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Abstract: Occupant comfort in buildings is one of the most crucial considerations in designing a
building. Accordingly, there is a growing interest in this area. Aspects of comfort include thermal
comfort, visual comfort, acoustic comfort, and indoor air quality (IAQ) satisfaction. The objective
of this state-of-the-art review was to provide a comprehensive, explicit, and up-to-date literature
review on occupant comfort in buildings, since this issue has a great impact on the lifestyle, health,
and productivity of occupants. A meta-synthesis method was also used for an analytical-interpretive
review of previous studies. In this research, scientific research studies related to the subject of indoor
occupant comfort in the period 2002-2022 were reviewed. Previous reviews have often covered the
fundamental concepts and principles related to indoor occupant comfort. Although innumerable
studies have focused on thermal comfort, other aspects of occupant comfort have not been considered.
The review is analyzed and discussed in reference to type of study, case study geographical locations
and climate zones, case study building types, decision-making models, assessment criteria, data-
collection tools, and data analysis strategies. Finally, future research recommendations are presented.
Through the review, we find that the comfort models used in research are mostly based on comfort
perception votes collected from experimental studies, which may not reflect the preferences of users
well. In addition, only the influence of environmental factors on the models has been investigated,
and other personal factors have been ignored. This study presents a useful guide for researchers to
determine their outlines for future research in this field.

Keywords: occupant comfort; indoor thermal comfort; visual comfort; acoustic comfort; indoor air
quality satisfaction; buildings

1. Introduction

Nowadays, indoor use accounts for 30-40% of total energy usage in the world [1];
additionally, the share of energy consumed by the building sector has increased by up to
50% [2]. Around 39% of greenhouse gases generated by the construction and building
sector in 2018 came from process- and energy-related activities [3]. About 55% of the
world'’s electricity is also used by the building sector [4]. Today, people spend 80-90% of
their time indoors [5], and the indoor environment quality (IEQ) has a substantial impact
on health [6], work efficiency [7], and user’s perceptions [8]. Additionally, IEQ includes
aspects of occupant comfort (i.e., thermal, visual, acoustic, and indoor air quality (IAQ)
satisfaction) [9]. As shown in Figure 1, there are relationships between these aspects;
they are not independent [10]. The arrows illustrate the interrelation of each aspect of
comfort. The US Environmental Protection Agency has classified IAQ dissatisfaction as
one of the principal five environmental threats to public health [11]. The World Green
Building Council [12] explains that distracting noise has reduced people’s productivity
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and concentration by 66%. Therefore, society’s understanding of the impact of the indoor
environment on people’s comfort and health has increased.
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Figure 1. Interrelation between the aspects of occupant comfort.

Many factors affect occupant comfort in buildings, and if addressed improperly, these
factors can result in poor levels of comfort, dissatisfaction, or illness for occupants [13].
Occupant comfort is measured in terms of thermal, visual, and acoustic comfort, as well as
IAQ satisfaction, and can be divided into four types based on environment-dependent fac-
tors [14]. To understand the relationship between environmental parameters and occupant
comfort, research workers should collect and measure occupant comfort and environmental
data, simultaneously. Data analysis tools are suitable models which receive environmental
data as input and provide occupant comfort perception as output [9].

If an appropriate model for understanding the correlation between environmental
data and indoor occupant comfort is identified, this model can be used as an online tool
to predict occupant comfort [15]. In addition, it can be applied as a basis for controlling a
building’s HVAC (heating, ventilation, and air conditioning) system. HVAC control systems
help to improve temperature, humidity level, ventilation rate, and IAQ, which leads to
thermal comfort in, and energy usage optimization of, buildings [16,17]. The components
of environmental data, human comfort, and HVAC control work closely together and play a
vital role in the design of smart buildings. Sensor technology has significantly improved in
recent years. This technology focuses on the correlations among environmental parameters
and human comfort [18].

Sensor-based devices are usually used to collect data related to the user’s activity rate,
indoor conditions, the energy consumption of appliances, etc. [19]. Some studies have
classified behavior-related sensors [18]. Furthermore, the combination of machine learning
(ML) algorithms with automatic control systems in residential and non-residential buildings
helps to design smart buildings and, in addition, leads to energy savings and improved
user comfort [20]. One of the common applications is data-driven models that help the
decision-making mechanism [21]. Another example of these applications introduced in [20]
is the recommendation system, which uses ML techniques to control the lighting systems of
smart buildings and leads to the optimization of energy consumption and visual comfort.
The next section provides a brief overview and description of four aspects of occupant
comfort in buildings and the meta-synthesis approach used in this paper for analyzing
previous studies.



Sustainability 2023, 15, 4303

3 0f 36

1.1. Thermal Comfort

The concept of thermal comfort has long been a topic; it was introduced at the be-
ginning of the last century, and has been studied extensively around the world, espe-
cially in the fields of architecture and engineering [9]. Thermal comfort is defined in ISO
Standard 7730:1994 [22] and ASHRAE (American Society of Heating, Refrigerating and
Air-Conditioning Engineers) Standard 55 [23] as “that condition of mind which expresses
satisfaction with the thermal environment.”, i.e., the condition when someone is not feeling
either too hot or too cold. In addition to being a potential health hazard, a poor thermal
environment affects people’s abilities to work effectively, their satisfaction at work, and
their likelihood of remaining customers [24]. Therefore, building design must guarantee
the means of achieving an acceptable indoor environment [25].

Thermal comfort is more important than other aspects of occupant comfort. According
to research, thermal comfort has the greatest effect on the overall satisfaction of users
and is directly related to the quality of the indoor environment [25]. In addition, the
performance of HVAC systems in buildings is determined based on thermal comfort factors.
The share of energy consumption of HVAC systems in developed countries is about 50% of
the total energy consumption of buildings [26]. Therefore, thermal comfort in the indoor
environment is one of the most interesting topics in research studies, and many articles
have been published in this field.

1.2. Visual Comfort

Visual comfort is another important factor in evaluating occupant comfort in buildings,
which is defined by a series of criteria related to the amount of light in the environment,
contrast balance, color temperature, and the absence or presence of indoor glare [27]. In
general, visual comfort means “the state of mind that expresses satisfaction with the visual
environment” [28]. However, too much or too little light will also lead to visual discomfort
for the occupants and harm their efficiency and satisfaction [29-31].

1.3. Acoustic Comfort

The third aspect of occupant comfort in the indoor environment is acoustic comfort.
Acoustic comfort is one of the important topics among architects and interior designers
and refers to “a state of satisfaction with acoustic conditions” [32]. Acoustic comfort is
one of the key elements in evaluating the quality of the indoor environment and has a
great impact on the satisfaction and improvement of occupants’ performance [14]. Acoustic
discomfort can also endanger people’s health and quality of life [8].

1.4. IAQ

In many industrialized and populous countries such as China and India, the low
quality of indoor air has a negative effect on occupants’ health and satisfaction, and this
issue is one of the important research topics in these countries. Indoor air quality (IAQ) is
directly related to indoor environment quality (IEQ) and depends on three basic factors.
These factors are the number of pollutants, the rate of ventilation in buildings, and the
duration of confinement of pollutants in built environments [24]. While IAQ focuses on
what we breathe, IEQ involves more factors. IEQ involves TAQ, in addition to the other
psychological and physical aspects of life indoors. Multiple factors contribute to IEQ,
including IAQ, visual, acoustic, and thermal comfort [24].

Effective parameters that affect IAQ include humidity level, poor ventilation, tem-
perature, volatile organic compounds, CO,, ozone, etc. [33]. According to research, if the
quality of indoor air is poor, it has a negative effect on occupant’s health and leads to
respiratory-related diseases [34].

1.5. Meta-Synthesis Analysis

It is almost inevitable that research projects include basic research syntheses: the
discussion of previous studies’ results, findings, and conclusions. In the initial phase of
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research, a review of relevant literature in the field is conducted, and a discussion of this is
presented to provide a context for the subsequent primary research [35]. In this method,
the volume of reports is reduced, but their essence is preserved by key organizers such
as themes, concepts, ideas, and perspectives [36]. Meta-synthesis analysis is clearly a
quantitative statistical procedure, and it aims to build theory based on qualitative case
studies that are not part of a multisite effect.

