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Abstract: Polynuclear heterobimetallic coordination cages in which different metal cations are con-
nected within a ligand scaffold are known to adopt a variety of polyhedral architectures, many of
which display interesting functions. Within the extensive array of coordination cages incorporating
Fe(II) centres reported so far, the majority contain low-spin (LS) Fe(II), with high-spin (HS) Fe(II)
being less common. Herein, we present the synthesis and characterisation of a new tetradecanu-
clear heterobimetallic [Fe8Pd6L8](BF4]28 (1) cubic cage utilising the metalloligand approach. Use
of the tripodal tris-imidazolimine derivative (2) permitted the formation of the tripodal HS Fe(II)
metalloligand [FeL](BF4)2·CH3OH (3) that was subsequently used to form the coordination cage 1.
Magnetic and structural analyses gave insight into the manner in which the HS environment of
the metalloligand was transferred into the cage architecture along with the structural changes that
accompanied its occupancy of the eight corners of the discrete cubic structure.

Keywords: cubic cage; metalloligand; tripodal ligand; heterobimetallic

1. Introduction

In recent years, the self-assembly of polyhedral materials that incorporate large internal
cavities has attracted increasing attention, as they have demonstrated potential for applica-
tions involving molecular sensing, guest uptake and release, catalysis, the stabilisation of
reactive species and the generation of magnetic materials [1–6]. The structural diversity and
complexity of available coordination cages are continually being extended, underpinned
by several key stratagems for achieving self-assembly. Some prominent synthetic strategies
utilised to create such materials include the metalloligand approach, [7,8] the symmetry
interaction approach, [9] the molecular panelling approach, [10] the subcomponent self-
assembly approach [11] and the molecular library approach [12,13]. These approaches
exploit the symmetry and coordination directions of molecular components in order to
influence their predisposition to self-assemble into larger, more complex architectures.
The metalloligand strategy employs multifunctional metalloligands with well-defined
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geometrical and electronic preferences to allow for the rational design and synthesis of
multifunctional/heteronuclear cages with a wide variety of predefined topologies [7,8].
Careful selection of a secondary coordination site (or sites), separate from the coordination
sphere of the metalloligand and therefore free to coordinate to a second metal centre, makes
the generation of specific self-assembled geometries possible. Using the above approaches
has resulted in the report of a wide variety of metallosupramolecular cages, demonstrating
a range of behaviours arising from their host−guest, redox, photo-active and magnetic
properties [1,2,14–19]. Much of this research has focused on homometallic cage motifs.

In the search for increased complexity and function, there has been growing interest
in heterometallic cage systems. Stratagems such as the metalloligand approach and the use
of self-assembly, or ones based on the hard or soft nature of the metal cations and ligand
donors, as well as on the preferred geometry of individual metal centres can be utilised
to design more complex structures incorporating multiple metal centres with different
identities and functions [1,2,7,8,18,19]. The presence of two different metal cations in a
discrete cage structure potentially provides access to new structural motifs, geometries and
functions, with more complex self-sorting achievable through the presence of the two metal
centres with different bonding affinities and/or preferred geometries [1,2,7,8,18,19].

Spin crossover (SCO) is another phenomenon continuing to display very widespread
interest [20,21]. To date, a plethora of coordination cages incorporating Fe(II) that display
an array of geometries have been reported [1,2,7,8,22–24]. The majority of these contain
low-spin (LS) Fe(II) centres, while high-spin (HS) cages have been less reported [2,23].
For instance, the first Fe(II) cage exhibiting SCO was reported as recently as 2009 [25].
Typically, the LS cages have been designed using ligands based on pyridylimine and 2,2′-
bipyiridyl precursors [11,18]. The synthesis of spin-switching Fe(II) cages relies on the
design of a weaker ligand field, and as such, the majority of SCO Fe(II) cages utilise ligands
incorporating the imidazolimine functional group [2,22,23,26,27]. Upon self-assembly, the
spin-state of the metal centres in a cage can be manipulated by both steric and electronic
variations in the chosen ligands. It has been well demonstrated that even small variations
of a ligand’s electronic nature can cause dramatic changes in the SCO of the resultant cage
structure [22–30].

