl sulfoxide ligand. This square box molecule 
was demonstrated to act as an efficient catalyst for the epoxidation of styrene and its 
derivatives, with the presence of opposing open sides in this structure proposed to aid 
catalytic activity by allowing facile substrate diffusion in and out of the cavity. 

Reaction of the difunctional metalloligand [Ru(dtbubpy)2(qpy)]2+ (3) (2 equiv., as its 
PF6− salt) with palladium(II) (1 equiv.) in dimethyl sulfoxide (DMSO) [Ru8Pd4]24+ yielded 
a cubic cage of type [Ru8Pd4(dtbubpy)16(qpy)8]24+ (4) (where qpy = 4,4′:2′,2″:4″,4′′′-
quarterpyridine and ditbubipy = 4,4′-di-tert-butyl-2,2′-bipyridine) [102]. In contrast to the 
copper(II) metalloligand (1) discussed above for 3, the two divergent 4-pyridyl nitrogen 
donors are appended to an octahedral ruthenium(II) complex. Since the ruthenium centre 
will be kinetically inert this makes 3 a more robust metalloligand than 1.  

As anticipated, a single crystal X-ray diffraction study confirmed that the eight 
ruthenium(II) ions in 4 occupy the corners of the cube while the four palladium(II) ions 
are located on four sides, with each of these metal centres coordinated to four pyridyl 
groups in a square planar manner. Two (opposite) sides of the cube remain “open”. The 
angle between the coordinated 4-pyridyl groups in the cage structure is 69°. The cage was 

Figure 1. Structural details of the cubic cation in [Pd4(CuL)8(DMSO)2(H2O)6](NO3)24 (2), where
[CuL]2+ is the metalloligand 1. (a) Schematic representation of the metal ion sites in the partially
face-centred cube. (b) Crystal structure of the cubic cation showing the square pyramidal coordination
of each copper(II) centre and the square planar geometry of each palladium(II) centre which is bound
to four pendent 4-pyridyl groups. Hydrogen atoms, lattice solvent molecules, and nitrate counterions
are not shown [101].
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Clearly, this outcome reflects the presence of only two secondary donor sites available
in each metalloligand of type 1 rather than the three present in the tripodal metalloligands
discussed later in this section (and which form fully face-centred M6M’8 cube structures).

Chemistry 2022, 4, FOR PEER REVIEW 3 
 

 

 
Figure 1. Structural details of the cubic cation in [Pd4(CuL)8(DMSO)2(H2O)6](NO3)24 (2), where 
[CuL]2+ is the metalloligand 1. (a) Schematic representation of the metal ion sites in the partially face-
centred cube. (b) Crystal structure of the cubic cation showing the square pyramidal coordination 
of each copper(II) centre and the square planar geometry of each palladium(II) centre which is 
bound to four pendent 4-pyridyl groups. Hydrogen atoms, lattice solvent molecules, and nitrate 
counterions are not shown [101]. 

Clearly, this outcome reflects the presence of only two secondary donor sites 
available in each metalloligand of type 1 rather than the three present in the tripodal 
metalloligands discussed later in this section (and which form fully face-centred M6M’8 
cube structures).  

 
Each copper(II) centre adopts a 5-coordinate square-pyramidal geometry with the 

basal plane defined by four pyridyl nitrogen donors while each axial position is occupied 
by an oxygen donor from a water or dimethyl sulfoxide ligand. This square box molecule 
was demonstrated to act as an efficient catalyst for the epoxidation of styrene and its 
derivatives, with the presence of opposing open sides in this structure proposed to aid 
catalytic activity by allowing facile substrate diffusion in and out of the cavity. 