From a postpositivist perspective, research synthesis can be understood as interpre-
tation of qualitative evidence [37]. This qualitative method is related to meta-analysis
in quantitative research and is based on the collection and comparative analysis of the
researcher’s strategic phrases (i.e., themes), which reveals the essence and key points of
previous research [36]. The important thing about meta-synthesis is that the value of these
studies is understood when it provides a perspective beyond just the findings of previous
research. Figure 2 presents the research process of meta-synthesis for review articles. The
value of meta-synthesis is perhaps determined by its synergistic nature and the extent to
which it produces insights that are greater than the sum of their parts [35].
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questions research
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. Presentation and
Data analysis and . . q
. interpretation of Conclusion
synthesis -
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Figure 2. Research process of meta-synthesis analysis [37].

This research analyzes preceding studies about occupant comfort assessment in build-
ings. The purpose of this study is to provide a comprehensive, specific, state-of-the-art
review on indoor occupant comfort research’s decision-making models, measures, and cri-
teria. It has utilized a quantitative and qualitative review of the previous studies conducted
in this field. This research also has applied a meta-synthesis method for an analytical-
interpretive review of previous studies.

Finally, up-to-date and forthcoming research opportunities are provided. The out-
comes of the review provide the perspective that although innumerable studies have been
mainly focused on the issue of thermal comfort, the field has not been paying attention
to other aspects of occupant comfort. There is also a need to create innovative decision-
making models that focus on environmental and personal factors simultaneously, thereby
improving the reliability of the current models. This state-of-the-art review presents a com-
prehensive literature review for researchers to aid them in determining their background
in this field of research. Accordingly, the principal two research questions that the present
article focused on answering were:

What are the important and influential factors of occupant comfort assessment in buildings?

What are feasible recommendations to improve related research on indoor occupant
comfort areas based on the findings obtained from the present research?

2. Material and Methods

Due to the qualitative nature of the issue of indoor occupant comfort, the literature
review was conducted by the meta-synthesis method. As depicted in Figure 2, the research
process started with the two main questions, and bibliographies were collected from
popular academic and scientific databases. In this review article, to analyze the collected
articles, scientific mapping and data-driven analysis were used. The scientific mapping
method is a branch of scientometrics that is a generic process of visualization and domain
analysis [38]. CiteSpace software was chosen to implement the scientometric analysis in
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this review. CiteSpace is a Java-based application that is used to analyze and visualize
trends and patterns in scientific articles. This software is capable of understanding and
interpreting historical patterns and trends and identifying new topics that have grown
rapidly in scientific sources [39].

The initial search was conducted on 13 August 2022 based on the term “occupant
comfort in buildings” in the titles, abstracts, and keywords of the articles. Web of Science,
Scopus, Science Direct, and Google Scholar were chosen as scientific databases. The
publication range of articles was set “from 2002 to the present” and the results are presented
in Figure 3. Among these four databases, the Web of Science platform recorded the largest
number of documents in the type of research articles, review articles, and theses.

Google Scholar =
Science Direct |_
Web of Science .'
0 2,000 4,000 6,000 8,000 10,000
Web of Science Scopus Science Direct | Google Scholar
Total results 8,163 6,097 4,183 3,695
M Proceeding papers 160 2,203 1,893 1,956
M Review papers 370 172 104 89
M Research papers 7,633 3,632 2,186 1,641

Figure 3. Results from the general literature search on indoor occupant comfort in four databases.

Finally, the documents collected from the Web of Science were selected for further
research work, because this database had more valuable documents in the field “occupant
comfort in buildings” compared to the other databases. This database had a total of
391 bibliographic records about “Indoor occupant comfort” and the rest of the records
focused on outdoor comfort or special issues irrelevant to this review scope. In addition,
Scopus contained more pending papers than other databases, but this research aims to
review published research or review articles written in English. In addition, surveys in all
databases demonstrated the increasing trend of publishing scientific articles in the field of
“occupant comfort in buildings” in the last decade, which indicates the importance of this
issue among experts in the field of engineering and architecture (Figure 4).

The title, keywords and abstracts of 391 publications were analyzed by CiteSpace
software, and 14 clusters were identified, which are shown in the Figure 5. Thermal
sensation was recognized as the most important topic among the articles by the software.
First, the authors studied the full texts of articles related to clusters #0, #2, #5, and #13,
followed by clusters #1, #3, #4, #7, and #8. Then, the abstracts and results related to articles
of clusters #1, #6, #10, #11, #9, #14, and #13 were read. In this review, the studies that
did not include the considered factors about indoor occupant comfort assessment that are
given in Section 3.2 to Section 3.6 were excluded. Finally, 154 articles remained, and the
continuation of the paper is basically based on these articles.
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Figure 5. Clusters visualization of the 391 publications’ literature data analyzed by CiteSpace software.

In order to find the basic sources in the current research, all the discussed articles were
reviewed and the results were obtained, as shown in Table 1.
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Table 1. A sample guide used in this review for categorizing the information of previous studies.

g
s g & g 5
'z Title Author(s) = f E 2 Keywords Scopes Findings
1<
(e o
9]
- The effect of aperture
orientation was greater than
A methodology to . its size.
determine < . Suggestlpg an - The smallest aperture was
appropriate facade £ Tg facade design; effective more suitable for achieving
) aperture sizes (Y. Yilmaz 2 5 = ~ t}}ermal comfort; Ipethodology to better thermal, visual, and
% L o = ~ I visual comfort; find out suitable :
/M considering etal.) [40] g 5 5 ST - P facad acoustic comfort.
comfort and perfor- % 3 = coustic comfort acade - The heating setback system
mance criteria & M aperture sizes seemed to be an applicable

variable for thermal comfort
as much as the size
of aperture.

. Determining the decision-making models, measures, criteria, and recommendations.
. Collecting the references.

The articles shown in the Table 2 are among the most cited sources in the field of
“occupant comfort in buildings”.

Table 2. Top-ten most cited studies in the field of occupant comfort in buildings.

No. Authors Year No. of Citation Article Title

Adaptive thermal comfort and sustainable thermal

1 J.F Nicol and M. A. Humphreys [41] 2002 966 standards for buildings

2 M. Frontczak and P. Wargocki [25] 2011 509 Literature survey on h.OV\./ different f.actors influence
human comfort in indoor environments

3 P. O. Fanger, J. Toftum [42] 2002 432 Extension of the PMV model to

non-air-conditioned buildings in warm climates

N. Djongyang, R. Tchinda, and D.

4 Njomo [43] 2010 354 Thermal comfort: A review paper
Multi-Objective Optimization for Building Retrofit:
5 A Ehilaln;ﬁal\éagﬁill’(;gir%ﬁ’] H.A. 2014 258 A Model Using Genetic Algorithm and Artificial
’ ' Neural Network and an Application
R. Z. Freire, G. H. C. Oliveira, and N. Predictive controllers for thermal comfort
6 2008 240 L .
Mendes [45] optimization and energy savings
W. Yu, B. Li, H. Jia, M. Zhang, and D. Ap}.)hc.atlon of mult.l-(?b]ectlve genetic algorithm to
7 2015 218 optimize energy efficiency and thermal comfort in
Wang [46] 1. .
building design
C. D. Korkas, S. Baldi, I. Michailidis, Occupancy-based demand response and thermal
2016 216 comfort optimization in microgrids with renewable
and E. B. Kosmatopoulos [47]
energy sources and energy storage
J. Kim, Y. Zhou, S. Schiavon, P, Personal comfort mode.zls: Predicting 1nd.1V1duals
9 2018 194 thermal preference using occupant heating and
Raftery, and G. Brager [17] h - . .
cooling behavior and machine learning
. Considerations on design optimization criteria for
10 C.E. Ochoa, M. B. C. Aries, E. . van 2012 189 windows providing low energy consumption and

Loenen, and J. L. M. Hensen [48] high visual comfort

The upcoming sections are categorized based on the four types of occupant comfort:
thermal, visual, acoustic, and IAQ. In each section, the following aspects are considered:

—  Type of study (Section 3.1) indicates the two main approaches implemented by studies.
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Case study geographical locations and climate zones (Section 3.2) specifies the set
of countries where weather information has been used in previous studies as case
study locations.