Recently, there has been a growing number of reported heterobimetallic cages that
exhibit SCO. These represent a variety of new and complex structures with interesting
functions [2]. The first SCO Fe(II)8M6 cage was reported by Lützen and coworkers in 2017,
utilising a porphyrin-based imdazolimine ligand [27]. On the other hand, Fe(II) cubic cages
that remain HS have been reported by our group [31] and others [32–34]. The former HS
cage [31] employed a weaker field ligand incorporating both pyridyl and pyrazole donors
(that is, the 1,5-bis((3-(pyridin-2-yl)-1H-pyrazol-1-yl)methyl)naphthalene ligand). However,
Lützen, Nitschke and Hooley induced steric strain in the pyridyl-derived structure, which
acted to stabilise the Fe(II) centres in their HS state [32–34].

In this work, we have manipulated the ligand field of the well-studied tris(2,4-
imidazolimine) coordination environment [35–37], which has been shown to result in Fe(II)
SCO in most cases. We modified the ligand field through the addition of three 4-pyridyl
groups (Figure 1) to yield (2), which resulted in HS Fe(II) centres in the metalloligand
FeL(BF4)2. (3) This metalloligand, in turn, gave rise to the self-assembled [Fe8Pd6L8](BF4)28
octahedral cage (1) (Scheme 1). Thus, both an HS metalloligand and a HS heterobimetallic
cage were successfully synthesised.
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Scheme 1. Synthesis of cubic cage 1 using the metalloligand approach.

2. Materials and Methods
2.1. MS, NMR, SEM, EDS and X-ray Mapping Measurements

High resolution ESI−MS data were acquired using a Waters Xevo QToF mass spec-
trometer (Waters, Milford, MA, USA), operating in positive ion mode. Samples were
dissolved in MeCN and infused directly into the ESI source via syringe.

Nuclear Magnetic Resonance (NMR) experiments were performed on an Oxford/Varian
Mercury 300 MHz NMR, operating with VnmrJ Version 4.2 Revision A software and equipped
with a Varian 300AutoSW PFT probe at Biomedical Magnetic Resonance Facility (Western
Sydney University). CHN analyses was carried out at Kumamoto University, Japan.

Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) spot
analysis were acquired using a Jeol 6510LV SEM in low vacuum with a chamber pressure
of 30 Pa and an accelerating voltage of 25 kV. Samples were mounted to an aluminium stub
with double-sided conductive carbon tape and then imaged uncoated. Spot EDS analysis
was carried out using Moran Scientific microanalysis software with a silicone Drift Detector
(SDD). X-ray mapping was carried out using a Hitachi FlexSEM1000II SEM fitted with a
Bruker EDS microanalysis system. Samples were mounted on a silicone wafer and analysed
in high vacuum uncoated. Elemental maps were pseudo-coloured to assist in the visual
clarity of element distribution.

2.2. Magnetic Measurements

Susceptibility data were collected using a Quantum Design SQUID magnetometer
(Quantum Design, San Diego, CA, USA) calibrated against a standard palladium sample.
The data was collected between 10 and 300 K and cycled from 300→ 10→ 300 K. The scan
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rate was fixed at 2 K min−1. Measurements were taken continuously under an applied field
of 0.5 T.

2.3. Single Crystal X-ray Diffraction Measurements

All single crystal data was collected from the MX1 beamline at the Australian Syn-
chrotron using silicon double crystal monochromated radiation (λ = 0.71073 Å) at 100 K [38].
At the Australian synchrotron beamline, the XDS software [39] was used for data inte-
gration, processing and scaling. The empirical absorption correction was then applied at
the synchrotron using SADABS [40]. The structure was solved by ShelXT [41] using the
intrinsic phasing method and the full-matrix least-squares refinements were carried out
using a suite of SHELX programs [42,43] via the Olex2 interface [44]. Non-hydrogen atoms
were refined anisotropically for the precursor and the metalloligand, however, only the
coordinating nitrogens and the heavy metal (Fe and Pd) atoms were refined anisotropi-
cally due to low resolution data. Hydrogen atoms were included in idealized positions
and refined using a riding model. The crystallographic data (Table 1) in CIF format has
been deposited at the Cambridge Crystallographic Data Centre with CCDC nos. 2170053,
2170063 and 2170771. It is available free of charge from the Cambridge Crystallographic
Data Centre, 12 Union Road, Cambridge CB2 1 EZ, UK; fax: (+44) 1223-336-033; or e-mail:
deposit@ccdc.cam.ac.uk. Crystal of 1 diffracted essentially only to lower angles of theta
and, therefore, the data for 1 was collected at low resolution (~1.00 Å).