Reaction of the difunctional metalloligand [Ru(dtbubpy)2(qpy)]2+ (3) (2 equiv., as its 
PF6− salt) with palladium(II) (1 equiv.) in dimethyl sulfoxide (DMSO) [Ru8Pd4]24+ yielded 
a cubic cage of type [Ru8Pd4(dtbubpy)16(qpy)8]24+ (4) (where qpy = 4,4′:2′,2″:4″,4′′′-
quarterpyridine and ditbubipy = 4,4′-di-tert-butyl-2,2′-bipyridine) [102]. In contrast to the 
copper(II) metalloligand (1) discussed above for 3, the two divergent 4-pyridyl nitrogen 
donors are appended to an octahedral ruthenium(II) complex. Since the ruthenium centre 
will be kinetically inert this makes 3 a more robust metalloligand than 1.  

As anticipated, a single crystal X-ray diffraction study confirmed that the eight 
ruthenium(II) ions in 4 occupy the corners of the cube while the four palladium(II) ions 
are located on four sides, with each of these metal centres coordinated to four pyridyl 
groups in a square planar manner. Two (opposite) sides of the cube remain “open”. The 
angle between the coordinated 4-pyridyl groups in the cage structure is 69°. The cage was 

Each copper(II) centre adopts a 5-coordinate square-pyramidal geometry with the
basal plane defined by four pyridyl nitrogen donors while each axial position is occupied by
an oxygen donor from a water or dimethyl sulfoxide ligand. This square box molecule was
demonstrated to act as an efficient catalyst for the epoxidation of styrene and its derivatives,
with the presence of opposing open sides in this structure proposed to aid catalytic activity
by allowing facile substrate diffusion in and out of the cavity.

Reaction of the difunctional metalloligand [Ru(dtbubpy)2(qpy)]2+ (3) (2 equiv., as
its PF6

− salt) with palladium(II) (1 equiv.) in dimethyl sulfoxide (DMSO) [Ru8Pd4]24+

yielded a cubic cage of type [Ru8Pd4(dtbubpy)16(qpy)8]24+ (4) (where qpy = 4,4′:2′,2′′:4′′,4′′′-
quarterpyridine and ditbubipy = 4,4′-di-tert-butyl-2,2′-bipyridine) [102]. In contrast to the
copper(II) metalloligand (1) discussed above for 3, the two divergent 4-pyridyl nitrogen
donors are appended to an octahedral ruthenium(II) complex. Since the ruthenium centre
will be kinetically inert this makes 3 a more robust metalloligand than 1.

As anticipated, a single crystal X-ray diffraction study confirmed that the eight ruthe-
nium(II) ions in 4 occupy the corners of the cube while the four palladium(II) ions are
located on four sides, with each of these metal centres coordinated to four pyridyl groups
in a square planar manner. Two (opposite) sides of the cube remain “open”. The angle
between the coordinated 4-pyridyl groups in the cage structure is 69◦. The cage was shown
to be luminescent, with a relatively high quantum yield of 6.9% for a Ru2+ species, given
that the emission maximum occurs in the NIR at 719 nm.

In a parallel study using an analogous procedure to that above, but with 2,2–bipyridine
(bipy) substituted for 4,4′-di-tert-butyl- 2,2′-bipyridine (dtbubpy), yielded the ruthenium(II)
metalloligand 3 (with R = H; see Figure 2) which was obtained as its tetrafluoroborate salt
and subsequently employed in the formation of the corresponding [Ru8Pd4(bipy)16(qpy)8]24+

(where qpy = 4,4′:2′,2′′:4′′,4′′′-quarterpyridine) cubic structure [103]. An X-ray diffraction
study once again confirmed that eight ruthenium(II) ions occupy the corners of the cube
while the four palladium(II) ions are positioned at the centres of four sides such that two
opposing sides are again left “open”. An additional feature of this study was the use of the
separated optical isomers of metalloligand 3 (with R = H) in parallel reactions leading to
chiral cage formation. Resolution proved feasible due to the (inherent) chemical inertness
of polypyridyl ruthenium(II) species such as 3 [104]. In parallel reactions, the use of the
respective resolved products on interaction with [Pd(CH3CN)4]2+ resulted in two stereoiso-
meric cages of type ∆- or Λ-[Ru8Pd4(bipy)16(qpy)8]24+ in which all eight ruthenium(II)
centres in each product are associated with the same helicity; that is, they are either all
right-handed (∆ ∆ ∆ ∆ ∆ ∆) or all left-handed (Λ Λ Λ Λ Λ).