Case study building types (Section 3.3) categorizes the case study documents by
building type based on their occupancy and usage categorizations, such as residential,
educational, and commercial.

Decision-making model of occupant comfort assessment in buildings (Section 3.4) de-
tects the significance and the method of decision-making in occupant comfort studies.
Assessment indicators and criteria (Section 3.5) determines the main indicators for
indoor human comfort and relevant comfort criteria.

Data-collection methods and tools (Section 3.6) illustrates methods and tools applied
to collect environmental and occupant data.

Data-analysis strategies (Section 3.7) introduces data analysis methods applied for
obtaining the occupant comfort model.

Additionally, in the conclusions and recommendations section, we suggest some
potential areas that subsequent comfort-related research may investigate extending into
and exploring. Figure 6 shows a flowchart of a research concept. Moreover, Table A1 in the
appendix contains all 154 analyzed studies with their author(s) and year of publication.

The schema of research process at a glance ]

v

v

v

[ Range of publication year

J

Database platforms

J

Scope of review

- Web of Science
- Scopus

Occupant comfort evaluation in

2002-2022 - Google scholar buildings
-Science direct
[ ¢ I
[ Structure of research J
]

' One-hundred and
twenty nine research articles

il

Twenty one review articles

J

Four theses

[ Material and methods ]
Case stufiy Decision-making Assessment Data-collection 4
geographical Case study model of occupant o Data-analysis
Type of study 2 o2y indicators and methods and E
locations and building types comfort assessment T L strategies
climate zones in buildings Criteria tools
/— Thermal comfort N
PMV/PPD model,
Determines the adaptive model - Measurement
- Single-factor list of countries - Educational - Single-criterion -Visual comfort Wearable & - Regression-
study where weather - Commercial decision-making glare, quality, quantity, unwearable based approach
Niformation has - Residential and distribution of light| sensors
MUl Bctor been applied in - Historical = Multi-criteria -Acoustic comfort - Simulation - Machine
rosoarchiasacase - hdasidal decision-making sound pressure level, Simulation learning-based
study AL reverberation, acoustic software approach
A ’ - Testroom quality of room - Questionnaire
-IAQ satisfaction & interview
stuffy air, cleanliness,
odor
N J 4 J
Results, conclusions, and
recommendations

Figure 6. Flowchart of research concept.
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3. Results
3.1. Types of Study

In a single-factor study, only one aspect of comfort (thermal, visual, acoustic, or IAQ)
was examined. Figure 7 illustrates the distribution of single-factor research devoted to each
of these comfort aspects.

18.3%

31.8%

18.3%

63.4%

68.2%
Multi-factors (2 factors)
» | = Multi-factors (3 factors)
= Single-factors studies = Multi-factors studies 4‘ ® Multi- factors (4 factors)

Figure 7. Distribution of single-factor and multi-factor studies.

According to Figure 8, the predominant aspect of comfort was thermal comfort,
whereas visual comfort, acoustic comfort, and IAQ were less prevalent. The primary
purpose of single-factor analyses is to identify the parameters that have an impact on a
particular aspect of comfort. These parameters consist of building or envelope proper-
ties [44,46,49-52], architectural design elements [48,53-56], environmental or individual
parameters [45,57-59], and IEQ [60,61].

_ Thermal/Visual/Acoustic comfort/IAQ, 9

I Thermal/Acoustic comfort/TIAQ, 1

. Thermal/Visual comfort/IAQ, 2

- Thermal/Visual/Acoustic comfort, 6

_ Thermal comfort/IAQ, 14
_Thermal/Visual comfort, 17

Bl 1AQ 3

Acoustic comfort, 13

Visual comfort, 28

Thermal comfort,
61

20 30 40 50 60 70

Frequency of studies

Figure 8. Frequency of different aspects of occupant comfort in analyzed documents.

Another approach used in the literature was a multi-factor approach, in which more
than one aspect of human comfort was evaluated at the same time. As shown in Figure 7,
multi-factor studies used two or three main approaches. Two or more aspects of occu-
pant comfort are assessed independently in studies classified as independent multi-factor
studies [62-71].
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Like the single-factor approach, these studies aimed to determine how different pre-
dictors influence comfort. In contrast, the ranking-based multi-factor category represents
studies that evaluated the importance of each comfort aspect for overall comfort rather
than assessing two or more comfort aspects one by one. In almost all of these studies, the
different comfort aspects were ranked in order to determine which should be prioritized
when trying to optimize occupant comfort in buildings. In the last multi-factor study type,
the interrelation approach is used to assess how perceived IAQ), thermal, visual, and acoustic
comfort levels interact.

The benefit of multi-factor studies is that they helped researchers to find out the
factors that may affect specific comfort aspects that were traditionally considered unrelated
(e.g., assessing the impact IAQ has on visual comfort [72]). As a result, each aspect of
comfort could be investigated holistically. There were few studies that investigated the
relationship between these aspects of comfort, according to the results of the literature
survey. Therefore, studies that committed parts of their analyses to such cross-examination
are categorized under this type, even if their primary purpose was not to examine the
interrelationships between aspects of comfort.

3.2. Case Study Geographical Locations and Climate Zones

Surveys show that the desire of researchers, or the policy of scientific journals, is to
publish research articles with case studies (Table 3). Furthermore, geographical location
is one of the influential and important factors on human comfort. Human-related factors
that affect thermal comfort are age, gender, and metabolism [73]. The visual and thermal
comfort of occupants seriously rely on exterior environmental climatic conditions, which
are continuously changing [74].

Most mainstream thermal comfort standards, such as the ASHRAE Standard 55, ISO
7730, and CSN EN 15251, were originally developed in American and European countries.
There has been no consideration given to the economic, political, geographic, or cultural
conditions associated with climate change adaptation in translating and implementing
these standards [75].

Table 3. The number of documents with case study or without case study.

Case Study

Status Frequency of References References
Yes 129 [1,5-9,13-15,17,20,24,29,40,44,46-48,50-52,54-60,62-72,76-152]
No 25 [10,25,27,33,41-43,45,49,53,153-167]

Zhao and Du (2020) carried out a multi-objective optimization design for windows
and shading configurations in different climatic regions of China. They found out that
the building location had a great impact on occupant comfort satisfaction and energy
savings [1]. Delgarm et al. (2016) investigated the influence of buildings’ orientations,
shading overhang specifications, window size, glass, and wall materials on indoor thermal
comfort and the energy usage of office buildings within four climatic regions of Iran. Results
showed that the optimum window size became smaller as sites moved from a cold to a
warm climate to decrease the heating energy demand during the cold seasons [150].

Hosseini et al. (2019) considered a morphological method for a kinetic fagade de-
sign process to increase visual and thermal comfort in diverse locations and climates,
and discovered that utilization of a dynamic facade in response to severe climatic con-
dition was an effective way to preserve and optimize internal comfort conditions [74].
Ascione et al. (2015) applied a novel methodology in a residential building for two differ-
ent Mediterranean climates: Naples and Istanbul. They showed that the climatic conditions
had a direct effect on the thicknesses of thermal insulation [52].

Figure 9 illustrates that the majority of case studies were conducted in China, followed
by the USA, Italy, Iran, Korea, Malaysia, and Singapore. The others classification refers to
countries with just one or two case studies among their analyzed studies in locations that
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include Turkey, Egypt, Australia, Vietnam, Finland, France, Sweden, Ireland, Switzerland,
Chile, Canada, Nepal, Romania, Taiwan, India, Spain, Denmark, Morocco, Germany, Russia,
and the UAE. The N/A category indicates that geographical locations of case studies are
not available or not mentioned.

Singapore, 3.2%
Malysia, 3.2%
Korea, 3.2%

Iran, 4%

N/A, 21.6%
Others,
28%
Italy, 10.4%
USA, 12.8%
China, 13.6%
10% 15% 20% 25% 30%

Figure 9. Distribution of case studies’ geographical locations in analyzed documents.