Table 1. Crystallographic data for 1-(pyridine-4-yl)-1H-imidazole-4-carbaldehyde, FeL(BF4)2 (3) and
Heterobimetallic cage (1).

Compound 1-(pyridine-4-yl)-1H-imidazole-
4-carbaldehyde FeL(BF4)2.CH3OH (3) Cage

(1)

CCDC Number 2170053 2170063 2170771
Empirical formula C9H7N3O C34H37B2F8FeN13O C276H282B28F112Fe8N110OPd6

Formula weight 173.18 873.23 8671.98
Temperature/K 100 100 100
Crystal system Monoclinic Monoclinic Cubic

Space group P21/c P21/c Fm-3c
a/Å 3.6800 (7) 11.565 (2) 46.361 (5)
b/Å 22.050 (4) 15.555 (3) 46.361 (5)
c/Å 9.6300 (19) 21.169 (4) 46.361 (5)
α/◦ 90 90 90
β/◦ 99.41 (3) 91.87 (3) 90
γ/◦ 90 90 90

Volume/Å3 770.9 (3) 3806.1 (13) 99,643 (35)
Z 4 4 8

ρcalcg/cm3 1.492 1.524 1.156
µ/mm−1 0.103 0.485 0.526

F(000) 360 1792 34784
Crystal size/mm3 0.2 × 0.02 × 0.02 0.02 × 0.02 × 0.01 0.2 × 0.2 × 0.2

Radiation/Å MoKα (λ = 0.71073) MoKα (λ = 0.71073) MoKα (λ = 0.71073)
2Θ range for data collection/◦ 3.694 to 52.744 3.25 to 57.062 4.304 to 34.444

Index ranges −4 ≤ h ≤ 4, −27 ≤ k ≤ 27, −11 ≤
l ≤ 11

−12 ≤ h ≤ 12, −18 ≤ k ≤ 18, −24
≤ l ≤ 24

−38 ≤ h ≤ 38, −38 ≤ k ≤ 38, −38
≤ l ≤ 38

Reflections collected 16,679 47,189 96,862

Independent reflections 16,679 [Rint = 0.1048,
Rsigma = 0.1185]

7210 [Rint = 0.0239,
Rsigma = 0.0134]

1343 [Rint = 0.1650,
Rsigma = 0.0174]

Data/restraints/parameters 16,679/0/119 7210/0/534 1343/46/125
Goodness-of-fit on F2 1.13 1.04 1.814

Final R indexes [I > = 2σ (I)] R1 = 0.0782, wR2 = 0.2147 R1 = 0.0274, wR2 = 0.0710 R1 = 0.1323, wR2 = 0.3998
Final R indexes [all data] R1 = 0.1222, wR2 = 0.2889 R1 = 0.0277, wR2 = 0.0712 R1 = 0.1525, wR2 = 0.4268

Largest diff. peak/hole/e Å−3 0.42/−0.62 0.57/−0.39 1.83/−0.46

In total, there are eight BF4
− anions encapsulated inside the cage and twenty BF4

−

anions seen outside of the cage. The two outer BF4
− in the asymmetric unit were given 5/6

occupancy to satisfy the chemical formula, but these occupancies may have some variation
in reality. The reason for the selection of the outer two BF4

− anions for the reduction of
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occupancies was due to their larger Uiso compared to the inner BF4
− anions encapsulated

in the cage. The solvent mask found a residual electron density of 41 electrons, which may
be attributed to solvent or partially occupied solvents. Only the heavy atoms (Fe, Pd) and
their coordinating nitrogens were refined anisotropically with other non-hydrogen atoms
refined isotropically. The anions were restrained using SADI and RIGU, while the solvent
was restrained with DIFX and RIGU. Furthermore, the coordinating nitrogens of the cage
(N3, N4 and N5) were restrained with RIGU. The final R factors were in the range (0.13) and
the other refinement parameters (wR2, GooF) were in acceptable ranges for the asymmetric
unit in the cubic space group (Table 1).

