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Abstract
Flood is one of the most common natural disasters, which also triggers other natural dis-
asters such as erosion and landslides. Flood damage can be minimised by ensuring opti-
mum design of drainage infrastructure and other flood management tasks, which depends 
largely on reliable estimation of flood quantiles. This study investigates flood quantile 
estimation in ungauged catchments using a kriging-based regional flood frequency analy-
sis (RFFA) technique. Three main research objectives are addressed in this study. Firstly, 
kriging-based RFFA models are developed using 558 catchments from eastern Australia 
in the range of frequent to rare flood quantiles (2, 5, 10, 20, 50 and 100 years of average 
recurrence intervals (ARIs)). Secondly, a validation of the models by adopting a leave-
one-out (LOO) validation technique is undertaken to identify the best and the worst per-
forming catchments across eastern Australia. Finally, a detailed comparison is made for the 
kriging-based RFFA technique with a generalised least-squares-based quantile regression 
technique, known as ‘RFFE model 2016’ using the same dataset to evaluate whether there 
are general patterns of the performance in different catchments. The study shows that for 
eastern Australia (a) the developed kriging-based RFFA model is a viable alternative for 
flood quantile estimation in ungauged catchments, (b) the 10-year ARI model Q10 performs 
best among the six quantiles, which is followed by the models Q5 and Q20, and (c) the 
kriging-based RFFA model is found to outperform the ‘RFFE model 2016’.
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LP3 	� Log Pearson type III
MAR	� Mean annual rainfall
NSW	� New South Wales
PUB	� Prediction in Ungauged Basins
QLD	� Queensland
RE	� Relative error
REm	� Absolute relative median error
RFFA	� Regional flood frequency analysis
RFFE 	� Regional flood frequency estimation
RMSNE	� Root mean square normalised error
ROI 	� Region of influence
SA	� South Australia
VIC	� Victoria
α	� Shape parameter of LP3 distribution
β	� Scale parameter of LP3 distribution
γ	� Location parameter of LP3 distribution
�(�) 	� Gamma function
KT 	� Frequency factor
P(u)	� Random variable defined at location u
Q2,  Q5,  Q10,  Q20,  Q50  and  Q100	� 2-yr, 5-yr, 10-yr, 20-yr, 50-yr and 100-yr ARI flood 

quantile
Qp 	� Flood quantile estimated from the developed model
Qo 	� Flood quantile obtained from LP3 distribution
Qo 	� Mean of the observed AMF series
R2 	� Coefficient of determination
T	� Return period
G	� Geostatistics-based methods
IM	� Index methods
R	� Regression method

1  Introduction

Flood-related economic losses and number of fatalities have increased dramatically over 
the past decades around the globe (OECD 2016; CRED and UNISDR 2015). Floods dam-
age crops, livestock, properties and infrastructure, and also negatively impact ecology by 
increasing erosion and pollution of rivers. An optimum design of drainage infrastructure 
can reduce the damage, which depends largely on a reliable estimation of flood quantiles—
defined as the flood discharge associated with a given return period or average recurrence 
interval (ARI) (Kuczera and Franks 2019; Rahman et al. 2019). The most direct method for 
flood quantile estimation is flood frequency analysis (FFA), which requires a long period 
of recorded streamflow data at the site of interest. In such situations, where streamflow data 
are not available, regional flood frequency analysis (RFFA) is adopted, which attempts to 
exploit flood data available within the region by the use of flood information from nearby 
or similar gauged catchments (Stedinger et  al. 1993; Ouarda et  al. 2001; Haddad et  al. 
2013). The technique primarily regionalises flood data, which are assumed to be independ-
ent (in both space and time), identically distributed, not to be affected by natural or man-
made changes (Cunnane 1989; Ouarda et al. 2001; Haddad and Rahman 2020); then, use 



2741Natural Hazards (2022) 114:2739–2765	

1 3

predictor variables, such as catchment physiographic, geomorphologic or climatic charac-
teristics, to estimate the streamflow for a given catchment. The limitation of using these 
approaches (whether FFA or RFFA) is that the requirement of a reasonably long period of 
flow observations collected at or (at least) close to the site of interest. Additionally, these 
approaches assume that the flow data are stationary over time, which may not always be the 
case especially in the context of climate change and land use changes (Ishak and Rahman 
2019).

RFFA has a long history in hydrology for being used in flood quantile estimation, and 
accordingly, the last couple of decades, in particular, have seen extensive research on 
RFFA techniques worldwide. RFFA is a broad area of study depending on the diversity 
of climatic conditions and site characteristics in general; hence, different researchers have 
focused on different issues (Micevski et al. 2015). In the 1970s and early 1980s, the focus 
was on developing reliable at-site FFA techniques, while in the late 1980s the attention was 
shifted towards developing new and improved RFFA techniques (e.g. Potter 1987; Kirby 
and Moss 1987; Cunnane 1988; and NRC 1988). Some studies (Potter and Lettenmaier 
1990; Bobee et  al. 1993) in early 1990s suggested to compare the existing RFFA tech-
niques and to look for an improvement as an alternative for developing new methods. Dur-
ing the next twenty years, researchers had made efforts to develop techniques in which 
similarity between sites is defined by a multidimensional space of catchment or statisti-
cal characteristics (Douglas 1995). Alternate methods were also derived so that each site 
has its own region, for instance, the region of influence (ROI) approach (Burn 1990a and 
1990b) and canonical correlation analysis (Cavadias 1990). In 2003, the International 
Association of Hydrological Sciences launched a collective effort, known as the Prediction 
in Ungauged Basins (PUB) initiative, to improve the knowledge of climatic as well as land-
scape controls on hydrological practices and to improve the ability to estimate the water 
fluxes in ungauged catchments associated with their uncertainties (Sivapalan et al. 2003). 
One of the significant tasks that the PUB initiative attained was performing the compara-
tive evaluation of different modelling approaches in terms of time/space scales, climate, 
data requirements and type of application (Parajka et al. 2013).

In the last two decades, with the advent of geographical information systems, alternative 
methods of using the flood quantiles directly in regressions against catchment characteris-
tics (Griffis and Stedinger 2007; Engeland and Hisdal 2009) or geostatistical methods that 
exploit the spatial correlation of floods either in space (Merz and Bl¨oschl 2005; Merz et al. 
2008) or along the stream network (Skøien et  al. 2006; Laaha et  al. 2012) have become 
popular. One of the strengths of the geostatistical techniques is that it directly exploits the 
spatial correlations of the flood data to develop regional maps of the predicted variables; 
there is no need for defining pooling groups explicitly, but a relatively dense stream gauge 
network is needed in general (Chokmani and Ouarda 2004; Parajka et  al. 2013; Salinas 
et  al. 2013). Geostatistical maps of hydrological variables are often produced using an 
interpolation technique like kriging, a model established originally in the mining industry 
(Skøien et al. 2006). In a typical kriging model, the hydrologic variable (that is predicted) 
is considered to be spatially continuous and the prediction equations are made based on the 
geospatial locations.