Based on Figure 10, Csa is the most common climate classification among analyzed
documents. Even though it is very likely that before 2050 half of the world’s population
will reside in tropical regions [75], but for the exception of Cfa, little research has been
conducted in these climate zones (i.e., Af, Am, Aw, and BSh).

[N
ol

18

6
5

[To)

5

< <
) 3
. |N| | N N
NN ul I 1 NSRS IRREN HESS
»n v 9w = Y » »n n = B — = oW
<<§§mm00 5600000033330 000

Figure 10. Diversity of Koppen climate classification among analyzed documents. Af: tropical
rainforest climate; Am: tropical monsoon climate; Aw: tropical savanna; BWh: hot desert climate;
BWEk: cold desert climate; BSh: hot semi-arid (steppe) climate; BSk: cold semi-arid (steppe) climate;
Csa: hot-summer Mediterranean climate; Csb: warm-summer Mediterranean climate; Cwa: monsoon-
influenced humid subtropical climate; Cwb: subtropical highland climate or temperate oceanic
climate with dry winters; Cwc: cold subtropical highland climate or subpolar oceanic climate with
dry winters; Cfa: humid subtropical climate, Cfb: temperate oceanic climate; Cfc: subpolar oceanic
climate; Dsa: hot, dry-summer continental climate; Dsb: warm, dry-summer continental climate;
Dsc: dry-summer subarctic climate; Dwa: monsoon-influenced hot-summer humid continental
climate; Dwb: monsoon-influenced warm-summer humid continental climate; Dwc: monsoon-
influenced subarctic climate; Dwd: monsoon-influenced extremely cold subarctic climate; Dfa: hot-
summer humid continental climate; Dfb: warm-summer humid continental climate; Dfc: subarctic
climate; Dfd: extremely cold subarctic climate; ET: tundra; EF: ice cap climate.
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3.3. Case Study Building Types

In this review, building types were classified into educational, commercial, residential,
historic, industrial, and test rooms. When choosing variables and applying comfort models,
it is important to consider the building type. Historical buildings are acceptable examples
that can be used to further explain this question. These types of buildings, such as museums,
are very sensitive to the application of measures because preservation is important to them.
Therefore, HVAC systems must guarantee the integrity of the artworks and the comfort of
the visitors with maximum energy efficiency [168]. As illustrated in Figure 11, most of the
case studies of the analyzed studies were in the educational type. Generally, the attention
of researchers was more on educational (35%) than on commercial (30%), residential (27%),
historical (3%), industrial (3%), or test rooms (2%) building types in all case studies in the
analyzed documents.

Industrial, 3% Test room, 2%

Historical, 3%

Educational, 35%

Residential, 27%

Commercial, 30%
Figure 11. Classification of case studies’ building types.

Pertinent details on building types can be found in Table 4. The historical classification
includes all buildings with historical character, cultural significance, and architectural
importance. Marzouk et al. (2020) used simulation tools to optimize both thermal and
visual efficiency in heritage buildings. They considered an Egyptian heritage building as
a case study. The study proposed energy and daylight enhancement through different
skylight configurations, along with the usage of relevant technologies that were explored,
tested, and validated [120]. Ochoa et al. (2012) applied a new computational method to
optimize window design for thermal comfort in a test room [50].

Table 4. Frequency of the case studies’ building types in analyzed documents.

Building Type Frequency of Case Studies
Educational
School 22
University 19
Laboratory 4
Commercial
Office 37
Commercial 3
Residential
Residential 35
Historical
Historical residential 2

Historical museum 1
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Table 4. Cont.

Building Type Frequency of Case Studies
Historic 1
Industrial
Factories 2
Warehouses 1
Test room 2
Not mentioned 25

3.4. Decision-Making Model of Occupant Comfort Assessment in Buildings

Decision-makers consider thousands of actions to respond to residents” demands and
needs. These actions should be analyzed and assessed using the provided criteria [169].
Often these criteria are in conflict, and it is not possible to find a common approach that
meets all criteria and decision-making models [150]. Therefore, it is important to propose
a decision-making approach to achieve the best compromise between the potentially
inconsistent criteria [40].

Yilmaz et al. (2022) presented a multi-criteria decision-making approach to specify
suitable fagade aperture sizes for achieving the comfort and performance criteria in a
primary school classroom. They also introduced a novel methodology that can be applied
in other cases [40]. In research conducted by Bakmohammadi and Noorzai (2020), a multi-
objective approach was used to optimize the architectural design features of a classroom in
Iran. They aimed to propose an optimized primary school classroom that satisfied both
occupants’ comfort demands and energy efficiency [126].

Kang et al. (2017) evaluated the influence of indoor environmental quality (IEQ) on
work efficiency in offices. According to their analysis, a decision-making strategy was
also introduced for the assessment and improvement of the IEQ of university open-plan
research offices (UOROs) [143]. Delgarm et al. (2016) offered a multi-objective optimization
method to optimize energy consumption and thermal comfort in buildings, simultaneously.
The final optimum design was chosen using the Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) decision-making approach [150].

The Pareto method can provide a non-dominated optimization solution that allows
the selection of solutions based on preferences during subsequent decision making [122].
Genetic Algorithms (GA) are generally and usefully applied to create performance op-
timization problems, mainly Non-Dominated Genetic Algorithms (NSGA-II) [170]. For
instance, Gou et al. (2018) used NSGA-II coupled with an artificial neural network (ANN)
model to optimize residential buildings in Shanghai for ameliorating indoor thermal com-
fort while minimizing building energy needs [140]. Yu et al. (2015) applied NSGA-II to
optimize energy efficiency and indoor thermal comfort in a typical building [46]. As shown
in Figure 12, there has been an increase in intention to explore multi-criteria problems.

100%

. L] I
v .

2002-2006 2007-2010 2011-2014 2015-2018 2019-2022

Percentage of analyzed studies

Year of publishing

B Single-criterion decision making | Multi-criteria decision making

Figure 12. Percentage of single-criterion or multi-criteria problems in analyzed documents according
to publishing year.
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3.5. Assessment Indicators and Criteria

To measure the performance of a building, the thermal comfort of occupants is one
of the most important evaluation criteria [171], and it can be used as a basis for intelli-
gent design of HVAC (heating, ventilation and air conditioning) systems. To reach the
thermal comfort zone, indices are required to be established to relate the thermal comfort
of occupants to the surrounding physical factors of the indoor built environment [55]. A
comprehensive review on the models and indicators of the occupants’ thermal comfort in
the building is presented in [158].

In addition, the effective variables and models for measuring thermal comfort and
IAQ have been reviewed in [33]. Huang and Zhai, in a comprehensive review, examined
eight existing models for evaluating thermal comfort in the indoor built environment,
and proposed a new model for comparison [153]. Thermal comfort is basically related
to thermal physiology factors and human behavior factors [10]. Based on the previous
literature, two main models have been adopted to measure thermal comfort, the Fanger’s
Predicted Mean Vote (PMV)-Predicted Percentage of Dissatisfied (PPD) model and the
adaptive model [10,24,43,153,154,158,161,167,171].

The classic PMV model takes into account six main factors that directly affect thermal
comfort. These parameters have been classified into environmental and personal cate-
gories [10]. The PMV-PPD model is suitable for buildings equipped with air conditioning
systems, while the adaptive model is more appropriate for buildings with natural ventila-
tion and without mechanical ventilation systems [24,158,161,171]. The descriptions of the
indicators frequently used to measure thermal comfort are given in Table 5.

Table 5. The details of mostly common indicators of thermal comfort measurement.

Indicator

Description Reference(s)

1

This index is calculated using the
Fanger comfort equation for human
body heat exchange. The PMV

Predicted Mean Vote (PMV) provides a mathematical model to [7,9,10,24,42-44,49,69,145,153,154,158,167,171]

predict the thermal sensation of a large
group of people according to
environmental and personal factors.

Adaptive Predicted Mean optimum operative temperature as the

Vote (aPMV)

The PMV index is not applicable for hot

and humid climates, so the aPMV is

applied to establish occupants’ thermal

comfort. This index applies the same

analytical PMV approach, but instead [33,43,154,158]
of clothing insulation, metabolic rate,
relative humidity, and air velocity
factors, it uses the mean outdoor
effective temperature as the only input.