2.4. General Synthetic Procedures

Synthesis of 1-(pyridine-4-yl)-1H-imidazole-4-carbaldehyde. The procedure was adapted
from a literature synthesis [45]. 4-Brompyridine hydrochloride (779.1 mg, 4.01 mmol) was
mixed with 4-imidazolecarboxaldehyde (541.2 mg, 5.63 mmol, excess), cesium carbonate
(2.6 g, 8.0 mmol) and copper(I) iodide (152.8 mg, 0.80 mmol) in 8 mL of dimethylformamide.
The flask was evacuated and back-filled with N2 three times, then heated at 120 ◦C for
48 h. The resulting brown mixture was allowed to cool, diluted with ethyl acetate (6 mL)
and filtered through a plug of celite. The mixture was washed three times with 20 mL
ethyl acetate and the resulting brown solution was concentrated to 30 mL for purification
via column chromatography (10:1 ethyl acetate/methanol eluent). The yellow solution
was evaporated to desiccation and the product was recrystallised from ethanol to give
white crystals. Yield: 258 mg, 36.8%. 1H NMR (DMSO-d6, 300 MHz) δ (ppm); 9.84 (s, 1H),
8.86 (s, 1H), 8.75 (s, 3H), 7.88 (d, 2H); 13C NMR (DMSO-d6, 75 MHz) δ (ppm); 186.01, 151.97,
143.18, 142.82, 138.29, 125.30, 114.96.

Synthesis of ligand (2). Tris(2-aminoethyl)amine (108.9 mg, 0.74 mmol) in 10 mL ace-
tonitrile (MeCN) was added to a solution of 1-(pyridine-4-yl)-1H-imidazole-4-carbaldehyde
(403.7 mg, 2.33 mmol) in 10 mL of MeCN. The reaction mixture was heated at reflux while
stirring for 3 h and then the pale white precipitate that formed was collected by filtration
and washed with cold MeCN (3 × 5 mL) to give a white powder. Yield: 382 mg, 80.45%.
1H NMR (CDCl3, 300 MHz) δ (ppm); 8.725 (d, 2H), 8.260 (s, 1H), 7.972 (s, 1H), 7.883 (s, 1H),
7.397 (d, 2H), 3.720 (t, 2H), 2.910 (t, 2H); 13C NMR (CDCl3, 75 MHz) δ (ppm); 155.85, 151.82,
143.11, 142.40, 116.23, 114.36, 60.04, 55.43.

Synthesis of Metalloligand FeL(BF4)2 (3). Method 1: Tris(2-aminoethyl)amine (205.5
mg, 1.41 mmol) in 10 mL of methanol (MeOH) was added to a solution of 1-(pyridine-4-yl)-
1H-imidazole-4-carbaldehyde (730.1 mg, 4.22 mmol) in 15 mL of methanol. The reaction
mixture was heated at reflux with stirring for 3 h leading to a clear pale yellow solution.
After cooling the solution, iron(II) tetrafluoroborate hexahydrate (474.4 mg, 1.41 mmol)
in 10 mL of methanol was added dropwise to the reaction mixture while stirring. The
mixture was then refluxed for a further 1 h, leading to an orange solution. The solution
was left to cool. Slow evaporation of the reaction mixture resulted in orange crystals. The
orange crystals of FeL(BF4)2 were isolated by filtration and washed with cold methanol,
then allowed to dry in air. Yield: 801 mg, 67.7%.

