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Thesis Abstract 

Background  

Oesophageal cancer is an important cancer with short survival, but the relationship between 

pre-diagnosis health behaviour and post-diagnosis survival remains poorly understood. 

Cancer registries can provide a high quality census of cancer cases but do not record pre-

diagnosis exposures. The aim of this thesis is to document relationships between pre-

diagnosis health behaviours on post-diagnosis survival times in oesophageal cancer, 

developing new methods as required. 

Methods 

A systematic review and meta-analysis conducted in 2014, and updated in 2021, to 

investigate the association between pre-diagnosis health behaviours and oesophageal cancer.  

Visualising health behaviour variables as part of the cancer registry data set, with 

100% missing data, led to the development of new approaches for augmenting  US 

oesophageal cancer registry data with health behaviour data from a US national health survey  

Firstly, the health survey data were used to create logistic regression models of the 

probability of each behaviour relative to demographic characteristics and then these models 

were applied to cancer cases to estimate their probability of each behaviour. Secondly, cold-

deck imputation such that two randomly selected but demographically similar health survey 

respondents both donated their health behaviour to the matching cancer case. The agreement 

between these two imputed values was used as an estimate of the misclassification and 

corrected for during the analyses. 
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Results 

The logistic regression imputation-based analyses returned accurate point estimates, 

with wide confidence intervals, if the behaviour occurred in more than approximately 5% of 

cases.  

Our reviews and analyses confirmed that pre-diagnosis smoking decreased survival in 

oesophageal cancer (hazard ratio (HR) 1.08, 95% confidence interval (CI) 1.00-1.17) 

particularly squamous cell carcinoma when comparing highest to lowest lifetime exposure ( 

and HR 1.55, 95%CI 1.25-1.94); with similar associations for alcohol consumption. Pre-

diagnosis leisure time physical activity was found to be associated with reduced hazard (HR 

0.25, 95%CI 0.03,0.81) overall. 

Discussion 

Findings from these analyses can assist in modelling the impact of current changes in 

community health behaviour, as well as informing prognosis and treatment decisions at the 

individual level. This novel method of augmenting cancer registry data with pre-diagnosis 

variables appears to be effective and will benefit from further validation. This thesis has 

significantly progressed both issues and identified future opportunities for research and 

development. 
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Chapter 1 Introduction  

 

1.1 Oesophageal cancer 

Oesophageal cancer (OC) is an important cancer. In 2018, it was estimated there were 

572,034 new cases worldwide (or 3.2% of all new cancers) and 508,585 deaths (or 5.3% of 

all cancer deaths) (Bray et al., 2018). It has been estimated that nearly 4 million (disability 

adjusted) life years were lost to OC in 2008 (Di Pardo et al., 2016). However, as with most 

diseases, OC is still relatively rare with an estimated cumulative risk of diagnosis from birth 

to 75 years of 1.15% of males and 0.43% of females (Bray et al., 2018). 

Figure 1.1 shows the location of the oesophagus and a cross-section through it. OC 

occurs when malignant cells develop in the innermost layer (mucosa) of the oesophagus. 

From there cancer may spread outwards to involve the submucosa, muscular layer and 

eventually structures outside the oesophagus (Thrumurthy, Chaudry, Thrumurthy, & Mughal, 

2019). 

Figure 1.1 Cross-section of the layers of the oesophagus 

 

Attribution: Cancer Research UK, CC BY-SA 4.0 via Wikimedia Commons 
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The two main histological subtypes of OC are oesophageal squamous cell carcinoma 

(OSCC) and oesophageal adenocarcinoma (OAC) which together account for more than 90% 

of OC (Enzinger & Mayer, 2003). Squamous cells are the flat, thin cells that line the surface 

of the oesophagus. Squamous cell carcinomas are more frequent in the upper and middle 

portions of the oesophagus. Adenocarcinoma begin in the cells of the mucus excreting glands 

in the oesophagus and is more frequent in the lower portion of the oesophagus. Other less 

common OC include small cell carcinomas, sarcoma, lymphoma, melanoma and 

choriocarcinoma (Thrumurthy et al., 2019). 

OC incidence varies considerably between genders and across geographic regions 

ranging from a high of 17.9 per 100,000 in males and 6.8 per 100,000 in females in Eastern 

Asia to 1.6 and 0.8 per 100,000 in males and females in Western Africa (Bray et al., 2018). 

Nearly 80% of cases occur in low and middle income countries (Abbas & Krasna, 2017). 

OSCC is the most prevalent subtype accounting for 87% of OC worldwide but OAC is more 

prevalent in high income countries (Abbas & Krasna, 2017). This suggests a very different 

distribution of risk factors across the world plus a difference in risks by histological subtype. 

 

1.2 Risk factors 

OC is more common in older age groups. In the UK for example, only 26% of all OC 

cases are less than 65 years of age at diagnosis, 48% are between 65 and 74 years of age and 

26% are 75 or more years of age (Cancer Research UK).  

OSCC is thought to be associated with chronic irritation and inflation of the 

oesophageal mucosa (Enzinger & Mayer, 2003). Common risk factors include achalasia 

(leading to retention of food within the oesophagus) (approximately 10-fold risk), smoking (9 

fold risk), heavy alcohol use (≥3 drinks per day has a 3 to 5 fold risk), black race (3 fold risk) 
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and insufficient fruit and vegetables (Clara Castro, Peleteiro, & Lunet, 2018; Short, Burgers, 

& Fry, 2017). 

OAC is thought to be associated with gastro-oesophageal acid reflux. Common risk 

factors include male sex (8 fold risk), white race (5 fold risk), gastroesophageal reflux disease 

(5 to 7 fold risk), obesity (2.4 fold risk) and smoking (2 fold risk)  (Clara Castro et al., 2018; 

Short et al., 2017) .  

Physical activity has also been shown to be protective of most cancers (Friedenreich, 

Neilson, & Lynch, 2010). Two meta analyses from 2014 both found moderate protective 

effects of physical activity on OC: RR=0.71, 95% CI 0.57,0.89, I2 47% (Singh, Devanna, 

Varayil, Murad, & Iyer, 2014); RR=0.73, 95% CI 0.56,0.97, I2 58% (Y. Chen, Yu, & Li, 

2014). 

Several of the main risk factors for OC are behavioural and modifiable (Clara Castro 

et al., 2018), including tobacco smoking, alcohol consumption, obesity and physical activity. 

Indeed, in the US in 2014 it was estimated that 74.7% (95% CI 72.3%, 77.1%) of male and 

67.5% (95% CI 63.2%, 72.0%) of female oesophageal cancer diagnoses arose from 

modifiable lifestyle factors and that cigarette smoking, alcohol consumption and excess body 

weight could account for up to 50.0% (95% CI 48.5%, 51.2%), 21.0% (95% CI 18.5%, 

23.3%) and 32.2% (95% CI 29.6%, 34.7%) of cases respectively (Islami et al., 2018).  
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1.3 Cancer stage at diagnosis 

Cancer is detected at different stages of growth in different individuals. Cancer 

staging is used to describe how much cancer is in the body and where it is located. The 

cancer stage at diagnosis has a large impact on prognosis and treatment for that individual.   

The widely used American Joint Committee on Cancer (AJCC) staging system starts 

with separate codes for the extent of the tumour (the T code), whether or not the cancer has 

reached nearby lymph nodes (the N code) and whether or not there are distance metastasis 

(the M code). Once the TNM codes are known, they can be combined into a single overall 

stage with categories denoted 0 (mucosa layer only, no spread to nearby tissues), I (least 

spread), II, III and IV (advanced or metastatic cancer) (American Joint Committee on 

Cancer). The stage 0, or in situ cancers, are generally excluded from administrative and 

research data bases. As shown in Figure 1.2, stage I cancers are contained within the 

oesophagus, stage II cancers are also contained within the oesophagus except for the 

involvement of just 1 or 2 lymph nodes, stage III cancers could have through the muscle wall 

of the oesophagus and/or spread the lymph nodes and stage IV cancer have spread to distant 

organs.  
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primary site), regional (spread to regional lymph nodes) or distant (cancer has metastasised) 

(National Cancer Institute, 2021c). In 1998-2009, 22% of OC was classified as localised at 

diagnosis, 30% regional and 35% distant with the remaining 13% unknown/missing (Zhang, 

2013). 

As the oesophagus is elastic, tumours tend to be quite large and advanced before they 

begin to produce symptoms or blockages. Hence, most tumours are advanced (stage III and 

IV or metastasised) at diagnosis, contributing to the relatively poor prognosis of OC. 

 

1.4 Prognosis 

One of the more important characteristics of OC is its relatively short survival times. 

The measurement of survival time differs according to the choice of start time, choice of end 

time and any quality of life discounting applied. 

One possible start time is the first onset of cancer within the body, but this is as yet 

unknown and unknowable. Survival is often measured from the start of treatment, particularly 

the date of first surgery. But the literature on post-surgical survival times is omitted because 

not all OC patients are treated with surgery (for example, 52.3% in South Korea from 2005 to 

2017 (Jung et al., 2020) and 27.1% of patients over 65 years in the US from 1998 to 2013 

(Tramontano et al., 2019)) and the clinical decision of who to accept for surgery has the 

potential to alter post-surgery survival times. Survival from diagnosis is used in this thesis 

because all cancer patients have a date of diagnosis recorded and diagnosis is the day 

everything changes for the patients, their families, and the treating clinicians. 

Common end dates include all cause death and disease specific death. The relatively 

short survival time of OC means people don’t have a lot of time to die from other causes. The 
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majority of OC patients die from OC (for example, an estimated 79.5% in Sweden in 1961 to 

2014 (Xie, Wahlin, & Lagergren, 2017)). All cause death is easier to measure and more 

commonly reported. Most statistics reported below are for survival to death from all causes, 

with exceptions noted. 

While quality adjusted life years have been used to compare treatment outcomes 

(Pennathur, Zhang, Chen, & Luketich, 2010) they are not routinely available in official 

statistics of OC survival. The relatively short survival times also seem to decrease concern 

over the quality of life during survival. It has been estimated that 96.8% of the loss of quality 

of life caused by OC is lost years of life with just 3.2% of the total loss ascribed to disability 

(Di Pardo et al., 2016).  

Finally, survival times are also more difficult to obtain from developing countries 

where most OC cases arise. The examples below are mainly derived from developed 

countries. 

OC survival time varies strongly with age and disease stage at diagnosis. For 

example, in England between 2013 and 2017 the estimated 5-year net survival rates were 

52.8%, 29.9%, 16.3% and 0% for those diagnosed at disease stages I, II, III and IV 

respectively. Among those who were diagnosed with Stage I cancer the estimated 5 year net 

survival rates were 66.8% (95% CI, 57.5%,76.1%) for those who were 15-54 years at 

diagnosis, and 36.5% (95% CI 31.8%,41.3%) for those who were 75 or more years of age at 

diagnosis respectively (Office for National Statistics).  

In the US in 2010 to 2016, it was estimated that 47% of patients with localised disease 

at diagnosis survived for at least 5 years. This decreased to 25% for those with regional 

spread and just 5% for those with distant spread (American Cancer Society, 2021b).. 
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Overall, OC seemed to have missed the large improvements in survival times over the 

past 30 years which have been observed for other cancers such as colon, rectal and breast 

cancer (Allemani et al., 2015). In the US for example, median survival time for localised OC 

increased from 11 months to 35 months between 1970 and 2000. But the corresponding 

increases in survival times for regional disease and metastatic disease were 10 to 15 months 

and 4 to 6 months respectively (Dubecz et al., 2012). While a 50% increase in median 

survival months over a 30-year period is technically important, from the individual’s 

perspective the extra 5 or 2 months survival for regional or metastatic disease may be 

somewhat disappointing. 

 

1.5 Predictors of survival time 

The most important predictors of OC post-diagnosis survival times are the cancer 

stage at diagnosis and patient age at diagnosis.  

Obviously receiving the right treatment is also important for survival, and this may 

not always happen. There are disparities between high income and low and middle income 

countries. Even within  high income countries there have been reports of disparities between, 

for example, race and ethnicity (Dong, Gu, El-Serag, & Thrift, 2019; Tramontano et al., 

2018) and between education levels, marital status and place of residence (Ljung, Drefahl, 

Andersson, & Lagergren, 2013).  

Somewhat surprisingly, there is relatively little information about the impact of pre-

diagnosis health behaviours on post-diagnosis survival times in OC (see systematic review of 

this evidence in Chapter 2). Many of the contributing factors to OC are health behaviours 

(smoking, alcohol consumption and obesity) and it is not unrealistic to expect that these 

behaviours will have some carry-over effect on prognosis. Indeed, the relatively short 
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survival times for OC, give less time for any such carry-over effect to dissipate. It is proposed 

that that health behaviour prior to diagnosis could be an important determinant of post-

diagnosis survival time.  

It is important to differentiate between pre-diagnosis health behaviours and post-

diagnosis behaviours. A diagnosis of OC is a life changing event and life changing events 

often lead to changes in behaviour (Demark-Wahnefried, Aziz, Rowland, & Pinto, 2005). 

Also, symptoms are usually appearing and worsening around the time of diagnosis, and 

health behaviour is likely to change in response to such symptoms. Finally, from an 

intervention point of view the process of changing behaviour prior to diagnosis is a health 

promotion exercise, but interventions to change behaviour after diagnosis are more likely to 

be treatments prescribed by the treating clinicians. 

 

1.6 Investigating pre-diagnosis factors 

Investigation of the relationship between pre-diagnosis health behaviour and post-

diagnosis survival time in OC requires longitudinal data: the health behaviour occurs prior to 

the diagnosis which occurs prior to death. Complicating issues are that the disease is 

relatively rare with just 1.15% of males and 0.43% of females ever diagnosed with OC before 

age 75 years (Bray et al., 2018) and some health behaviours are also relatively rare (for 

example, in the US an estimated 8.3% of men and 4.5% of women aged 18 and older engaged 

in ‘heavy’ alcohol use in the past month (National Institute on Alcohol Abuse and 

Alcoholism)). 

One possible approach would be a prospective cohort study. Health behaviours could 

be measured when participants are enrolled and then participants could be monitored over 

time to see if they are ever diagnosed with OC and then monitored further to record how long 
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they survived. But with a rare disease like OC, and sometimes uncommon pre-diagnosis 

health behaviours, the cohort would need to be very large and/or followed up for a long 

period to generate sufficient data for analysis. At least one such prospective study is currently 

underway. In China, The National Cohort of Esophageal Cancer is currently recruiting 

100,000 40-69 year old men and women in regions with high rates of OC (R. Chen et al., 

2019). The challenges of the prospective cohort include the costs, the time delay of waiting 

for cases to occur and the potential for bias arising from participant loss to follow-up over 

time. 

Costs could be reduced by incorporating data items about OC into existing large 

cohort studies measuring health behaviour and date of death. Of course, as data collection is 

not specific to OC, the inclusion and exclusion criteria will not be optimised for OC and even 

larger cohorts will be required to return an adequate sample size of OC. Further the choice of 

health behaviour measures will not be specific, to or optimised for, OC.  

Given the costs, time delays and loss to follow-up bias arising from prospective 

cohort studies, would retrospective data collection be more effective? The Australian Cancer 

Study Clinical Follow-up Study targeted all patients 18-79 years of age with OC or cancer of 

the gastro-oesophageal junction on mainland Australia in 2002 to 2005. Of 3,273 potentially 

eligible patients 1,007 (30.8%) had died before they could be invited to participate, 134 

(4.1%) were too ill, etc. Eventually baseline questionnaire data was obtained from 1,056 

(32.3%) of those thought potentially eligible. The questionnaire asked participants to recall 

and report their health behaviour one year prior to diagnosis. As illustrated in this example, 

most retrospective data collection is subject to survivor bias and recall bias. 
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1.7 Cancer registry data 

When initiating a study in cancer epidemiology, an obvious starting place is the 

cancer registry. A cancer registry is an information system for the collection, storage and 

management of data from people with cancer (National Cancer Institute Surveillance 

Epidemiology and End Results Program).  In many countries it is mandatory for diagnosing 

clinicians to report cancer cases to a centralised cancer registry (for example, in NSW 

Australia, mandatory reporting is supported by the Public Health Act 1991 and the Public 

Health General Regulation 2002 (NSW Health, 2009)). There is usually regulatory clearance 

for using these data for research purposes without having to seek informed consent from 

individual cancer cases. 

However, cancer registries can be challenging to establish (Jedy-Agba et al., 2015) 

and expensive to maintain (Tangka et al., 2016) and as a consequence the scope and quality 

of available data can vary considerably between countries (Forsea, 2016).  Based on 2006 

data it was estimated cancer registry coverage varied from 99% of the population in North 

America to 8% of the population in Asia (excluding Japan) (Valsecchi & Steliarova-Foucher, 

2008).  

In high income countries, cancer registries provide high quality, census data for 

cancers and often record patient outcomes such as survival. The typical data items collated 

within a cancer registry (National Cancer Institute Surveillance Epidemiology and End 

Results Program) include: 

• patient demographics such as patient’s name, age, gender, race, ethnicity, and 

birthplace; 

• tumour characteristics such as tumour cell type(s), body organ where the cancer 

started, and, increasingly, genomic information on the tumour; 
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• stage of disease; and 

• outcomes such as survival status, cause of death, and survival time. 

Pre-diagnosis exposures aren’t routinely collected, and so cancer registry data often 

needs to be augmented with additional data to investigate the role of pre-diagnosis exposures. 

Additional data can be added through supplementary data collections. This may 

involve drawing a random sample of patients from cancer registry lists and then contacting 

those people requesting they participate in further data collection. For example, a prospective 

study of 2,383 women with breast cancer obtained from the US Surveillance, Epidemiology, 

and End Result (SEER) cancer registries achieved a response rate of 78.4% with the median 

time between cancer diagnosis and survey response being 7.9 months (Lantz et al., 2005).  

However, this approach may be less effective for studying diseases with short survival 

times or for studying pre-diagnosis behaviours. The processing time for registering new 

cancer cases onto the cancer registry and then contacting these people, could lead to 

considerable survivor bias. The need to obtain patient’s informed consent creates the 

potential for non-participation bias and, in the case of pre-diagnosis behaviours, the 

retrospective nature of the data collection creates potential for recall bias.  