Extended Predicted Mean

Vote (ePMV)

Fanger and Toftum proposed the ePMV

index by reducing the metabolic heat

parameter. Whereas the PMV is used

for air-conditioned buildings, the ePMV

is only adequate for buildings without [9,154,158]
air conditioning or air ventilation. In

addition, this index is suitable in hot

and humid climates where the indoor

air temperature increases significantly.
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Table 5. Cont.

Indicator

Description

Reference(s)

4

Empirical PMV (epPMV)

The original PMV model is not practical
for real-time control systems or design
purposes. These limitations led to the
development of the PMV index. The
epPMV is defined as a function that
depends only on temperature and
partial vapor pressure.

[9,55]

New Predicted Mean
Vote (nPMV)

The nPMV was introduced by
Humphreys and Nicol, and intends to
equilibrate the difference between the
predicted PMYV results and the actual
thermal sensation of occupants in
air-conditioned buildings.

[33,158]

6

Total percentage of discomfort
hours (TPMVD)

To formulate thermal comfort, the total
percentage of cumulative time with
discomfort over the whole year during
the occupancy period is considered as
the TPMVD. It is a two-tailed index
that calculates thermal discomfort
throughout the whole year.

[44]

7

Actual Mean Vote (AMV)

The AMV is a 7-point scale index that is
defined as the occupants’ thermal
sensation in a certain comfort space.
This index is used in tropical regions
and is determined based on the
behavior and psychology of the
occupants. Unlike the PMV, the AMV is
the thermal comfort perceived by
occupants during the voting.

[24,43,65,68,154,158]

Predicted Percentage
Dissatisfied (PPD)

This index is applied to estimate the
percentage of people who are
dissatisfied with a certain thermal
condition. The PPD is closely
dependent to the PMYV, and this
dependency is introduced in the
equation developed by Fanger. This
index, like the PMV, can be applied to
predict human thermal perception in
buildings equipped with mechanical
cooling systems.

[9,10,24,25,44,51,71,81,119,123,150,158]

9

The maximum hourly value of
PPD (PPDMAX)

The PPDMAX relates to the maximum
hourly value of the PPD, which
depends on Fanger’s theory, during the
examined day.

[158]

10

PPD-weighted
criterion (PPDwC)

This index is only suggested for the
Fanger comfort model. The PPDwC
assumes that time during which the
PMYV exceeds the comfort boundaries is
weighted with a weighting factor, wf;.

[145]
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Table 5. Cont.

Indicator

Description

Reference(s)

11

Transient Predicted
Percentage
Dissatisfied (TPPD)

The TPPD is a new index that is
applicable for transient conditions. This
index is presented based on replacing
the Steady-State Energy Balance model
with the Two-Node Energy Balance
model in transient conditions.

[158,161]

12

Lowest Possible Percentage
Dissatisfied (LPPD)

The LPPD is adequate for non-uniform
thermal environments. This index is
more practical for big rooms and its
value should be less than 10% in
occupied areas. If the LPPD value is
more than 10%, two solutions are
recommended (insulating the building,
using an air distribution system,

or both).

[158]

13

Thermal Discomfort time
Percentage (TDP)

Based on the experimental outcomes,
the values of the TSP (Thermal
Satisfaction Percentage) index were
different in non-uniform environments
even under the same operative
temperature (top). Moreover, the
temperature difference between surface
temperature and air temperature (At)
can, remarkably, have an effect on
humans’ thermal satisfaction.
Therefore, to remain in accordance with
the terms of percentage dissatisfied in
the ASHRAE standard, the TDP
(Thermal Dissatisfied Percentage) was
proposed to assess the two types of
non-uniform indoor

thermal environments.

[98]

14

Human Thermal
Model (HTM)

The HTM can be used in both
steady-state and transient conditions.
This index is defined based on true
anatomy and physiology of the human
body. The HTM is calculated, like the
PPD, by replacing the PMV with the
overall thermal sensation.

[158]

15

Adaptive Model

The adaptive model has been
developed based on collected data from
environments where occupants have
the possibility to interact with their
environment. In this model, occupants
can interact with the environment by
opening and closing windows, turning
fans on and off, etc. In the adaptive
model, gender, age, and physical
disabilities will affect thermal comfort.

[9,10,15,17,24,33,43,75,118,145,154,171]

Figure 13 shows the factors taken into consideration for the thermal physiology
methods (PMV-PPD) and the human behavior adaptive methods. The factors listed on
the left are considered insignificant in the adaptive approach because people will always
behave in a way that makes them feel as comfortable as possible [10].
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Figure 13. The parameters of thermal comfort models (PMV-PPD model-Adaptive model) [10].

Visual comfort is an important and influential factor in the efficiency and well-being of
building occupants [7,106,172]. Appropriate and sufficient lighting conditions and illumi-
nation are one of the most important requirements in the design of office buildings, because
they directly affect the visual comfort of employees. Previous literatures have shown that
employees prefer to work near a window or in the place with natural light [62,101,131].
The review research presented in [155] focused on metrics utilized to predict visual comfort
and preference in the indoor built environment. In another review, Carlucci et al. (2015)
classified and summarized the important indices for assessing visual comfort according to
their common features and more than 30 indices presented in that study [27].

A comprehensive review [162] analyzed the main visual discomfort indices and made
a comparison analysis of the common methods and equations for calculation. The review
study presented in [58] aimed to reveal the key factors in determining visual comfort and
lighting energy consumption in offices. An integrated review summarized the previous
literature about the close relationship between visual comfort and work efficiency in
university research offices [143]. Generally, the important indices for evaluating visual
comfort can be classified into four groups: indices for assessing the quantity of light, the
distribution of light, and glare and quality of light. For each group, a comprehensive list of
visual comfort indices was extracted in [27]. Most common indicators of visual comfort are
summarized in Figure 14.

Acoustic comfort, like thermal and visual comfort, is one of the most important
parameters in the evaluation of occupant comfort in buildings [91,166]. Acoustic comfort is
an important factor in the design of learning spaces and is directly related to the quality of
education [92,133], and a poor acoustical environment can have a negative effect on the
learning process of a student [97,127]. Choices in the optimal acoustic design in a classroom
(e.g., sound-absorbent panels) can improve the level of acoustic comfort [135]. With the
growth of open-plan offices, the issue of acoustic comfort has been mentioned as a factor
affecting the health and well-being of employees [102,143].
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Figure 14. Most common indicators of visual comfort measurement.

Physical properties of the room such as sound insulation, absorption, and reverbera-
tion time can affect the acoustic environment [25]. Gramez and Boubenider (2017) reported
that the low quality of the acoustic comfort in a conference room was the result of a rel-
atively high level of ambient noise, poor insulation of the room, and a high value of the
reverberation time [173]. Previous studies indicated that noise is a significant issue in
living environments [105]. In some cases, it may be possible to increase acoustic comfort by
removing the noise source or isolating the room, although these strategies may not always
be practical. In these cases, it is necessary to evaluate the level of acoustic comfort using
noise indices. The acoustics indices used in the previous review studies are classified in
this review article [156]. Table 6 also summarizes the room acoustic indicators.

A large number of previous studies have shown that there is a close relationship between
the TAQ satisfaction and the respiratory health of building occupants [33,107,142,174]. As
determined in the ASHRAE standard, the IAQ is assumed acceptable when “there are no
known contaminants at harmful concentrations, as determined by the competent authority
and for which a substantial majority of exposed persons (at least 80%) does not express
dissatisfaction” [73].
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Table 6. Summary of different room acoustic indicators.