Method 2: Iron(II) tetrafluoroborate hexahydrate (174.3 mg, 0.52 mmol) in methanol
(10 mL) was added dropwise into a solution of 2 (301.6 mg, 0.49 mmol) in methanol (10 mL).
The reaction mixture was heated at reflux for 1 h. The resulting orange solution was left to
slowly evaporate. The orange crystals of FeL(BF4)2 that formed were isolated by filtration
and washed with cold methanol. Yield: 254 mg, 61.2%.

Elemental analysis (%) (calculated for C33H33N13FeB2F4·CH3OH): C (46.77, 46.26),
H (4.27, 4.27), N (20.85, 20.57); HR-ESI MS (positive ion detection, MeCN): m/z = [FeL(BF4)]1+;
754.2412 [FeL]2+; 333.6189; a single crystal obtained by method 1 was used for the single
crystal X-ray study.

Synthesis of Heterobimetallic Cage (1). Tetrakis(acetonitrile)palladium(II) tetrafluorob-
orate (63.5 mg, 0.14 mmol) in MeCN (10 mL) was added dropwise to FeL(BF4)2 (160.3 mg,
0.19 mmol) in MeCN (10 mL). The reaction mixture was heated at reflux while stirring
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for 1 h, leading to a clear orange solution. The orange solution was slowly diffused with
di-isopropyl ether which led to the formation of orange cubic crystals of 1. Yield: 41 mg
(based on palladium), 20.8%; HR−ESI MS (positive ion detection, MeCN): m/z = 964.0559
{[Fe8Pd6L8](BF4)20}8+.

3. Results and Discussion
3.1. Characterisation of Ligand (2) and Its Precursor

The 1H NMR and 13C NMR (Figures S1–S4) confirmed the formation of the precursor
(1-(pyridine-4-yl)-1H-imidazole-4-carbaldehyde) and ligand (2). X-ray quality crystals of
the precursor (Figure 1a) were obtained through the slow evaporation of the precursor in
ethanol, and crystallographic data were collected at 100 K. The precursor crystallises in
monoclinic space group P21/c with four precursor moieties per unit cell.

3.2. Characterisation of Fe(II) Metalloligand (3)

The high-resolution ESI−MS of Fe(II) metalloligand (3) identfied m/z values at
333.6085 and 754.2412, which corresponds to [FeL]2+ and [FeL(BF4)]1+ (L= 2), respectively
(Figures S5–S7).The isotopic pattern of both charged species of the metalloligand is in good
agreement with their simulated isotopic distribution.

X-ray quality crystals were obtained through the slow evaporation of FeL(BF4)2 so-
lution in methanol; crystallographic data were collected at 100 K. Single crystal X-ray
diffraction confirmed the formation of metalloligand FeL(BF4)2 (Figure 2). FeL(BF4)2 crys-
tallises in the monoclinic space group P21/c with a single metalloligand in the asymmetric
unit. The six imidazolimine nitrogen donor atoms of the tripodal L form an octahedral
coordination sphere surrounding the central Fe(II) metal centre. The average Fe-N bond
lengths of 2.20 Å, as well as the angular distortion parameter Σ value of 105◦, are consis-
tent with the HS Fe(II) complexes (Table 2). This is confirmed by magnetic susceptibility
measurements (Figure 3) that exhibit a HS character over the range of 300–45 K, with a
room temperature χMT of 3.8 cm3Kmol−1, that is consistent with a single Fe(II) center
(S = 2) being in the HS 5T2 state. Below 45 K, the observed decrease in χMT is attributed
to zero-field-splitting in the Fe(II) centers. This is confirmed in the plot of χM

−1 versus
T (Figure 3a) that demonstrates a linear Curie−Weiss relationship that is indicative of
paramagnetic behaviour.
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(a) (b) 

Figure 2. Crystal structure of the metalloligand FeL2+. Colour codes: Fe, orange; C, black; N, blue;
H, white. Solvent and anions are not shown. (a) Single crystal structure of (lambda) metalloligand
FeL2+. (side view), and (b) metalloligand FeL2+. Viewed down the C3 axis. The cell direction vectors
are to scale with the cell parameters in each projection.
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Table 2. Comparison of octahedral distortion parameters and average Fe-N bond lengths in FeL(BF4)2

(3) and the heterobimetallic cage (1).

