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Abstract: For design flood estimation in ungauged catchments, Regional Flood Frequency Analysis
(RFFA) is commonly used. Most of the RFFA methods are primarily based on linear modelling
approaches, which do not account for the inherent nonlinearity of rainfall-runoff processes. Using
data from 114 catchments in Victoria, Australia, this study employs the Generalised Additive Model
(GAM) in RFFA and compares the results with linear method known as Quantile Regression Technique
(QRT). The GAM model performance is found to be better for smaller return periods (i.e., 2, 5 and
10 years) with a median relative error ranging 16–41%. For higher return periods (i.e., 20, 50 and
100 years), log-log linear regression model (QRT) outperforms the GAM model with a median relative
error ranging 31–59%.

Keywords: regional flood frequency analysis; GAM; QRT; floods; rainfall; ungauged catchments

1. Introduction

Flood frequency analysis (FFA) is considered as one of the most widely used ap-
proaches for estimation of design floods, which requires recorded streamflow data of
adequate length at the site of interest. At many stream-gauging sites, the length of recorded
flow data is quite short and furthermore there are numerous streams which are ungauged.
For these ungauged catchments, regional flood frequency analysis (RFFA) is generally
adopted to estimate design floods [1,2].

The linear RFFA models assume a linear relationship between the dependent variable
(for example, flood quantile) and the predictor variables (physio-meteorological such as
mean annual rainfall and catchment area). Hydrological processes are inherently complex
in many ways, including nonlinearity [2]. In many cases, the linearity assumption in
hydrology may not be satisfied (for example, larger catchments behave differently than
smaller ones and drier antecedent catchment state produces relatively smaller runoff than
wetter one for a given rainfall). Non-linear methods have seen a limited application in
RFFA. Several studies have tested several nonlinear methods to RFFA, e.g., [3–5], and
these studies have found that nonlinear methods outperform linear methods in general.
Because of the development of new statistical tools and computer programmes, the use of
more general non-linear methods, such as the generalised additive model (GAM) [6,7], has
increased, e.g., [8,9]. GAMs have been successfully used in environmental studies [10,11],
renewable energy assessment [12], public health and epidemiological research [13,14].

GAM has been used in meteorology in a variety of ways. For example, Guan et al. [15]
used GAM to predict temperature in mountainous regions, while Haddad and Vizakos [16]
used GAMS to assess air quality pollutants and their relationship with meteorological
variables in four suburbs of greater Sydney, Australia. Tisseuil et al. [17] used statis-
tical downscaling of general circulation model outputs to local-scale river flows using
generalised linear model (GLM), GAM, aggregated boosted trees (ABT), and multi-layer
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perceptron artificial neural networks (ANN). When simulating fortnightly flow percentiles,
they found that the non-linear models GAM, ABT, and ANN outperformed the linear GLM
in general. GAM was used by Morton and Henderson [18] to estimate nonlinear trends
in water quality in the presence of serially correlated errors. They observed that GAM
produced more reliable results and could more accurately estimate the variance structure.
Asquith et al. [19] used GAMs to develop prediction equations to estimate discharge and
mean velocity from predictor variables at ungauged stream locations in Texas. According
to Asquith et al. [19], the incorporation of smooth functions is the strength of GAMs over
simpler multilinear regression because appropriate smooth functions can accommodate
components of a prediction model that are otherwise difficult to linear model. The devel-
oped GAM-based non-linear models were found to provide more accurate prediction in
their study.

Wang et al. [20] used non-stationary Gamma distributions and GAM to model summer
rainfall from 21 rainfall stations in China’s Luanhe River basin. Galiano et al. [21] used
GAM to model droughts in southern Spain by fitting non-stationary frequency distributions.
GAM was used by Shortridge et al. [22] to simulate monthly streamflow in five highly
seasonal rivers in Ethiopia. Dam reservoirs subjected to varying hydrological regimes
frequently produce nonlinear runoff-sediment relationships that are difficult to describe
using current reservoir indicators [23]. The evolution of the runoff-sediment relationship in
the Xiliu Valley, a tributary of the Upper Yellow River on China’s Northern Loess Plateau,
was investigated in this study using tests for tendencies and abrupt changes. Runoff and
sediment loads were simulated using GAMs as smooth functions of significant physical
covariates such as reservoir indices. The results revealed significant downward trends
in both annual runoff and sediment series, implying that GAMs should be adopted in
changing environments dominated by nonlinearity. The use of GAM in RFFA has received
little attention. Chebana et al. [2] used a dataset of 151 hydrometrical stations from Quebec,
Canada, to compare several RFFA methods (both linear and non-linear). They found that
RFFA models based on GAM outperformed linear models, including the most used log-
linear regression model. Smooth curves in GAM allowed for a more realistic understanding
of the physical relationship between dependent and predictor variables in RFFA.