Various types of kriging models are used in hydrology, such as ordinary kriging (Adhi-
kary et  al. 2016; Farmer 2016), canonical kriging or co-kriging (Ouarda et  al. 2001; 
Chokmani and Ouarda 2004), topological kriging or ‘top-kriging’ (Skøien et  al. 2006; 
Skøien and Blöschl 2007; Persiano et al. 2021) and kriging with an external drift (KED) 
(Goovaerts 2000). In a number of studies emphasising on the prediction of mean annual 
runoff (Skøien et al. 2006) and other variables of the streamflow distribution (Castiglioni 
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et al. 2011; Archfield et al. 2013; Viglione et al. 2013), top-kriging has been found to be 
performing better than many other kriging types, including ordinary kriging (Sauquet 
2006). However, ordinary kriging is the simplest type of kriging model that is capable of 
combining flood quantile at multiple sites for making regional prediction. It provides a 
competitive first-order approximation and hence is better understood than top-kriging or 
other types of kriging. It is also hypothesised by many researchers that a simple geostatisti-
cal method can produce estimates nearly as good as it is produced by more advanced geo-
statistical methods. Farmer (2016) explored to characterise the spatial correlation of daily 
streamflow data in Southeastern US and showed that the ordinary kriging model can gen-
erate accurate streamflow predictions at ungauged sites, significantly outperforming more 
traditional approaches that employ a single-index stream gauge. Adhikary et  al. (2016) 
applied ordinary kriging model for spatial interpolation of monthly and mean annual rain-
fall (MAR) to produce the gridded rainfall dataset for the Middle Yarra River catchment 
in Australia, then compared the result with a deterministic interpolation method and found 
that the ordinary kriging-based stochastic interpolation method outperformed the deter-
ministic method for spatial interpolation of rainfall.

Valizadeh et al. (2017) reviewed artificial intelligence and geostatistical methods to fore-
cast the runoff at ungauged catchments. For a large dataset of Canadian rivers, Durocher 
et  al. (2019) found that application of generalised additive models (GAM), local regres-
sion, thin plate spline and kriging can show the best predictive powers among several other 
RFFA techniques. Meral and Eroğlu (2021) conducted a flood risk analyses in Bingöl, 
Eastern Turkey using kriging and weighted sum models. Baidya et  al. (2020) compared 
inverse distance weighing method, ordinary kriging and area weighted method in RFFA 
data the Mahanadi River basin in India. They noted that at smaller return periods, index 
flood method is preferable, but for the higher return periods kriging provides more accurate 
results. In another recent study, Tran and Kim (2022) showed that polynomial chaos krig-
ing and Gaussian process with kriging variance can provide more accurate prediction of 
the hydrograph and flood peaks.

In Australia, there have been several studies that have focused on several RFFA tech-
niques (both process-based and statistics-based) and ways of minimising errors in flood 
quantile estimates (e.g. Haddad and Rahman 2012; Haddad et al. 2013; Zaman et al. 2012; 
Durocher et al. 2018; Rahman et al. 2018; Haddad and Rahman 2019). When reviewing the 
rich literature on RFFA techniques in Australia, it has been found that there are a very few 
studies that directly compared the different RFFA methods. The predictive performance 
for ungauged catchments is dependent on the hydrological or climatological setting of the 
region as well as the quality and the length of the datasets used in developing and testing 
the technique; this idea possibly made process-based techniques (e.g. rainfall runoff model 
that has the inclusion of physical catchment characteristics) more popular in Australia. But, 
in data-rich regions of the world, statistics-based RFFA techniques have been found to per-
form better in ungauged catchments than other RFFA approaches (Viglione et al. 2013). 
Also due to the large heterogeneity in Australian catchments, it is often difficult to estab-
lish homogeneous regions in Australia (Rahman et al. 2019); hence, a simple geostatistics-
based technique like kriging that does not strictly require a homogeneous region, but needs 
a relatively dense stream gauge network, can be a viable alternative for RFFA in Australia.

In this study, kriging-based RFFA models are developed and tested for eastern Aus-
tralia (data-rich areas of Australia having highest density of gauging stations) using a com-
prehensive flood database. This research is particularly topical given the fact that there 
has been no study on the application of kriging in RFFA problem in Australia. Methods 
used and developed in this study are therefore centred on the flood quantile estimation in 
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ungauged catchments in the range of frequent to rare ARIs (2, 5, 10, 20, 50 and 100 years). 
The main innovation of this study is development and testing of kriging in RFFA using a 
large dataset. It also quantifies the uncertainty associated with the new kriging-based RFFA 
method. It is expected that the outcome of this study would encourage applying kriging in 
RFFA instead of more complex techniques.

Various aspects of the streamflow data collation (collated by the Australian Rainfall 
and Runoff (ARR)-the national guideline (ed. Ball et al. 2019)) are described in Sect. 2. 
Section 3 discusses thoroughly the mathematical formulations and the theory behind the 
technique of the development and testing of the kriging-based RFFA models. This section 
also evaluates the developed models, identifies the best/worst performing catchments in the 
validation process by adopting a leave-one-out (LOO) validation technique and compares 
the performance of the kriging-based RFFA technique on a global scale as well as with 
the currently recommended RFFA technique in ARR 2019, ‘RFFE Model 2016’. Finally, 
Sect. 4 outlines the main conclusions of this study.

2 � Materials and methods

2.1 � Study area and data

The study area comprises of 558 unregulated catchments in the eastern coast of Australia 
(New South Wales (NSW), Victoria (VIC) and Queensland (QLD)). The reason for select-
ing these three states is that there are a good number of high-quality stream gauging sta-
tions in these states that can be used in RFFA study. These catchments have also been used 
in the development of the ‘RFFE model 2016’ (Rahman et  al. 2019); hence, the annual 
maximum flood (AMF) data series for the selected catchments used in this investigation 
has been obtained from the project ARR_ RFFE Model 2016 (ed. Ball et al. 2019). The 
same catchments set is adopted so that the performance of the kriging-based RFFA model 
can be compared objectively with that of the ‘RFFE model 2016’ (which is covered in 
Sect. 4).

Six criteria were considered in making the selection of the study catchments includ-
ing (i) catchment area (an upper limit of 1000 km2); (ii) streamflow record length (cut off 
record length was 20 years); (iii) regulation (largely unregulated); (iv) urbanisation (catch-
ments having more than 10% of the area affected by urbanisation were excluded); (v) land 
use change (catchments known to have undergone major land use changes such as clearing 
of forest were excluded); and (vi) quality of streamflow data (stations graded as poor qual-
ity by the gauging authority were excluded).