Data linkage provides an alternate approach. Data (or record) linkage involves 

identifying, matching, and merging data records from the same individual from different data 

sources (Antoni & Sakshaug, 2020). With the proliferation of health-related data sets, it is 

possible that a cancer patient’s pre-diagnosis behaviour may already be on record in some 

other data collection. If that record exists and can be identified, it could be merged with that 

patient’s cancer registry data to provide all required data to establish a retrospective cohort  

study. 
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In South Korea, for example, the National Health Insurance Corporation, regularly 

surveys the health behaviours of their clients. Of 901,979 men surveyed in this program in 

1996, 14,996 were later identified in the Korean Central Cancer registry of 1996 to 2004 and 

7,271 of these were later identified in mortality data from the National Statistical Office to 

2004 (S. M. Park, Lim, Shin, & Yun, 2006). Merging these data records led to the creation of 

a data set containing pre-diagnosis health behaviour, cancer characteristics at diagnosis and 

post-diagnosis survival status and survival time for these 14,996 patients.  

In most developed countries an important source of health behaviour data are national 

health surveys. In Australia for example, the National Health Survey (Australian Bureau of 

Statistics) collects data on the health behaviours of a representative national sample of 

Australian adults each year. In the US there are the National Health and Nutrition 

Examination Survey (National Center for Health Statistics), the National Health Interview 

Survey (National Center for Health Statistics) and the Behavioural Risk Factor Surveillance 

System (Centers for Disease Control and Prevention, 2013a). 

A major advantage of data linkage is that there is no primary data collection, avoiding 

associated costs and time delays. Also, as the cancer registries and national health surveys 

have large infrastructure and specialist expertise, response rates and data quality are usually 

maximised. But one significant difficulty with record linkage is that it increases the risk of 

breaches in patient confidentiality and the consequences of any such breach. Efforts to protect 

confidentiality add considerable cost and complexity to the linkage process (Harron et al., 

2017). Also, missed matches and false matches occur (Harron et al., 2017). The matching 

error rate will depend on the accuracy, completeness and informativeness of the matching 

variables, and the strengths and weaknesses of the matching algorithm and can be difficult to 

quantify.  
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For rare diseases, sample sizes may also be insufficient and matching errors may 

dominate. While the cancer registry is generally a census of all cancer patients, most national 

health surveys only enrol a sample from the population. The Australian National Health 

Survey for example, records data from about 1 in every 1000 adult Australians (Australian 

Bureau of Statistics), which crudely translates to having the health behaviours of just 1 in 

1,000 oesophageal cases being measured each year. (In 2020, the estimated number of new 

cases of oesophageal cancer in Australia was 1,587 (Cancer Australia)). Aside from 

insufficient sample size, this ‘1 in 1000’ may be well below the linkage error rate for these 

data sets, allowing linkage errors to dominate in resulting files. 

So even though data linkage is a widely used, cost effective approach, there are a 

range of research questions which cannot be addressed in this way; particularly those 

involving relatively rare diseases. 

 

1.8 Is a different method possible? 

If linking an individual cancer case to their own pre-diagnosis behaviour is not 

feasible, what would happen if a ‘similar’ person was substituted instead? 

It is known that particular health behaviours are more common in some demographic 

groups. For example, alcohol consumption in the US differs by age, sex and race and this can 

be further stratified into smaller demographic subgroups. For example, younger people are 

more likely to drink, but young college students are more likely to drink than other young 

people (Delker, Brown, & Hasin, 2016). Also, people of Asian descent are less likely to 

drink, but Koreans, Japanese, Taiwanese and Chinese are more likely to drink than other 

Asian subgroups (Delker et al., 2016). In Italy, not only does smoking prevalence differ by 
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age, sex and education, but rates also differ between residents of northern Italy and those of 

southern Italy (Tramacere et al., 2009). 

Given the health behaviours of people from the same demographic background tend 

to be more similar than the behaviour of people with different demographic backgrounds, 

matching a cancer case to the earlier behaviour of a demographically similar person may 

convey some information about the cancer case’s own pre-diagnosis health behaviour. 

Obviously, individuals’ behaviour varies considerably even within the same demographic 

cluster. Whether an individual lives in the north or south of Italy is an extremely poor proxy 

measure of their smoking status, although it does convey some small quantum of information.  

Any information retained through substituting the behaviour of a demographically similar 

person would be very small and so large data sets would be required to detect potentially 

weak signals.  

Large, computerised data sets are routinely available to test this idea. Data sets grow 

over time and currently, when combined across collection years, both cancer registries and 

national health surveys provide very large sample sizes. For example, in the US an estimated 

19,260 new OC cases will be added to cancer registries in 2021 (National Cancer Institute). 

Combining just 3 years data could produce a sample size of more than 50,000 for analysis. 

But other than sample size and statistical power, the other factor which will determine 

the feasibility of detecting a signal of pre-diagnosis behaviour based on specific demographic 

strata is whether that signal exists and how strong it is. The greater the variability in 

behaviour across demographic groups, the more information a patient’s demographic group 

conveys about their likely pre-diagnosis health behaviour. That is, the more informative the 

demographic variables used to describe the cancer patient, the more information which may 

be retained about their pre-diagnosis health behaviour. 
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Fortunately, most human data sets contain a range of demographic descriptors of their 

participants (age, sex, education, place of residence, etc) the combinations of which, allow 

many thousands of demographic sub-groups to be defined.  

 

1.9 Research aim 

This study will focus on those modifiable health behaviours which are associated with 

the onset of oesophageal cancer. The first research aim is to describe the carry-over effect, if 

any, of these pre-diagnosis health behaviours on post-diagnosis survival times in patients 

diagnosed with malignant OC.  

The second research aim is to develop, describe and evaluate a novel algorithm for 

addressing the first aim: using existing data only, when one-to-one data linkage is not 

feasible. 

 

1.10 Importance of this research 

This research, if successful, could produce a range of clinical and methodological 

benefits. Clinical benefits include better informed health service planning, and health 

promotion activities as well as better information for individual patients and clinicians for 

decision making. 

The health behaviours of a community can change quite rapidly. For example, in 

Australia the proportion people aged 14 and over who were daily smokers was estimated to 

be 11% in 2019. This rate has more than halved in less than 30 years (from 24% in 1991) 

(Australian Institute of Health and Welfare, 2020b). Also, between 2001 and 2019 the 

proportion of 18-24 year old Australian abstaining from alcohol increased from 10% to 21% 
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but the proportion of those aged 70 or more abstaining from alcohol decreased from 32% to 

28% (Australian Institute of Health and Welfare, 2020b). The prevalence of discretionary 

physical activity among Canadian adults rose from 20.6% to 41.1% between 1981 and 2000 

(Craig, Russell, Cameron, & Bauman, 2004).  

Such changes will likely lead to future changes in OC incidence and survival. An 

improved understanding of the association between community health behaviour and OC 

incidence and survival can anticipate the future health needs of this group. Importantly, 

predictions of the number of new cases alone is insufficient for planning. Treatment stage, a 

function of survival time, is a major determinant of health care costs (Tramontano et al., 

2019).  

Many of these changes in health behaviour are being driven or encouraged by public 

health programs. Being able to quantify the association between health behaviours and cancer 

outcomes, will help to inform the implementation and evaluation of public health programs in 

the community. That is, this research could lead to improvements in the targeting and 

evaluation of public health policy. 

Documenting the association between pre-diagnosis health behaviour and OC survival 

also provides information which could be included in the content of public health programs to 

provide individuals with better understanding of possible consequences of their health 

behaviours. 

At the level of the individual patient and individual clinician, quantifying the link 

between pre-diagnosis behaviour and survival time may allow needed improvements in 

prognostic tools (Gupta et al., 2018) and a more accurate understanding of disease prognosis 

will aid in treatment decision making and patients’ personal future planning. 
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Methodologically a new algorithm for augmenting cancer registry data sets with 

information on pre-diagnosis behaviour, could also allow a greater range of research 

questions to be addressed with existing cancer registry data sources and health survey data 

sets, circumventing logistical issues associated with data linkage and patient confidentiality.  

In 2011 it was estimated that the cost of maintaining the US National Program of 

Cancer Registries was $US60.77 per case (Tangka et al., 2016). But the estimated number of 

new US cancer cases has increased from 1,596,670  in 2011 to 1,898,160 in 2021 (American 

Cancer Society) an increase of 19% in 11 years. The increasing costs of collecting and 

maintain data systems provide strong incentives to continually find new benefits, including 

new research applications, from these existing data sets. 

If successful, the new algorithm could potentially replace the need for a much more 

expensive and time-consuming prospective cohort study, freeing up research resources for 

other projects. Even if only partially successful, the algorithm could be used as a pilot 

investigation to confirm the need for the more accurate and expensive cohort study.  

Finally, as the new algorithm does not seek to find any individual’s true health survey 

data record, it does not increase privacy issues (Price & Cohen, 2019) beyond the original 

cancer registry record. That is, the data added to the cancer registry record contains almost no 

additional information about that individual. 
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1.12 Thesis Outline 

This thesis contains 7 chapters.  

Chapter 2 summarises current knowledge of the relationship between pre-diagnosis 

health behaviour and post-diagnosis survival time for oesophageal cancer using systematic 

review and meta-analysis.  

Chapter 3 describes and critiques the availability and suitability of data sets and 

describes the data which were selected for use in this thesis. It also considers how missing 

variables could added. 

 Chapters 4 to 6 document approaches to develop a novel algorithm to research the 

relationship between pre-diagnosis behaviour and post-diagnosis survival times using only 

existing data when data linkage is not feasible. 

Chapter 4 discusses using logistic models on national health survey data to summarise 

individual’s probability of displaying particular health behaviour based on their demographic 

characteristics, and then applies this model to the cancer registry cases to estimate their 

probability of having had that behaviour pre-diagnosis. 

Chapter 5 introduces an imputation-based approach to assign pre-diagnosis 

behaviours to cancer registry cases, estimate the level of misclassification in the imputed 

values, and adjust for this misclassification during the analyses.  In this Chapter, the solution 

is developed for estimating the relative risk of pre-diagnosis behaviour on 12 months survival 

post-diagnosis. 

Chapter 6 formalises the methods in Chapter 5 as the I2C2 (Impute, Impute, Calibrate, 

Correct) algorithm and extends this algorithm to Cox proportional hazard models. 
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 Chapter 7 discusses the overall findings, strengths and weaknesses of the research, 

future directions for research, and the potential importance of both the clinical findings and 

the I2C2 method. 
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Chapter 2  

Current knowledge of the relationship between pre-

diagnosis health behaviours and post-diagnosis survival 

times in oesophageal cancer 

 

2.1 Background 

The first aim of this research project is to describe the association between pre-

diagnosis health behaviours and post-diagnosis survival times for OC. This chapter reviews 

and collates current knowledge in this area. This provides a reference point against which to 

compare and critique the results of the new methods and analyses presented in subsequent 

chapters. 

To maximise the scope and validity of the information structured approaches to data 

collection were used and analyses and presented findings according to MOOSE (Meta-

Analysis Of Observational Studies in Epidemiology) guidelines (Stroup et al., 2000) and the 

more recent PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analysis) 

guidelines(Page et al., 2021) for systematic reviews and meta-analyses. 

Our first systematic review was based on a database search conducted on July 29, 

2014 with findings published in a peer reviewed journal in 2015. Given the data base search 

was conducted 6 years before the presentation of the thesis, a (less formal) update was 

undertaken, based on a database search conducted on April 27, 2021.   

The updated systematic review and meta-analysis is presented in Section 2.2. An 

example of the STATA code uses to conduct the meta-analysis component of the systematic 



   38 

review is presented in the thesis Appendix. Section 2.4 discusses the strengths, weaknesses of 

the review. Section 2.5 overviews the role of this systematic review in the context of the 

thesis.  

 

2.2 Impact of pre-diagnosis behaviour on risk of death from oesophageal cancer: A 

systematic review and meta-analysis. 

In this thesis, research commenced with a systematic review and meta-analysis, based 

on a database search conducted on July 29, 2014. The findings of this review were published 

as a peer reviewed journal article. The citation is: Fahey, P. P., Mallitt, K. A., Astell-Burt, T., 

Stone, G., & Whiteman, D. C. (2015). Impact of pre-diagnosis behavior on risk of death from 

esophageal cancer: a systematic review and meta-analysis. Cancer Causes & Control, 26(10), 

1365-1373. 

In 2015 the journal Cancer, Causes and Control has Q1 rating in Oncology and Q2 

rating in Cancer Research on Scimago rating scheme and a 2-year impact factor of 3.261. The 

article has 24 citations (Google Scholar) of which 19 are peer reviewed journal articles 

(including 2 self-citations). 

Following the CRediT Taxonomy (National Information Standards Organization, 

2021), author contributions were: 

• Paul Fahey, David Whiteman and Thomas Astell-Burt contributed to 

Conceptualisation 

• Paul Fahey contributed to Data curation, Formal analysis, Methodology and 

Writing the original draft. 

• Paul Fahey and Kylie-Ann Mallitt contributed to Investigation 
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• David Whiteman, Glenn Stone and Thomas Astell-Burt contributed to 

Supervision 

• All contributed to Review and Editing of the draft paper. 

In this thesis, the published paper has been updated to incorporate the findings a 

repeat of the data-base search which was conducted on April 27, 2021.  So the material 

presented below differs substantially from the published paper, which is incorporated as 

Appendix 1 of this thesis. 

 

 Abstract 

Purpose: Most people diagnosed with oesophageal cancer will die from their disease, 

but it is not known whether risk of death is influenced by pre-morbid behaviour. A systematic 

review and meta-analysis was undertaken to investigate the impact of pre-diagnosis 

behaviour on risk of death for oesophageal cancer. 

Methods: A systematic review was performed of studies reporting on the relationship 

between pre-diagnosis smoking, alcohol consumption, overweight and obesity, physical 

activity and regular consumption of non-steroidal anti-inflammatory drugs (NSAID) and risk 

of death from oesophageal squamous cell carcinoma (OSCC) and adenocarcinomas (OAC) 

was performed in July, 2014 and updated in April, 2021. Study characteristics are presented, 

and aggregate results are compiled using meta-analysis. 

Results: From an initial pool of 1452 non-duplicate records, 27 articles arising from 

26 studies met the inclusion criteria.  Considerable variation was observed between studies in 

location, measurement categories, adjustment for other risks and results. Pooled estimates 

suggested that pre-diagnosis smoking was associated with a 1.08 times (95% confidence 
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interval (CI) 1.00-1.17)  increased risk for death and pre-diagnosis alcohol consumption with 

a 1.30 times increased risk of death (95% CI 1.09-1.56). Evidence of effect was stronger for 

OSCC than OAC.  A lower risk of death was observed for high pre-diagnosis body mass 

index (BMI) ≥25 kg/m2 (OC hazard ratio 0.84, 95% CI 0.72,0.96), although there was 

significant heterogeneity across studies.  

Conclusions: The findings of this review suggest that a number of modifiable pre-

diagnosis risk factors have a carryover effect on the risk of death from oesophageal cancer. 

These include smoking, drinking alcohol and BMI.  

 

 Introduction 

Certain behaviours are known to increase the risk of developing cancers (World 

Cancer Research Fund & American Institute for Cancer Research, 2007), but the influence of 

pre-diagnosis behaviour on cancer prognosis is poorly understood. Cancers of the oesophagus 

are relatively common cancers characterized by late presentation and poor survival. Much is 

known about the risk factors for these cancers, making them suitable candidates for studying 

how pre-diagnosis risk factors might influence risk of death.  

There are two main histological types of oesophageal cancer, namely 

adenocarcinomas (hereafter OAC) and squamous cell carcinomas (OSCC), which have 

similar presentations but quite different risk factors. Behaviours which increase the risk of 

OSCC include tobacco smoking, excess alcohol consumption, and poor diet (Hongo, 

Nagasaki, & Shoji, 2009), whereas OAC is associated with obesity, gastro-oesophageal acid 

reflux, male sex and smoking(American Cancer Society, 2011).  Behaviours suspected to 

decrease the risk of both cancers include regular consumption of non-steroidal anti-
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inflammatory drugs (NSAIDs) (Corley, Kerlikowske, Verma, & Buffler, 2003) and physical 

activity (Friedenreich et al., 2010).  

Behaviour prior to diagnosis and behaviour after diagnosis are very different issues. 

After diagnosis, behavioural modification could be viewed as a component of patient 

treatment (Demark-Wahnefried et al., 2005). Prior to diagnosis public health programs and 

community education dominate.   

Given population behaviour can change quite rapidly, it is important to understand the 

likely impact of such changes on future cancer survival. In the USA, for example, it is 

estimated that the percentage of adults who were smokers declined from 23.2% in 2000 to 

18.1% in 2012, the percentage of adults consuming 5 or more drinks of alcohol at least 12 

times per year decreased from 9.8% in 1997 to 9.2% in 2012 and the percentage who met 

both aerobic activity and muscle strengthening guidelines for physical activity increased from 

14.5% in 1998 to 20.3% in 2012 (National Center for Health Statistics, 2014). In contrast, 

between 1999-2002 and 2009-12 the percentage of adult Americans overweight or obese 

increased from 65.2% to 68.8% (National Center for Health Statistics, 2014).  

The question of whether pre-diagnosis risk factors influence survival from 

oesophageal cancer has been addressed in a number of small epidemiologic studies, however 

there have been no systematic reviews investigating this question. Therefore, the aim in this 

paper was to systematically review and quantify the risk of death from oesophageal cancers 

associated with pre-diagnosis tobacco smoking, alcohol consumption, physical activity, 

obesity and long-term use of NSAIDs for individuals with oesophageal cancer.   
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 Methods 

This research was conducted in compliance with MOOSE guidelines (Stroup et al., 

2000). 

Studies were included if they reported the relationship between pre-diagnosis 

behaviours and post-diagnosis risk of death for OSCC and/or OAC. The outcome of interest 

was time from diagnosis to all cause death, although time to disease specific death was 

accepted as a reasonable proxy where all cause death was not available.  Included behaviours 

were smoking, alcohol consumption, obesity, physical activity and/or regular consumption of 

NSAIDs prior to or proximal to diagnosis, measured either prospectively or retrospectively.  

The authors’ definitions of how behaviours were measured were recorded and reviewed.  