No. Usage Index Description
Perceived as the time for the sound to die away.
1 Reverberation Time (T) This acoustic index is one of the more convenient
and useful among the indices.
> Early Decay Time (EDT) Related to the 1n1t1al‘and highest-level part of
decaying energy.
. The ratio of early to late sound energy in a room
3 Music/Speech Clarity (C) impulse response. The variants of Csq and Cg
are commonly used in room acoustics.
Can be expressed as a greater complexity of
4 Definition (D) sounds in a given soundscape, and is mostly
applied for speech cases.
5 Center Time (TS) Corresponds to the center of gravity of the
squared impulse response.
The most commonly used objective index in
6 Speech Transmission Index (STI) COMMON Spaces. U51.ng the.physm.al
phenomenon of sound mixing, it provides an
objective value for sound transmission.
o A method for ranking articulation based on a
7 Common Intelligibility Scale (CI5) mathematical relation with the STL
o Evaluated by speech perception tests given to a
8 Speech Speech Intelligibility Index (SI) group of talkers and listeners.
9 Articulation Index (AI) Assesses speech 1ntell%g1b.1hty }mde;r a wide
range of communication situations.
Related to the acoustic performance of
10 Privacy Index (PI) everything in a space, and it determines the level
of speech privacy between spaces.
Percentage Articulation Loss of . . .
11 Consonants (ALC%) It is based on the reception of words by listeners.
It is suggested that IAQ should be evaluated according to the international standards
and guidelines that specify the permissible amounts of the air pollutants [24]. Among the
IAQ parameters, carbon dioxide (CO,) is one of the main indicators of IAQ evaluation.
Since CO; is a waste product of occupant metabolism, its concentration depends on the
number of occupants in the building. For this reason, CO, sensors can be used to detect
the IAQ of the building. According to the international standards, an acceptable value of
the CO; concentration is about 600-1000 ppm. (Table 7). List of assessment indicators and
criteria used in analyzed studies is presented in Table 8.
Table 7. Acceptable values of the CO, concentration according to the international standards.
Organization Value Reference(s)
ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) 600-700 ppm [73]
EPA (Environmental Protection Agency) 600-1000 ppm [11,34]
OSHA (Occupational Safety and Health Administration) 800 ppm [175]

WHO (World Health Organization) 1000 ppm [176]
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Table 8. List of indicators and criteria used in analyzed documents for assessing occupant comfort

in buildings.
Classification Aspect Type Criteria Type Number Indicators References
P yp yp of Studies
[5,15,44-47,49,52,53,
PMV (17)- PPD (8)- 57,64,67,68,71,76,81,
PMV /PPD (6)-LPPD 85,87,89,90,98,99,119,
PMV-PPD model 37 (1)-TPMVD (1)- PPDwC (1)-  123,125,128,141,145,
Thermal comfort PPDMAX(1)- TDP (2) 146,150,151,157,160,
ermat comior 163,168,172,177]
[17,54,56,59,66,69,82,
. ePMV (10)- epPMV (5)- Not ~ 111,112,118,121,122,
Adaptive model 22 mentioned (7) 124,126,131,136,138,
140,142,144,148]
[13,58,60,62,67,72,78,
UDI (12)- DEF (6)- DA (3)- 80,84,87,88,91,98,104,
. . sDA (5)- ASE (2)-IVD (1)-  106,114—
Quantity of light 3 Tlluminance (2)- Not 116,120,123,126,130—
mentioned (2) 132,137,139,147,152,
159,166,170,178-180]
I Visual comfort DGI (5)- DGP (7)- sDGP (1)-  [29,48,60,67,99,100,
Assessment criteria Glare 15 Luminance ratio (1)- Not 115,126,130,134,165,
and indicators mentioned (1) 166,172,181,182]
Quality of light 7 CIE (5)- Not mentioned (2) [29,101,103,108,109,
131,172]
e . Mluminance Uniformity (1)-
Distribution of light 3 Not mentioned (2) [14,40,110]
Reverberation Time (T20,
Tso, Teo) (9)- STI (5)- LeqA
Sound pressure level, (3)- Clarity (Csp, Csp) (3)- [8,13,14,40,63,91,93,
Acoustic comfort reverberation, 20 STC (2)- EDT (2)- NSV (1)-  94,97,102,103,105,
acoustic quality of Sound Pressure Level (SPL)  108-110,127,132,133,
the rooms (1)- Req (1)- ANLs (1)- 135,143,165,166,173]
Background Noise (1)-
Definition (Dsg) (1)
CO, concentration level
Stuffv ai (11)- TTAQ (4)- ICONE air  [6,8,76,79,81,83,103,
IAQ satisfaction Uity air, 2 containment index 107-113,128,132,143,

cleanliness, odor

(1)-TVOC level (1)- PMyg
(1)- Not mentioned (5)

145,149,159,160,165]

3.6. Data Collection Methods and Tools
In order to collect data related to thermal comfort, some researchers adapt a ques-

tionnaire method to existing comfort models such as the PMV and the PPD, because they
suppose that comfort is a subjective issue [8,13]. However, most researchers use conven-
tional comfort models or models extracted from ML algorithms to estimate thermal comfort.
While using existing comfort models, some documents described the use of wearable and
non-wearable sensors to collect data [17,55,107,183]. Photography is one of the methods of
data collection and measurement in visual comfort research, which has been employed in
some studies [29,110,126,181] to capture luminance distribution for glare evaluation. The
sensing system introduced in [58,80,106] and other studies was also designed for collecting
data to evaluate visual comfort in buildings.

In addition, because of the high cost and time-consuming process of data collec-
tion in field studies, many studies used the simulation method. EnergyPlus [1,46-48,51,
52,58,71,84,89,104,115,122,124,129,140,142,150,170,184], CFD [50,81,86,112,113,144,149,157,
160,185], Grasshopper Plug-ins [99,104,115,119,123,139,182], and DIVA [60,62,131,138,155]
were among the most popular simulation tools in thermal and visual comfort studies. Some
researchers used special measurement systems that included a complete set of diagnostic
aspects of sound properties to assess acoustic comfort levels [8,92,97,102,110,127,135].
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Questionnaires and interviews were also used for collecting data in acoustic comfort
studies [13,132,133,143]. As mentioned in the previous section, since the CO; concentration
is one of the important indicators in the assessment of IAQ satisfaction, in the majority of
studies, CO, sensors have been used as data collection tools [6,21,107,186]. These sensors
can be employed for occupancy detection [9]. The data collection protocols of several
studies related to occupant comfort in the indoor environment are summarized below.

The research study presented in [17] provided a pioneer approach for predicting
individuals’ thermal preferences using a Personal Comfort System (PCS) chair. The Com-
putational Fluid Dynamics (CFD) and bio-heat models that were used in [149,160] were
validated experimentally using a thermal manikin seated on a chair equipped with fans. A
photoplethysmography (PPG) sensor for heart rate detection was part of the wristband,
which was a wearable medical device with several sensors [9].

Wristbands were used in [146] to measure occupants’ metabolic rates. The Internet of
Things (IoT) is a network of physical objects (made up of sensors, software, and electronics)
that have the ability to communicate with each other and with users. The IoT was used to
enhance the indoor thermal comfort level and occupants’ satisfaction in [107,128]. The intel-
ligent and effective management of complicated buildings” energy needs and consumption
is feasible through Building Energy Management Systems (BEMSs). The BEMS was applied
in [125] to keep a balance between reducing the cost of energy and improving the comfort
and satisfaction of occupants in the indoors.

The data collection system used in [69] consisted of a user interface (UI) and a portable
temperature/humidity sensor for collecting occupants’ thermal votes and measuring local
ambient conditions. Some researchers have used questionnaires [6,82,183,187] and semi-
structured interviews [129] to collect thermal comfort data. HDR images in [29,126,181]
were captured with a digital camera for glare evaluation and vertical illuminance measure-
ments, and photometric sensors connected to data loggers have been installed in different
locations of buildings to measure daylight illuminance in the defined time intervals. In a
study presented in [60], objective data were collected via simulation method and subjective
data by using an online questionnaire for visual comfort evaluation in an office building.

Acoustic measurements in [63,127,173] were conducted by Briiel and Kjaer (B&K)
equipment. B&K provides a perfect system of measurement that covers the five diagnostic
classifications of sound specifications via evaluating the sound pressure based on ISO 717-1
and ISO 717-2 [173]. To evaluate the acoustic comfort of learning spaces in a study con-
ducted by Montiel et al. (2019), data were collected through a face-to-face semi-structured
interview and by using an online structured questionnaire [133].