The AMF series of the selected catchments were prepared by adopting standard explor-
atory data analysis procedure which refers to the process of performing the initial inves-
tigations on a given dataset so as to maximise insight into a dataset, to check gross data 
error, to detect outliers and to check underlying assumptions with the help of summary sta-
tistics and graphical representations. Most of the detected low outliers occurred for stations 
which are in low rainfall areas, especially in the western parts of NSW, VIC and QLD. The 
detected low outliers were treated as censored flows in FFA using FLIKE software (Kuc-
zera and Franks, 2019). The details of the exploratory data analysis for the selected catch-
ments can be found in Rahman et al. (2019).

The physiography of the study region is stretching from the lowlands in the western 
part of VIC to the highlands in the eastern part of VIC and NSW. In the lowlands, the 
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mean catchment elevation is less than 300 m above mean sea level (ASL), while in the high 
land area, the mean catchment elevation is about 800 ASL. The MAR of the study region 
ranges from 400 mmyr − 1 (in the north-western part of VIC, which is mainly dominated 
by winter rainfall) to 4500 mmyr − 1 (in the eastern parts of QLD, which is dominated by 
summer rainfall). The catchments in the drier parts of these three states, represented as the 
arid/semi-arid catchments (Rahman et  al. 2019)), have not been used in this study. The 
geographical distribution of the study area is shown in Fig. 1, which shows that most of the 
selected catchments fall within the proximity of the coastline. These catchments are rural, 
not affected by major regulation and land use changes and are small to medium in size hav-
ing catchment areas in the range of 0.6 to 1036 km2. Also, about 77% of the total number 
of catchments have AMF data lengths larger than 30 years. Detail statistics of the dataset, 
including streamflow record lengths (range, mean, median), catchment sizes (range, mean, 
median) and mean annual rainfall (MAR) (range, mean, median) are presented in Table 1.

In previous RFFA studies in Australia (Haddad and Rahman 2012; Aziz et  al. 2014), 
several physiographical and meteorological predictor variables were adopted such as catch-
ment area, design rainfall intensity, MAR, mean annual evapo-transpiration, stream density, 
mainstream slope and stream length. It should be noted that kriging-based model does not 
need many catchment characteristics as with many other RFFA techniques (such as Quantile 

Fig. 1   Location of the selected 558 catchments in EA (i.e. NSW, VIC and QLD)
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Regression Technique); in this study, catchment area is needed to scale the dependent variable 
(which is flood quantile here).

2.2 � Structure of the analysis

The adopted RFFA approach consists of estimating at-site flood quantiles by fitting a LP3 
distribution with the Bayesian parameter estimation procedure (using FLIKE software) at the 
selected stations and developing ordinary kriging-based RFFA model. The developed RFFA 
model is tested to each of the selected catchments independently so that the validation statis-
tics can be used as an indication how the kriging-based RFFA model will be performing for 
the real ungauged catchments of eastern Australia.

2.2.1 � At‑site flood frequency analysis (FFA)

At-site FFA seeks to relate the magnitude and frequency of flood data, by choosing and fit-
ting a probability distribution model to a dataset at a given site (Stedinger et al., 1993). In this 
study, an at-site FFA is carried out in order to estimate flood quantiles at each of the selected 
stations by fitting a log Pearson type 3 (LP3) distribution with the Bayesian parameter estima-
tion procedure using FLIKE software (Kuczera and Franks 2019). LP3 distribution is cho-
sen here since this distribution has shown better FFA results in the past studies for Australian 
catchments (Haddad et al. 2012; Haddad and Rahman 2012). The LP3 model has the prob-
ability distribution function as Eq. 1.

where α, β and γ are shape, scale and location parameters, respectively, with �(�) being the 
gamma function. If β > 0, the distribution has a positive skewness and x ≥ � . If β < 0, the 
distribution has a negative skewness and x ≤ �.

The parameters of the LP3 distribution and the associated moments (i.e. mean, standard 
deviation and skewness) are extracted from the FLIKE software for use with the RFFA. The 
software has facilitated (i) using time series data; (ii) safely censoring the data which are too 
low; (iii) integration of the multiple Grubbs–Beck test for low outlier identification; and (iv) 
combining regional information (from ‘RFFE Model 2016’) as prior knowledge. The flood 
quantile estimates from the LP3 distribution are described by Eq. 2.

(1)f (x) =
1

x|�|�(�)

(
ln (x) − �

�

)�−1

exp

(
−
ln (x) − �

�

)

(2)log10 QT = QT + KT ∗ S

Table 1   Summary of the study catchments for developing ordinary kriging model

State No. of stations Streamflow record length 
(years)

Catchment size (km2) MAR (mm)

Range Mean Median Range Mean Median Range Mean Median

NSW 176 20–82 36 34 1–1036 311 204 571–2151 1014 920
VIC 186 20–60 37 38 3–997 271 209 484–1953 905 853
QLD 196 20–102 43 42 7–963 304 227 606–4546 1464 1292
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where QT and S are mean and standard deviation of the base-10 logarithms of AMF data 
and KT is a frequency factor that is a function of the skewness coefficient and return period 
T.

2.2.2 � Kriging‑based regional flood frequency analysis

Geostatistics-based RFFA is comprised of two major steps in general, which are (i) creat-
ing physiographical space and (ii) using interpolation methods within that physiographical 
space. The physiographical space is defined as a multidimensional space and its coordi-
nate is attained by geomorphological parameters of each catchment using multivariate sta-
tistical methods. Hence, catchments with similar climatic and physiographical properties 
would have the same coordinates along the space. Consequently, each catchment can be 
placed as one point along the physiographical space and the values for the measured quan-
tity (at-site flood quantiles with different ARIs) are considered as the third axis. There-
fore, interpolation method can be incorporated adopting a standard interpolation algorithm, 
such as kriging methods, where catchments with similar characteristics have similar coor-
dinates in general along the physiographic space (Castiglioni et al. 2009; Durocher et al. 
2019). Finally, by using an interpolation method (e.g. kriging), flood quantile estimation is 
obtained for each of the ARIs individually.

In this study, kriging model was applied to estimate flood quantiles at ungauged catch-
ments. Here, a gauged catchment is assumed to be ungauged, the kriging model is devel-
oped without this gauged catchment (referred to as test catchment) and the developed 
kriging model is used to estimate the flood quantile at the test catchment. While there are 
many considerations in the development of a kriging model, this analysis mainly considers 
the spatial correlation between different data points and the distribution of the parameters 
along the structural function called ‘variogram’ (Persiano et al. 2021). The robustness of 
kriging heavily depends on proper selection of a variogram model that demonstrates the 
degree of spatial correlation in the dataset. The variogram model is integrated over the 
catchment areas associated with each catchment and can be characterised by three parame-
ters: ‘nugget’, ‘sill’ and ‘range’. A ‘nugget’ effect is added to the model to identify the level 
of uncertainty relating to the sampling or localisation errors, while a ‘sill’ effect is added 
to represent the regional semivariance, and the ‘range’ represents the distance at which the 
observed points are spatially correlated and the semivariance is best approximated. These 
graphical parameters are used together with the distance matrix to estimate the value of the 
variable of interest at unsampled locations. This integrated variogram depends on the point 
variogram as well as the sizes, the relative positions and the ‘nestedness’ of catchments. In 
some previous hydrologic applications of kriging, the semivariance, which is modelled by 
the semivariogram, has been assumed to be temporally constant; this is clearly not the case 
for the reconstruction of historical time series of streamflow and flood quantiles.