Compound Average Fe(II)-N Bond Length (Å) ζ (Å) δ Σ (Degrees) Θ (Degrees)

FeL(BF4)2 (100K) 2.20 0.16 0.00018 105.0 280.4

1 (100K) 2.19 0.11 0.000066 131.3 374.1
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Figure 3. (a) A combined plot of the molar magnetic susceptibility (χM) and inverse magnetic
susceptibility (χM

−1) of FeL(BF4)2 (3) against temperature. (b) A plot of the magnetic susceptibility
(χMT) vs. T per metalloligand. Both plots are indicative of the presence of HS (paramagnetic) Fe(II).

The metalloligand (3) exists in the two enantiomeric configurations δ (clockwise) or
Λ (anticlockwise), resulting from the screw sense of the ligand arrangement of tripodal
L around the Fe(II) metal centre. In the asymmetric unit FeL(BF4)2 crystallises with two
tetrafluoroborate anions, in keeping with the charge state of Fe(II) and a single methanol
solvent molecule. Hydrogen bonding (B1-F4···H6B, B2-F7···H7A and MeOH···N4A-L)
involving the anions and the ethanol molecule is present, with the methanol molecule and
the tetrafluoroborate anions being involved in two and three hydrogen bonds with the
metalloligand, respectively.

3.3. Characterization of the Coordination Cage [Fe8Pd6L8]28+

An optical microscope image and the scanning electron microscopy (SEM) photograph
indicated that crystalline 1 undergoes rapid decay upon losing its solvent (Figure 4).
In addition, scanning electron microscopy/energy-dispersive spectroscopy (SEM−EDS)
analysis of cage 1 confirmed that the ratio of Fe(II) to Pd(II) in the cage is approximately
4:3 (Figure 4). Additionally, the EDS results confirmed the presence of C, N, F, Fe and Pd;
the element maps indicated that each element was uniformly distributed as well as being
chemically homogeneous (Figure 4).

The high-resolution ESI−MS showed m/z peaks at 613.8661, 677.5752, 754.0326,
847.4875, 964.0559, 114.3608, 1314.9109 and 1595.4788, which correspond to stepwise loss of
twelve, eleven, ten, nine, eight, seven, six and five BF4

− anions, respectively. The expected
isotopic patterns for the eight charged species (Figure S8) were also observed, with the
calculated patterns being in good agreement with their isotopic distribution.
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Figure 4. A crystal of cage 1 shown as an optical microscope image (Top left); a backscattering SEM
image (Top middle left); corresponding EDS analysis results (Top middle right); atomic ratio of Fe
and Pd (Top right); a backscattering SEM image of a single crystal of cage 1 (Bottom left); and X-ray
mapping (Bottom). The EDS spectrum confirms an atomic ratio of Fe:Pd ≈ 4:3. The X-ray mapping
results for each element (Fe: pink, Pd: yellow, C: red, F: blue and N: green) demonstrate that the
respective elements are chemically homogeneous.

The single crystal X-ray structure determination at 100 K confirmed the heterobimetal-
lic cage structure of 1. The cage crystallised in the space group Fm-3c, with the asymmetric
unit containing one third of one ligand, one iron(II) ion and one palladium(II) ion. Eight
tetrafluoroborate (BF4

−) anions are encapsulated in the cage void, which has a guest acces-
sible volume of 41 Å3 (Figure 5) and an additional twenty BF4

− ions shared across two cage
moieties. The Fe(II) metalloligand retains an octahedral coordination environment of six
proximal imidazolimine nitrogen atoms from the tripodal ligand L, while each Pd(II) centre
is coordinated to four distal pyridyl nitrogens from four metalloligands to form square
planar geometry.
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Figure 5. Schematic representation of the same view shown three ways for the single crystal X-ray
diffraction structure of 1 encapsulating the BF4

− anions within the void; (a) offset edge view of 1
(b) C4 axis view of 1; (c) C3 axis view of 1. The BF4

− anions outside the cage, solvents and hydrogen
atoms are not shown for clarity.