The metalloligand approach for cube formation is well exemplified by a series of studies
by Brechen, Piligkos, and Lusby et al. in which the syntheses and investigation of heteronu-
clear metalloligand-based cubes of type [MIII

8MII
6] (MIII = Cr, Fe, Al; MII = Mn, Co, Cu, Zn,

Pd] were reported [105–108]. However, the studies by this group differ from those discussed
so far in that the metalloligands employed were all neutral species resulting from the use of
three bidentate β-diketonato ligands bound to a trivalent metal ion.
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Figure 2. Synthesis and crystal structure (hydrogen atoms and BF4
− anions are not shown) of the

“open” cubic cage 4 starting from the bipodal metalloligand 3 (with R = t-Bu) [102].

A 2021 study by the group is representative [105]. In this, the paramagnetic, octahedral
fac-[CrIIIL3] complex [where LH = 1-(4-pyridyl)butane-1,3-dione)] was employed as the
metalloligand for the generation of three new face-centred cubic cages. Crucial to the
success of this approach was the availability of the fac-octahedral isomer, with its three
4-pyridyl groups arranged in a tripodal fashion directed “outwards” with respect to the
central tris-β-diketonato chromium(III) core [107]. The crystal structure of this neutral,
kinetically inert fac-[CrIIIL3] metalloligand is shown in Figure 3.
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1,3-dione)] showing the tripodal arrangement of its 4-pyridyl groups. Arrows indicate the coordina-
tion vectors of the pyridyl nitrogens [107].

Reaction of the neutral metalloligand, fac-[CrIIIL3], with the appropriate nickel(II) salts re-
sulted in the formation of the discrete heteronuclear cubic cages [CrIII

8NiII6L24(H2O)12](NO3)12,
[CrIII

8NiII6L24(CH3CN)7(H2O)5](ClO4)12, and [CrIII
8NiII6L24Cl12]. The crystal structures of all

three products were determined. In each case the eight chromium(III) ions occupy the corners
of the cube while the six nickel(II) ions are positioned on the centres of its six sides. The
crystal structure of [CrIII

8NiII6L24Cl12] (which is representative of all three structures) is shown
in Figure 4. Based on EPR evidence, a weak ferromagnetic interaction is present between
the nickel(II) (d8) and chromium(III) (d3) centres in these assemblies. Similar heterometal
magnetic exchange interactions between d-block metal ions in other large cage molecules are
quite rare [105].

Related metalloligand strategies have also been employed to generate smaller cage
systems than those discussed so far. Lützen et al. demonstrated that the low-spin,
iron(II)-containing, tripodal C3-symmetric metalloligand 5 (as its BF4

− salt) reacts with cis-
protected, square planar Pd(dppp)(OTf)2 [where dppp = bis(diphenyl)phosphino)propane]
in a 2:3 ratio in acetonitrile to form the pentanuclear trigonal bipyramidal cage 6 of com-
position [(FeIIL)2{PdII(dppp)}3](BF4)4(OTF)6 (where [FeIIL]2+ = 5) (Figure 5) [109]. In as-
sembling this smaller MOC, the two available (labile) palladium sites in each of three
Pd(dppp)(OTf)2 units interact with two 4-pyridyl groups from two different tripodal 5
metalloligands (Figure 5). On forming 6, the octahedral geometry of the iron(II) sites as well
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as the square planar geometry of the palladium(II) sites present in the precursor complexes
are both preserved. Clearly, central to successful trigonal bipyramidal cage formation, in
this case, is the use of the cis-protected square planar precursor Pd(dppp)(OTf)2.
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When non-cis-protected [Pd(CH3CN)4](BF4)2 was employed for reaction with 5, then
the larger tetradecanuclear [Fe8

IIPd6
IIL8]28+ (where [FeL]2+ = 5) face-centred cubic cage

was generated. While no X-ray structure determination was obtained for this product,
its cubic structure was assigned from NMR (1H, 13C, DOSY), UV-Vis spectroscopy and
ESI–MS measurements; iron(II) centres occupy the corners of the cube while palladium(II)
centres are located on each of its six faces. Once again, in this structure both the iron(II)
and palladium(II) centres display their most common coordination geometries in accord
with this being a driver influencing the formation of both cage topologies generated in
this study.