Let P(u) be a random variable defined at location u and be a second-order stationary 
random field in a spatial domain. Under the second-order stationarity assumption, the spa-
tial variation structure of P(u) is independent of spatial location and is characterised by a 
semivariogram model defined as Eq. 3.

(3)P̂(u) =

n∑

i=1

𝜆iP
(
ui
)
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The model refers to a linear one due to its weighted linear combination of observed values. 
Here, the estimated value P for a location u (which refers to the coordinates of the respec-
tive catchment outlet) is a weighted linear combination of the values from n reference points. 
Using the predefined co-variance model, the weights �i are assigned so that the estimation 
variance is minimal. The unbiasedness of Eq. 3 is satisfied with unit-sum weights as derived 
in Eq. 4.

The assumption of the best linear unbiased estimator then gives the kriging weights which 
are used to estimate the flood quantile for each catchment from the observed flood quantiles 
of neighbouring stations for the same ARI, weighted by the kriging weights. Thus, a theo-
retical (predicted) model is fitted to the experimental (observed) variogram. In developing the 
kriging-based RFFA technique in this study, the estimated flood quantiles are standardised. 
This standardisation is done as QT/Ab where b is the slope of the linear regression line fitted 
between ln(A) (as x-axis) and ln(QT) (as y-axis).

In a typical validation approach, a certain portion of the dataset (e.g. 10%) is left out while 
developing the model, and then, the developed model is verified on the left-out dataset, which 
is not used in the model development (i.e. validation dataset). The validation procedure helps 
to select an appropriate model according to its prediction ability, while at the same time evalu-
ating the prediction ability of the model for ungauged catchments.

A jackknifing LOO cross-validation technique is applied in this study to evaluate the rela-
tive accuracy of the estimated flood quantiles by the developed kriging-based RFFA model 
(Haddad and Rahman 2020). In LOO, one gauged catchment is omitted (treated as ungauged) 
from the database and the flood quantiles for that particular catchment are estimated based 
on the flood data in other catchments using the kriging method. The process is repeated until 
all the catchments are independently tested and validated. For example, in this study, all the 
558 catchments are considered to have formed one region, then, one catchment is left out for 
cross-validation and the procedure is repeated for 558 times to implement the LOO validation 
approach. Hence, the model dataset contains 557 catchments in each iteration step and the 
model estimation errors are obtained using Eqs. 5 –9.

2.2.3 � Model evaluation statistics

A range of evaluation statistics is calculated to evaluate the performance of the kriging-based 
RFFA model: ratio between predicted and observed flood quantiles (Eq. 5), relative error (RE) 
(Eq. 6), root mean square normalised error (RMSNE) (Eq. 7), the coefficient of determination 
( R2 ) (Eq. 8) and absolute relative median error (REm) (Eq. 9).

(4)
n∑

i=1

�i = 1

(5)Ratio =
Qp

Qo

(6)RE (%) = 100 ∗

(
Qp − Qo

Qo

)



2748	 Natural Hazards (2022) 114:2739–2765

1 3

where Qp is the flood quantile estimated from the developed kriging-based RFFA model, 
Qo is the at-site flood frequency estimate obtained from LP3 distribution using a Bayesian 
parameter fitting procedure (Kuczera 1999) and Qo is the mean of the observed AMF series 
at the given site. Here, a Qp

Qo

 ratio closer to 1 indicates a perfect match between the observed 
and the predicted value, and a smaller median RE is desirable for a model. The perfor-
mance of the model is also measured in terms of the described R2 in cross-validation, 
which represents the amount of explained variance by the model and is also affected by 
both bias and dispersion of the estimators.

It should be noted that the Qo are not free from error; these are subject to data error 
(such as rating curve extrapolation error), sampling error (due to limited record length of 
AMF series data), error due to the choice of flood frequency distribution and error due to 
the selection of parameter estimation method. This error undermines the usefulness of the 
validation statistics (e.g. RE); however, this provides an indication of possible error of the 
developed RFFA model as far as practical application of the RFFA model is concerned.

3 � Results and discussion

3.1 � Flood quantile estimation using kriging‑based RFFA

Considering that the dataset consists of different types of variables and different scale of 
values, the data should be rescaled. The procedure considered standardizing the QT values 
(flood quantiles) of all the sites in the region as if they form a single random sample from 
a common parent population. The pooled standardised data are fitted to a suitable distribu-
tion. For the development of the kriging model, the data series is assumed to be independ-
ent. This assumption may be valid if the data being pooled come from stations that are 
spread over a very large region. To assess the underlying model assumptions, the plots 
of the standardised residuals vs. predicted values are examined. The predicted values are 
obtained from the LOO validation. No specific pattern (heteroskedasticity) has been iden-
tified, also the standardised values do not exhibit any pattern. Figure 2 shows the spatial 
plots of the standardised flood quantile for the models Q2, Q5, Q10, Q20, Q50 and Q100; here, 
Q2 refers 2-year ARI model, Q5 refers 5-year ARI model and so on.

Figure 3 shows the experimental variogram and fitted variogram models with the opti-
mal variogram parameters (e.g. nugget, sill and range) for the six selected flood quantiles 
(Q2, Q5, Q10, Q20, Q50 and Q100). The figure shows the fitted lines for the developed mod-
els being superimposed on the standardised data. Table  2 summarises the results of the 
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kriging analysis, which indicates an increasing trend of ‘sill’ and ‘range’ with the increas-
ing ARIs. The ‘range’ indicates the distance after which the data are no longer significantly 
correlated, while the ‘sill’ represents the total variance where the empirical variogram 
appears to be levelled off. Table 2 shows that the ‘nugget’ value is least for Q10 model and 
it increases with the increasing ARIs from 10 to 100 years; however, the trend differs for 
Q2 and Q5 models. This indicates that the level of uncertainty increases gradually for the 
ARIs of 10 to 100 years.

Fig. 2   Standardised flood quantiles for models: a Q2, b Q5, c Q10, d Q20, e Q50 and f Q100
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3.2 � Performance of the kriging‑based RFFA model

The predicted (kriging-based RFFA model) (based on LOO) and observed (at-site FFA 
model) flood quantiles for the 558 stations are plotted in Fig.  4, which is a measure of 
how well the flood quantiles could be estimated in ungauged catchments in the study area. 
Here, the observed flood quantiles are estimated using the LP3 distribution and Bayesian 
parameter estimation procedure as mentioned before. Figure  4 shows a good agreement 
overall between the predicted and observed flood quantiles; however, it exhibits a slightly 
more underestimation as well as a scatter around the 45-degree line (red line). Most of the 
test catchments are within a narrow range of variability from the 45-degree line except for 
a few outliers. In broad spectrum, Fig. 4 shows that the predicted and observed flood quan-
tiles show a good agreement for ARIs of 2 to 100 years.