Reviews, commentaries were excluded as were reports of post-diagnosis behaviour as 

this is likely to differ considerably from pre-diagnosis behaviour (Demark-Wahnefried et al., 

2005). Reports restricted to specific disease or treatment groups (such as patients with 

Barrett’s oesophagus or those treated surgically) were excluded as behaviour and/or risk of 

death may not generalize. Studies of relative mortality were excluded as mortality combines 

risk of incidence with risk of death.  Articles from overlapping samples, conference abstracts, 

publications prior to 1980, and articles printed in languages other than English were 

excluded. 

Pubmed, Medline and Embase electronic data sets were searched on July 29, 2014 

and repeated on April 27, 2021 excluding publications prior to 2014.  With librarian input, 

MeSH headings and titles and abstracts were searched for a) oesophagus and b) cancer, 

carcinoma or neoplasm and c) survival or prognosis and d) each of the individual behaviours. 

Both English and American spellings and wildcards for alternate word endings were 
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included.  The full syntax for the Pubmed search is provided as Figure 2.1.  Reference lists of 

eligible articles were reviewed to identify any studies missed during the electronic search. 

 Figure 2.1 PubMed search criteria 
 

 

 

 

 

 

 

 

 

 

 

 

 

For the initial 2014 review, one reviewer (PF) identified potentially relevant studies 

by screening titles and/or abstracts of all citations identified through the database search.  

Final selection of articles and data collection was performed independently by two reviewers 

(PF and KM).  Discrepancies were resolved through discussion with all authors. The 2021 

update was completed by a single reviewer (PF). 

("Esophagus"[Mesh] OR “Esophagus"[Title/Abstract] OR "Oesophagus"[Title/Abstract] OR 

"Esophageal"[Title/Abstract] OR "Oesophageal"[Title/Abstract]) AND  ("Neoplasms"[Mesh] OR 

"Neoplasm"[Title/Abstract] OR "Cancer*"[Title/Abstract] OR "Carcinoma"[Title/Abstract] OR 

"Adenocarcinoma"[Title/Abstract]) AND(("Survival" [Mesh]) OR ("Prognosis" [Mesh]) OR 

("survival" [Title/Abstract]) OR ("prognosis" [Title/Abstract]) OR  

("prognostic" [Title/Abstract])) AND  (("smoking" [Title/Abstract]) OR  

("tobacco" [Title/Abstract]) OR ("alcohol" [Title/Abstract]) OR  

("physical activity" [Title/Abstract]) OR ("exercise" [Title/Abstract]) OR 

("sedentary lifestyle"[Title/Abstract]) OR ("body mass index"[Title/Abstract]) OR  

("BMI" [Title/Abstract]) OR ("obesity" [Title/Abstract]) OR ("Aspirin"[ Title/Abstract]) OR  

("Non-Steroidal Anti-Inflammatory"[Title/Abstract]) OR ("NSAID"[Title/Abstract]) OR  

("health behavior"[Title/Abstract]) OR ("health behaviour"[Title/Abstract]) OR  

("life style"[ Title/Abstract]) OR ("lifestyle"[ Title/Abstract]) OR ("life-style"[ Title/Abstract]) OR 

("Smoking"[Mesh]) OR ("Alcohol Drinking"[Mesh]) OR ("Motor Activity"[Mesh]) OR 

("Exercise"[Mesh]) OR ("Sedentary Lifestyle"[Mesh]) OR ("Body Mass Index"[Mesh]) OR 

("Obesity"[Mesh]) OR ("Health Behavior"[Mesh]) OR ("Life Style"[Mesh]) OR ("Aspirin"[Mesh]) 

OR ("Anti-Inflammatory Agents, Non-Steroidal"[Mesh]))  
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Data collection forms were developed in consultation with all authors.  Information 

extracted from each paper includes authors, country and cohort, cancer type, scope of the 

collection (data sources, collection years and eligibility criteria), whether prospective or 

retrospective, the behaviours reported, adjustment for confounders, sample size, proportion of 

eligible cases and the statistical results.  

Risk of bias 

Methodological features were assessed individually in preference to an overall quality 

score (Jüni, Witschi, Bloch, & Egger, 1999). Review items were taken from the Joanna 

Briggs Institute’s (JBI) Checklist for Cohort Studies (Moola et al., 2017). Assessments were 

conducted by a single reviewer (PF). 

Statistical Methods 

Most studies reported the relative risk of death between behaviour categories as 

hazard ratios (HRs) from proportional hazards models. Meta-analyses were conducted on 

HRs and omitted studies which reported other results. Priority was given to HRs adjusted for 

the greatest number of other covariates. Where studies reported different numbers of 

categories for behaviour measures, excess categories were combined following the methods 

of Borenstein et al, chapter 25 (Borenstein, Hedges, Higgins, & Rothstein, 2011). Sub-groups 

within the same study (such as males and females reported separately) were combined using 

fixed effect meta-analysis prior to the main analysis. 

HRs were pooled across studies using random-effect meta analysis models 

(Borenstein et al., 2011).  For each analysis, heterogeneity in HRs was assessed using the I2 

statistic and the 𝜒𝜒2 test of goodness of fit (Higgins, Thompson, Deeks, & Altman, 2003).  I2 

values greater than 40% were interpreted as substantial heterogeneity (Higgins et al., 2003). 
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Sensitivity analyses were used to explore potential sources of heterogeneity and funnel plots  

and Egger’s test to explore potential publication biases. Analyses were performed using Stata 

v14 (StataCorp, College Station, TX, USA). 

 Results 

Figure 2.2 summarizes the results of the search and application of the exclusion 

criteria.  The searches identified a combined total of 1452 citations after duplicates were 

removed. Of these, 27 were retained.  The reasons for exclusions during the 2014 and 2021 

searches are listed separately in Figure 2.2.  In two instances, two papers reported results 

from separate subgroups of the same cohort (Thrift, Nagle, Fahey, Russell, et al., 2012; 

Thrift, Nagle, Fahey, Smithers, et al., 2012) and (Loehrer, Giovannucci, Betensky, Shafer, & 

Christiani, 2020; A. Spreafico et al., 2017) and all 4 papers are retained. However, where 

research articles reported results from the same individual OC cases (Y.-P. Pan et al., 2020; 

Y. P. Pan et al., 2018) and (L. Wang et al., 2020; R.-M. Zhou et al., 2020; R. M. Zhou, Li, 

Wang, Huang, & Cao, 2018), only the earliest published article was retained.  
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Figure 2.2 Flow chart summarising the identification of studies included for review 
2014 systematic review  

a) 2014 original review 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a subgroups of cases include surgical cohorts, Barrett’s esophagus, late stage cohorts, etc;   
b other outcomes include relative mortality, time to progression and quality of life, etc;  
c mixed cancers are where the esophageal cancers were combined with stomach cancer, etc.  

0 records identified through 
other sources 

 

697 records identified 
through database searching 

 

644 records after duplicates 
removed 

 

Exclusions: 
• 153 other diseases 
• 108 commentary, review or 

editorial 
• 106 other outcomesb  
• 103 treatment evaluations 
• 67 subgroups of casesa 
• 37 no behavioral results 
•  8 prior to 1980 

62 retained after screening 
title and abstract for 

eligibility 

Exclusions: 
• 18 subgroups of casesa 
• 18 no behavioral results 
• 8 other outcomesb  
• 3 mixed cancersc 
• 2 not English 

 

13 retained after full-text 
screening for eligibility 
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Figure 2.2 (continued) Flow chart summarising the identification of studies included for 
review 

b) 2021 update 

 

 

 

 

 

 

 

 

 

 

 

 

The 27 articles report results from 26 studies described in Table 2.1, which were 

conducted in the Asia (15), North America (6), Europe (3), Australia (1) or South Africa (1). 

Although sometimes embedded in larger studies, all results used in this review came from 

case-series of oesophageal cancer patients.  Only two studies was truly prospective (S. M. 

Park et al., 2006; Spence et al., 2018) collecting behavioural data well before diagnosis.  

Seventeen studies required histological confirmation of the cancer diagnosis, three relied on 

registry reports, two used non-histological criteria and the remaining four did not specify the 

808 records identified through 
database search 

17 records meeting eligibility 
criteria 

Exclusions 
• 133 other diseases 
• 97 commentary, review or 

editorial 
• 186 other outcomes 
• 214 treatment evaluations 
• 135 subgroups of cases 
• 26 no behavioural results 

14 included in the review 

3 records use the same data set 
as earlier inclusions 
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basis for diagnosis. Nine studies commenced enrolling cases during the 1990s, fifteen 

commenced in the 2000s and two in the 2010s.  Follow-up ended in the 2000s seven studies, 

in the 2010s for six studies and was not clear for 13 studies.   
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Table 2.1 Study design and sample characteristics 
Study a) Sample size 

b) Diagnosis  
a) Country 
b) Scope 
c) Response rate 

Year of 
a) Enrolment  
b) Final follow-up 

Behavioural 
risk factors  

Timing of  
a) Data collection 
b) Exposure measurement 

a) Outcome measure 
b) Results expressed as 
c) Results adjusted for 

(Aghcheli et 
al., 2011) 

a) 426 OSCC 
b) histologically 
confirmed 

a) Iran 
b) single center 
c) not stated  

a) 2002-2007 
b) 2008 

smoking 
 

a) at diagnosis (presumed) 
b) lifetime, to 1 year prior 

to diagnosis 

a) diagnosis to all causes 
death 

b) hazard ratios 
c) demographics, stage / 

comorbidity, treatment 
(Cescon et al., 
2009) 

a) 300 OAC 
    63 OSCC 

8 Poorly 
differentiated 

b) histologically 
confirmed 

a) USA 
b) two centers 
c)  not stated 

a) 1999-2004 
b) 2007 

smoking 
 

a) after diagnosis 
(presumed) 

b) not stated 

a) diagnosis to all causes 
death 

b) hazard ratios 
c) nil 

(Jing et al., 
2012) 

a) 168 OSCC 
b) histologically 
confirmed 

a) China 
b) single center 
c) 90% 

a) 2006-2008 
b) 2011 

smoking 
alcohol 

a) not stated 
b) 1 year before diagnosis 

a) diagnosis to disease 
specific death 

b) hazard ratios 
c) nil (presumed) 

(S. M. Park et 
al., 2006)  

a) 272 Oesophageal 
b) Notified to a 
registry 

a) South Korea 
b) all male 
government 
employees 
c) not stated 

a) 1996 behaviour, 
1996-2002 
diagnosis 

b) 2004 

smoking 
alcohol 
BMI 

a) prior to diagnosis 
b) 0-6 years before to 

diagnosis 

a) diagnosis to all causes 
death 

b) demographics, stage / 
comorbidity, other 
behaviour 

(Salek et al., 
2009) 

a) 552 Oesophageal  
b) histologically 
confirmed 

a) Iran 
b) two centers 
c) 33% 

a) 1997-2004 
b) 2006 

BMI a) not stated 
b) not stated 

a) diagnosis to all causes 
death 

b) median survival time 
c) nil 

(Samadi et al., 
2007) 

a) 124 Oesophageal 
b) histologically 
confirmed 

a) Iran 
b) single center 
c) 88% 

a) 2000-2004 
b) not stated 

smoking 
alcohol 

 

a) at diagnosis 
b) not stated 

a) not stated 
b) hazard ratios 
c) demographics, stage / 

comorbidity, treatment, 
other behaviour 
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Table 2.1 (continued) Study design and sample characteristics      
Study a) Sample size 

b) Diagnosis  
a) Country 
b) Scope 
c) Response rate 

Year of 
a) Enrolment  
b) Final follow-up 

Behavioural 
risk factors  

Timing of  
a) Data collection 
b) Exposure measurement 

a) Outcome measure 
b) Results expressed as 
c) Results adjusted for 

(Sehgal, Kaul, 
Gupta, & 
Dhar, 2012) 

a) 200 OSCC 
b) histologically 
confirmed 

a) India 
b) single center 
c) not stated 

a) 2007-2011 
b) 3 years after 
baseline 

smoking 
 

a) at diagnosis (presumed) 
b) not stated 

a) not stated 
b) Kaplan-Meier curves  
c) nil 

(Shitara et al., 
2010) 

a) 363 OSCC 
b) not stated 

a) Japan 
b) single center 
c) 97% 

a) 2001-2005 
b) not stated 

smoking 
alcohol 

a) prior to diagnosis 
b) prior to symptoms 

a) diagnosis to all causes 
death 

b) hazard ratios 
c) demographics, stage / 

comorbidity, treatment, 
other behaviour 

(Sundelöf, 
Lagergren, & 
Ye, 2008) 

a) 159 OSCC 
    177 OAC 
b) histologically 
confirmed 

a) Sweden 
b) all OAC, half 
OSCC in Sweden 
c) 77% 

a) 1994-1997 
b) 2004 

smoking 
alcohol 
BMI 
phys activity 

a) after diagnosis 
b)  lifetime & 20 years 

prior to interview 

a) diagnosis to all causes 
death 

b) hazard ratios 
c) demographics, stage / 

comorbidity, treatment, 
other behaviour 

(Thrift, Nagle, 
Fahey, 
Russell, et al., 
2012; Thrift, 
Nagle, Fahey, 
Smithers, et 
al., 2012) 

a) 301 OSCC  
    362 OAC 
b) histologically 
confirmed 

a) Australia 
b) Australian 
mainland  
c) 70% of those 
detected 

a) 2001-2005 
b) 2010 

smoking 
alcohol 
BMI 
phys activity 
(OAC) 
NSAID 

a) after diagnosis 
b) 1 year prior to diagnosis 

& lifetime 

a) diagnosis to all causes 
death 

b) hazard ratios 
c) demographics, stage / 

comorbidity, treatment, 
other behaviour 

(Trivers et al., 
2005) 

a) 220 OSCC 
    298 OAC 
b) histologically 
confirmed 

a) USA 
b) 2.5 US states 
c) 78% 

a) 1993-1995 
b) 2000 

smoking 
alcohol 
BMI 
NSAID 

a) mean 3.7 months after 
diagnosis 

b) 1 year prior to interview 

a) diagnosis to all causes 
death 

b) hazard ratios 
c) nil 

(Wu, Chen, 
Andrews, 
Ruiz, & 
Correa, 2007) 

a) 718 OSCC 
b) histologically 
confirmed 

a) Taiwan 
b) 3 centers 
c) 87% 

a) 2000-2008 
b) 2008 

smoking 
alcohol 

 

a) within 1 week of 
diagnosis 

b) lifetime 

a) diagnosis to all causes 
death 

b) hazard ratios 
c) demographics, stage / 

comorbidity 
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Table 2.1 (continued) Study design and sample characteristics      
Study a) Sample size 

b) Diagnosis  
a) Country 
b) Scope 
c) Response rate 

Year of 
a) Enrolment  
b) Final follow-up 

Behavioural 
risk factors  

Timing of  
a) Data collection 
b) Exposure measurement 

a) Outcome measure 
b) Results expressed as 
c) Results adjusted for 

(Araujo et al., 
2016) 

a) 130 (105 OAC) 
b) histologically 
confirmed 

a) USA 
b) 2 hospitals 
c) not stated 

a) 2009 
b) not stated 
(median 21.3 
months) 

NSAID a)  after diagnosis (median 
48 days after) 

b) number of years taking 
aspirin 

a) diagnosis to all causes  
death and disease 
specific death  

b) hazard ratios 
c) age, non-aspirin 

antiplatelet use, tumour 
subsite, nodal status, 
surgery 

(Dandara, 
Robertson, 
Dzobo, 
Moodley, & 
Parker, 2016) 

a) 1685 OSCC 
b) not stated 

a) South Africa 
b) single hospital 
c) 100% (medical 
record review) 

a) 1997-2007 
b) max 5 years for 
each patient 

smoking 
alcohol 

a) not stated 
b) lifetime 

a) diagnosis to all causes 
death 

b) hazard ratios 
c) nil 

(He et al., 
2020) 

a) 5,283 (4,506 
ESCC) 
b) National 
Comprehensive 
Cancer Network 
guidelines, 2010 

a) China 
b) 18 hospitals 
c) 100% (medical 
record review) 

a) 2011-2013 
b) 2017 

smoking 
alcohol 
BMI 

a) not stated 
b) lifetime (smoking), at 

admission (BMI), not 
stated (alcohol) 

a) diagnosis to all causes 
death 

b) hazard ratios 
c) nil 

(Korpanty et 
al., 2017) 

a) 270 OAC 
b) histologically 
confirmed 

a) Canada 
b) single centre 
c) 72% 

a) 2006-2013 
b) not stated 
(median follow-up 
58.5 months) 

smoking 
alcohol 

a) after diagnosis 
b) not stated smoking), 

lifetime (alcohol) 

a) diagnosis to all causes 
death 

b) hazard ratios 
c) nil 

(Loehrer et al., 
2020) 

a) 285 OAC 
b) histologically 
confirmed 

a) USA 
b) single hospital 
c) not stated 

a) 2004-2016 
b) 2018 

BMI 
 

a) after diagnosis (median 
4.8 weeks) 

b) lifetime 

a) diagnosis to all causes 
death 

b) hazard ratios 
c) age, sex, age, smoking 

status, treatment, year of 
diagnosis 
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Table 2.1 (continued) Study design and sample characteristics      
(Macfarlane, 
Murchie, & 
Watson, 2015) 

a) 1197 
b) Notified to a 
registry 

a) Scotland 
b) cohort 
c) not stated 

a) 1996-2010 
b) not stated (max 
follow-up 181 
months) 

smoking 
alcohol 
NSAID 

a) not stated 
b) lifetime (smoking), 

current (alcohol), not 
stated (NSAID) 

a) diagnosis to all causes 
death 

b) hazard ratios 
c) age, gender, socio-

economic status 
(Okada et al., 
2017) 

a) 365 OSCC 
b) histologically 
confirmed 

a) Japan 
b) 66 hospitals 
c) not stated 

a) 2003-2007 
b) 2010-2014 

smoking 
alcohol 
BMI 
phys activity  

a) not stated 
b) lifetime (smoking, 

alcohol, not stated (BMI, 
physical activity) 

a) diagnosis to all causes 
death 

b) hazard ratios 
c) sex, age, year of 

diagnosis, BMI, 
smoking history, alcohol 
history, physical 
exercise, stage 

(Y. P. Pan et 
al., 2018) 

a) 205 OSCC 
b) histologically 
confirmed 

a) Taiwan 
b) single hospital 
c) 100% (medical 
record review) 

a) 2007-2012 
b) not stated  

smoking 
alcohol 

a) not stated 
b) not stated 

a) 5-year survival (y/n) 
b) odds ratios 
c) nil 

(Y.-P. Pan et 
al., 2020) 