In a further study, the Lützen group employed the sterically modified iron(II) metaloli-
gand 7, incorporating a methyl substituent on each of its tripodal arms [110]. This more
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bulky metalloligand species was obtained by reaction of 2-formyl-6-methylpyridine with
tris(2-aminoethyl)amine and iron(II) tetrafluoroborate in acetonitrile; the tripodal structure
of the product was confirmed by X-ray diffraction. The presence of steric hindrance arising
from the methyl substituents was sufficient to result in a lowering of the effective ligand
field towards the bound iron(II) centre, and the latter is high-spin at room temperature,
contrasting with the low-spin state that occurs in the unsubstituted iron(II) analogue 5.
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Reaction of the metalloligand 7 (1 equiv.) with Pd(dppp)(OTf)2 (1.5 equiv.) in ace-
tonitrile resulted in formation of the pentanuclear trigonal bipyramidal cage in which
palladium(II) centres lie in the triangular equatorial plane of the bipyramid and iron(II)
centres occupy the axial positions; the crystal structure of the cationic cage is shown in
Figure 6. On the other hand, reaction of 7 (1 equiv.) with [Pd(CH3CN)4(BF4)2 (0.75 equiv.)
in acetonitrile yielded the corresponding tetradecanuclear [Fe8Pd6]28+ cubic cage in which
iron(II) centres are located at the corners of the cube while the six palladium(II) centres are
positioned at the centre of each of the six sides.
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anions and solvent molecules are not shown [110].

Both these palladium(II)-containing products readily undergo dynamic subcomponent
exchange reactions in solution. For example, the addition of sterically less-hindered ligand
sub-components to particular hindered products transformed them to their corresponding
low-spin analogues.

In a more recent report, Li and co-workers also described the assembly of a [Fe8Pd6]28+,
face-centred cubic cage [111]. Initially, the synthesis of the high-spin (S = 2) complex
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[FeL](BF4)2·CH3OH (where [FeL]2+ = 8) was undertaken, with an X-ray structure de-
termination confirming its tripodal structure. In this case, the high-spin configuration
arises directly from the weaker ligand field presented by the tris-imidazolimine derivative
ligand employed.
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tonitrile resulted in formation of the cubic cage [Fe8Pd6L8](BF4)28 in which the high-spin
state of the respective iron(II) centres was preserved. Once again, this cationic cage has a
face-centred cubic arrangement in which eight iron(II) centres, derived from eight metal-
loligands of type 8, occupy the corners of the cube while a palladium(II) ion is positioned
in the centre of each of the six faces [Figure 7a]. The crystal structure of the [Fe8Pd6L8]28+

cation (where [FeL]2+ = 8) is shown in Figure 7b. The iron(II) sites each retained a distorted
octahedral coordination geometry with individual cages displaying either all Λ or all ∆
chiral configurations at these sites; both enantiomeric isomers of the resulting cage occurred
in the crystal lattice. The palladium(II) sites each adopted square planar coordination,
being bound to four pyridyl nitrogen donors from four different 8 metalloligands. In this
arrangement, all three pendent 4-pyridyl groups from each of eight metalloligands were
utilised in cage formation. As might be expected, there was some degree of conformational
rearrangement of the metalloligand 8 on forming the face-centred cubic product. For
example, there was an eleven percent increase in the twist of each 8 on being incorporated
into the cage structure.
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Figure 7. Structural details of the cubic cation in [Fe8Pd6L8](BF4)28 (9) (where FeL = 8). (a) Schematic
representation of the metal ion sites in the face-centred cube. (b) Crystal structure of the cubic cation
showing the octahedral coordination geometry of each iron(II) centre which is bound to six imidazole
imine nitrogen donors and the square planar coordination of each palladium(II) site, which is bound
to four pendent 4-pyridyl groups. Hydrogen atoms and BF4