Figure  5 shows the performance of the models for six selected ARIs for each of the 
three states and when these three states are combined, based on a ratio statistic and RE (%) 
values. The ratio statistic (Eq. 5) gives an indication of the degree of bias (i.e. systematic, 
over or under estimation), where a value of 1 indicates good ‘average’ agreement between 
the Qp and Qo, while RE (Eq. 6) values indicates the prediction bias. In terms of the ratio 

Fig. 3   Variogram for the flood quantile models: Q2, Q5, Q10, Q20, Q50 and Q100; the distance (x-axis) is in 
km

Table 2   Characteristics of 
developed variogram models

Quantiles Q2 Q5 Q10 Q20 Q50 Q100

Range 1.42 5.29 5.90 6.22 6.70 7.05
Nugget 0.31 0.27 0.26 0.28 0.34 0.41
Psill 0.38 0.47 0.51 0.53 0.56 0.59
Sill 0.69 0.74 0.77 0.81 0.90 1.00
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statistics, the model Q2 for NSW shows noticeable underestimation by the kriging-based 
RFFA model as the ratio value is located well below the 1–1 line. Here, the best agreement 
between the Qp and Qo is found for ARIs of 5, 10 and 20 years (see Fig. 5) and a reason-
able degree of agreement is found for ARIs of 50 and 100 years. In general, the spread of 
the ratio values is found very similar for all three states.

Figure 5 shows that the median RE values (represented by the thick black lines within 
the boxes) are located very close to the zero RE line (indicated by 0 – 0 horizontal line), 
in particular for ARIs of 5, 10 and 20 years. For Q2 model, the median RE value shows 
the highest departure (especially for NSW), which indicates an underestimation by the 
kriging-based RFFA model. But largely, the median RE values match with the zero RE 
line closely as shown in Fig.  5. In terms of the spread of the RE (represented by the 
width of the box), Q2 and Q100 models present the highest RE band and Q20 and Q10 
models present the smallest RE band, followed by Q5 and Q50 models. This implies that 
kriging-based RFFA model provides the most accurate flood quantile estimates for Q20 
and Q10 models, and the least accurate flood quantiles for Q2 and Q100 models.

Figure 6 shows the cumulative distributions function (CDF) of the Qp/Qo ratio val-
ues for all three states and eastern Australia (combined) for 20- and 50-year ARIs. The 

Fig. 4   Predicted (kriging) vs observed (at-site) flood quantiles in m.3/s for Q2, Q5, Q10, Q20, Q50 and Q100
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reason of adopting 20 and 50 years of ARI is that these are the most frequently applied 
ARI model in hydrologic design. Here, for both Q20 and Q50 models, QLD shows the 
best result as the median ratio is the closest to the line corresponding to Qp/Qo = 1 (1–1 
line) and while, VIC shows the highest degree of bias among the three states. The CDF 
of the RE values for all three states are also shown in Fig. 6 for 20- and 50-year ARIs; 
the plot demonstrates the similar result as CDF of ratio statistics that for both Q20 and 
Q50 models, QLD shows the best results and VIC shows the highest degree of bias.

In this study, an objective assessment of the developed models is also performed by 
adopting the numerical evaluation statistics given in Eq. (7), Eq. (8) and Eq. (9), in which 
RMSNE and R2 are associated with the predictive error variance, while REm is related 
mostly with the prediction bias. Using the LOO validation, the evaluation statistics are cal-
culated; the results are given in Table 3. Numerical values of these statistics indicate that 
the models Q20 and Q10 for all the three states (i.e. NSW, VIC and QLD) perform the best 
among the six quantiles, while the flood quantile estimates obtained for Q2 and Q100 model 
are found to be more biased (i.e. higher REm) and are of a lesser accuracy (i.e. higher 
RMSNE). This is observed for all three states; however, the results of VIC show overall 
poorer performance comparing with the other two states.

Fig. 5   Boxplots of Qp/Qo ratios and RE (%) values for NSW, VIC, QLD and combined EA
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Table 3 shows that in the case of Q10, the spatial variance is relatively low; on the other 
hand, the spatial variance of Q100 is relatively high, indicating that the percentage error is 
on average high (i.e. lower R2 value) when the flood events get rarer. Here, the RMSNE 
value shows that, for EA, the least erroneous estimation is achieved for Q5 and Q10 model 
(RMSNE = 0.16), which is followed by Q20, while the RMSNE value is found to be the 
highest for 100-year ARI model (RMSNE = 0.24). This also indicates that the model per-
formance decreases with the increasing ARIs from 10 to 100 years. Additionally, Table 3 
shows that (i) there is not much difference in accuracy (RMSNE) for NSW and QLD states 
and also in relation to bias (REm); both the states are found to be very similar for all six 
ARI models, but overall, QLD shows slightly better accuracy over NSW and a lot better 
from VIC; (ii) the model Q10 performs best among the six quantiles, which is followed by 
the models Q5 and Q20; and (iii) largely, the results from the evaluation statistics indicate 

Fig. 6   CDF of Qp/Qo ratios and RE (%) values for 20- and 50-year ARIs

Table 3   Evaluation statistics (RMSNE, R2 and REm (%)) of kriging-based RFFA technique for EA, NSW, 
VIC and QLD

Model RMSNE R
2 REm (%)

EA NSW VIC QLD EA NSW VIC QLD EA NSW VIC QLD

Q2 0.23 0.27 0.24 0.22 0.71 0.60 0.37 0.66 34 35 37 35
Q5 0.16 0.19 0.23 0.13 0.78 0.66 0.43 0.70 31 32 36 28
Q10 0.16 0.17 0.24 0.13 0.79 0.66 0.43 0.67 29 28 37 27
Q20 0.17 0.18 0.26 0.14 0.77 0.64 0.41 0.63 28 29 37 28
Q50 0.2 0.23 0.31 0.16 0.72 0.57 0.32 0.56 32 34 38 31
Q100 0.24 0.28 0.35 0.20 0.63 0.43 0.22 0.48 36 36 39 35
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that the kriging is indeed a viable approach for RFFA in Australia as an alternative to the 
commonly applied RFFA approaches.

The error statistics of the developed kriging model are comparable to RFFA studies car-
ried out in other countries (e.g. Durocher et al. 2018; Chebana et al. 2014 ; Rahman et al. 
2020).

Publications in the international refereed literature on RFFA studies have been scru-
tinised to compare the performances of the developed kriging-based RFFA model. The 
advantage of this type of meta-analysis is that a wide range of environments, climates 
and hydrological processes can be considered in the validation, which goes beyond what 
can be reasonably achieved by a single study within a country. The study is essentially 
a comparative assessment that synthesises the results from the available international 
literature. The results in the literature are reported in an aggregated way in most cases, 
i.e. as average or median performance over the study region or part of the study region.