This paper presents results for the same participants as Y.P. Pan et al, 2018 above 

(Spence et al., 
2018) 

a) 1,606 OAC 
       828 OSCC  
b) Notified to a 
registry 

a) England & 
Scotland 
b) cancer 
registries 
c) not stated 

a) 1998-2012 
b) 2015 

NSAID a) not stated 
b) prior to diagnosis 

a) diagnosis to disease 
specific death 

b) hazard ratios 
c) sex, age, year of 

diagnosis, deprivation, 
cancer treatment, 
comorbidities, other 
prescription medications 
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Table 2.1 (continued) Study design and sample characteristics      
(A. Spreafico 
et al., 2017) 

a) 564 OAC 
b) not stated 

a) USA & 
Canada 
b) 2 cancer 
centres 
c) USA 82%, 
Canada 77% 

a) USA 1999-2004 
 Canada 2006-2011 
b) not stated 

smoking 
BMI 

a) after diagnosis 
b) lifetime 

a) diagnosis to all causes 
death 

b) hazard ratios 
c) stage, Eastern 

Cooperative Oncology 
Group Performance 
Status, treatment, study 
site 

(Talukdar et 
al., 2021) 

a) 76 OSCC 
b) endoscopy & 
biopsy 

a) India 
b) 2 hospitals 
c) not stated 

a) 2016-2019 
b) not stated 

smoking 
alcohol 

a) not stated 
b) not stated 

a) diagnosis to all causes 
death 

b) hazard ratios 
c) nil 

(X. P. Wang et 
al., 2016) 

a) 210 OSCC 
b) not stated 

a) China 
b) single centre 
c) not stated 

a) 2007-2009 
b) 2015 

smoking 
alcohol 

a) not stated 
b) lifetime (smoking), not 

stated (alcohol) 

a) diagnosis to all causes 
death 

b) hazard ratios 
c) nil 

(Yao et al., 
2014) 

a) 136 OSCC 
b) histologically 
confirmed 

a) China 
b) single hospital 
c) 53% 

a) 2005-2007 
b) not stated 
(follow-up 3 to 7.5 
years) 

smoking a) not stated 
b) not stated 

a) diagnosis to disease 
specific death 

b) hazard ratios 
c) tumour size, age, 

differentiation, tumour 
site, gender, p53 
overexpression 

(R. M. Zhou et 
al., 2018) 

a) 207 OSCC 
b) histologically 
confirmed 

a) China 
b) cohort 
c) not stated 

a) 2008-2012 
b) not stated 

smoking a) not stated 
b) at least 2 year duration 

a) diagnosis to all causes 
death 

b) hazard ratios 
c) nil 

(R.-M. Zhou et 
al., 2020) 

This paper presents results for the same participants as R.M. Zhou et al, 2018  above 

(L. Wang et 
al., 2020) 

This paper presents results for the same participants as R.M. Zhou et al, 2018 above 
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Four studies presented results for OSCC and OAC separately, four presented results 

for OAC alone and twelve for OSCC alone.  The remaining six studies did not differentiate 

histological type.  Of these, one from the US reported 81% of participants were OAC 

(Cescon et al., 2009) and has been grouped with the OAC cohorts in this review. In the 

United Kingdom, OAC is increasingly more common than OSCC (C Castro et al., 2014). 

Therefore, one study from England and Scotland (Macfarlane et al., 2015) was also grouped 

with OAC. Three studies from Asia reported 85% (Samadi et al., 2007), 93% (Salek et al., 

2009) and 85% (He et al., 2020) of participants were OSCC and one was from South Korea 

(S. M. Park et al., 2006) where an estimated 95% of oesophageal cancers are OSCC (Hongo 

et al., 2009).  These four studies were grouped with the OSCC cohorts. 

Twelve studies reported collecting data from at least 70% of the target sample with 

one collecting BMI enrolling 33% of the target sample (Salek et al., 2009), and one collecting 

smoking enrolling 53% of the target sample (Yao et al., 2014). Response rates were not 

adequately stated in twelve articles. Seven studies presented HRs after adjustment for 

demographic characteristics, disease progression and/or comorbidities, treatment and other 

behaviours, seven adjusted for some but not all of these factors,  nine presented unadjusted 

HRs only, one presented unadjusted odds ratio for 5-year survival (Y. P. Pan et al., 2018), 

one presented Kaplan-Meier curves rather than HRs (Sehgal et al., 2012) and one median 

survival times (Salek et al., 2009). No studies adjusted for post-diagnosis behaviour. 

Risk of bias 

Only 11 of the 26 studies focussed exclusively on relationships between pre-diagnosis 

health behaviour and post-diagnosis survival time in OC (Aghcheli et al., 2011; Araujo et al., 

2016; Loehrer et al., 2020; Macfarlane et al., 2015; Y. P. Pan et al., 2018; S. M. Park et al., 
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2006; Sehgal et al., 2012; Spence et al., 2018; A. Spreafico et al., 2017; Sundelöf et al., 2008; 

Wu et al., 2007). Of the remaining studies, eight investigated a wider range of demographic 

and clinical predictors of risk of death than just health behaviours (Dandara et al., 2016; He et 

al., 2020; Okada et al., 2017; Salek et al., 2009; Samadi et al., 2007; Shitara et al., 2010; 

Thrift, Nagle, Fahey, Russell, et al., 2012; Trivers et al., 2005) and seven focused mainly on 

laboratory markers (Cescon et al., 2009; Jing et al., 2012; Korpanty et al., 2017; Talukdar et 

al., 2021; X. P. Wang et al., 2016; Yao et al., 2014; R. M. Zhou et al., 2018). Where other 

predictors were the primary focus, the study designs and measurement tools specific to health 

behaviours were often poorly described. 

Table 2.2 summarises each study’s adherence to the JBI review items for cohort 

studies.
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Table 2.2 Adherence to items listed in the JBI Checklist for Cohort Studies 
 (Aghcheli 

et al., 2011) 
(Cescon et al., 

2009) 
(Jing et al., 

2012) 
(S. M. Park 
et al., 2006) 

(Salek et al., 
2009) 

(Samadi et 
al., 2007) 

(Sehgal et 
al., 2012) 

1. Were the two groups similar and recruited 
from the same population?  

Unclear Yes Unclear Yes Unclear Yes Yes 

2. Were the exposures measured similarly to 
assign people to both exposed and unexposed 
groups?  

Yes Yes Yes Yes Yes Yes Yes 

3. Was the exposure measured in a valid and 
reliable way?  

No Unclear No No No Unclear Unclear 

4. Were confounding factors identified?  Yes No No No No No No 
5. Were strategies to deal with confounding 
factors stated?  

Yes No No Yes No Yes No 

6. Were the groups/participants free of the 
outcome at the start of the study (or at the 
moment of exposure)?  

Yes Yes Yes Yes Yes Yes Yes 

7. Were the outcomes measured in a valid 
and reliable way?  

Yes Unclear Unclear Unclear Unclear No Unclear 

8. Was the follow up time reported and 
sufficient to be long enough for outcomes to 
occur?  

Unclear Yes Yes Yes No Unclear Unclear 

9. Was follow up complete, and if not, were 
the reasons to loss to follow up described and 
explored?  

No No No Unclear No Yes Unclear 

10. Were strategies to address incomplete 
follow up utilized?  

Yes No No No No No Unclear 

11. Was appropriate statistical analysis used?  Unclear No No Yes No Unclear No 
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Table 2.2 (continued) Adherence to items listed in the JBI Checklist for Cohort Studies 
 (Shitara et al., 

2010) 
(Sundelöf et 

al., 2008) 
(Thrift, Nagle, 

Fahey, 
Russell, et al., 

2012) 

(Trivers et al., 
2005) 

(Wu et al., 
2007) 

(Araujo et 
al., 2016) 

(Dandara et 
al., 2016) 

1. Were the two groups similar and 
recruited from the same population?  

Unclear Yes Unclear Unclear Unclear Unclear Yes 

2. Were the exposures measured 
similarly to assign people to both 
exposed and unexposed groups?  

Yes Yes Yes Yes Yes Yes Yes 

3. Was the exposure measured in a 
valid and reliable way?  

No No No No Yes No No 

4. Were confounding factors 
identified?  

Yes Yes Yes No Yes No No 

5. Were strategies to deal with 
confounding factors stated?  

Yes Yes Yes No Yes Yes No 

6. Were the groups/participants free 
of the outcome at the start of the 
study (or at the moment of 
exposure)?  

Yes Yes Yes Yes Yes Yes Yes 

7. Were the outcomes measured in a 
valid and reliable way?  

Unclear Unclear No 
 

Unclear Unclear Unclear Unclear 

8. Was the follow up time reported 
and sufficient to be long enough for 
outcomes to occur?  

Yes Yes Yes Yes Unclear Yes Unclear 

9. Was follow up complete, and if 
not, were the reasons to loss to 
follow up described and explored?  

Unclear Unclear Unclear Yes Unclear Unclear Unclear 

10. Were strategies to address 
incomplete follow up utilized?  

Yes No Unclear Unclear Unclear No Unclear 

11. Was appropriate statistical 
analysis used?  

No Yes Unclear No Unclear Unclear No 

Table 2.2 (continued) Adherence to items listed in the JBI Checklist for Cohort Studies 
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 (He et al., 
2020) 

(Korpanty et 
al., 2017) 

(Loehrer et al., 
2020) 

(Macfarlane 
et al., 2015) 

(Okada et al., 
2017) 

(Y. P. Pan 
et al., 2018) 

(Spence et 
al., 2018) 

1. Were the two groups similar and 
recruited from the same population?  

Unclear Unclear Unclear Yes Unclear Yes Unclear 

2. Were the exposures measured similarly 
to assign people to both exposed and 
unexposed groups?  

Yes Unclear Yes Unclear Yes Yes Yes 

3. Was the exposure measured in a valid 
and reliable way?  

Unclear Unclear No No Unclear No Unclear 

4. Were confounding factors identified?  No No No No Yes No Yes 
5. Were strategies to deal with 
confounding factors stated?  

No No Yes Yes Yes No Yes 

6. Were the groups/participants free of the 
outcome at the start of the study (or at the 
moment of exposure)?  

Yes Yes 
 

Yes Yes Unclear Yes No 

7. Were the outcomes measured in a valid 
and reliable way?  

Unclear Yes Unclear Unclear Unclear Unclear Unclear 

8. Was the follow up time reported and 
sufficient to be long enough for outcomes 
to occur?  

Yes Yes No No Yes Yes Yes 

9. Was follow up complete, and if not, 
were the reasons to loss to follow up 
described and explored?  

No Unclear No No Unclear Unclear Unclear 

10. Were strategies to address incomplete 
follow up utilized?  

No Yes Unclear No No Unclear No 

11. Was appropriate statistical analysis 
used?  

No No Unclear Yes Unclear No Unclear 
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Table 2.2 (continued) Adherence to items listed in the JBI Checklist for Cohort Studies 
 (A. Spreafico et 

al., 2017) 
(Talukdar et al., 

2021) 
(X. P. Wang et al., 

2016) 
(Yao et al., 2014) (R. M. Zhou et 

al., 2018) 
1. Were the two groups similar and 
recruited from the same population?  

Unclear Unclear Unclear 
 

Unclear Unclear 

2. Were the exposures measured 
similarly to assign people to both 
exposed and unexposed groups?  

Yes Yes Unclear 
 

Unclear Yes 

3. Was the exposure measured in a 
valid and reliable way?  

No No Unclear 
 

Unclear No 

4. Were confounding factors 
identified?  

Yes No No No No 

5. Were strategies to deal with 
confounding factors stated?  

Yes No No Yes No 

6. Were the groups/participants free of 
the outcome at the start of the study (or 
at the moment of exposure)?  

Yes Unclear Unclear 
 

Yes Yes 

7. Were the outcomes measured in a 
valid and reliable way?  

Unclear Unclear 
 

Unclear 
 

Unclear Unclear 

8. Was the follow up time reported and 
sufficient to be long enough for 
outcomes to occur?  

Yes Yes Unclear 
 

Yes No 

9. Was follow up complete, and if not, 
were the reasons to loss to follow up 
described and explored?  

Unclear Yes Unclear 
 

Unclear Unclear 

10. Were strategies to address 
incomplete follow up utilized?  

Unclear Unclear Unclear 
 

Unclear Unclear 

11. Was appropriate statistical analysis 
used?  

No No No Unclear No 
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In this review JBI item 1 “Were the two groups similar and recruited from the same 

population?” was marked as ‘unclear’ if there was potential for people with specific 

behaviours to be under-represented in the sample. For example, in one study (Trivers et al., 

2005) baseline interview was completed for about 80% of eligible cases.  This leaves some 

potential that patients who were say smokers, were more ill, more likely to have died and less 

likely to be included in the study than non-smokers. Further, as the outcome variable is 

survival time, JBI item 6 “Were the groups/participants free of the outcome at the start of the 

study (or at the moment of exposure)?” may also be sensitive to the delay between diagnosis 

and measurement. Generally, studies attempted to minimise the delay between diagnosis and 

enrolment but one notable exception required everyone to survive for 6 months in order to 

qualify for inclusion (Spence et al., 2018).  

It is expected that JBI item 2 “Were the exposures measured similarly to assign 

people to both exposed and unexposed groups?” was always true as the same questionnaires 

and clinical records were used to obtain behavioural data for all participants. However, this 

item has been marked ‘unclear’ when there was no description of how the behavioural 

measures were defined or collected. 

JBI item 3. “Was the exposure measured in a valid and reliable way?” was marked as 

‘no’ or ‘unclear’ throughout. All studies relied on self-report, often with long recall periods. 

Only one of the 26 studies discussed the validity of their behavioural measures (Wu et al., 

2007). That validity test demonstrated clear evidence of a distinction between self-reported 

smokers and non-smokers, but a less compelling evidence of the distinction between self-

reported alcohol consumption and non-consumption (Lin et al., 2011). 

JBI item 4 “Were confounding factors identified?” was marked as ‘yes’ if the hazard 

ratio for the behaviour was adjusted for both age and cancer stage at diagnosis. Age is an 
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important confounder because age is associated with survival time (Njei, McCarty, & Birk, 

2016) and health behaviours change with age. Cancer stage at diagnosis is included as a 

required confounder as earlier stage is associated with much longer survival (Zhang, 2013) 

and it is plausible that people with different health behaviours may tend to have different 

cancer stage at diagnosis.  Some studies adjusted for confounders other than cancer stage 

(Araujo et al., 2016; Loehrer et al., 2020; Macfarlane et al., 2015; S. M. Park et al., 2006; 

Samadi et al., 2007; Yao et al., 2014). However, most of these other variables (such as 

comorbidities, or treatments received) were probably on the causal pathway (Cole et al., 

2010) and so do not merit confounder adjustment.  

JBI item 5 “Were strategies to deal with confounding factors stated?” was marked 

‘yes’ if a confounder adjusted hazard ratio was derived from multivariable regression model 

such as Cox regression or Poisson regression. However, adjustment for cancer stage was 

often incomplete. For example, in one study only 28% of patients had a cancer stage recorded 

(Aghcheli et al., 2011) and another had 50% recorded (Thrift, Nagle, Fahey, Smithers, et al., 

2012). Where behavioural measures were not the sole focus of the research, a number of 

studies presented unadjusted hazard ratios for the behavioural predictors, even though they 

applied confounder adjustment to other analyses (Cescon et al., 2009; He et al., 2020; 

Korpanty et al., 2017; Y. P. Pan et al., 2018; Salek et al., 2009; Trivers et al., 2005; R. M. 

Zhou et al., 2018). 

JBI item 7 “Were the outcomes measured in a valid and reliable way?” requires both 

the date of diagnosis and the date of death to be obtained. Some studies failed to provide any 

description of how survival time was defined or measured (Dandara et al., 2016; Y. P. Pan et 

al., 2018; Salek et al., 2009; Sehgal et al., 2012; A. Spreafico et al., 2017; Talukdar et al., 

2021; R. M. Zhou et al., 2018). All other studies identified information sources such as 

clinical records, clinical visits, telephone contacts, contacts with relatives or data linkage to 
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various cancer registries or national death indexes, but none discussed how valid or reliable 

these data collection practices were.  

Oesophageal cancer has a short survival time. In the US in 2020 with an estimated 5-

year relative survival of just under 20% (National Cancer Institute, 2021a). In this review a 

median follow-up times of more than 18 months was deemed sufficient to address JBI item 8. 

“Was the follow up time reported and sufficient to be long enough for outcomes to occur?”.  

One study stated that all patients were follow-up to death (Talukdar et al., 2021). Other 

studies had median follow-up times of 21 months (Araujo et al., 2016), 29 and 36 months (A. 

Spreafico et al., 2017), 33 months (Cescon et al., 2009), 39 months (Jing et al., 2012), 59 

months (Korpanty et al., 2017), 1.3 years (Spence et al., 2018), 5.3 years (Yao et al., 2014), 

5.6 years (Shitara et al., 2010), 6.1 years (Okada et al., 2017), 6.4 years (Thrift, Nagle, Fahey, 

Smithers, et al., 2012) and mean follow-up of 29 months (Y. P. Pan et al., 2018), 3.03 years 

(S. M. Park et al., 2006) and in the range of 5 to 7 years (Trivers et al., 2005), 7 to 10 years 

(Sundelöf et al., 2008). However a median follow-time of 6 months (Salek et al., 2009) was 

regarded as insufficient. Studies quoting a wide range of follow-up times - 2 months to 8 

years (Wu et al., 2007) or up to 5 years (Dandara et al., 2016) were judged to be unclear as to 

whether follow-up time was sufficient. The remaining studies failed to quantify their follow-

up times.  