Rahman et al. [24] used data from New South Wales (Australia) to test the applicability
of the GAM model in RFFA and found promising results. Rahman et al. [25] investigated
the use of independent component analysis (ICA) in RFFA. This study analysed data from
88 catchments in New South Wales (NSW), Australia. The ICA was used in conjunction
with both the quantile regression technique (QRT) and the parameter regression technique
(PRT). As potential predictor variables, eight physio-climatic variables were used in this
study. Independent components (IC) were used as predictor variables in ICA, and the
best predictors were chosen using a ‘cumulative percent relevance’ criterion. A leave-one-
out (LOO) validation by Haddad et al. [26] used GAM to evaluate the performance of the
competing models using a suite of statistical evaluation measures. The QRT model with four
predictors and the PRT model with all the ICs as predictors were found to outperform the
other candidate models. The results were comparable to the reported relative error values for
the RFFA technique recommended in the Australian Rainfall and Runoff (ARR) handbook.

Isfahani and Modarres [27] investigated non-stationary flood frequency analysis in
non-stationary conditions using the GAM for parameter estimation for the location, scale,
and shape of the GEV distribution for quantile estimation. Msilini et al. [28] evaluated and
compared several regional estimation models in this study. These models were then used
for RFFA at ungauged catchments in the Montreal region of southern Quebec, Canada. To
delineate homogeneous regions, two neighborhood approaches were used in this study:
canonical correlation analysis (CCA) and the region of influence (ROI) method. For RFFA,
three regression methods, namely log-linear regression model (LLRM), GAM, and multi-
variate adaptive regression splines (MARS), which were recently introduced in the RFFA
context, were considered. The results showed that MARS and GAMS used in conjunction
with the CCA approach outperformed all other regional approaches considered.
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To summarise, GAM allows for the accounting of potential nonlinearities in RFFA, which
cannot be achieved using linear models or simple variable transformations such as log or
power methods. There has been little application of GAM in RFFA. To fill this knowledge
gap, the aim of this study is to test the applicability of GAM to Victoria State of Australia and
compare results with linear RFFA technique. This will assist to select more accurate RFFA
technique for practical application in Victoria. The remainder of the paper is organised as
follows: Section 2 presents the study area and dataset used; Section 3 explains the methodology
used in this study; and the results and discussion of the study are presented in Section 4.
Finally, discussion, and conclusions are provided in Sections 5 and 6, respectively.

2. Study Area and Data

This study selects 114 gauged catchments from the State of Victoria, Australia. These
are natural catchments with no major land use change and regulation. The size of the
selected catchments ranges 3–997 km2 (mean: 317.5 km2 and median: 270.5 km2). Figure 1
shows the distributions of the selected catchments. The annual maximum flood record
length ranges 26–62 years (mean 38 years); with 77% of the stations having record lengths
of 34–42 years.
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A total of eight catchment characteristics are selected, which are: catchment area (area);
catchment shape factor (SF); design rainfall intensity with 2-year average recurrence interval
(ARI) and 6-h duration (I6,2); mean annual rainfall (rain); mean annual evapotranspiration
(evap); stream density (sden); mainstream slope (S1085); and fraction forest cover (forest).
The catchment characteristics data used in this study are summarised in Table 1.

Table 1. Summary of catchment characteristics data.

Variable Unit Notation Min Mean Max SD

Catchment area km2 area 3 317.54 997 244.65
Catchment shape factor - SF 0.281 0.79 1.4341 0.22

Mainstream slope m/km S1085 0.8 13.38 69.9 12.30
Stream density km/km2 sden 0.52 1.53 4.25 0.53

Fraction of catchment covered by forest - forest 0.01 0.59 1 0.35
Rainfall intensity (6-h duration and 2-year ARI) mm/h I6,2 24.6 34.29 46.7 5.27

Mean annual rainfall mm rain 484.39 931.64 1760.81 319.01
Mean annual potential evapotranspiration mm evap 925.9 1035.47 1155.3 42.80