Table  4 lists 15 RFFA studies considered in this comparison. It includes summary 
information about the study region, RFFA method applied and the predictive perfor-
mance in terms of the root mean square normalised error (RMSNE) as defined in Eq. 7. 
RMSNE is a common error measure for estimators, combining both the bias and the dis-
persion component of the error. The target flood quantile, on which this performance is 
reported, is 100 yr ARI flood quantile, Q100. RMSNE measures are estimated by LOO. 
The flood regionalisation methods represented in the assessment included: (i) regression 

Table 4   Summary assessment of RFFA studies (worldwide) grouped into three categories: regression (R), 
index method (IM) and geostatistics (G)

Study Region Climate No. of 
catch-
ments

RFFA method Error 
measure 
(RMSNE)

Jimenez et al. (2012) Spain Arid 217 R 0.54
Walther et al. (2011) Germany (Saxony) Cold 170 G 0.46
Kjeldsen and Jones (2010) UK Humid 602 IM 0.51
Chebana and Ouarda 

(2008)
Canada (southern Quebec) Cold 151 R 0.44–0.45

Ouarda et al. (2008a) Mexico Tropical 29 G 0.52,
Ouarda et al. (2008b) Canada (southern Quebec) Cold 63 IM 0.40
Leclerc and Ouarda (2007) Canada, USA Cold 29 R 0.61
Merz and Blöschl (2005) Austria Cold 575 G 0.30
Jingyi and Hall (2004) China (Gan–Ming River) Humid 86 IM 0.31
Chokmani and Ouarda 

(2004)
Canada (southern Quebec) Cold 151 R .70, 0.51

Javelle et al. (2002) Canada (Quebec, Ontario) Cold 158 IM 0.50
Pandey and Nguyen (1999) Canada (Quebec) Cold 71 R 0.64, 0.81
Madsen et al. (1997) New Zealand (South 

Island)
Humid 48 IM 0.41, 0.39

Meigh et al. (1997) Brazil, Tropic 59 IM 0.42,
Meigh et al. (1997) India Humid 75 IM 0.58
Developed ordinary 

kriging-based RFFA 
model (current study)

Australia Tropic 558 G 0.24
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methods (R), 5 studies from different regression models where the flood quantiles or 
the distribution parameters had been transferred to ungauged basins; (ii) index meth-
ods (IM), 7 studies where a regional growth curve had been defined for homogeneous 
regions; and (iii) geostatistical (G) methods, 3 studies where runoff at the target site was 
estimated as a weighted mean of runoff at the surrounding gauges. While the assess-
ments made by the literature are not based on exactly the same RFFA approach, the 
methodology is similar. It is interesting to note that the numbers of studies applying 
regression and index methods are larger than those applying geostatistical methods, 
which is because they are quite common in hydrology.

Table 4 shows that the geostatistical methods (ordinary kriging model falls in this group) 
perform the best (RMSNE of 0.30–0.52) across the selected studies, although the number 
of studies is small compared to other groups. For example, Merz and Blöschl (2005) in 
Austria and Walther et al. (2011) in Saxony (Germany), provided the combination of the 
necessary stream network density and non-arid climate leading to lower RMSNE values 
(0.30 and 0.46, respectively). Table 4 also shows that the geostatistical studies have been 
applied generally in data-rich environments, which partly explain why they perform better. 
For instance, the study by Merz and Blöschl (2005) used a large number of catchments 
(575) and provided the best performance with RMSNE value of 0.30.

Figure 7 shows that the studies listed in Table 4 cover a variety of countries and cli-
mate. Figure 7 also shows that the developed ordinary kriging-based RFFA model (which 
falls under geostatistical method) provides a promising performance in eastern Australia 
(data-rich regions in Australia having the necessary stream network density) with the least 
RMSNE value (0.24) followed by Austria (0.30) and China (0.31).

Fig. 7   Error measures (RMSNE) of RFFA studies (worldwide) with our developed ordinary kriging-based 
RFFA model (marked as Australia)
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3.3 � Comparison of the kriging‑based RFFA with ‘RFFE model 2016’

In this section, a detailed comparison is made to evaluate the performance of the kriging-
based RFFA technique with the currently recommended RFFA technique in the ARR 2019, 
known as ‘RFFE Model 2016’. The aim is to generalise the findings of the predictive per-
formance or to understand whether there are general patterns of performance in a given 
environment for the kriging-based RFFA model and generalised least-squares (GLS)-based 
quantile regression technique used to develop ‘RFFE Model 2016’.

Figure 8 compares the predicted flood quantiles (estimated by LOO validation) for the 
selected 558 test catchments in eastern Australia (176 catchments in NSW, 186 catchments 
in VIC and 196 catchments in QLD), from the kriging-based RFFA model with the pre-
dicted flood quantiles from the GLS-based quantile regression technique (RFFE Model 
2016) for the 6 selected ARIs (Q2, Q5, Q10, Q20, Q50 and Q100). Both the predicted quantiles 
are individually compared with the observed flood quantiles, estimated by LP3 distribu-
tion and Bayesian parameter estimation procedure (using FLIKE software) as discussed in 
Sect. 3.1. It should be noted here that the observed flood quantiles are subjected to errors 
(such as rating curve extrapolation error, sampling error, error due to the choice of flood 
frequency distribution and error due to selection of parameter estimation method), which 
provide an indication of possible error of the developed RFFA model as far as the practical 
application of RFFA model is concerned.

Figure 8 shows the plot of predicted flood quantiles by the kriging-based RFFA model 
against observed flood quantiles in its left side; the plot of predicted flood quantiles by 
the ‘RFFE model 2016’and the observed flood quantiles for the corresponding ARIs in its 
right side individually for each of the three states.

Fig. 8   Predicted vs observed flood quantiles in m3/s for the ordinary RFFA-based model (left) and ‘RFFE 
Model 2016’ (right) model for NSW, VIC and QLD



2757Natural Hazards (2022) 114:2739–2765	

1 3

Figure  8 demonstrates that most of the test catchments are within a narrow range of 
variability from the 45-degree line (red line) except for a few outliers. But, overall a bet-
ter agreement between the predicted and the observed flood quantiles can be seen for the 
kriging-based RFFA model as it shows a greater scatter for the ‘RFFE Model 2016’ around 
the 45-degree line than the ordinary kriging-based RFFA model (see Fig. 8). This is the 
case for all three states (NSW, VIC and QLD) and the results are very similar in particular 
for ARIs of 2, 5, 10 and 20 years. The models, Q50 and Q100 (i.e. for the higher discharges), 
exhibit relatively better results by the kriging-based RFFA technique than the ‘RFFE 
Model 2016’. For ARI of 2 years, there is a noticeable scatter at smaller discharges for both 
kriging and ‘RFFE Model 2016’ models.