− anions are not shown [111].
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Although a range of [M8M′6]n+ cubic cages of the type just discussed have been
reported, the majority of these were constructed employing centrosymmetric metalloli-
gands. An example of cage formation employing a non-centrosymmetric metalloligand is
given in a report by Zhang et al. [112]. These workers employed the Schiff-base conden-
sation of tris(2-aminoethyl)amine with 4-imidazole carboxaldehyde in a 1:3 molar ratio
followed by addition of yttrium(III) nitrate in slight excess to obtain the metalloligand
[Y(H3L)(NO3)](NO3)2 (10) (where H3L is the above tris-imine Schiff base condensation
product). The absence of centrosymmetry in the [Y(H3L)(NO3)]2+ cation is a direct conse-
quence of the non-symmetric coordination shell of its yttium(III) centre which is bound
to the above (heptadentate) Schiff base ligand as well as to a bidentate nitrato group. The
overall coordination geometry of the yttium(III) centre is distorted capped square antipris-
matic. The tripodal nature of the product (in its triply deprotonated form) indicating the
tripodal arrangement of its coordination vectors is shown in Figure 8.
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Figure 8. Schematic representation of the nine-coordinate, triply-deprotonated form of metalloligand
10 (the figure is derived from the crystal structure of its triply protonated form) [112]. The arrows
indicate the distorted tripodal arrangement of the metalloligand’s coordination vectors prior to
binding to a (secondary) metal ion centre.

Reaction of 10 with copper(II) nitrate in methanol in the presence of triethylamine (as base)
yielded a heterometallic (CuII/YIII) cationic MOC of composition [Cu6Y8L8(NO3)5(H2O)3]7+.
This product was the first reported heterometallic cage to contain yttrium(III). Of the eight
yttrium(III) centres located at the corners of a distorted cube, five are nine-coordinate (and
include the coordination of a bidentate nitrato ligand) while three are eight-coordinate (and
include a coordinated water molecule). The crystal structure (see Figure 9) shows the manner
in which the eight metalloligands of type 10 are linked to the six copper(II) sites; each of the
three imidazolate groups from an individual metalloligand bind to three (adjacent) copper(II)
sites. Five-coordinate copper(II) centres cap each of the six faces. Four of these centres are also
bound to water molecules while two (on opposing sides of the cube) bind to monodentate
nitrato groups (with the latter groups being severely disordered and not able to be fully
modelled in the X-ray analysis).

Building on a prior study [113], Crowley and co-workers employed a stepwise pro-
cedure involving 11, incorporating both monodentate (pyridyl) and bidentate (pyridyl
and 1,2,3-triazole moiety) metal-binding sites, to generate the Pt(II) metalloligand (12)
in which Pt(II) occupies the bidentate binding sites of two 11 ligands. The trans-planar
configuration of 12 was confirmed by X-ray diffraction. In turn, 12 was used to construct
the heterometallic Pd(II)/Pt(II) MOC (13) (see Figure 10) [113]. This study featured the
innovative exploitation of the different kinetic liabilities of the Pd(II) and Pt(II) square
planar d8 ions, with the use of the relatively kinetically inert Pt(II) ion to “fix” this ion in
metalloligand 12 while subsequently adding the more labile Pd(II) ion to complete the
assembly of an open-sided heterometallic cage 13 in the absence of metal-ion “scrambling”.
This nona-nuclear (Pd3Pt6) heterometallic cage, in which both metal ion types contribute to
its structural framework, has three large clefts. Cage 13 readily takes up anthracene guest
molecules and, on being exposed to light, catalyses their conversion to endoperoxides (via
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singlet oxygen generation). However, unfortunately this cage was found to be photolabile,
leading to its eventual decomposition.
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Figure 10. Metalloligand synthesis of the nona-nuclear heterometallic (Pd3Pt6) cage 13. Structure 13
was reproduced (and adapted) from reference [114] with permission.