3. Methodology
3.1. Quantile Regression Technique (QRT)

The most commonly used relation between the flow statistics (e.g., flood quantile QT of
return period T years) and the catchment characteristics (A1, A2, . . . , An) is the power-form
function in the form [29]:

QT = α0Aα1
1 Aα2

2 . . . .Aαn
n ε0 (1)

in which α0, α1, . . . , αn are the coefficients of prediction equation, ε0 is the multiplicative
error term and n is the number of catchment characteristics. Alternatively, if the error term
(ε0) is assumed to be additive then the power-form function becomes [30,31]:

QT = α0Aα1
1 Aα2

2 . . . .Aαn
n + ε0 (2)

For both cases, the regression coefficients/model parameters are not known and must
be estimated using observed flow statistics and regional catchment characteristics. If the
error term is multiplicative (Equation (3)), then the power-form model can be linearised by
a logarithmic transformation and the parameters of the linearised model can be estimated
by a linear regression technique. Taking log on both sides, Equation (3) can be expressed as:

log(QT) = log(α0) + α1 log(A1) + . . .αn log(An1) + log(ε0) (3)

or in matrix form:
Y = Xβ + e (4)

in which Y is the vector of flood statistics (quantile) from m sites (Y = log(QT)), β is the
vector of regression coefficients (β = α0, α1, . . . , αn), X is the matrix of the physiographic
characteristics or the explanatory variables (X = log(A1)) and e is the matrix of the error
(e = log(ε0)). However, if the model error is additive (i.e., Equation (4)), it is not possible to
linearise the power-form model by a logarithmic transformation and the model coefficients
needs to be estimated by some nonlinear optimisation method.

3.2. GAM

Hastie and Tibshirani [6] were the first to propose generalised additive models (GAMs)
in 1987. The mean of the response (dependent) variable is assumed to be dependent
on an additive predictor via a link function in these models. GAM employs nonlinear
functions of each predictor variable while retaining additivity. GAM, like generalised linear
models (GLMs), allows the response probability distribution to be from any member of the
exponential family. GAMs and GLMs differ only in that GAMs allow for unknown smooth
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functions in the linear predictor. GAM is a mathematical modelling technique in which
the impact of predictive variables is captured using smooth functions that depend on the
underlying patterns in the data, which may be nonlinear. GAM can be written as:

g(E(Y)) = α + s1(x1) + · · ·+ sP(xP) (5)

where Y is the dependent variable (here QT), E(Y) denotes the expected value, and g(E(Y))
denotes the link function that links the expected value to the predictor variables x1, . . . , xp.
The terms s1(x1), . . . , sP(xP) denote smooth, nonparametric functions.

In general, a GAM has the below form:

g(µi) = X∗
i β +

m

∑
j=1

f j(xij) (6)

where µi ≡ E(Yi) and Yi∼an exponential family distribution.
Yi is a response variable, X∗

i is the ith row of the model matrix for the strictly parametric
model components; and f j are smooth functions of the covariates xj.

3.3. Cluster Analysis

Cluster analysis refers to a very broad set of techniques for finding subgroups or clusters
in a data set. The objective of clustering the observations of a data set is to seek partitioning
of observations into distinct groups so that the observations within each group are quite
similar to each other (in relation to some attributes of the data), while observations in different
groups are quite different from each other. In the adopted cluster analysis, the variables
are standardised and are given equal weights. The hierarchical clustering is used with a
combination of Wards-Manhattan method. K-Means clustering is also adopted in this study.
All the eight predictor variables are used in the cluster analysis presented in this study.

3.4. Validation

In this study, K-fold cross validation is chosen to evaluate the RFFA model perfor-
mance [26]. K-fold cross validation allows a randomly separate set of observations into
k groups or folds which are approximately of equal size and fits the model using the rest
of the samples except the first subset or fold. The held-out dataset is used to validate the
statistical model through generating predictions using the statistical model based on the
test dataset.

This procedure is repeated for k times. The mean and standard error values of
k number of trials are summarised and used subsequently to evaluate the performance of
the relationship between the tuning parameter(s) and model utility. The k-fold CV estimate
is computed by averaging these values:

CV(k) =
1
k

k

∑
i=1

MSEi (7)

The choice of k is usually 5 or 10, which depends on dataset. The difference in size
between the training set and the resampling subsets gets smaller as the k increases. The
bias of the technique becomes smaller (i.e., the bias is smaller for k = 10 than k = 5) with
difference decrease. In this context, the bias is the difference between the estimated and
true values of performance.