Eight Fe(II) centres from eight metalloligands define the corners of the cage, while six
Pd(II) cations occupy the centres of the six faces to form overall a face-centred cubic geome-
try (Figure 5). All eight Fe(II) centres have distorted octahedral coordination geometries.
Each of the Fe(II) coordination shells exhibit either Λ Λ Λ Λ Λ Λ Λ Λ or ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
configurations, with equal numbers of both enantiomeric forms coexisting in the crystal
lattice. The average Fe-Nimidazole bond lengths at 100 K are 2.19 Å, with average octahedral
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distortion parameters of Σ = 131.3◦ (Table 2). These values are consistent with the presence
of a HS Fe(II) coordination environment at 100K.

As discussed in the previous section, the metalloligand (3) crystal structure is in
accordance with the magnetic data and indicates the presence of HS Fe(II) centres. The
average coordinate bond length is 2.20 Å, and an Σ value of 105◦ was calculated. The total
difference of all coordinate bond lengths from the average value (ζ) was 0.16 Å, and a
trigonal projection distortion parameter (Θ) of 280.4◦ was calculated.

The values of these structural parameters for each metalloligand change, as expected,
upon reconformation of the metalloligand structure to form the face-centred cubic cage.
The average coordinate bond length of the metalloligand in the cage structure drops slightly
to 2.19 Å, corresponding to an almost negligible difference of less than 1%. The other length
distortion parameters, ζ and ∆, also decrease in the cage structure, giving final values of
0.11 Å and 0.000066, respectively; these values are in keeping with the Fe coordinate bonds
in the cage structure deviating very little from the average value. Although the length
distortion parameters all decreased, both angular distortion parameters increased markedly
with Σ = 131.3◦ and Θ = 374.1◦, corresponding to respective increases of approximately
25% and 33%. Together with the very small decrease in average coordinate bond length, the
rise of angular distortions implies that the HS electronic state has been preserved in all Fe
coordination sites in the cage structure. The sharp rise in the angular octahedral distortions
in the cage compared to the metalloligand indicate a reconformation of the chelate rings
relative to one another, which is assumed to be primarily driven by the realignment of the
ligand “arms” when forming the face-centred cubic architecture.

The molecular volumes of the metalloligand motif in the structures of FeL(BF4)2
(3) and cage 1 were calculated and yielded values of 519.2 and 510.3 Å3, respectively,
corresponding to a decrease of 1.8%. This volume difference indicates some shrinkage of
the metalloligand motif when adopting its final configuration in the cage structure. In order
to compare the extent of the metalloligand conformational change in FeL(BF4)2 (3) and
cage 1, two additional structural parameters will now be discussed. The first is the angle
between the binding axes of the pyridine moieties of each metalloligand. In an idealised
face-centred cube structure, with respect to any corner of a cube, the angle between any
two adjacent facial centres is 60 degrees. Therefore, it seems reasonable to assume that the
angles between the bonding axes of the secondary donor sites should approximate this
angle. The bonding axis of each pyridine binding domain (N-Pd bond) is close to being
coaxial with the axis defined by the secondary pyridine donor and the C atom, which
is positioned opposite in the pyridine ring (Figure 6). As such, for the sake of analytic
consistency between the FeL(BF4)2 (3) and cage 1, we opted to model the bonding axis as
being colinear with the interval defined by two atoms in the ith pyridine domain, the distal
N, and C opposite in the ring. The angle between the bonding axes for the metalloligand
motifs was calculated for both the FeL(BF4)2 (3) and cage 1 structures (see Figure S9).

The mutual bond angles obtained for the metalloligand structure were 57.9, 58.8 and
52.2◦, with an average value of 55.3◦. In the cage-bound metalloligand, the calculated value
of 61.3◦ was obtained, and due to the symmetry operations of the space group this value
corresponds to the average of all such mutual bond axis angles in the cage structure. Some
variation from the ideal value of 60◦ may be explained by small deviations from the defined
bond axis, and the axis of the N-Pd bond, as well as the ligand arm’s direction of approach
towards the Pd centre being misaligned with respect to the Fe-Pd axis.