JBI item 9 “Was follow up complete, and if not, were the reasons to loss to follow up 

described and explored?” was surprisingly poorly complied with. One study claimed that all 

patients were followed till death (Talukdar et al., 2021), one stated only 2/518 patients had 

been lost to follow-up (Trivers et al., 2005) and one stated 62/420 were lost to follow-up due 

to inaccessible location or change of address. Many studies relying on clinical records or data 

linkage seemed to assume that there was no loss to follow-up without any supporting 
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evidence. Consequently, JBI item 10 “Were strategies to address incomplete follow up 

utilized?” was also poorly addressed. 

For JBI item 11 “Was appropriate statistical analysis used?”. Appropriate statistical 

analysis was defined as appropriate regression modelling with confounder adjustment and 

checking of assumptions. This was demonstrated in three studies (Macfarlane et al., 2015; S. 

M. Park et al., 2006; Sundelöf et al., 2008) Many studies reported results from Cox regression 

models without first checking the proportional hazards assumption (Aghcheli et al., 2011; 

Araujo et al., 2016; Loehrer et al., 2020; Okada et al., 2017; Samadi et al., 2007; Shitara et 

al., 2010; Spence et al., 2018; Sundelöf et al., 2008; Thrift, Nagle, Fahey, Smithers, et al., 

2012; Wu et al., 2007; Yao et al., 2014). Two studies employed since discredited stepwise 

methods for model building (Shitara et al., 2010; A. Spreafico et al., 2017). All other studies 

failed to correct for any confounding variables when looking at behavioural variables. 

 

Tobacco smoking 

Twenty-three of the 26 studies reported on the relationship between tobacco smoking 

and risk of death. Smoking was reported according to whether or not participants smoked 

and/or the number of pack years smoked.  The most commonly reported measures were never 

(<100 cigarettes in lifetime) or ever (Aghcheli et al., 2011; He et al., 2020; Korpanty et al., 

2017; Macfarlane et al., 2015; Okada et al., 2017; Y. P. Pan et al., 2018; Samadi et al., 2007; 

Talukdar et al., 2021; Trivers et al., 2005; S. M. Wang et al., 2016; Wu et al., 2007; R. M. 

Zhou et al., 2018) and never, former or current (Cescon et al., 2009; S. M. Park et al., 2006; 

A. Spreafico et al., 2017; Sundelöf et al., 2008; Thrift, Nagle, Fahey, Russell, et al., 2012; 

Thrift, Nagle, Fahey, Smithers, et al., 2012) but eleven different category systems were used.  

Five of the 17 articles with OSCC results (He et al., 2020; Jing et al., 2012; Sehgal et al., 
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2012; Shitara et al., 2010; Sundelöf et al., 2008) and two of seven articles with OAC results 

(Cescon et al., 2009; Macfarlane et al., 2015) reported at least one smoking category with a 

statistically significantly increased risk of death compared to the never or least smoking 

category.   

Figure 2.3 presents a forest plot of the HRs of ever versus never smoking status for 

OSCC and OAC and both subgroups combined. If not directly available, the results for the 

‘ever’ smoking category was created wherever possible by combining results from other 

smoking categories. For example, results for ‘former’ and ‘current’ smoker categories were 

combined to produce results for the ‘ever’ smoking category. Often the majority of ‘ever’ 

smokers are ‘former’ smokers; for example 65% (Cescon et al., 2009), 66% of OSCC sub-

group (Sundelöf et al., 2008), 59% (Thrift, Nagle, Fahey, Russell, et al., 2012), 73% (Thrift, 

Nagle, Fahey, Smithers, et al., 2012). There was one mis-specified confidence interval (HR 

1.04, 95% CI 0.76,1.04) (Korpanty et al., 2017) which was replaced by the presumed correct 

bounds of 0.76 to 1.32. One study, lacking standard deviations and confidence intervals 

(Dandara et al., 2016), was excluded. 
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Nagle, Fahey, Russell, et al., 2012; Wu et al., 2007) reported at least one alcohol category 

with a statistically significantly increased risk of death but none of the five articles reporting 

results for OAC reported significant associations.   

Figure 2.6 presents a forest plot of the HRs of regular alcohol use pre-diagnosis 

against never (after collapsing categories where possible). Alcohol consumption is associated 

with increased risk of death in OC (HR=1.30, 95% CI 1.09, 1.56) but the high heterogeneity 

(I2=74.9%, Egger’s test p=0.015) suggesting other unknown factors are impacting on these 

results. The increased risk of death in OSCC subgroup (HR 1.43) is potentially higher than 

the increased risk of death in the OAC subgroup (HR 1.22). However, there is considerable 

heterogeneity in results in OSCC with point estimates of the hazard ratios ranging from 0.55 

to 7.51.  
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Regular physical activity 

Only three articles reported on the association between physical activity and risk of 

death from oesophageal cancer. Physical activity categories were reported as ‘1st low’, ‘2nd’, 

‘3rd’, and ‘4th high’ (Sundelöf et al., 2008) or ‘low’, medium’, and ‘high’  (Thrift, Nagle, 

Fahey, Smithers, et al., 2012) and ‘No habit’, ‘1-2 times/week’, ‘≥3 times/week’, and 

‘unknown’ (Okada et al., 2017).   These categories were sometimes defined based on a series 

of questions which were not explained in full. Comparing the highest physical activity 

category to the lowest, the pooled hazard ratio was 1.07 (95% CI 0.87,1.32) with little 

difference between OSCC (2 studies, HR 0.92, 95% CI 0.67, 1.27) and OAC (2 studies, HR 

1.20, 95% CI 0.91,1.58). There was no statistically significant evidence of association.  

Regular NSAID consumption 

Six articles (from five studies) reported regular NSAID consumption.  Three articles 

looked at all NSAIDs combined (Araujo et al., 2016; Macfarlane et al., 2015; Spence et al., 

2018; Thrift, Nagle, Fahey, Russell, et al., 2012; Thrift, Nagle, Fahey, Smithers, et al., 2012; 

Trivers et al., 2005) and three presented results specific to aspirin (Araujo et al., 2016; 

Macfarlane et al., 2015; Spence et al., 2018; Thrift, Nagle, Fahey, Russell, et al., 2012; Thrift, 

Nagle, Fahey, Smithers, et al., 2012; Trivers et al., 2005). NSAID use was defined as ‘≥1 

tablet per week for ≥6 months’ or not (Trivers et al., 2005), ‘never’, ‘less than weekly’ or  ‘at 

least weekly’ in the 5 years prior to diagnosis (Thrift, Nagle, Fahey, Russell, et al., 2012; 

Thrift, Nagle, Fahey, Smithers, et al., 2012), evidence of at least one prescription (Macfarlane 

et al., 2015; Spence et al., 2018,) or incompletely defined as ‘no’ or ‘yes’ (Araujo et al., 

2016).   
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 Discussion 

The aim in this paper was to systematically review and quantify the risk of death from 

oesophageal cancers associated with pre-diagnosis behaviour. The review located 27 eligible 

articles from 26 studies and found that OSCC cases with the highest lifetime smoking 

exposure had a 55% increased risk of death relative to non-smokers. OC cases who had ever 

consumed alcohol had a 30% increased risk of death relative to those who had not, but results 

were heterogeneous and displayed evidence of publication bias. Being overweight or obese 

pre-diagnosis was found to  decrease risk of death (HR 0.72, 95%CI 0.72,0.96) in OC but not 

obese alone (HR 0.99, 95%CI 0.85,1.14). Fewer studies investigated the impact of pre-

diagnosis physical activity levels and results from regular NSAID consumption displayed 

considerable heterogeneity. Although the high risk of bias and high heterogeneity between 

studies weakens the interpretation, the current results suggest that there are some associations 

between pre-diagnosis health behaviours and post-diagnosis risk of death  in OC.  

In this study we have found a statistically significant hazard ratios of 1.08 (95% CI 

1.00,1.07) for ever smoked compared to never smoked and 1.55 (95% CI 1.24, 1.94) for 

highest smoking category versus lowest in OSCC. These results are broadly consistent with a 

2016 meta-analysis of the relationship between smoking (not restricted to pre-diagnosis) and 

OC survival time found a pooled HR of 1.41 (95% CI 1.22,1.64) based on just 5 studies of 

mainly OSCC patients (Kuang et al., 2016) and a 2017 meta-analysis reported HRs of 1.07 

(95% CI 0.86-1.32) for ever smoking in OSCC, 1.41 (95% CI 0.96,2.09) for current smoking 

in OSCC and 0.99 (95% CI 0.73,1.36) for current smoking in OAC based on pooling 8, 2 and 

2 papers respectively (McMenamin, McCain, & Kunzmann, 2017).  

It is also consistent with findings from other similar patient groups. In stomach cancer 

for example, a meta analysis (Ferronha, Bastos, & Lunet, 2012) found increased risks of 

death of 1.08 (95% CI 0.90-1.30) for smokers versus never smokers. In colorectal cancer a 
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meta-analysis of six studies (Walter, Jansen, Hoffmeister, & Brenner, 2014) found that 

smoking increases risk of death by 1.26 (95% CI 1.15-1.37) although this was not confined to 

pre-diagnosis behaviour and included some cohorts selected according to treatment (such as 

surgical only).   

The lower risk for ever smoking is consistent with a scenario in which ever smoking 

includes a large proportion of former smokers and these former smokers have much lower 

risks of death than current smokers. 

In relation to alcohol consumption, this review found a 30% increase in risk of death 

associated with alcohol consumption (HR 1.30, 95%CI 1.09,1.56) and a non-statistically 

significant HRs of 1.19 when comparing the highest to lowest alcohol consumption 

categories. Point estimates for OSCC (HRs of 1.43 and 1.32) were higher than for OAC (HRs 

of 1.22 and 1.08) in both situations.  These results are consistent with previous studies. A 

recent meta-analysis comparing highest to lowest alcohol consumption patterns in OC found 

a statistically significant pooled HRs for overall OC (HR=1.48, 95% CI 1.19,1.84) and OSCC 

(HR=1.26, 95% CI, 1.01,1.60) but no corresponding effect for OAC (HR=1.01, 95% CI 

0.70,1.47) based on 3, 9 and 3 papers respectively (L.-P. Sun et al., 2020). A meta-analysis of 

stomach cancer (Ferronha et al., 2012) found increased risks of death 1.13 (95% CI 1.00-

1.28) for drinkers versus never drinkers.   

For overweight and obese, this study found that pre-diagnosis overweight and obese 

were associated with decreased risk of death in OC (HR=0.84, 95%CI 0.72,0.96) with little 

evidence of difference between OSCC and OAC. However, obese alone was not protective 

(HR=0.99, 95% CI 0.85,1.14). Perhaps overweight provides some buffer against the wasting 

nature of OC, but obese introduces new complications and comorbidities.  
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In the wider literature, most interest has focussed on the relationship between obesity 

at surgery and post-surgical survival times. For example, a 2017 meta-analysis reported post-

surgical pooled HRs for obesity to be 1.05 (95% CI 0.80, 1.39) for 6 studies of OSCC 

patients and 0.91 (95% CI 0.81,1.02) for 7 studies of combined OC cases (Gao et al., 2018). 

The single OAC study had HR=0.95 (95% CI 0.85,1.07). But earlier, a meta-analysis of post-

surgical risk for oesophageal cancer reported an aggregated risk of death of 0.79 (95% CI 

0.65-0.95) for overweight (Hong et al., 2013). However, these results may be quite different 

from the research question of this thesis as those receiving surgical treatment are a sub-group 

of all OC and the criteria for who is offered surgery could influence the results.  

In contrast, for colorectal cancer, a systematic review of five studies (E. Parkin, 

O'Reilly, Sherlock, Manoharan, & Renehan, 2014) concluded that pre-diagnosis obesity 

conferred higher risks of death, especially in women, although these observations were not 

quantified through meta-analysis.   

Several recent studies of treatment outcomes have found that weight loss prior to 

diagnosis is a strong predictor of survival (Yu et al., 2018) particularly for early stage cancers 

(Shen et al., 2017). So, it is possible that individuals with a history of overweight or obesity 

may not be detected due to pre-diagnosis weight loss. 

In this review we found just 3 studies which looked at the relationship between pre-

diagnosis physical activity and post-diagnosis survival in OC with no statistical evidence of 

association. While little has been published about the relationship between pre-diagnosis 

physical activity and post-diagnosis survival in OC, physical activity has been found to be 

protective of the incidence of OAC (RR=0.79, 95% CI 0.66,0.94), but not OSCC (McTiernan 

et al., 2019). 
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Finally, this review found no evidence of association between regular consumption of 

NSAIDs (including aspirin) prior to diagnosis and post-diagnosis survival time in OC (HR 

0.98, 95% CI 0.82,1.18). Again, while little is known about survival in OC, a recent meta-

analysis has confirmed that regular aspirin consumption is protective of OC incidence 

(RR=0.75, 95% CI 0.65,0.86) (Qiao et al., 2018). 

Our review was conducted in compliance with the MOOSE guidelines, using multiple 

search engines and independent reviewers.  The inclusion and exclusion criteria were 

carefully defined to avoid potential biases which could arise from particular medical 

conditions and/or the decision whether or not to treat. Appropriate statistical methods and 

interpretation have been used throughout.  The key limitations on the interpretability of the 

current results are the high risk of bias and the heterogeneity of studies.  Fifteen of 26 studies 

found were from Asia – which could be seen as appropriate given that Asia accounts for 

about 75% of oesophageal cancers incidence (Ferlay et al., 2015). However, it is known that 

behaviours and other risk factors differ widely across continents (Hongo et al., 2009) and 

there are considerable differences in health services between countries. Data were collected at 

different time points (before, at and after diagnosis) and asked about behaviour at different 

time points (lifetime behaviours, prior to diagnosis and at diagnosis).  Further, there was little 

standardisation in the measurements used.  Smoking was categorized in eleven different 

ways, alcohol in eight and most studies reporting BMI used slightly different categories.  

Finally, studies varied markedly on how they adjusted for other factors which affect survival 

time; with nine articles included no adjustment at all.  

There is also considerable potential for measurement and recall bias with all studies 

relying on self-reported behaviour and the majority requiring recall of behaviour a year or 

more prior to interview. However, as over- and under-reporting of behaviour is unlikely to be 
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associated with survival time these biases may change the estimated size of relationships but 

are unlikely to create any spurious relationships. 

The current review includes more studies than other reviews in this general topic area, 

but have tended to find somewhat smaller associations (HRs closer to 1.0) than some of the 

other published meta-analyses. One possible explanation is that these reviews include a 

greater proportion of poorer quality studies (such as results which are unadjusted for possible 

confounders). Alternatively, other reviews often allowed inclusion of post-diagnosis 

behaviours, and it may be that pre-diagnosis behaviour has a genuinely smaller association 

than post-diagnosis behaviour. 

In summary, conducting these reviews has provided some confidence that pre-

diagnosis smoking and pre-diagnosis alcohol are associated with  higher risk of death in 

OSCC and that pre-diagnosis physical activity is associated with lower risk of death. All 

other associations seem subject to doubt due to insufficient information, concerns over the 

quality of the reported results and unexplained inconsistencies in the reported results. 

Our review has suggested a need for standardisation of measurement categories and 

adjustment for other risk predictors. Retrospective studies seeking to record pre-diagnosis 

behaviour after diagnosis should be discouraged as they are subject to recall and survivor 

bias. Prospective studies are necessarily large, time consuming and expensive.  Record 

linkage between behaviour cohorts and cancer registry data sets may be required. 

This review has found that a number of modifiable behaviours known to be associated 

with risk of oesophageal cancer also have a carryover effect on risk of death after diagnosis.  

Successfully addressing these risk behaviours may have the dual benefits of both decreasing 

incidence and decreasing risk of death after diagnosis. 
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2.3 Critique of the method 

The MOOSE and PRISMA guidelines were followed in the design as well as the 

reporting of the review. In the original published paper, the main omission in the review 

processes was the rating of the scientific quality of the study methods of each of the studies. 

This was justified by questioning the measurement of quality: what constitutes quality and 

how can it be accurately measured?  Are quality scales sufficiently sensitive? A 1999 paper 

by Juni et al (Jüni et al., 1999) was cited to support this argument.  

In retrospect, this was out-of-date. Whereas in 1999-2000 only 22% of systematic 

reviews of observational studies incorporated a quality assessment component each having to 

devise their own assessment criteria, by 2003-2004 there were 10 different quality rating 

scales available and 50% of systematic reviews of observational studies incorporated quality 

assessment (Mallen, Peat, & Croft, 2006). There was growing agreement on the need for 

quality assessment.  “‘Quality’ is an amorphous concept. A convenient interpretation is 

‘susceptibility to bias’, …” (Sanderson et al., 2007). The current update assessed risk of bias 

by applying the JBI Checklist for Cohort Studies. 

 

2.4 Closing comments 

This Chapter addressed the first research aim of this thesis by describing current 

knowledge of the association between pre-diagnosis health behaviours and post-diagnosis 

survival times for OC. To obtain as complete and accurate answer as possible a structured 

approach was followed consistent with best practice methods recommended by the Cochrane 

Collaboration (Higgins et al., 2019). A larger number of published articles were included in 

the review than other systematic reviews and meta-analyses in this topic area. Despite this, 
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insufficient information was found in the existing published literature to confidently address 

the thesis aim. 

In the context of the overall thesis, the reviews in this Chapter have provided some 

hints and reference points as to what associations should be expected in the subsequent 

analyses (for example, smoking and alcohol consumption should be expected to be associated 

with decreased survival in OSCC (see Chapters 4,5 and 6). More often, the systematic review 

has highlighted the gaps and weaknesses in current knowledge, confirming the need for new 

methods.  

Following Chapters address the second aim of this thesis, namely to develop, describe 

and evaluate new methods to augment cancer registry data with measures of pre-diagnosis 

behaviour. Chapter 3 presents a review of the data sets, variables and conceptual approach to 

analyses, before the outcome of analyses are described in Chapter 4, 5 and 6.  
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Chapter 3 Data sets, variables, and missing variables 

 

3.1 Introduction 

The first aim of this thesis is to describe the association between pre-diagnosis health 

behaviours and post-diagnosis survival times in OC. In Chapter 2 a systematic review of the 

literature was conducted to address this question. While this review provided evidence and 

indications of some associations between behaviour and survival time in OC, the final 

conclusions were that current information is sparse, and sometimes contradictory, and that 

more research is required to address the study aim. 