An attempt to form the corresponding all-palladium(II) cage by addition of [Pd(CH3CN)4](BF4)2
to 11 in acetonitrile in the required ratio initially failed to result in a “clean” synthesis, resulting
instead in a complex equilibrium mixture being generated. The latter was attributed to the larger
number of permutations available in the absence of the relatively inert platinum(II) sites. Neverthe-
less, allowing the above mixture to stand overnight did result in single crystals of a corresponding
PdII

9 cage forming. This product was also observed to have a donut-like structure in which the
palladium(II) ions now occupied two different coordination sites.

2.2. Cage Assembly Employing Clathrochelate Metalloligand Systems

In a long series of studies, Severin et al. have demonstrated that diamagnetic iron(II)
clathrochelates, of which 14 and 15 represent trifunctional examples, are versatile metalloli-
gands that have proved ideal for use in constructing large supramolecular assemblies that
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include MOCs [115–118]. Such boron-capped iron(II) metalloligands have been demon-
strated to be quite kinetically and thermodynamically stable species, properties that have
aided their successful use in wide ranging studies by the above group. For example, the
group has employed the trifunctional metalloligands 14 and 15 for the assembly of two
large Pd6L6 cages, with these products being characterised by high molecular weights, as
well as incorporating extended Pd–Pd distances [119].
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It was noted by the above authors that the interaction of palladium(II) with other
divergent tritopic ligand systems has commonly resulted in the formation of assemblies
of type Pd3nL4n. The smallest member of the series, Pd3L4, is only able to form if some
of the ligands act as chelating units [119,120] thus allowing the preferred square planar
coordination geometry of each palladium(II) centre to be achieved. In the absence of
chelate formation, cage assembly will involve a minimum of six palladium(II) ions and
eight ligands. Guided by this, Severin et al. employed each of the trifunctional 14 and
15 metalloligands for cage formation, noting that the widely separated pyridyl nitrogen
donors in each structure are not sterically aligned for chelate formation to occur. The
triangular crystal structures of 14 and 15 were each confirmed by single-crystal X-ray
diffraction studies [119].

Reaction of 14 or 15 with [Pd(CH3CN)4](BF4)2 in dimethyl sulfoxide (DMSO) led to
formation of the corresponding 16 and 17 cages of type [Pd6L8](BF4)12 (L = 14 or 15) with
the crystal structure of 16 being confirmed by X-ray diffraction (Figure 11). Each of the six
palladium(II) centres was located at the vertices of an octahedron, with each triangular
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metalloligand spanning three adjacent palladium(II) centres such that they “panel” each of
the eight faces.
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Figure 11. The crystal structure of [Pd6L8](BF4)12 (L = 14) [119].

The size of the cavity in 16 was estimated to be 2·8 × 103Å along with a Pd–Pd sepa-
ration of 3·3 nm; these values corresponded to the largest cage of type M6Ln (M = Pd, Pt)
listed in the CCDC at the time of publication. This impressive result represents an exemplar
of how the use of appropriately designed tripodal metalloligands can be used to extend the
boundaries of existing cage chemistry in a rational manner.

In a different study the Severin group initially employed a virtual combinatorial library
strategy that involved the mixing of equimolar amounts of six different dipyridyl ligands
in which the 3- or 4-pyridyl groups are present in terminal positions and connected by rigid
or semi-rigid linkers together with [Pd(CH3CN)4](BF4)2 (1 equiv.) in CD3CN/CD3NO2
(4:1) [121]. Analysis of the resulting mixture indicated the preferential formation of a
heteroleptic cage of type [Pd6L6L′6]12+. Motivated by this outcome the Severin group
then probed whether a metalloligand approach might also be employed to generate a
related (larger) cage of similar stoichiometry. With this as the goal, the group subsequently
employed a combination of the previously reported clathrochelate metalloligands 18 and
19 (see Figure 12) as dipyridyl-containing analogues of the all-organic dipyridyl derivatives
mentioned above [121].
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The group was successful in assembling the significantly larger [Pd6L6L′6′ ]
12+ cage