The second structural parameter based on the crystal data was the torsion angle about
the C3 axis (pseudo-C3 in the case of the metalloligand), between the coordinating imine N
and the distal secondary pyridyl-N on the same ligand arm (Nimine-Fe-centroid-Npyridine),
where the centroid was taken from the three distal pyridyl-N positions (Figure 7). This
value was taken to represent the degree of twist manifested by the metalloligand. The
torsion values found for FeL(BF4)2 were 50.0, 51.6 and 48.8◦, with an average of 50.1◦, while
the same torsion angle measured for the symmetry equivalent ligand arms in the structure
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of 1 was 55.4◦. The degree of twist in the metalloligand upon adopting the face-centred
cubic architecture is 10.6% higher than the average seen for FeL(BF4)2.
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(a) (b) 

Figure 6. Representation of two selected mutually-positioned secondary group bonding axes in the
metalloligand. (a) the intervals corresponding to the bonding direction of each of the secondary
binding domains are highlighted, as defined by the coordinates of C9 and N4 in each arm of the
metalloligand. (b) Since the bonding axes do not intersect, they are translated such that the reference
C atoms in both ligand arms share the same point. The angle between axes can then be calculated.
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Figure 7. Schematic showing the torsion angles used to represent molecular twist, (a) highlights the
chosen atoms (represented by balls) and the centroid between distal N’s (green) (b) shows the torsion
angle, as viewed along the pseudo threefold axis of the metalloligand in FeL2+.

The formation of the face-centred cubic architecture forces the metalloligand to change
conformation such that the final cubic structure is stable. The mutually positioned bonding
axial angles ideally adopt a value close to 60◦ and large deviations from this value would
not be conducive to cage formation. The reconformation of the ligand arms in each metal-
loligand is clearly an important feature in the formation of the final overall cubic structure.
This motion of the ligand arms induces a greater degree of twist in each individual metalloli-
gand in cage 1, as compared to the situation in FeL(BF4)2 (3). It also induces adjustments in
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the octahedral coordination sphere, leading to a decrease in the octahedral length distortion
parameters, concomitant with a sharp rise in angular distortion parameters and, ultimately,
the stabilization of the HS electronic state in the metalloligand units.

4. Conclusions

In this report, we discuss the self-assembly of a cubic Fe8-Pd6 heterobimetallic cage (1)
obtained using the metalloligand approach. The commonly studied imidazolimine metal
coordination moiety was incorporated in the tripodal N6-donor (3-(((E)-(1-(pyridin-4-yl)-1H-
imidazol-4-yl)methylene)amino)-N,N-bis(2-(((E)-(1-(pyridin-4-yl)-1H-imidazol-4-yl)methylene)
amino)ethyl)propan-1-amine) ligand (2) whose weaker ligand field resulted in a new met-
alloligand (3) incorporating HS Fe(II) metal centres. Further coordination of Pd(II) to the
secondary coordination sites of 3 (that is, the distal pyridyl groups) resulted in the forma-
tion of the heterobimetallic cationic cage [Fe8Pd6L8]28+. Both the Λ and δ enantiomers of the
cage 1 were found to crystallise in the Fm-3c crystal lattice. Despite significant reorientation
of the metalloligand structure, the HS state of the Fe(II) centres was maintained following
their occupancy of the eight corners of the discrete cubic architecture. The average metal-
donor bond lengths and the octahedral distortion parameter (Σ) for the metalloligand, at
2.20 Å and 105.0◦, respectively, for the heterobimetallic cage, were found to be 2.19 Å and
131.1◦. This is in accordance with compression and further distortion of the coordination
environment following coordination of the metalloligand’s secondary donor groups to the
Pd(II) centres. Furthermore, the tripodal metalloligands in cage 1 were found to decrease
in volume in response to the secondary group bonding in forming the cubic architecture.
The present study provides many interesting areas for future exploration. Changes in the
identities of the metal centres will almost certainly allow the formation of related homo and
heterometallic cages with predesigned structural and electronic natures, thus pointing the
way towards the rational synthesis of new systems displaying a wide range of magnetic,
optical, redox and other properties.
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