The second aim of this thesis is to develop, describe and evaluate a new method to 

augment cancer registry data with external data on health behaviour when one-to-one data 

linkage is not available. Conceptually, the fact that behaviour differs across demographic 

groups, implying that demographic characteristics should convey a small quantum of 

information about health behaviour shall be leveraged. It is anticipated that large data sets 

and informative demographic variables will be needed to convey sufficient information from 

the external health behaviour data set to the cancer registry data base. 

In the discussions below, cancer registry data for OC patients are sought with a 

corresponding external source of health behaviour data. Desirable characteristics of both data 

sets are to be large, have low error rates and to have a range of potentially informative 

demographic measures in common. 

Cancer registries can be characterised by their scope and location. Population-based 

cancer registries record data from all cancer cases in a defined population (usually a 

geographic area such as a country or state). They are used to monitor cancer rates, guide 
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health service planning and needs analysis, and undertake epidemiological and other cancer 

research. Hospital-based cancer registries record all cancer cases within that institution and 

help improve patient care and needs assessment at that hospital. Special cancer registries 

collect data on a particular type of cancer and help research and planning specific to the needs 

of that particular cancer (National Cancer Institute Surveillance Epidemiology and End 

Results Program, 2021). To meet the need for large data sets with good data quality, this 

research focusses on large, population-based cancer registries from selected developed 

countries. 

In Section 3.2 possible cancer registry, health survey pairs are reviewed in Australia, 

UK and the USA. Section 3.3 critiques the measures of pre-diagnosis behaviour available for 

analysis. Section 3.4 explains the data sets selected for analysis in this thesis. Section 3.5 

commences consideration of how information may be transferred between the selected data 

sets. The thesis Appendix shows examples of the R code used to extract and format the data 

sets. Section 3.6 reviews the populations and measures which have been selected for analysis 

within the context of the wider theses. 

 

3.2 Cancer registry and health survey combinations 

The choice of data sets in this research was driven by a) data accessibility and b) 

optimising the range of demographic and health behaviour data.  

The choice of data sets was not necessarily driven by the later representativeness and 

generalisability of the results. The priority was to see if interpretable results could be derived 

under the best possible conditions. Hence, the cancer registries and health surveys reviewed 

below are generally from developed, English speaking countries: with particular focus on 

Australia; England; and the USA. 
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 Australia 

In Australia, all cancers cases, except some skin cancers, are reported to the relevant 

State or Territory population-based cancer registry by hospitals, pathology laboratories, 

radiotherapy centres and registries of birth, deaths, and marriages. Data from the eight State 

and Territory registries are pooled by the Australian Institute for Health and Welfare to form 

the Australian Cancer Database (Australian Institute of Health and Welfare, 2018). The 

Australian Cancer Database contains data on all reported primary cancers in Australia since 

January 1, 1982.  

While there were only an estimated 1,587 new OC cases in Australia in 2020, 

aggregating across years can generate large sample sizes. For example, the aggregate number 

of new OC cases is 27,153 from 2001 to 2020 or 43,073 from 1982 to 2021 (Australian 

Institute of Health and Welfare, 2020a). 

The largest corresponding health survey in Australia is the National Health Survey. 

The National Health Survey is conducted irregularly with surveys in 1989-90, 1995, 2001, 

2004-05, 2007-08, 2011-12, 2014-15, 2017-18 and 2021 (in progress). The survey enrols 

about 20,000 people at each iteration. For example, in 2017-18 data were collected from 

21,315 people of whom 16,049 were 20 or more years of age (Australian Bureau of Statistics, 

2021d).  

The National Health Survey collects many measures of health behaviour relevant to 

the current study. For example, the 2017-18 survey the interviewer administered 

questionnaire included questions on tobacco consumption (focussing on days smoker per 

week, amount smoked, and age commenced and quit regular smoking),  alcohol consumption 

(focussing on last time consumed alcohol, days in last week drank alcohol, details of alcohol 

consumed ay most recent episode and usual alcohol consumption), and exercise (focussing on 
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walking, moderate to vigorous exercise, and strength building activity), as well as interviewer 

measured height, weight and waist circumference (Australian Bureau of Statistics, 2021a). 

The demographic measures in common between the Australian Cancer Database and 

the National Health Survey are sex, age, country of birth and state/territory of usual residence 

(Australian Bureau of Statistics; Australian Institute of Health and Welfare, 2018). 

However, to access unit record data from Australian Cancer Database, would 

typically require Ethics Committee approval from each of the relevant data custodians (that 

is, each of the eight State and Territory cancer registries) and the Australian Institute of 

Health and Welfare usually charges a data extraction fee (Australian Institute of Health and 

Welfare, 2018). Similarly, a State specific data set could be obtained by approaching a State 

or Territory Cancer Registry directly, obtaining (just one) ethics approval and paying a data 

extraction fee (Cancer Institute NSW, 2021). In contrast, de-identified unit record data from 

the National Health Survey data is provided free of charge to Australian universities through 

the Australian Bureau of Statistics’ Microdata Download facility (Australian Bureau of 

Statistics, 2021c) as negotiated through the ABS/Universities Australia access agreement 

(Australian Bureau of Statistics, 2021b). 

 

 England 

In England in 2017 there were 7,569 new OC cases recorded with a 5-year cumulative 

37,300 OC cases from 2013 to 2017 (Office for National Statistics, 2021a).  

The National Cancer Registration and Analysis Service (NCRAS), within Public 

Health England, compiles data from more than 500 local and regional datasets into a 

comprehensive population-based cancer registry. This registry compiles cancer cases’ 
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demographic details, cancer presentation details and staging, comorbidities, treatment, and 

survival measures (but not pre-diagnosis behaviour). Requests to use the data set must be 

submitted to Public Health England via the Office of Data Release. The application process 

requires submission of a Data Request Form, a project protocol specifying how the data will 

be used, details of the data items requested and how the data set will be secured. If approved, 

researchers are required to pay a data retrieval fee (GOV.UK, 2021).  

The Health Survey for England has been conducted annually since 1991 enrolling 

about 8,000 adults and 2,000 children per year (NHS Digital, 2021). Behavioural measures 

include smoking (ever smoked, current smoking, starting and quitting age, number of 

cigarettes per day, how soon after waking), alcohol consumption (age of first drink, current 

drinker, drank in past 12 months, frequency drank in past 12 months, drinking diary for past 7 

days, drinking recall for past 12 months, drinking more than 5 years ago), physical activity 

(last 7 days diary of walking, moderate activity, vigorous activity and sedentary activity) and 

measured health and weight.  

Access to the data set is available through the UK Data Service, a government funded 

service administering access to over 850 data set (UK Data Service, 2021). The UK Data 

Service maintains three levels of data access: ‘Open’, ‘Safeguarded’ and ‘Controlled’. The 

Health Survey for England data files have ‘Safeguarded’ access – which effectively means 

the UK Data Service will keep a record of who is using the data files and, possibly, for what 

reason. While access is automatic for researchers in many countries (e.g. European Economic 

Area, Argentina, New Zealand), Australia is not on the list of countries having “adequate 

level of data protection”. Australian researchers must seek approval directly from the owners 

of each data set which they wish to use.  
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Demographic variables in common between the National Cancer Registry and the 

Health Survey for England are limited to age (5-year groups), sex, and ethnic background. 

The cancer registry does not record marital status and the health survey only codes location 

of residence as rural versus not rural.  

 

 United States of America 

An estimated 19,260 new OC cases will be recorded in the US in 2021, contributing 

to an estimated 5-year cumulative 89,580 new OC cases from 2017 to 2021 (American 

Cancer Society, 2021a).  

In the US, each State, the District of Columbia and most territories (such as Puerto 

Rico, US Virgin Islands) run individual population-based cancer registries. Access to data 

from these individual registries is highly variable, with different approval processes, different 

patient and physician consent requirements, presence or absence of data processing fees, and 

different time delays in accessing data. (CDC Cancer Registry Data Access for Research 

Project, 2018). 

However, all US cancer registries contribute agreed data to one or both of two 

national programs. The Surveillance, Epidemiology, and End Results (SEER) program arose 

from the National Cancer Act of 1971. It is administered by the National Cancer Institute and 

has collated cancer registries’ data since 1973. Currently it compiles data from 21 geographic 

areas, covering about 28% of the US population (National Cancer Institute, 2021d). The 

National Program of Cancer Registries (NPCR) was established by US Congress in 1992 and 

is administered by Centres for Disease Control and Prevention. The NPCR currently supports 

cancer registries in 46 States plus District of Columbia and Territories (Centers for Disease 

Control and Prevention, 2021c). In combination SEER and NPCR cover the entire US. 
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The NPCR’s agreement with contributing States does not allow the release of de-

identified unit record data for research without registry permission. Summary statistics (data 

cubes) are publicly available (U.S. Cancer Statistics Working Group, 2020). In contrast, at 

the commencement of the current project, the SEER program was providing relatively open 

access to unit record data for research purposes, with no fee. Upon registering and signing a 

Data Use Agreement, researchers were able to access the ‘case listing’ data through SEER’s 

data access software package SEER*STAT (Surveillance Research Program, 2021). In the 10 

years from 2006 to 2015 the SEER data set recorded 39,233 new OC cases. 

Most recently, the NPCR have provided access to their cancer registry data through 

the SEER*STAT facility. However, as not all States have provided permission for the release 

of unit record data, the ‘case listing’ option of SEER*STAT has now been disabled. 

A number of national health surveys run in the US. Firstly, the National Health 

Interview Survey (NHIS) is administered by the Centers for Disease Control and Prevention’s 

National Center for Health Statistics. This survey, which has run since 1957, uses a complex 

multi-stage sampling scheme, to select households for face-to-face interviews. The design 

and content of this survey is updated about every 10 to 15 years. The most recent period of 

stability was from 1997 to 2018. During this period, the adult version of the questionnaire 

recorded data on smoking (ever smoked 100 cigarettes, starting and quitting age for regular 

smoking, whether currently smoke every day or some days, and number of cigarettes per 

day), alcohol consumption (ever had 12 drinks in a year, 12 drinks in entire life, average 

number of drinks on days when did drink, binge drinking in the past year, drinking diary and 

binge drinking in the past 30 days), leisure-time physical activity (how often vigorous 

activity, how long are the vigorous sessions, how often light or moderate activity, how long 

are the light to moderate sessions, resistance training) and self-reported height and weight 

(National Center for Health Statistics, 2021a).  
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The number of adult respondents to the survey in 2018 was 25,417 and the 5-year 

cumulative total of adult respondents is 152,556 from  2014 to 2018 (National Center for 

Health Statistics, 2021a) 

In 2019, the National Health Interview Survey underwent a significant redesign. As 

well as changes in the individual data items, questions on alcohol and physical activity were 

relegated to a ‘rotating core’ which means these questions will no longer be asked every year 

and may be as infrequent as every third year. (National Center for Health Statistics, 2021a) 

A second national survey is the National Health and Nutrition Examination Survey 

(NHANES). This combines in-person interviews with standardised physical examinations 

and laboratory tests. This survey is also administered by the Centers for Disease Control and 

Prevention’s National Center for Health Statistics and also uses a complex 4-stage sample 

design, randomly selecting counties from across the US. With a history back to 1959, The 

NHANES has only become a continuous survey since 1999. It runs with a 2-year cycle with a 

target sample size of approximately 10,000 per cycle. For example, in the 2017-18 cycle the 

interviewed sample was 9,254 of whom 8,704 completed the physical examination. Of these 

5,569 and 5,265 were 20 or more years of age (National Center for Health Statistics, 2021b). 

The National Health and Nutrition Examination Survey collects data on smoking 

(ever smoke 100 cigarettes, starting and quitting age, whether currently smoke every day or 

some days, and number of cigarettes per day, how soon smoke after wake up, type of 

cigarette), physical activity (how often vigorous activity, how long are the vigorous sessions, 

how often moderate activity, how long are the moderate sessions, walking and bike riding 

and sport), height and weight (now and 1 year ago). There are no questions on alcohol use 

(National Center for Health Statistics, 2021b).   
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Finally, the Behavioural Risk Factor Surveillance System is a telephone survey which 

has been conducted annually since 1984 and has been a nationwide survey since 1993. 

BRFSS is run as a separate random sample in each State and Territory. In 2018 sample sizes 

ranged from 2,758 in Alaska to 35,767 in New York State.  A mobile phone survey was first 

included in 2008. Behavioural measures in the BRFSS include self-reported smoking (ever 

smoked 100 cigarettes, current smoke every day or some days, time since quit smoking), 

alcohol (any drink in past 30 days, days per week of drinking in past 30 days, drinks per day 

when drinking, in last 30 days ever more than 5 (males) or 4 (females) drinks on one 

occasion, last 30 days largest number of drinks on one occasion), physical activity (any 

physical activity other than regular job, plus other questions in some years) and height and 

weight. The 2019 BRFSS data set contains 418,268 data records, with a cumulative 5-year 

total of 2,233,479 data records for 2015-2019 (Centers for Disease Control and Prevention, 

2021a).  

For all 3 health surveys, de-identified unit-record data sets are available for download, 

without registration or fee, from webpages maintained by the Centers for Disease Control and 

Prevention. 

Demographic variables in the SEER cancer registry data set included age, sex, marital 

status, race and State of residence. Each of these variables were also available in BRFSS data 

set. The NHANES and NHIS do not release the State of residence: the multi-stage sampling 

used in these surveys meant that participants would be drawn from relatively few States.  
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 Other countries 

Many developed countries maintain equivalent cancer registries and national health 

surveys. However, each country’s data systems have unique idiosyncrasies and limitations 

which would need to be considered when applying the methods in this thesis. Here are further 

brief examples Canada, South Africa and New Zealand as to what information may and may 

not be available. 

In Canada, the National Cancer Registry is a central compilation of data sets provided 

from 13 separate province and territories cancer registries (Statistics Canada, 2022a). Each 

province has mandatory data collection. But there are some weaknesses in the carry over to 

the National Cancer Registry. For example, new cancers are not available from Quebec after 

2010 and the variation in procedures between provinces and delays in reporting results in 

some undercounting (Statistics Canada, 2022a). More importantly for the methods in this 

thesis, the only demographic variables passed to the National Cancer Registry are age and sex 

(Statistics Canada, 2022a). 

The Canadian Community Health Survey has roots back to 1991 but has been run in 

its current form since 2007. It has run continually since 2007 enrolling around 65,000 

respondents per year. Participation is voluntary and data are compiled into data sets every 

two years (Statistics Canada, 2022b). Data are self-reported with respondents answer 

questions online (or via telephone if required). Survey modules vary from year to year but 

questions on smoking (and e-cigarettes more recently), alcohol use, physical activity, NSAID 

use, sleep, weight and height, and eating habits are often included.  The survey also includes 

a range of demographic variables including sex, age, main daily activity (employment, 

school, etc), place of birth, population group, language group, food security and income 

(Statistics Canada, 2022b), most of which are not matched in the National Cancer Registry. 
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Data files can be freely downloaded from 

https://www150.statcan.gc.ca/n1/en/catalogue/82M0013X. 

In South Africa, the South Africa National Cancer Registry is pathology-based rather 

than population-based. As data are only collected for pathology laboratories those who were 

diagnosed or died without pathological confirmation are not recorded and this cancer registry 

represents an undercount of total cancers in the country (CANSA, 2022). Annual summary 

tables are provided online (CANSA, 2022), but there is no formal mechanism for external 

researchers to apply to access unit record data. 

South Africa conducts national health surveys from time to time. The most recent is 

the South Africa Demographic and Health Survey (SADHS) conducted in 2016 with 11,083 

households interviewed (National Department of Health (NDoH), Statistics South Africa 

(Stats SA), South African Medical Research Council (SAMRC), & ICF, 2019). Again, there 

does not appear to be any formal mechanism for external researchers to apply to access unit 

record data. 

The population of New Zealand is less than 2% of the population of the USA and 

around less than 20% of the population of Australia (Worldometer, 2022) leading to smaller 

data sets. 

The NZ Cancer Registry covers the entire country and reporting is mandatory under 

the Cancer Registry Act 1993 (New Zealand Legislation, 2021). Primary cancer site, date of 

diagnosis, date of death, age, sex, ethnicity, and census area of residence are all recorded. 

Stage of disease is recorded using the SEER summary staging rather than the AJCC staging 

system (National Cancer Institute, 2021c). The continuous National Health Survey collects 

data from around to 10,000 adults per year. It includes objective measurement of height and 

weight as well as self-reported tobacco use, alcohol use, physical activity, dietary habits, age, 
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gender, ethnicity and possibly deprivation index could be used for matching. (Manatu Hauora 

Ministry of Health, 2020). Other demographic variables such as education, employment 

status, income and housing cannot be used for matching as they do not appear in the Cancer 

Registry data set.  

The New Zealand Health Survey has been a continuous survey since 2011 and aims to 

enrol around 14,000 adults each year, oversampling Maori, Pacific Islander and Asian ethnic 

groups. The survey includes objective measurement of height, weight, waist circumference 

and blood pressure as well as self-reported tobacco use, alcohol use, physical activity, dietary 

habits, body size, age, gender, ethnicity, education, employment status, income, housing and 

household composition, area deprivation and rurality. as well as self-reported behaviours and 

has a 77% response rate (Manatu Hauora Ministry of Health, 2021).  

In New Zealand, access to unit record files for both the cancer registry data sets and 

national health survey data sets are restricted to people physically located in New Zealand. 

These data are provided free of charge to approved research projects (Manatu Hauora 

Ministry of Health, 2020). NZ has an integrated data infrastructure which means that the 

government links the data with these linked data similarly available for approved projects. 
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3.3 Behaviour measures 

The core data items compiled in cancer registry data sets are well standardised (D. M. 

Parkin, 2006) and there is not much ambiguity of which data items are used to measure 

diagnosis and which are used to describe survival status and survival time. But deciding how 

to best measure health behaviour is more complex. 

In this project health behaviour data is obtained from national health surveys; because 

national health surveys cumulate across years to produce large data sets which are often 

readily accessible for research purposes. The primary role of health surveys is to estimate 

prevalence of health behaviour in the population to support public health intervention and 

policy (D. M. Parkin, 2006). But, when investigating the impact of pre-diagnosis health 

behaviour on post-diagnosis survival, measures of cumulative exposure, the stage of life of 

exposure and/or the intensity of exposure may also be important predictors.  