The following statistical measures were used to check the suitability and performance
of the prediction model, which are:
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Relative Error (RE) = Median
[

abs
(Qpred − Qobs

Qobs

)]
(8)

Ratio =
Qpred

Qobs
(9)

where Qobs = observed flood quantile at each site (estimated by a log-Pearson type 3
distribution); Qpred = predicted flood quantile at each site from regional prediction equation.

4. Results

The study is based on a variety of alternative groups, such as a combined group made
up of all the 114 catchments and sub-groups formed by cluster analysis. Using hierarchical
and k-means clustering techniques, four regions are formed: A1 (79 stations) and A2
(35 stations) from Wards-Manhattan clustering, and B1 (67 stations) and B2 (47 stations)
from K-Means clustering. All these four groups and the combined sites in a single group
are employed in the development of log-log linear models and GAM-based models.

Linear regression analysis is carried out using the dataset and backward stepwise
procedure is followed to choose the catchment characteristics for model development.
Table 2 shows the overall model statistics for the 6 different ARIs. The major statistical
measures used are coefficient of determination (R2), p-value and standard error of estimate
(SEE). R2 values range from 0.69 to 0.53, respectively for Q2 to Q100. The R2 values are found
to be particularly small for higher ARIs, indicating that the variance explained by catchment
characteristics becomes smaller, resulting in higher model error variance of prediction for
higher ARI flood estimation. All the R2 values are modest to reasonable, indicating that the
prediction equations are generally well-fitting. The SEE ranges from 0.22 to 0.32 for Q2 to
Q100. SEE is found to be lowest in Q2 and highest in Q100. The predictor variables selected
in the final model with the p-statistics value of ≤0.05 are shown in Table 2. From Table 2,
the area and I6,2 appear to be the most important variables for estimating Q for log-log
linear model. These two variables are common with all the prediction equations. The
next most important predictor variable is found as rain which appears in every prediction
equation except for Q2 and Q5. Only for Q2, sden is selected whereas rain is absent as
predictor variable. For Q5, both rain and sden are selected as predictor variable. Overall,
the prediction equations show consistency in selection of independent variables except for
Q2 and Q5. Table 2 shows the variables of the developed prediction equations.

The log-log linear models are assessed using the Qpred/Qobs ratio and the median
relative error (RE). Figure 2 depicts boxplots of RE values for the log-log linear model for
the combined group’s selected test catchments. Figure 2 shows that the median RE values
(represented by the black line within a box) match very well with the 0:0 line for ARIs of
5 and 20 years and are relatively good for ARIs of 10 and 50 years. Some underestimation
is observed for ARI of 2 years. The underestimation is remarkable for an ARI of 100 years.
The ARI of 2 years has the lowest spread in the RE band, which is represented by the
total spread of the box. The RE band for ten years ARI is very similar to the RE band for
two years ARI. The RE band for 100 years ARI is more than twice than the RE bands for
2 and 10 years. These results show that in terms of RE, 10 years ARI achieve the best results,
followed by 2 years ARI. Higher ARI flood quantiles are associated with a higher degree of
spread in the RE, which could indicate a higher standard deviation of the estimate. This
matches the findings of Haddad and Rahman [31] and Rahman et al. [32]. This is generally
the case in RFFA as essentially, we are making predictions beyond the limits of the original
data space.
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Table 2. Model statistics for log-log linear model of combined group.

Equation Predictor
Variables

Regression
Coefficient (β)

Standard
Error

Standard Error of
Estimate (SEE) R2 D.F

log Q2

(constant) −2.42 0.52

0.22 0.69 110
log (area) 0.68 0.04
log (I6,2) 1.48 0.33

log (sden) 0.39 0.15

log Q5

(constant) −1.60 0.57

0.23 0.67 109
log (area) 0.68 0.05
log (I6,2) 1.74 0.41
log (rain) −0.29 0.19
log (sden) 0.31 0.16