Figure 9 shows the boxplot of the RE values (Eq. 6) (obtained by LOO validation) of 
the selected test catchments for the kriging-based RFFA model and ‘RFFE Model 2016’ 
for different return periods. Figure 9 shows that the median RE values (represented by the 
black line within the boxes) match with the 0 – 0 line reasonably better for the kriging-
based RFFA model as compared to ‘RFFE Model 2016’. For ARIs of 2 years, the median 
RE value is located notably below the zero line and also the highest departure is noticed, 
which indicates an underestimation by the kriging-based RFFA model for 2-year ARI.

Conversely, for ‘RFFE Model 2016’, the median RE values for ARIs of 50 and 
100 years are located well below the zero line with ARI of 50 years showing the highest 
departure, while for ARIs of 2 years, the median RE value of is located above the zero line 
for all three states, which indicates an overestimation by the model. In terms of the RE 
band (represented by the spread of the box), the kriging-based RFFA model shows smaller 
box width as compared with the ‘RFFE Model 2016’. This indicates a smaller variabil-
ity/standard error for all six quantiles for the kriging-based RFFA model. For the kriging-
based RFFA model, the smallest spread is found for ARIs of 10 and 20 years, followed by 
ARIs of 5, 50, 100 and 2 years (see Fig. 9). For all six quantiles, the box widths for the 
kriging-based RFFA model are about half of those of the ‘RFFE Model 2016’. This is a 
significant result in favour of the kriging-based RFFA model as far as variability/standard 
error is concerned; however, there are more outliers (shown by small circles) in the RE plot 

Fig. 9   Boxplot of RE (%) values and Qpred/Qobs ratio values for the kriging-based RFFA model and ‘RFFE 
Model 2016’ for NSW, VIC and QLD
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(as shown in Fig. 9) for the kriging-based RFFA model than the ‘RFFE Model 2016’. This 
is a concern for the kriging-based RFFA model since this contributes to a higher standard 
error of flood quantile estimates. These outliers for the kriging-based RFFA model (see 
Fig. 9) need further investigation for possible data errors. If these catchments are found to 
be genuine outliers, they should be removed from the dataset to enhance the performance 
of the kriging-based RFFA model; however, this has not been undertaken in this study.

Figure 9 also presents the boxplot of the Qpred/Qobs ratio values (Eq. 5) of the selected 
test catchments in eastern Australia (NSW, VIC and QLD) for the kriging-based RFFA 
model along with the ‘RFFE Model 2016’ for different ARIs. The figure shows that the 
median Qobs/Qpred ratio values (represented by the thick black lines within the boxes) are 
located closer to 1 – 1 line (the horizontal line), in particular for ARIs of 5, 10 and 20 years 
(the best agreement is for ARI of 5  years) for the ordinary kriging-based RFFA model. 
However, ‘for RFFE Model 2016’, the median Qobs/Qpred ratio value for each quantile 
locates a short distance above the 1 – 1 line, indicating an overestimation by this model. 
The model Q2 for RFFE shows a noticeable overestimation by the ‘RFFE Model 2016’. 
In terms of the spread of the Qobs/Qpred ratio values, for the kriging-based RFFA model, 
ARIs of 5, 10 and 20 years exhibit the similar (and the lowest) spread followed by ARIs 
of 50  years. For ‘RFFE Model 2016’ model, the spreads of the Qobs/Qpred ratio values 
for ARIs of 5 and 10 years also exhibit the lowest level, while ARIs of 50 and 100 years 
exhibit the largest spread.

Considering, the Qobs/Qpred ratio and the RE values as discussed above, it can be con-
cluded that the kriging-based RFFA model largely provides better flood quantile estimates 
for medium ARIs (10 to 20 years), i.e. for Q10 and Q20 models.

Finally, considering all the test catchments, Table  5 summarises the results of the 
median absolute RE values (Eq.  9) for both kriging-based RFFA model and the ‘RFFE 
Model 2016’. In case of the kriging-based RFFA model, the median RE values range from 
38.2% to 35.9% for NSW, 36.2% to 39.1% for VIC and 27.1% to 35.1% for QLD. The 
smallest and highest median RE values are found for Q10 and Q100 model, respectively, for 
both NSW and QLD, while in VIC the smallest and highest median RE values are found 
for ARIs of 5 and 100 years. For the kriging-based RFFA model, the best value is obtained 
in case of Q10, QLD (27.1%) and the highest median RE (%) value is obtained for Q100 for 
VIC (39.1%). In comparison with RFFE model, the ordinary kriging model shows much 
smaller median RE values for all the 6 ARIs for all the three states NSW, VIC and QLD.

Table 5   Median RE (%) values 
for the three states (NSW, QLD 
and VIC) in eastern Australia 
based on the kriging-based 
RFFA model and the ‘RFFE 
Model 2016’

Model NSW VIC QLD

Kriging RFFE Kriging RFFE Kriging RFFE

Q2 35.5 63.1 37.2 48.0 34.7 49.5
Q5 31.6 57.3 36.2 45.6 27.6 45.3
Q10 28.2 57.5 36.6 51.0 27.1 48.9
Q20 28.8 58.9 37.4 52.4 28.2 52.2
Q50 34.3 60.4 38.0 56.7 31.3 56.0
Q100 35.9 64.1 39.1 57.5 35.1 58.8
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3.4 � Identification of the best and the worst performing catchments

This section identifies the best (having RE value close to zero line in the boxplot of Fig. 9) 
and the worst (having RE value furthest from the zero line) performing catchments for the 
kriging-based RFFA model. Here, the spatial distributions of the relative error (RE) values 
for the kriging-based RFFA model for all the 176 test catchments of NSW, 186 test catch-
ments of VIC and 196 test catchments of QLD are evaluated and examined more closely.

Figure  10 shows the spatial distribution of RE values across NSW, VIC and QLD 
considering 20  years of ARI (Q20). The reason of adopting Q20 model is that this is 
one of the most frequently applied ARI models in hydrologic design. For the valida-
tion study, it is important to observe how many test catchments fall within the speci-
fied ranges of RE. For this purpose, RE (%) values for the kriging-based RFFA model 
are grouped into four classes as shown in Table 6. The selected arbitrary ranges of RE 
(%) are ((< 25%), marked green in Fig. 10), ((25–50%), marked dark green in Fig. 10), 
((50–100%), marked orange in Fig. 10) and ((> 100%), marked red in Fig. 10).