However, by conducting secondary analyses on existing data sets, investigations were 

restricted by the study design and variable definitions inherent in these surveys. For example, 

most national health surveys record participants’ self-report of health behaviour rather than 

more objective direct observation. Further, national health surveys will tend towards a wide 

scope of questions in preference to detailed exploration of individual health behaviours. This 

could restrict the number of available data items for any given behaviour. Finally, as it may 

be necessary to cumulate data sets over time to create larger sample sizes, the consistency of 

the data items definitions and inclusion over repeated surveys needed to be considered.  
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 Tobacco smoking 

It has been proposed that smoking causes OC via tobacco carcinogens (particularly 

nitrosamines) coming into contact with the oesophageal mucosa (Zhang, 2013). No specific 

mechanism has been proposed to explain any potential link between pre-diagnosis smoking 

and post-diagnosis survival in OC. 

Tobacco smokers display quite different smoking behaviours. Some, for example, 

inhale more deeply and/or more often than others, altering the actual dose per cigarette. 

Analyses on the sample of OC patients in the geographic catchment of the cancer registries in 

the study years will only describe the “average” tobacco smoker.  

Aspects of smoking which are most likely to be of interest to researchers, policy 

makers and health promotion workers using the results of this thesis are a) whether the OC 

case did smoke pre-diagnosis, b) how many cigarettes they smoked per week and c) how 

many years they smoked.  

Self-reported smoking status and smoking frequency likely underestimates true 

smoking status and true smoking frequency, and that the level of under-reporting differs 

according to social circumstances (International Agency for Research on Cancer, 2008). For 

example, patients in treatment may feel uncomfortable disclosing their tobacco smoking to 

treating clinicians, children responding to surveys may not disclose their tobacco smoking if a 

parent is present and even adult survey respondents may be embarrassed when disclosing 

their tobacco smoking status to interviewers.  

Some researchers have attempted to develop more objective measures of tobacco 

smoke exposure to illuminate or avoid under-reporting. A commonly used biomarker of 

tobacco smoke exposure is cotinine, a by-product of nicotine, which can be detected through 

saliva, urine, or blood tests (Florescu et al., 2009). But, whether due to expense, logistics 
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and/or invasiveness, these biomarkers for smoking are not routinely available in national 

health survey data. 

The World Health Organisation and US Centers for Disease Control (2011) 

collaborated to provide a preferred list of tobacco smoking questions for national health 

surveys; based on the Global Adult Tobacco survey. The first three questions are self-reports 

of current smoking status, past smoking status, and number of tobacco products smoked per 

day. These questions appear to be core questions in most national health surveys. 

In the previous systematic review (Section 2.2) pooled results for smoking status and 

smoking packyears were presented. A pack year is 20 cigarettes smoked every day for one 

year. Total packyears is calculated by multiplying the number of years a person has smoked 

by the number of packets of cigarettes smoked per day (National Cancer Institute, 2021b). 

However, packyears has been criticised for misrepresenting cumulative risk (see for example 

(Peto, 2012) in relation to lung cancer and (Nance et al., 2017) in relation to cardiovascular 

disease). It is argued that half a pack per day for 40 years is associated with significantly 

higher health risks than two packs per year for 10 years, although both equate to cumulative 

20 packyears of smoking. It is recommended that smoking intensity (cigarettes per day) and 

smoking duration (years) be kept as separate predictors (Peto, 2012) or that only smoking 

intensity is included (Nance et al., 2017). 
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 Alcohol consumption 

Alcohol consumption is thought to increase the risk of OC in multiple ways. For 

example (National Cancer Institute, 2022a),  

• the body metabolises ethanol to acetaldehyde, a toxic chemical which can 

damage both DNA and proteins, 

• reactive oxygen species are generated, which can damage DNA, proteins, and 

lipids in the body through oxidation, and 

• the body’s ability to break down and absorb a variety of nutrients (including 

vitamin A, folate, vitamin C, vitamin D, vitamin E, and carotenoids) is 

impaired. 

However, clinical mechanisms for associations between pre-diagnosis alcohol consumption 

and post-diagnosis survival time in OC have not yet been documented. 

In most countries the focus of health promotion activities is to address ‘excessive’ 

alcohol consumption rather than eliminate all alcohol. In Australia, the current guideline to 

reduce the risk of alcohol-related harm in adults is: 

“To reduce the risk of harm from alcohol-related disease or injury, healthy men and 

women should drink no more than 10 standard drinks a week and no more than 4 standard 

drinks on any one day. The less you drink, the lower your risk of harm from alcohol”  

(Australian Government Department of Health, 2020) 

In the US the National Institute on Alcohol Abuse and Alcoholism and the Substance 

abuse and Mental Health Services Administration maintain separate but similar definitions of 

high-risk alcohol consumption. “Binge drinking” is defined as 5 or more drinks for males (4 

or more for females) on the same occasion. “Heavy alcohol use” is defined as either more 
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than 4 drinks (3 drinks) on any one day or more than 14 drinks (7 drinks) per week for males 

(females) or binge drinking on 5 or more days in the past month (National Institute on 

Alcohol Abuse and Alcoholism, 2021b). 

The previous systematic review (Section 2.2) reported pooled estimates of impact of 

‘ever consuming alcohol pre-diagnosis’ (compared to never) and ‘highest alcohol category 

pre-diagnosis’ (compared to lowest) on post-diagnosis survival in OC. These analyses did not 

address the high-risk alcohol consumption patterns defined above.  

Self-report of alcohol consumption significantly underestimates true alcohol 

consumption. For example, it has been estimated that self-reported alcohol consumption 

underestimates total alcohol sales in a community by about 40-60% (that is, an undercount of 

about one bottle of wine per adult per week in the UK) (Nugawela, Langley, Szatkowski, & 

Lewis, 2016). This is partly due to the under-participation of heavy drinkers in surveys, as 

well as accidental or deliberate under-reporting by those who do respond. There are many 

social pressures encouraging the under-reporting of alcohol (see for example “impression 

management” (Davis, Thake, & Vilhena, 2010) ).  

One study reviewing national health surveys, found this under-reporting was worse in 

light drinkers (Stockwell et al., 2016), but the method used (comparing two self-reports from 

the same person) seems more sensitive to accidental rather than deliberate under-reporting  

Other studies suggest greater under-reporting by heavy drinkers (Boniface, Kneale, & 

Shelton, 2014). The truth may be universal under-reporting. 

One objective measure of alcohol consumption is direct detection of ethanol in the 

breath (breathalyser) or blood. But, on average, it only takes about one hour for the body to 

metabolise one standard drink (DrugRehab.com, 2021). So ethanol in the body is too 

transient to be used be used to measure long-term patterns of exposure. Biomarkers of more 
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long-term alcohol abuse have relatively low sensitivity and specificity or are too challenging 

for routine clinical usage (Torrente, Freeman, & Vrana, 2012). Biomarker profiles, 

combining across biomarkers, can be more reliable at detecting alcohol abuse (Torrente et al., 

2012), but increase the costs and complexity. Biomarkers of alcohol abuse are not routinely 

available in national health surveys. 

Self-reporting of alcohol consumption has been operationalised in terms of a wide 

range of different measure tools but can be categorised into three main groups a) 

retrospective summary measures  b) retrospective daily drinking measures and c) concurrent 

daily drinking measures (Patterson, Hogan, & Cox, 2019). The summary measures of alcohol 

consumption include quantity-frequency measures (average quantity of alcohol consumed on 

a drinking occasion and average frequency of drinking occasions for a specified period in the 

past). The daily drinking measures include diaries of number of drinks on each specific day 

of the period covered. Quantity-frequency approaches have been shown to underestimate 

alcohol consumption relative to diary-based measures (Patterson et al., 2019), but 

retrospective diaries can only be applied over relatively short time periods to allow accurate 

recall. Concurrent recording is known to decrease alcohol consumption during the recording 

period (Patterson et al., 2019), also leading to underestimation of longer-term exposures. 

A recent review of international guidelines for measuring alcohol consumption in 

population surveys found four sets of guidelines all of which had quantity-frequency 

questions at their core: specifically alcohol drinking status in the past year or lifetime, volume 

of alcohol consumption in the past year and frequency and volume of heavy drinking 

episodes in the past year (Nugawela et al., 2016). This combination of questions would, in the 

absence of under-reporting, allow identification of both ‘heavy drinking’ and ‘binge 

drinking’. Alcohol diaries are infrequently incorporated into national health surveys, no doubt 

due to the complexity of these measures and time constraints of the surveys. 
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 Physical activity 

People are constantly moving during their normal activities of daily living. But, 

people require a certain minimum level, intensity, and variety of movements to maintain their 

physical health:  

“Physical activity for health benefit comprises several components (e.g. intensity, 

frequency, duration and type) that can be carried out in different settings or contexts (e.g. 

leisure-time, occupational, incidental and transport). Measurement is further complicated 

because there are several dimensions of physical activity related to health (e.g. energy 

expenditure, fitness, strength and flexibility).” (Armstrong, Bauman, & Davies, 2000, p. 10) 

The physical activity guidelines for Australian adults between 18 and 64 years of age 

recommend at least either 2.5 to 5 hours of moderate intensity physical activity of 1.25 to 2.5 

hours of vigorous intensity activity (or equivalent combination) per week. For older 

Australians the recommendation is at least 30 minutes of moderate intensity physical activity 

on most, preferably all, days. Examples of moderate intensity physical activities provided 

include brisk walk, golf, mowing the lawn and swimming. Examples of vigorous intensity 

activities include jogging, aerobics, fast cycling, soccer or netball (Australian Government 

Department of Health, 2021). The US (US Department of Health and Human Services, 2018) 

and UK (Department of Health & Social Care, 2019) guidelines are very similar. Of course, 

these guidelines are focussed on general good health and/or cardiovascular health and are not 

specifically validated for maximising post-diagnosis survival after OC. 

Physical activity profiles can also vary according to countries’ economic 

development. Residents of less developed countries have higher levels of physical activity on 

average and a preponderance of physical activity in work and transport. Individuals in more 

developed countries tend to have more sedentary work and transport leaving leisure time a 
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proportionately larger contributor to total physical activity (Bauman et al., 2011; Ng & 

Popkin, 2012).  

There is now a daunting array of physical activity measurement tools available. The 

‘doubly labelled water’ approach using biomarkers is often viewed as the gold standard 

measurement of total physical activity, but it’s too expensive to be used in large scale surveys 

(National Institute for Health Research, 2021). There is also a range of wearables available 

for physical activity, such as accelerometers, pedometers, heart rate monitors, and armbands 

(National Institute for Health Research, 2021; Sylvia, Bernstein, Hubbard, Keating, & 

Anderson, 2014). Some disadvantages with devices include costs and logistics (getting the 

devices to participants, getting participants to wear them, retrieving data, and retrieving the 

devices) and lack of context as to what type of activity is being performed. Finally, there are 

also many physical activity questionnaires and diaries which have been developed and 

validated in different populations in different times.  

Self-report measures have the advantage of being low cost and relatively easy to 

administer. As with alcohol consumption, recording of self-report can be achieved using 

quantity-frequency questionnaires or diaries of activity. There is no overall pattern of 

agreement between self-report and physical measures of physical activity (Prince et al., 

2008), however, with careful planning and management (Ainsworth et al., 2012), self-

reported physical activity can sometimes produce good agreement with physical 

measurements (Besson, Brage, Jakes, Ekelund, & Wareham, 2010), appropriate for 

population-level investigations (Haskell, 2012).  

One attempt to standardise physical activity measurement at the national level is the 

Global Physical Activity Questionnaire developed, first in 2002. It has 16 questions around 

three domains - occupational, transport and leisure time - and asks the respondent to recall 
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physical activity which lasts for at least 10 minutes with moderate and vigorous intensity in a 

typical week. It does not measure light intensity physical activity (Keating et al., 2019).  A 

recent systematic review located 26 studies of the validity of the Global Physical Activity 

Questionnaire. Association between GPA and accelerometers was only poor to fair. (Keating 

et al., 2019).  

Overall, accurate measurement of physical activity appears to require physical devices 

or many item questionnaires, both of which may be difficult to implement in the context of 

national health surveys. Physical activity measurement is also not always a core item in 

national health services, sometimes being included intermittently. 

 

 Obesity 

Obesity is not a behaviour as such but is a combined outcome of high energy diet and 

insufficient physical activity. Perhaps the most known definition of obesity is high Body 

Mass Index (BMI). A person’s BMI is their weight measured in kilograms divided by the 

square of their height measured in metres. The World Health Organisation has defined 

obesity as BMI ≥30 kg/m2 (WHO, 1995), sometimes modified to BMI ≥27.5 kg/m2 when 

applied to Asian populations (WHO Expert Consultation, 2004). 

BMI, requiring only weight and height, is relatively easy to collect via either self-

report or objective measurement with a stadiometer and weight scales. It has been shown that 

average self-reported BMI is almost always lower than average BMI from objective 

measurement, due to both overestimation of height and underestimation of weight but the 

magnitude of this underreporting varies considerably between studies (Gorber, Tremblay, 

Moher, & Gorber, 2007). National health surveys which are conducted face-to-face will often 
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incorporate the objective measurement of height and weight, while telephone-based surveys 

must rely on self-report. 

While the BMI-based definition of obesity is widely used, it has also been criticised 

as a poor indicator of body fat as a health issue (Lewis et al., 2009; Nuttall, 2015). For 

example, the accumulation of visceral fat (measured by waist circumference) has been shown 

to be a better predictor of the health risks for cardiovascular disease (Neeland, Poirier, & 

Després, 2018). But waist circumference is a problematic alternative as the cutpoint used to 

distinguish between obese and non-obese differs by ethnic group (Misra, Wasir, & Vikram, 

2005). 

 

3.4 Data sets used in this thesis 

Throughout this thesis analyses are based on the US SEER cancer registry data and 

US BRFSS national health survey. The reasons for selecting these data sources were sample 

size and data availability for a wide range of socio-demographic and health behaviour 

variables potentially associated with OC. SEER was the only cancer registry data which did 

not require a formal project review by the data custodians, nor any data extraction fees. 

BRFSS has the largest total sample size of the surveys reviewed above and was the only 

health survey conducted across the entire catchment of the SEER cancer registry. (The NHIS 

and NHANES are conducted on smaller samples and these samples come from randomly 

selected US Counties which may or may not be within the SEER catchment.) As an 

additional benefit, the SEER and BRFSS data sets had more demographic variables in 

common than any other cancer registry and national health survey pair. 

The BRFSS health survey suffers from non-response. In 2015 the median response 

rates for the BRFSS health survey were 68.0% of all persons contacted or 47.2% of all in the 
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sampling frame adjusted for the expected number ineligible. (Centers for Disease Control, 

2015). Non-response biases have been documented (Schneider, Clark, Rakowski, & Lapane, 

2012). The BRFSS custodians compute and attach survey weights to each data record to 

allow users to weight the sample to something more demographically consistent with the US 

population (Iachan, Pierannunzi, Healey, Greenlund, & Town, 2016). However, throughout 

this thesis the BRFSS data set will only be used to augment the SEER cancer registry data 

sets. The BRFSS health survey weights will not be used and the demographic idiosyncrasies 

of the BRFSS health survey data set will be removed through data matching in the 

augmentation process. 

The primary data set, the SEER cancer registry data, has much lower potential for 

bias. The SEER cancer registry standard for case ascertainment is reportedly 98% (Mahnken, 

Keighley, Cumming, Girod, & Mayo, 2008). Strong quality assurance activities are employed 

(H. S. Park, Lloyd, Decker, Wilson, & Yu, 2012) with evidence that the SEER data records 

have few missing data points in demographic variables (Kuo & Mobley, 2016). However, the 

population covered by the SEER cancer registries is only a subset of the US population. The 

population covered by the SEER cancer registries have been shown to have slightly higher 

proportions of younger, poorer, lower educated and unemployed people and slightly lower 

proportion of white people than the general US population (Kuo & Mobley, 2016). For 

example, SEER currently listed coverage includes only 42.0% of Whites compared to 44.7% 

of African Americans, 66.3% of Hispanics, 59.9% of American Indians and Alaska Natives, 

70.7% of Asians, and 70.3% Hawaiian/Pacific Islanders (National Cancer Institute, 2021d). 

Another constraint imposed by using national data sets is the delay between the event 

of interest and the commencement of analysis and production of results. Both the SEER 

cancer registry data and the BRFSS health survey are based on continuous data collection, 

but both are only compiled and released annually. Processes involved in checking and 
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compiling these data sets can add considerable delays to data availability. For example, the 

2017 BRFSS health survey data set was released on October 9, 2018 (Centers for Disease 

Control, 2018). This means that interviews conducted in early 2017 only became available 

for analysis 18 months later. https://www.cdc.gov/brfss/annual_data/annual_2017.html As 

the SEER cancer registry compiles data from other more local registries, the delays are 

longer. For example, the SEER cancer registry data for 2017 were released in April 2020 

(National Cancer Institute, 2022b), three years after diagnosis for those diagnosed early in 

2017.  

 

3.5 Variables used in this thesis 

This choice of data sources partially defines the scope of analyses in this thesis. 

Firstly, the SEER cancer registry data definition of an OC case is used. That is, OC cases 

were those with a newly reported primary malignant cancer coded in the range C15.0 to 

C15.9 on the International Classification of Diseases for Oncology 3rd edition (World Health 

Organization, 2013).  

Secondly, analyses included the geographic coverage of the SEER cancer registries. 

This coverage, during the study period, consisted of whole State cancer registries 

(Connecticut, Georgia Center for Cancer Statistics, Hawaii, Iowa, Kentucky, Louisiana, New 

Jersey, New Mexico, Utah), registries for smaller geographic regions (Los Angeles, Greater 

Bay Area Cancer Registry, Greater California, Detroit, Seattle-Puget Sound) and sub-

populations (the Alaska Native Tumour Registry).  

Thirdly, the years used in the analyses were determined by the availability and 

consistency of data. 2015 was the latest year of SEER cancer registry data available at the 

commencement of the analyses. 2001 was the first year with consistent definitions of the 
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health behaviour variables in the BRFSS health survey. Hence all analyses are restricted to 

the 2001 to 2015 time period. 

 Finally, the variables used in the analyses in this thesis were ether provided by, or 

derived from, either the SEER cancer registry and/or BRFSS health survey data. Table 3.1 

describes each of the variables used. 