log Q10

(constant) −1.25 0.62

0.25 0.63 110
log (area) 0.66 0.05
log (I6,2) 2.14 0.43
log (rain) −0.53 0.20

log Q20

(constant) −1.00 0.66

0.27 0.61 110
log (area) 0.66 0.05
log (I6,2) 2.30 0.46
log (rain) −0.66 0.21

log Q50

(constant) −0.79 0.73

0.30 0.57 110
log (area) 0.66 0.06
log (I6,2) 2.45 0.51
log (rain) −0.76 0.23

log Q100

(constant) −0.70 0.78

0.32 0.53 110
log (area) 0.66 0.06
log (I6,2) 2.54 0.54
log (rain) −0.81 0.25
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Figure 3 presents the boxplot of the Qpred/Qobs ratio values of the selected 114 catchments
for the log-log linear model. It is found that the median Qpred/Qobs ratio values (represented
by the thick black line within a box) are located closer to 1:1 line (the horizontal line in
Figure 3), for ARIs of 2, 5,10, 20 and 50 years (the best agreement is for ARI of 20 years).
However, for ARI of 100 years, the median Qpred/Qobs ratio value is located a short distance
below the 1:1 line, and for ARI of 2 years, the median Qpred/Qobs ratio value is located a
short distance above the 1:1 line. In terms of the spread of the Qpred/Qobs ratio values, ARI
of 2 years exhibits the lowest spread followed by ARI of 10 years. Furthermore, the spreads
of the Qpred/Qobs ratio values for 50 and 100 years are very similar, which are remarkably
larger than 2 and 10 years.
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For developing GAM model, predictor variables are selected using backward stepwise
procedure. Table 3 shows overall GAM model (combined group) statistics for the 6 different
ARIs. The major determinants are coefficient of determination (R2), generalised cross-
validation (GCV) statistic and p-statistics. The R2 values range from 0.69 to 0.44; particularly,
smaller R2 values are found for the higher ARIs indicating a weaker model. The R2 values
for lower ARIs seem to be quite reasonable (0.62–0.69). The GCV values vary from 501 to 82,
994 for Q2 to Q100. The lowest value of GCV is found for Q2 and the highest one is found
for Q100. This indicates that the cross-validation error increases with increasing ARIs.

The predictor variables for the individual models are selected based on the p-statistics
of the predictor variables. The criterion of including a predictor variable in the final model
is p ≤ 0.05. Table 3 contains all the selected predictor values for the models. The predictor
variables area, I6,2 and evap appear to be the most important variables for estimating flood
quantiles using GAM, as these three variables are common in all the prediction equations.
The next most important predictor variable is rain, which appears in all the prediction
models except for Q2. Another predictor variable, which is found statistically significant
in Q2, Q5 and Q10 is sden. Overall, Q20, Q50 and Q100 models show a consistency in the
selection of predictor variables (with area, I6,2 and evap). The selected predictor variables
are shown in Table 3.
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Table 3. Important model statistics for GAM models of combined group.

Flood
Quantile

Predictor
Variables

Deviance
Explained (%)

Generalized Cross
Validation Statistic (GCV) R2 F Value

Q2

area

73.70 501.61 0.69

30.199
I6,2 5.37
evap 7.59
sden 6.07

Q5

area

71.3 3201.90 0.66

26.69
I6,2 4.898
rain 3.073
evap 6.278
sden 4.492

Q10

area

67.60 8437.80 0.62

23.46
I6,2 4.67
rain 6.91
evap 5.02
sden 3.15

Q20

area

62.20 18974.00 0.56

17.39
I6,2 4.41
rain 8.95
evap 3.99

Q50

area

56.20 45823.00 0.50

9.96
I6,2 8.56
rain 12.12
evap 3.31

Q100

area

48.40 82994.00 0.44

17.32
I6,2 11.53
rain 10.87
evap 2.46

The boxplots of RE values for the GAM model of the combined group for the 6 ARIs
are shown in Figure 4. For ARIs of 5 years, the median RE values match the 0:0 line very
well, and reasonably well for ARIs of 2 and 10 years, respectively. Except for 10 years
ARI, the GAM models underestimate by a small to moderate amount. In terms of the RE
band, the ARIs of 2 and 10 years have nearly identical spreads, which are also smaller than
the remaining ARIs. The RE bands for 50 and 100 years of ARIs are very similar, which
indicates a similar level of prediction error for these ARIs by the GAM. These results show
that in terms of RE, the best overall result (for the combined group) for the GAM model is
achieved for 2 years ARI. Overall, the performances of the GAM models (as indicated by
the RE bands) for the combined group do not show a large variation across the six ARIs.