The subsequent documents indicate the utilization of CO, sensors in IAQ studies.
For example, the smart sensor introduced in [107] was designed according to the CO,
concentration level to evaluate the comfort of occupants. These sensors were connected to
a Raspberry Pi board whose main purpose was to relay the connection with the ventilation
system via the IoT technology. Similarly, in another study [6] the Raspberry Pi-based
sensors were also applied to determine CO, concentration levels. CO; sensors were used
in [21] to produce occupancy count estimations.

As shown in Figure 15, more than a third of the studies (37.5%) used simulation.
Measurement has been used by 19.2% of the studies, and simulation and measurement
have been used together by 17.3% of the studies. Measurement and questionnaires have
been also used by 5.3% of the studies. About 2.5% of the studies used simulation and
measurement methods together, and only 2% of the studies used questionnaires for data
collection. In addition, 2% of the studies used all the three methods simultaneously. It
should be noted that 14.5% of the studies did not explicitly mention the data collection
method. In Table 9, the tools described in analyzed documents for assessing occupant
comfort in buildings are classified according to their data-collection methods.
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Table 9. List of data-collection tools described in analyzed documents for assessing occupant comfort

in buildings according to their data-collection methods.

Number of

Classification Aspect Type Instruments Type Studies Indicators References
PCS chair (2)- Thermal
Wearable sensor 7 manikin (2)- Virtual Reality [9,17,109,146,149,160,
or device (1)- Wristband (1)- Not 183]
mentioned (1)
Sensors and data loggers (21)- [5,6,8,13,15,20,47,55,
Smart sensors and 10T (3)- 57,59,60,65,66,68,69,
Unwearable sensor 29 76,82,90,92,107,111,
BEMS sensors (3)- User
Interface (UI) system (2) 112,121,125,128,132,
142,145,148]
Thermal comfort [1,44-46,49—
EnergyPlus (16)- Grasshopper  54,56,67,70,71,81,84—
Plug-in (5)-CFD (6)- TRNSYS  87,89,103,113,115,119,
Simulation tool 42 (4)- BINAYATE (1)- ESP-r (1)-  122-124,126,136-
PowerDomus (2)- N3S (1)- 138,140,141,144,147,
Not mentioned (6) 150,151,157,163,166,
168,170]
. . Likert scgle §8)- Rating scales [6,8,13,90,118,123,
Questionnaire (1)- Qualitative
. . 14 . 129,131,132,143,148,
and interview semi-structured (1)- Not
. 177,183,187]
mentioned (4)
Multiple sensors (7)- User
e Wt @  ms010777,
Sensing system 16 80,88,92,106,109,132,
Occupancy sensor (2)-
Data 134,152,178]
lecti tocol Sensors and data loggers (1)-
cotlection protocols Virtual Reality (1)
. Camera 4 Digital camera (1)- HDR [29,110,126,181]
Visual comfort image (3)
D SESheerst oy OS2
Simulation tool 15 & 115,120,123,137-
Daysim (1)- EnergyPlus (1)- 139.147.166,182]
Ecotect (1)- Not mentioned (2) T
Questionnaire Likert scale (9)- Online survey 18,13,29,58,60,77,101,
and interview 14 (2)- Not mentioned (3) 123,130~
ervie ot mentione 132,143,180,181]
Measurement " E.ata loggers (5); ?i;_jelilai‘d [8,63,92,93,95,97,102,
instrument jacr equipmen © 110,127,135,173]
mentioned (1)
Acoustic comfort _ -
Simulation tools 5 Odeon (2)- Pachyderm (1) [93,94,96,103,166]
Not mentioned (2)
Questionnaire Likert scale (4)- Face-to-face
& Interview 5 semi-structured (1) 15,102,152,133,143]
Sensor & Sensors & data loggers (8)- [8,76,107,109—
measurement device 13 Smart sensors & 10T (4)- 112,128,132,142,145,
. . Virtual Reality (1) 149,160]
TAQ satisfaction
Simulation tool 4 CFD (2)- Not mentioned (2) [79,81,103,113]
Questionnaire 3 Likert scale (3) [8,132,143]
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Figure 15. Percentage of data-collection methods used in analyzed studies.

3.7. Data Analysis Strategies

Most of the prediction models used in the field of occupant comfort studies have used
the regression-based approach [5,8,41,42,55,58,59,61,63,65,82,102,108,132,141,144,145,157,
170,177]. This solution applies a function to estimate the interrelation between occupant
comfort and psychological, environmental, and physiological parameters [188]. Moreover,
the regression functions have unstable accuracy. For instance, the value of regression
coefficients R2 in [82] is smaller than 0.8, which leads to prediction bias and hence cannot
be commonly used in the whole process of design.

Furthermore, gender, outdoor temperature, a person’s age, and some other parameters
which play a vital role in evaluating thermal comfort are not included in the most traditional
thermal comfort models [188]. These models are known as white-box or gray-box models.
Scholars simplify the model algorithm after obtaining it because of the intricacy of the
intermediate mechanism. In traditional models, due to their physiological foundation,
many mechanisms cannot see their cores, resulting in some errors.

Occupant comfort is being transformed by the rapid development of statistics during
the second decade of the 21st century. ML, big data, and other methods have been used
to study occupant thermal comfort since 2016 [167]. As a branch of Artificial Intelligence
(AI), the essential goal of ML is to make computers learn automatically, find patterns or
rules by examining numerous amounts of data, and make predictions about unknown
data [189]. ML approaches take into account the parameters that can’t be investigated
in the regression-based approaches and improve the prediction accuracy compared to
regression-based approaches.

As a result, ML will be an efficient method for predicting occupant comfort in the
indoor environment [188]. As shown in Figure 16, ML algorithms are classified into three
main classifications according to learning technique: supervised learning, unsupervised
learning, and reinforcement learning [190].

ML allows a prediction model to be trained with input data without solving theoretic
equations [93]. Predictive models based on ML algorithms are called black-box, and have
been recognized by the building design community for their high ability and acceptable
accuracy in handling complex problems [191]. Hence, ML has been widely applied in ther-
mal comfort prediction. ML techniques have been applied to predict indoor environments,
energy consumption, occupancy behaviors, and weather conditions for buildings [15].
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Figure 16. Classification of ML algorithms according to learning technique.

Almost 20% of the studies included in this review used ML algorithms. The
main ML algorithms applied in these documents were Naive Bayes (NB) [21,69,88],
K-Nearest Neighbor (K-NN) [69], Decision Tree (DT) [69,121,122], Support Vector Ma-
chine (SVM) [17,69,77,93,183], Random Forest (RF) [17,77,93,121,165], Artificial Neu-
ral Network methods (ANNSs) [15,44,46,50,87,93,94,128,140,146,187], Linear Regression
(LR) [49,69,187], Classification and Regression Tree (CART) [17,77], Gradient Boosting
Tree (GBT) [17,93,122,165], and Q-Learning [20,76,128]. Decision tree algorithms can
predict with over 90% accuracy [167]. Figure 17 shows the distribution of data analysis
strategies applied in analyzed documents.

ML- based
approaches
20%

Not mentioned

35%
Regression-based
approaches
15%
Other approaches

30%
Figure 17. Distribution of different data analysis strategies among analyzed documents.

In order to develop personal comfort models, Kim J. et al. [17] conducted a comparative
study on the performance of six ML algorithms (i.e., CT, Gaussian Process Classification
(GPC), GBT, Kernel SVM, RF, Regularized Logistic Regression (RLR)). Results indicate that
models based on all field data produced a median accuracy of 0.73. Based on all subjects,
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this is better than conventional models (PMV, adaptive), which produced a median accuracy
of 0.51.

Before ML techniques, the thermostat was used as a thermal comfort control system
in most buildings, which only measures the sensible air temperature and neglects other
environmental factors such as humidity, contaminant concentrations, and air speed. In
recent years, CO, sensors have been added to buildings. These sensors can measure
occupancy and air exchange rates. In other words, nearly all buildings are dumb and can
only measure a small number of factors, but ML techniques can interact with more data
points and collect more data from indoor environments [33].