Fig. 10   Spatial distribution of RE (%) values for the kriging-based RFFA model for (i) NSW, (ii) VIC, 
(iii) QLD; and spatial distribution of the best performing catchments having RE values ( ≤ 25% ) across (iv) 
NSW, (v) VIC and (vi) QLD

Table 6   Grouping of the test catchments based on RE (%) for the kriging-based RFFA model

State Total < 25% 25–50% 50–100% > 100%

NSW 176 Number of catchments 74 59 25 18
% Of catchments 42 34 14 10

VIC 186 Number of catchments 61 61 41 23
% Of catchments 33% 33 22 12

QLD 196 Number of catchments 91 62 24 19
% Of catchments 46% 32 12% 10
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In the range of RE ( < 25%), the QLD is placed at rank 1 with 46% of the 196 test 
catchments falling in this range, followed by NSW (42%) and VIC (33%). In case of 
(25–50%) of RE, a total of 59 (34%) test catchments falls under this category for NSW, 
which is very closely followed by VIC (33%) and QLD (32%). In the range of both 
(50–100%) and ( > 100%) of RE, VIC is found to be placed at rank 1 with 22% and 12% 
of the test catchments falling in this range, respectively. NSW is placed at rank 2, with 
14% and 10%, followed by QLD to be ranked at 3 with 12% and 10% of the total test 
catchments falling in these classifications. Overall, the kriging model performs best for 
QLD in terms of the distributions of RE (%) values, which is followed by NSW and 
VIC.

The spatial distribution of RE (%) values across NSW, VIC and QLD shows that 
most of the selected catchments fall near the coastal area of the region and also in the 
eastern part of each state (see Fig. 10), since not many catchments met the catchment 
selection criteria from the western part of the states. Figure 10 also identifies the best 
performing catchments (having smaller RE values ( ≤ 25% , marked in green)) along 
with their respective RE values for the kriging-based RFFA model. For NSW, the catch-
ments near the north-eastern part are found to be exhibiting smaller RE values; for VIC, 
the catchments close to NSW are found to be exhibiting slightly smaller RE values, 
while for QLD, the catchments close to NSW and QLD border are found to be exhibit-
ing a slightly better result with respect to RE values. But largely, for all three states, no 
noticeable spatial trend of the RE values is found across the state.

Figure  11 shows 18 (in NSW) poor performing catchments for the kriging-based 
RFFA model having higher RE values ( ≥ 100% ). Figure  11 also shows the corre-
sponding RE values for ‘RFFE Model 2016’ for comparison. In NSW, 8 catchments 
(out of 18) have been found to be poorly performing for both the kriging-based RFFA 
model and ‘RFFE Model 2016’. In VIC, among 23 poor performing catchments for the 
kriging-based RFFA model, 16 catchments are found to be poor performing in ‘RFFE 

Fig. 11   Spatial distribution of the poorly performing catchments having RE values ( ≥ 100% ) across (i) 
NSW, (ii) VIC and (iii) QLD
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Model 2016’ as well. Similarly, in QLD, 12 catchments (out of 19) have been found to 
be poorly performing for both the kriging-based RFFA model and ‘RFFE Model 2016’.

Among 60 poorly performed catchments in the developed model, 36 catchments are 
found having higher RE for both the kriging-based RFFA model and ‘RFFE Model 
2016’. These catchments need further investigation, which, however, is not undertaken 
in this study. There are few catchments where the developed kriging-based RFFA model 
shows relatively higher RE than the ‘RFFE Model 2016’, which indicates that there are 
limitations with both the kriging-based RFFA model and ‘RFFE Model 2016’ and the 
kriging-based RFFA model can provide poor results in some cases too.

4 � Conclusion

Australia is a vast continent with numerous streams, many of which are ungauged or have 
little or no recorded flood data. RFFA techniques are important for Australia, as they can 
provide reasonably accurate flood quantile estimation for the numerous ungauged or poorly 
gauged catchments. There have been many RFFA techniques which have been proposed 
and used over the years in Australia, but most of them are associated with significant error 
in flood quantile estimates. To enhance the accuracy of RFFA methods in Australia, there 
is a need for the further research of new RFFA methods that have not been developed and 
tested in Australia. This study has undertaken this task. No previous study in Australia 
focused on kriging-based RFFA model development and testing using a comprehensive 
flood database. The analysis indicates that the developed kriging-based RFFA model 
provides a very positive performance in eastern Australia (NSW, VIC and QLD), where 
stream gauging density is relatively better than other parts of Australia.

Methods used and developed in this study were centred on flood quantile estimation in 
ungauged catchments in the range of frequent to rare ARIs (2, 5, 10, 20, 50 and 100 years). 
A total of 586 catchments, located across the three states of eastern Australia (NSW, VIC 
and QLD), have been selected as the study catchments. The reason for selecting these three 
states (data-rich regions in the latest version of ARR 2019 (ed. Ball et al., 2019)) is that 
there are good numbers of high-quality stream gauging stations in these states that can be 
used in the proposed RFFA study. The results from the validation study (using a LOO) 
indicate that the kriging-based RFFA model performs best in QLD of the three states in 
eastern Australia, which is followed by NSW and VIC. The best (having RE value < 25%) 
and the worst (having RE > 100%) performing catchments in each state (NSW, VIC and 
QLD) have been identified for the developed kriging-based RFFA model. In general, for all 
three states, it has found that the kriging-based RFFA model largely provides better flood 
quantile estimates for medium ARIs (10 to 20 years), i.e. for Q10 and Q20 models. Besides, 
the developed model is found to outperform the ‘RFFE model 2016’ overall. The spatial 
distributions of the RE values have shown that there is no noticeable spatial trend across 
the three states in eastern Australia. Also, it appears that it is difficult to generalise the find-
ings from individual case studies which involve different levels of details on the region of 
interests.

The kriging-based RFFA models developed in this study were based on the flood data-
base available up to the year 2011 for most of the catchments. It is expected that availability 
of a more up-to-date comprehensive database (in terms of both quality and quantity) will 
further improve the predictive performance of the method, which, however, needs to be 
investigated in future when such a database is available. For at-site FFA, a single standard 
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distribution (LP3 distribution) is adopted, but the 586 catchments may not be fully repre-
sented by the selected distribution, and hence, other distributions should be tested. Some 
outliers can be seen for all six ARIs, which may need to be examined more closely for data 
errors or issues regarding the hydrology and physical characteristics of these catchments; if 
these catchments are deemed to be genuine outliers, they should be removed to enhance the 
performance of the kriging-based RFFA technique; however, this has not been undertaken 
in this study. All related variables such as seasonal runoff, flow duration curves, low flows 
and high flows are not included in the study to interpret the differences in performance of 
the kriging-based RFFA models in terms of the underlying climate and catchment charac-
teristics. Despite these potential limitations, this study emphasises the usefulness of flood 
quantile estimates in ungauged catchments by exploiting the spatial correlation of flood 
data or flood statistics over geographical space in RFFA. A detailed comparative approach 
focused on the understanding of individual variables and how they are connected may 
provide more insights and eventually lead to better predictions across places (the differ-
ent catchments/the regions of Australia) and across scales (small and large catchments, see 
Blöschl et al. 2013) than solely focusing on reproducing the flood quantiles. Some limi-
tations of the adopted method are that this is applicable to the region where streamflow 
gauging density is relatively higher, and this does not consider catchment characteristics 
directly in model formulation. The future studies should focus on use of catchment char-
acteristics in kriging, account for scaling effects and impacts of climate change in flood 
quantile estimation by kriging-based RFFA techniques.
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