Figure 5 presents the boxplots of the Qpred/Qobs ratio values associated with the GAM
models for the combined group for the six ARIs. It is found that the median Qpred/Qobs
ratio values are located very close to 1:1 line, for ARIs of 5 and 10 years, showing the best
agreement for ARI of 10 years. However, for all the ARIs, the median Qpred/Qobs ratio
values are located within a short distance above the 1:1 line except for ARI of 100 years. For
this ARI, there is a noticeable overestimation by the GAM model. These results indicate
a slight to noticeable overestimation of the predicted flood quantiles for all the ARIs. In
terms of the spread of the Qpred/Qobs ratio values, ARI of 2 years exhibits the lowest spread,
whereas 10 and 20 years of ARIs show similar spread. Furthermore, the spreads of the
Qpred/Qobs ratio values for 50 and 100 years of ARIs are very similar, which are remarkably
larger than 2, 5 and 10 years of ARIs.
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Table 4 compares the R2 values of the ten different RFFA models. From Table 4,
R2 values from GAM models are found to be higher than those from the respective log-log
linear models for smaller ARIs. It has also been revealed that GAM models based on
clustering groups produce better results, for example, models for smaller ARIs produce
higher R2 values. For example, the R2 values of Q2, Q5, and Q10 for GAM models in the
combined group are 0.83, 0.73, and 0.70, respectively, which are 10%, 8%, and 4% higher
than the respective log-log linear models. GAM models, on the other hand, have lower
R2 values than respective log-log linear models for higher ARIs (e.g., 0.67, 0.58 and 0.51,
which are 1%, 10% and 17% lower than respective log-log linear model). Furthermore, the
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GAM models of clustering groups produce better results for Q2 with a maximum value of
0.90. Overall, the log-log linear models give better performance for higher ARIs (i.e., 20, 50
and 100 years) and GAM models show better performance for smaller ARIs (i.e., 2, 5 and
10 years).

Table 4. R2 values of the GAM and log-log linear models for 10 cases.

Flood
Quantile

Combined Group Group (A1) Group (A2) Group (B1) Group (B2)

log-log
Linear
Model

GAM
log-log
Linear
Model

GAM
log-log
Linear
Model

GAM
log-log
Linear
Model

GAM
log-log
Linear
Model

GAM

Q2 0.69 0.69 0.74 0.83 0.69 0.75 0.78 0.90 0.65 0.712
Q5 0.67 0.66 0.72 0.79 0.55 0.676 0.74 0.83 0.57 0.626
Q10 0.63 0.62 0.70 0.73 0.48 0.554 0.71 0.78 0.48 0.506
Q20 0.61 0.56 0.68 0.67 0.43 0.506 0.69 0.71 0.42 0.456
Q50 0.57 0.50 0.65 0.58 0.32 0.437 0.65 0.60 0.39 0.322
Q100 0.53 0.44 0.62 0.51 0.27 0.36 0.62 0.55 0.32 0.30

Overall 0.62 0.58 0.69 0.69 0.46 0.55 0.70 0.73 0.47 0.49

In Table 5, the median RE values are summarised for the log-log linear and GAM
models for the combined and four clustering groups. The median RE values are calculated
considering the absolute relative error value (RE) of the test catchments. The highest RE is
59.94%, which is found for log-log linear model for the clustering group A2 for 100 years of
ARI, and the lowest RE is 16.8%, which is found for the GAM model of group B1 data for
2 years ARI.

Table 5. Median RE values (%) for the GAM and log-log linear model based RFFA techniques for
ten cases.

Flood
Quantile

Combined Group Group (A1) Group (A2) Group (B1) Group (B2)

log-log
Linear
Model

GAM
log-log
Linear
Model

GAM
log-log
Linear
Model

GAM
log-log
Linear
Model

GAM
log-log
Linear
Model

GAM

Q2 18.73 34.81 29.56 22.52 23.10 39.31 30.33 16.80 25.82 33.24
Q5 32.88 33.88 28.60 33.10 34.69 41.46 28.20 28.92 31.97 41.11
Q10 19.36 33.75 27.47 31.96 40.54 40.29 27.37 34.46 33.05 38.17
Q20 34.51 34.05 30.74 39.53 43.02 42.35 29.37 42.47 36.69 45.82
Q50 40.41 42.67 33.25 40.12 53.10 49.59 37.42 42.08 39.29 31.38
Q100 40.99 49.09 37.05 53.38 59.94 49.37 37.00 45.90 42.63 39.04