Previous visual comfort research has also focused primarily on visual comfort related
to light, ignoring the potential effects of other factors. Recent studies in this field have
proven that ML techniques can greatly eliminate the issue of one-sidedness and subjectivity
of the traditional research. In addition, much useful information about the data can
be extracted by these techniques without the need for time-consuming simulations or
calculations. The application of these novel techniques in daylighting prediction is still
underexploited and recent studies on the use of ML algorithms in daylight are progressing.
The most commonly applied algorithms in the studies are ANNs with acceptable prediction
accuracy [96].

ML techniques in acoustic studies are rapidly developing. The results of these studies
are also convincing and indicate a promising future in this field [94]. However, limited
studies have been conducted on the application of ML algorithms in acoustic comfort,
and most studies have used traditional methods for calculations. Traditional methods
have many limitations and are not very effective for the first design steps, while ML
techniques have provided significant progress in data processing and prediction in recent
years. According to the results, New NN algorithms have produced more reliable results in
acoustic studies [93-96,192,193].

Nannariello and Fricke, (1999), predicted the reverberation time in 71 spaces (includ-
ing concert halls, auditoriums, and cultural centers) using NN analysis [193]. Falcon Perez,
(2018), also proposed a predictive model of acoustic indices using ML techniques [95]. A pre-
dictive model was proposed in [93] as a simple evaluation tool to design the interior archi-
tecture of small and medium-sized activity centers. This study applied four ML algorithms
to build predictive models (including SVM, RE, GBT, and ANN). Abarghooie et al. (2021),
introduced a simple predictive model by using Deep Neural Networks (DNN). This ML-
based model has a short calculation time and can be used to estimate the acoustic condition
of a room in the early stages of design [94].

In addition, one of the great advantages of using ML techniques is to avoid privacy
concerns. These techniques can gradually adapt to occupants’ preferences by making a
proposed model. For this purpose, a zone thermostat is used, and occupants can change
the zone temperature in case of discomfort conditions. The use of newly collected data
helps the model to record and update changes in occupants’ preferences and gradually
learn from them [125].

Choosing the right ML algorithm for a specific problem is an important task that
requires knowledge, accuracy, experience, and sometimes a little trial and error. Sometimes
it is necessary to compare the performance of several algorithms on a specific problem. In
general, comparing the efficiency of different algorithms is an important topic in the field
of ML [93]. When working on ML projects, users usually work with several good models
and run several models on a specific problem to finally choose the best model [9].

Each model has different performance for a specific problem. By using resampling
methods, such as cross-validation, you can estimate how well each model fits on unseen
data. The user should be able to choose the best model, or the two best models among
the various models built and tested on the problem by using these estimates [194]. K-fold
cross-validation, the holdout method, and repeated random sub-sampling validation are
among the most popular and effective validation methods for ML-based comfort models [9].
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The distribution of the ML algorithms applied in analyzed documents to predict occupant
comfort are presented in Figure 18.
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Figure 18. Distribution of the analyzed studies’ attempts to apply ML algorithms to predict occupant
comfort in buildings according to publishing year.

In the reviewed studies, K-fold cross-validation was the most widely used method.
This method was applied in [17,77,93,94,146,165,183,187]. During cross-validation, the
training set is divided into “k” subsets. In the next step, the models are trained and
assessed “k” times. The arrays containing “k” evaluation scores are the result of K-fold
cross-validation [77,195].

4. Conclusions and Recommendations

About 90% of people spend most of their time indoors in the contemporary era.
Therefore, one of the main goals of smart buildings is to propose comfortable living and
working environments while achieving energy efficiency. Improving occupant comfort
in the indoor environment not only improves the occupants” health and well-being, but
also saves on energy and building costs. Indoor occupant comfort is usually evaluated
through four aspects: thermal, visual, acoustic, and IAQ satisfaction. To maximize various
aspects of indoor occupant comfort, we need to know the main factors and indicators
affecting them. Subsequently, in order to determine how environmental factors have a
direct effect on occupant comfort, data needs to be collected from both human subjects and
the environment.

In this paper, a meta-synthesis review of the literature conducted on occupant comfort
evaluation in buildings (1992-2022) and the collected documents were analyzed in terms
of structure and content. Due to the richness of the published documents in the field of
indoor occupant comfort, the Web of Science was chosen as a database for this paper. In
terms of structural analysis, the number of publications in different years was examined.
In addition, the frequency of publications with case studies was determined along with the
region and type of case studies. In content analysis, we focused on the important criteria
and indicators used for indoor occupant comfort evaluation, data collection protocols, and
data analysis methods employed by different researchers in this field.

Surveys showed that because there is an increasing interest in this field, the number of
publications between 2019 and 2022 has increased dramatically. Among the four aspects of
occupant comfort, thermal comfort had the most research contributions, followed by visual,
acoustic, and TAQ. Also, most of the studies focused either on thermal, visual, acoustic,
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or IAQ. Only a minor portion of the studies investigated two or three aspects of human

comfort, whereas only nine documents investigated all four aspects. China, America, and

Italy, respectively, had the highest number of publications in this field, and most studies

have focused on educational buildings (schools and universities).

Currently, in order to train the thermal comfort model, the occupants’ survey is used
to collect comfort perception votes. Since this type of survey is inherently subjective,
the established comfort model may not accurately reflect occupants’ thermal preferences.
Visual, acoustic, and IAQ satisfaction are also dependent on the individual preferences of
the occupants. However, most of the documents used the comfort models that only focused
on the influence of environmental parameters, and the effect of the physiological parameters
was neglected in these models. With the emergence of the Internet of Things (IoT) and
sensor technology, data collection is often conducted by distributed sensor networks.

Before 2016, regression-based approaches were commonly applied in data analysis,
but since 2016, ML algorithms have been widely used to extract useful information from
data collected by sensors. The collected data is specifically used to develop predictive
occupant comfort models. Although sensor technology is widely used in the fields of
visual comfort, acoustic comfort, and IAQ satisfaction, the adoption of ML algorithms
in these fields is novel and is not widely common. This might be due to the relatively
straightforward nature of the relevant comfort indices.

Due to the high cost of sensor technology and the time-consuming nature and com-
plexity of ML algorithms, the simulation software tools have been commonly used in data
collection and data analysis. On the other hand, most of the documents included in this
review applied simulation methods and only a few used questionnaires. Moreover, the use
of all three methods (measurement, simulation, and questionnaire) at the same time was
neglected, and only 2% of the studies used all three methods simultaneously.

The following areas are proposed for future research concerning occupant comfort
in buildings:

e  The potential of more building types, such as health and treatment centers (hospitals,
nursery homes, etc.), public transportation centers (terminals, subway stations, etc.),
banks, and hotels to improve indoor occupant comfort by applying the appropriate
comfort models should be evaluated.

e Itis advisable to study all four aspects of human comfort (thermal, visual, acoustic,
and [AQ satisfaction) simultaneously because they are closely interrelated.

e Using specific physiological factors to replace the survey method and measuring
factors by wearable sensors or wearable devices.

e  More focus should be applied to objective indices to train the comfort model and to
present the comfort level.

e  There is a need to investigate the incorporation of pertinent physiological parameters
(such as gender, age, etc.) into the comfort models, because the selection of appropri-
ate parameters has a significant effect on the quality of the evaluation of occupant
comfort perception.

Applying ML algorithms in studies to learn occupants’ visual preferences.

Customization of comfort models in order to adapt them to individual occu-

pants’ preferences.

e Designing an intelligent decision-making model for occupant comfort based on physi-
cal parameters and human behavior.

e Providing a more comfortable and responsive indoor environment by adopting im-
proved indices of occupant comfort.

e  More precise control of building HVAC systems by applying accurate and reliable
predictive models to create smart buildings with improved energy efficiency.

e  Performing long-term measurements of occupant comfort in different types of build-
ings in order to validate the available comfort models.

e  Building occupant comfort analysis should include a comparison between summer and
winter in different geographical locations. Comparative study on effective occupant
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comfort indices and models in the evaluation of individual occupants’ comfort based
on various climate conditions (cold, Mediterranean, warm, etc.) should be considered.

e Evaluating personalized conditioning in real conditions via different types of ques-
tionnaires and field tests.
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