20 employing the two clathrochelate metalloligands, 18 and 19; 20 was isolated as its
tetrafluoroborate salt. The synthetic procedure involved heating equimolar amounts of
18 and 19 with [Pd(CH3CN)4](BF4)2 in DMSO; NMR and ESI-MS results were consistent
with formation of the target [Pd6L6L′6]12+ (L = 18; L′ = 19) cage. While single crystals of
this product were isolated from DMSO, they yielded poor-quality X-ray diffraction data.
Nevertheless, the data enabled the positions of the metal sites to be discerned as well as
showing that the cationic cage adopted a prolate spheroid shape. The X-ray results coupled
with MMFF computations confirmed that the structure of this cationic cage consisted of
two [Pd3L3]6+ (L = 18) metallocycles linked by six 19 metalloligands to yield a trigonal
prismatic arrangement (see Figure 12).

2.3. Cage Assembly Associated with In Situ Metalloligand Formation Involving a Metal-Ion
Template Process

The use of mixed metals that undertake dual templating roles in the assembly of a
heteronuclear metallocage was elegantly demonstrated in a study by Nitschke et al. [122].
This group demonstrated that reaction of three equivalents of 2-formal-8-aminoquinoline
(20) with four equivalents of each of lanthanum(III) and zinc(II) in acetonitrile resulted in the
assembly of the large heteronuclear cationic cage 21 (see Figure 13). In the assembly process
it was predicted that the larger ionic radius of lanthanum(III) would promote a metal
template reaction involving three molecules of 20 to yield the corresponding lanthanum(III),
18-membered macrocyclic species for use as the metalloligand (see Figure 14). Once
formed, the latter incorporates a fully conjugated hexa-aza “inner” ring linked to three
pendent triazole-pyridine units. Four molecules of this substituted macrocyclic species
thus have available twelve pendent triazole-pyridine units for coordination to four (6-
coordinate) zinc(II) ions. The fully conjugated macrocyclic core in this metal complex
species undoubtedly displays both exceptional kinetic and thermodynamic stability due to
the operation of the macrocyclic effect [123–125]. In the tetrahedral cage product, which was
isolated as either its triflate or perchlorate salt, four lanthanum(III) macrocyclic structures
occupy (as anticipated) the four sides of the resulting tetrahedral cage while the zinc(II)
ions effectively “lock” the structure in place by occupying each of its four vertices.
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Figure 14. Crystal structure of the cationic cage 21. Hydrogen atoms and perchlorate anions (which
are present both inside and outside the cage cavity) are not shown [122].

Notably, when a single template ion [either lanthanum(III) or zinc(II)] was employed
in a parallel synthesis, no cage was generated in either case. This is in accord with the
complementary (and specific) template roles of the individual heterometal ions needed
for successful cage formation. The crystal structure of this remarkable example of a metal-
templated assembly of a specifically designed organic sub-component coupled with care-
fully selected metal ions is shown in Figure 14. In the product cage the macrocyclic faces
were not flat but were somewhat “domed” such that each lanthanum(III) ion lay 0.64 Å out
of the centre of its macrocyclic plane, while also being coordinated to four water molecules
(shown as red sticks in Figure 14). The vertices, as well as the faces of 21 exhibited single
handedness, resulting in I point symmetry. Clearly, this study suggests an innovative path-
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way for obtaining further interesting heterometal cages incorporating other combinations
of d-block and f -block ions.

3. Concluding Remarks

The use of the metalloligand approach for the directed assembly of MOCs remains a
common strategy for generating metallocages. It represents an approach in which the steric
and electronic information in both the chosen metal ion and the organic component(s) bear
a complementary relationship that promotes the overall self-assembly process, leading to
cage formation. Importantly, the use of a pre-organised metalloligand in such a process
puts entropy on the side of the practitioner. In this context, kinetic inertness (with respect
to metal exchange) coupled with moderate flexibility around the positions of the donor
sites can often be desirable metalloligand design features. Clearly, there remains much
scope for the continuing creative design and synthesis of new metalloligands that are able
to influence both the form and the function of the MOCs that result.
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