Overall 31.15 38.04 31.11 36.77 42.40 43.73 31.61 35.10 34.91 38.13

For the log-log linear models, median RE values range from 18.73% to 59.94%. The
smallest and highest median RE values are found for the log-log linear models of the combined
group for 2 years of ARI and clustering group A2 for 100 years ARI, respectively. From the
overall median RE values for the log-log linear models, the smallest result is found from
clustering group A1 with median RE of 31.11%. The overall highest median RE value for
the log-log linear model is found from clustering group A2 with the value of 42.40%. The
overall median RE values range from 31.11% to 42.40%, which indicate that the median RE
does not differ much between different groups of the log-log linear models. Lowest values of
RE are mostly found from 2 years of ARI for log-log linear model, which range from 18.73% to
30.33%, which are for the combined group and clustering group B1, respectively. The highest
values of RE are found for 100 years ARI for the log-log linear models, which range from 37%
to 59.94%, which are for clustering groups B1 and A2, respectively.

In the case of GAM, median RE values range from 16.8% to 53.38%. The smallest and
highest median RE values are found for 2 years of ARI for clustering group B1, and for
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100 years of ARI for clustering group A1, respectively. With respect to the overall median
RE, the smallest value is found for the clustering group B1 with median RE of 35.10%. The
overall highest median RE value is found for clustering group A2 (43.73%). The overall
median RE values range from 35.10% to 43.73% for the GAM models. Lower values of
median RE are mostly found for 2 years of ARI for the GAM, which range from 16.80%
to 39.31% (for the clustering groups B1 and A2). The highest values of RE are found for
100 years of ARI for the GAM, which range from 39.04% (clustering group B2) to 53.38%
(clustering group A1). It is observed that in most cases, the median RE values of GAM
are greater than respective log-log linear models. For group A2, median RE values of the
GAM models are lower than the log-log linear models for ARIs of 10, 20, 50 and 100 years.
However, considering overall performance of median RE, log-log linear model is found to
have better accuracy than GAM.

In Table 6 median ratio (Qpred/Qobs) values are summarised for 5 log-log linear models
and 5 GAM models. The median ratio values are important as these are an effective
indicator of overestimation or underestimation (i.e., a measure of bias) of the prediction
model. The highest Qpred/Qobs ratio is 1.16, which is found for the log-log linear model for
clustering group A1 for ARI of 50 years, and the lowest median Qpred/Qobs ratio is 0.83,
which is found for GAM model for clustering group A2 data of 10 years of ARI.

Table 6. Median Qpred/Qobs ratio values for the GAM and log-log linear model based RFFA techniques
for 10 cases.

Flood
Quantile

Combined Group (A1) Group (A2) Group (B1) Group (B2)

log-log
Linear
Model

GAM
log-log
Linear
Model

GAM
log-log
Linear
Model

GAM
log-log
Linear
Model

GAM
log-log
Linear
Model

GAM

Q2 1.03 1.07 1.04 1.01 1.00 1.13 1.01 1.05 1.04 1.10
Q5 1.00 1.02 0.95 1.03 0.99 1.04 0.98 1.00 1.03 0.95
Q10 0.97 1.04 0.94 1.06 0.98 0.83 0.96 1.02 0.92 1.04
Q20 1.00 1.12 0.97 1.10 1.01 0.84 1.01 1.06 0.94 0.98
Q50 0.98 1.12 1.02 1.16 0.95 0.86 1.05 1.14 0.94 0.98
Q100 0.94 1.12 1.02 1.12 0.95 1.14 1.09 1.13 0.90 1.01

Overall 0.99 1.08 0.99 1.08 0.98 0.97 1.01 1.07 0.96 1.01

For log-log linear models, median Qpred/Qobs ratio values range from 0.90 to 1.09. The
smallest and highest median ratio values are found for 100 years of ARI for the log-log
linear model of the clustering group B2 and log-log linear model of the clustering group B1,
respectively. The overall smallest median Qpred/Qobs ratio values for the log-log linear
models are found as 0.96, which is for the clustering group B2 and the highest median
Qpred/Qobs ratio value for log-log linear model is found for the clustering group B1, which
is 1.01. The overall median ratio values range from 0.96 to 1.01, which indicate a very small
percentage of difference between different groups of the log-log linear models. Most of the
median Qpred/Qobs ratio values obtained from the log-log linear model are in the range of
0.95 to 0.99, which indicate a slight underestimation in the prediction of flood quantiles.
The best result is obtained for 20 and 5 years ARIs for the combined group, with the median
ratio value of 1.00. In summary, log-log linear model-based RFFA techniques show a very
reasonable and consistent median Qpred/Qobs ratio value.

In the case of GAM, median Qpred/Qobs ratio values range from 0.83 to 1.16. The
smallest and highest median Qpred/Qobs ratio values are found for ARIs of 10 years for
the clustering group A2 and 50 years ARI for the clustering group A1, respectively. The
overall smallest median Qpred/Qobs ratio value for GAM is found for clustering group A2
with median Qpred/Qobs ratio of 0.97. The overall highest median Qpred/Qobs ratio value is
found for combined group with median ratio of 1.08. The overall median Qpred/Qobs ratio
value ranges from 0.98 to 1.08, which indicates that GAM tends to make an overestimation.
Moreover, the overall median Qpred/Qobs ratio values for the GAM models are higher
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compared with respective log-log linear models. Most of the median Qpred/Qobs ratio values
are found above 1.00 for the GAM models, which indicates again an overestimation. Lower
values of median Qpred/Qobs ratio values for GAM are mostly found for the clustering group
A2 that range from 0.83 to 1.14, which are comparatively lower than median Qpred/Qobs
ratio values of the log-log linear models of the clustering group A2. For clustering group
A2, median Qpred/Qobs ratio values are lower for the GAM than the log-log linear models
for higher ARIs i.e., for 10, 20 and 50 years. However, in most cases, the median Qpred/Qobs
ratio values of GAM are greater than the respective log-log linear models. Overall, median
Qpred/Qobs ratio values indicate that the log-log linear models produce better predictions
than GAM in the higher ARIs.

5. Discussion

This study compares GAM and QRT for Victoria, Australia by using data from
114 gauged catchments. Based on independent validation, it is found that GAM pro-
vides more accurate quantile estimates than QRT for smaller return periods, and QRT
outperforms GAM for higher return periods. Overall, the median relative error values for
2, 5 and 10 years ARIs in this study are found to be 16–41%, which are smaller than similar
other studies [33,34]. For example, Zalnezhad et al. [35] applied artificial intelligence based
RFFA techniques for south-east Australia and reported a median relative error value of
37–43% for 2 to 10 years ARIs. For south-east Australia Aziz et al. [3] applied non-
linear RFFA techniques and reported a median relative error value of 37–72% for ARIs
of 2 to 10 years. Ali and Rahman [36] applied ordinary kriging to Victoria and reported a
median relative error value of 28–36% for 2 to 10 years ARIs. Hence, GAM has performed
better than these studies [3,35,36] for 2 to 10 years ARI range.

To enhance the accuracy of the developed RFFA models, a greater number of sta-
tions with longer streamflow data should be adopted in near future when such data is
available. Furthermore, additional predictor variables should be tested to enhance model
accuracy. For model validation, leave-one-out and Monte Carlo cross validation should also
be applied.

6. Conclusions

GAM handles nonlinearity in RFFA better than the commonly used log-log linear
models, especially for smaller return periods (e.g., 2 to 10 years). It is found that none
of the RFFA models examined in this study perform equally well across all the six ARIs
in terms of all the adopted statistical measures. Based on overall average values of R2,
median RE and median Qpred/Qobs ratio values, it is found that log-log linear models from
clustering group A1 outperform the respective GAM models. However, for smaller ARIs
(i.e., 2, 5, and 10 years), GAM based RFFA models perform almost similar or better than
the log-log linear models. This is as expected, since for smaller floods (i.e., for smaller
ARIs), catchments generally tend to behave more non-linearly, i.e., a higher loss value.
For higher ARIs (e.g., 50 and 100 years), catchments behave more linearly, hence log-log
linear regression models are expected to perform better, which is confirmed in this study.
There are predictor variables, which were previously found by [33,34] to be insignificant
in RFFA, but are found statistically significant for the GAM models developed here. For
example, evap is found statistically significant for most of the GAM models as opposed
to previous RFFA studies in Australia. It is found that area, I6,2 and rain are the most
significant predictor variables for the log-log linear models. For the GAM models, the most
important predictor variables are area, I6,2, rain and evap.

Except in one case, cluster analysis has not produced superior groups in RFFA. The
median RE values for the log-log linear models based on clustering group A1 (consisting of
79 catchments) are found to be the lowest (29% to 37%) among all the five groups; however,
the other clustering groups perform poorly. The findings of this study are expected to
provide guidance in updating the RFFA techniques in the Australian Rainfall Runoff
guideline. The future research should be focused on using more predictor variables in
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RFFA studies based on GAM. Also, GAM should be applied to other Australian states
using a large number of gauging stations.
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