Table 3.1 The variables used in this thesis 
SEER variables  
Outcome variables 

Survival time recode 
Number of whole months from date of diagnosis to either date of death, date last known 
to be alive, or follow-up cutoff date for the SEER file (additional days are ignored) 

Vital status recode (study cutoff used) 
‘dead’ or ‘alive’ at follow-up cutoff date. 

Variables in common with BRFSS 
Age recode with <1 year olds 

Age at diagnosis coded as ‘<1 year’, ‘1-4 years’, ‘5-9 years’, … , ‘85+ years’ 
Analysed as:  

‘80-84 years’ and ‘85+ years’ combined for compatibility with BRFSS 
Sex 

‘male’, ‘female’ 
Marital status at diagnosis 

‘Married (including common law)’, ‘Divorced or Separated’; ‘Single (never married)’, 
‘Unmarried or domestic partner’, ‘Widowed’, ‘Unknown’ 

Analysed as: 4 category marital status 
‘Unmarried or domestic partner’ combined with ‘Single/never married’ 

Analysed as: 2 category marital status 
‘Divorced or Separated’, ‘Single (never married)’, ‘Unmarried or domestic partner’ and 
‘Widowed’ all combined into a single ‘Unmarried’ category 

Race recode (W,B,AI,API) 
‘White’, ’Black’, ’American Indian/Alaska Native’, ‘Asian or Pacific Islander’, 
‘Unknown’ 

State-county 
State and county of residence at diagnosis 

Analysed as:  
Only State code used 

Year of diagnosis 
Calendar year 

Potential confounding variables 
Histologic type ICD-O-3 

Histology codes from ICD-O-3 
Analysed as: 

8050-8089 categorised as squamous cell carcinoma, 8140-8389 categorised as 
adenocarcinoma 
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Table 3.1 (continued) The variables used in this thesis 
Derived AJCC Stage Group, 6th ed (2004+) 

Only available for 2004 onwards. Stage category from the AJCC 6th edition. ‘I’, ‘IIA’, 
‘IIB’, ‘III’, ‘IV’, ‘IVB’, ‘IVNOS’, ‘Unknown’ 

Analysed as: 
‘IIA’ and ‘IICB’ combined as stage ‘II’, ‘IV’, ‘IVB’, ‘IVNOS’ combined as stage ‘IV’ 

Reason no cancer directed surgery  
‘Not performed, patient died prior to recommended surgery’, ‘Not recommended’,  ‘Not 
recommended, contraindicated due to other cond, autopsy only (1973-2002)’, 
‘Recommended but not performed, patient refused’, ‘Recommended but not performed, 
unknown reason’, ‘Recommended, unknown if performed’, ‘Surgery performed’, 
‘Unknown, death certificate, or autopsy only (2003+)’ 

Analysed as: Treated with curative intent (yes/no) 
‘Surgery performed’ combined with all categories with ‘recommended’ surgery into 
new category of ‘yes, curative intent’, all other categories combined into ‘no curative 
intent’ 

BRFSS variables 
Behavioural variables 

Four-level smoker status 
‘now smokes every day’, ‘now smokes some days’, ‘former smoker’, ‘never smoked’ 

Analysed as: 
‘now smokes every day’ and ‘now smokes some days’ combined to for ‘current smoker’ 
category, ‘former smoker’ and ‘never smoked’ combined to form ‘not current smoker’ 
category’ 

Binge drinkers (males ≥5 drinks on one occasion, females ≥4 drinks on one occasion) 
‘binge drinker’, ‘not binge drinker’ 

Heavy drinkers (adult men ≥2 drinks/day, adult women ≥1 drinks/day) 
‘heavy drinker’, ‘not heavy drinker’ 

Adults reporting physical activity in past 30 days other than regular job) 
‘reported physical activity’, ‘did not report physical activity’ 

BMI 
body mass index 

Analysed as: 
‘obese’ if BMI≥30, ‘not obese’ if BMI<30 

Drinks per day 
Calculated total number of alcoholic beverages consumed per day 

Analysed as: 
≥1 drink per day on average combined with current smoker categorised as ‘regular 
smoker and drinker’, <1 drink per day on average and/or not current smoker categorised 
as ‘not regular smoker and drinker’ 
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Table 3.1 (continued) The variables used in this thesis 
Variables in common with SEER 

Imputed age value collapsed above 80 
Age at interview categorised as ‘18-24 years’, ’25-29 years’, ’30-34 years’, … , ‘80+ 
years’ 

Sex 
‘male’, ‘female’ 

Marital status 
‘Married’, ‘Divorced’, ‘Widowed’, ‘Separated’, ‘Never Married’, ‘A member of an 
unmarried couple’. ‘Refused” 

Analysed as: 4 category marital status 
‘A member of an unmarried couple’ combined with ‘Married’ and ‘Separated’ combined 
with ‘Divorced’ 

Analysed as: 2 category marital status 
‘Divorced’, ‘Widowed’, ‘Separated’ and ‘Never Married’ combined as ‘unmarried’ and 
‘Married’, ‘A member of an unmarried couple’ combined as ‘married’ 

Preferred race category 
‘White’, ‘Black or African American’, ‘American Indian or Alaskan Native’, ‘Asian’, 
‘Native Hawaiian or other Pacific Islander’, ‘Other race’, ‘No preferred race’, 
‘Multiracial but preferred race not answered’, ‘Don’t know/not sure’, ‘Refused’ 

Analysed as: 
‘Asian’, ‘Native Hawaiian or other Pacific Islander’ combined to be compatible with 
SEER data, ‘Other race’, ‘No preferred race’, ‘Multiracial but preferred race not 
answered’, ‘Don’t know/not sure’, ‘Refused’ were all excluded from analyses 

State FIPS code 
State of residence 

Interview year 
Calendar year 

 

The variables extracted from the SEER and BRFSS data placed several constraints on 

the proposed analysis. Firstly, some of the variables are lacking in detail. For example, 

survival time is measured in months rather than days, and age is measured in 5-year age 

categories rather than single years. Further, the oldest age category in the BRFSS health 

survey is ‘80+ years’ sometimes forcing SEER cancer registry data to be aggregated across 

‘80-84 years’ and ‘85+ years’ age categories. The somewhat less detailed information going 

into the analyses will tend to lead to less precision in the results (i.e. widening confidence 

intervals).  

There is one missing variable problem. Derived AJCC cancer stage at diagnosis is 

unavailable before 2004. It also has a high rate of missing data (18%) in the years when it is 
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available. Cancer stage has been retained as a potential confounding variable. It is known to 

have a close association with cancer survival time and could potentially be associated with 

health behaviour (such as if smokers were more likely to be diagnosed at a later cancer stage 

than non-smokers). It could be contended that cancer stage at diagnosis is not a confounder, 

but rather and intermediary on the disease pathway between behaviour and survival time, and 

that adjustment for an intermediary in conditional regression models induces collider 

stratification bias (Cole et al., 2010). However, it is so fundamental to clinicians and patients 

that most readers and reviewers expect it to be considered.  

Given the missing years and other missing data in the measurement of cancer stage, 

surgical treatment variable was considered for use as a surrogate. Removal of the primary 

tumour becomes moot in metastatic cancer. Therefore, stage IV cancer is strongly associated 

with no surgery. There will also be a small proportion of OC cases where surgery is not 

recommended due to comorbidities, but generally the surgery versus no surgery divide is a 

reasonable proxy for the cancer stages I, II, III, versus cancer stage IV.  

Another issue arising from the selection of variables is that there are some 

mismatches in the variables that are in common to both data sets. For example, while State of 

residence occurs in both data sets, the catchment areas are slightly different. For example, 

SEER’s catchment of area of Detroit can only be equated with BRFSS catchment area of 

Michigan State and SEER’s catchment area of Seattle-Puget Sound can only be equated to 

the BRFSS catchment area of Washington State. Also, as race is coded into just 4 categories 

the SEER cancer registry data set, BRFSS health survey respondents coded as ‘multi-racial, 

but preferred race not answered’ have no equivalent in the SEER data set.  

The health behaviour variables were obtained from the BRFSS health survey data set 

and are all self-reported. Self-report is known to underestimate the prevalence of higher risk 
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behaviours.  For example, one study concluded that self-reported obesity is underestimated 

by 16% in the BRFSS data set in comparison to the objectively measured BMI in the 

National Health and Nutrition Examination Survey (NHANES) (28.67% in BRFSS compared 

to 34.01% in NHANES) (Ward et al., 2016) 

Dichotomous measures of health behaviour (displays the behaviour, does not display 

the behaviour) were used throughout.  Dichotomous variables contain the least amount of 

information for analysis but represent individuals most fundamental decisions: Shall I stop 

smoking? (yes/no)?; Shall I stop drinking in excess (yes/no)?; Shall I take up a regular 

exercise (yes/no)? Given the potential measurement biases in self-reported behaviour, it was 

determined to focus on the most fundamental measures of behaviour. 

More specifically, the tobacco smoking questions in the BRFSS health survey asked if 

respondents had ever smoked 100 cigarettes, followed by current smoking frequency 

categorised as “some days”, “every day” or ‘not at all’. As there was little information on 

quantity smoked, and as less than 10% of respondents fell into the “some days” category, the 

simple dichotomy between current smokers and not current smokers seemed to be the most 

informative measure.  

The alcohol consumption questions related to self-reported behaviour in the past 30 

days. These were frequency and quantity questions including the number of drink days, the 

average number of drinks per drink day and the largest number of drinks on any one day. The 

BRFSS had already identified individuals with behaviours consistent with the US Substance 

Abuse and Mental Health Services Administration’s definitions of binge drinking and heavy 

alcohol use (National Institute on Alcohol Abuse and Alcoholism, 2021b). These two 

dichotomous measures were included for the analyses.  
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The core physical activity questions in the BRFSS health survey were specific to 

discretionary or leisure time activities in the past 30 days. That is, the measures specifically 

excluded activities in respondents’ regular occupational setting. The questions related to 

whether they participated in any activity, what was their most common activity, and the 

number of times per week and average duration of sessions of this one most common activity.  

As the frequency quantity questions were not inclusive of all leisure time activities, the more 

basic question of any leisure time activity at all (yes/no) was used. 

Obesity was derived from self-reported height and weight using the standard BMI ≥30 

kg/m2 cut point (WHO, 1995). 

An additional behavioural variable was created describing the joint behaviour of 

smoking and regular alcohol consumption. It has previously been suggested that smokers 

who drink an average of 1.5 standard drinks per day have 8.05 (95% CI 3.89,16.60) times the 

risk of contracting OC than never smokers who drink an average of 0.5 standard drinkers per 

day (Steevens, Schouten, Goldbohm, & van den Brandt, 2010). To investigate this, a 

dichotomous behavioural measure was defined comparing respondents who were current 

smokers and drank an average of at least 1.0 drink per day to all other respondents. The lower 

threshold of 1.0 drinks per day had been used in previous research (Thrift, Nagle, Fahey, 

Russell, et al., 2012) to boost sample size in this group. It was anticipated that larger sample 

sizes would also be required for the methods in this thesis. In hindsight, however, the lower 

alcohol threshold may have undermined the differentiation of the clinically important risk 

behaviours. 
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3.6 Addressing missing variables 

The SEER cancer registry data contains all required variables except pre-diagnosis 

health behaviours. The BRFSS health survey does record the required health behaviour. 

However, the SEER cancer registry and BRFSS health survey data sets don’t have a lot in 

common: one is a census the other a sample survey and they are designed and administered 

by different organisations for different research purposes. The main commonality is that both 

collect information from the same population (US adults), albeit different people from this 

population. 

In 2014 there were 464,664 BRFSS respondents from the 244,737,285 adults in the 

US. That is, the proportion of US adults who responded to the BRFSS was 0.001787. The 

SEER cancer registry data set recorded 3,816 OC cases in 2015. Crudely, 0.001787 of 3,816 

or about 6 of the 2015 OC cases could be expected to have responded to the BRFSS in the 

previous year. Thus, one-to-one data linkage of the BRFSS health survey to the SEER cancer 

registry data would appear futile – the expected sample size is tiny, and the matching errors 

would overwhelm the few true matches which were identified. 

Given the two data sets cover the same catchment, it would be possible to undertake 

‘ecological inference’ (Freedman, 1999). That is, change the unit of analysis from individual 

to geographic area. The first step would be to summarise available data by a geographic 

measurement in common between the two data sets.  The smallest geographic areas defined 

in both SEER and BRFSS are the US States (the SEER cancer registries do provide 

information down to US counties, but the smallest geographic units in the BRFSS health 

survey is a rural versus urban variable). One example of ecological inference is to use the 

proportion of people in the State with the behaviour as a predictor of the median survival time 

for OC within the State. In doing so, the sample size is reduced to just 10 (the number of 

States in the SEER data set) and change the focus of the research question to describing 
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differences in OC incidence as a reflection of health systems, social conditions, or data 

collection between the States. Results of ecological inference tell nothing about the 

relationship between pre-diagnosis health behaviour and post-diagnosis survival time at the 

individual level. Any attempt to extrapolate from the State-level results back to individuals 

would be an example of the ‘ecological fallacy’  (Freedman, 1999). Ecological inference does 

not address the research questions of this thesis and is not pursued. 

The second aim of the current research is to develop a new approach to combining 

information from the cancer registry and the national health survey. The starting position of 

this thesis is to consider the six behavioural variables as present in the SEER data set, with 

100% missing data. There are many methods for correcting for missing data during analysis 

(Little & Rubin, 2019), some of which may be applicable to, or extendable to, variables with 

100% missing data.  

Note that with 100% missing data, there are no biases: every observation has an 

identical probability (1.00) of being missing. Therefore, the data are missing completely at 

random (MCAR), simplifying the analyses.  

Little and Rubin (2019) classify missing value analyses into four (possibly 

overlapping) types. The first two of these, exclusion and weighting, are simply impossible 

with 100% missing data. That is, excluding all data records with missing data results in the 

exclusion of the entire data set and there are no actual observations to give higher or lower 

weight to. Little and Rubin’s third and fourth approaches to missing value analysis, 

imputation and modelling, are the focus of this current research. 

Suppose imputation is conceptualised as making the best possible guesses of the 

values of the missing data points and model-based methods are making the best possible 

predictions for the values of the missing data points. In either case, finding the best possible 
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solution involves using all available information which is informative of the missing data 

points. 

This thesis focusses on six dichotomous pre-diagnosis health behaviours which are 

100% missing on the SEER cancer registry data set. The only available information which is 

even partly informative of the missing data points are the health behaviours of those other 

members of the same underlying population who responded to the BRFSS health survey. 

That is, individuals with similar demographic characteristics will have a slightly increased 

likelihood of displaying the same behaviours compared to individuals with different 

demographic backgrounds (see section 1.8). 

That is, the only information available to inform the imputation or prediction of the 

missing health behaviours are the relatively small variations in the distributions of health 

behaviour between demographic groups.  

 

3.7 Closing comments 

In this Chapter it has been confirmed that it is common for developed countries to 

support both population cancer registries and national health surveys. Cancer registry data do 

not record pre-diagnosis health behaviour, but these health behaviour data are collated in 

national health surveys that have overlapping geographic catchments in some instances.  

Unit record data was readily accessible from both the cancer registries and the 

national health surveys. Accessing unit record data from the cancer registries usually involves 

obtaining approval for the study protocol and paying a data access fee, but accessing unit 

record data from national health surveys rarely requires a study protocol and often does not 

involve a data access fee; particularly for researchers from within the country. 
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This means that any methods developed to augment cancer registry data with pre-

diagnosis health behaviour from a national health survey will be applicable across many 

developed countries. The methods of this thesis will not be restricted to the specific data sets 

used in this thesis. A pragmatic choice was made to only use the US SEER cancer registries 

data sets and the US BRFSS health survey data sets during the analyses in this thesis, as these 

were routinely available data and provided the largest sample size on an array for health 

behaviours for analysis. 

While the cancer registries represent censuses of the cancer populations in their 

catchments, the national health surveys are usually conducted on relatively small samples of 

the general population of the country. As relatively few of the cancer cases could be expected 

to have contributed to a previous health survey, record linkage would return unhelpfully 

small sample sizes for any but the most common cancer types. Record linkage has the 

additional complication of increasing both the risk and the consequences of a data 

confidentiality breach, as more data items are compiled for each individual. 

Even if containing no individuals in common, human data sets still tend to have 

variables in common, particularly demographic variables. Demographic variables are known 

to have associations with health behaviours. So knowing someone’s demographics provides a 

some quantum of information about their likelihood of displaying particular health 

behaviours. The second aim in this thesis is to investigate methods to exploit this relationship 

between demographics and health behaviour to augment cancer registry data with 

information on pre-diagnosis behaviour. 

By using existing data sources, the time and expense of data collection, data cleaning 

and data management was avoided but at the cost of having no input into the definition of the 

variables. This thesis focusses on a group of six self-reported dichotomous measures of health 
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behaviour. The choice of behavioural measures was based on the availability of variables that 

could be most informative of OC post-diagnosis survival times. Dichotomous variables 

contain the least possible amount of information of any measurement type. However, it is 

possible that these relatively simple variables may be less affected with bias and may be 

computationally more straightforward to analyse than more complex measures. 

As a first step towards augmenting the cancer registry data set, six pre-diagnosis 

health behaviour variables are conceptualised as being present in the cancer registry data with 

100% missing data. Methods for addressing missing data are well established. This thesis 

now seeks to apply or extend these methods to address the 100% missing data in the pre-

diagnosis variables. 

For the remainder of this thesis both model-based and imputation-based methods are 

explored for addressing the missing health behaviour data for OC cases in the SEER cancer 

registry data, using the BRFSS health survey data as an external reference.  

Chapters 4 to 6 document analyses that aim to solve this problem. Chapter 4 describes 

the trial of a model-based method, and Chapters 5 and 6 document an imputation-based 

method. 
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Chapter 4 A model-based approach to addressing missing 

pre-diagnosis health behaviour 

 

4.1 Background 

The second aim of this thesis was to develop, describe and evaluate a novel algorithm 

for investigating the relationship between pre-diagnosis health behaviour and post-diagnosis 

survival time in OC. Chapter 3 described the plan to explore both model-based and 

imputation-based methods for addressing the 100% missing pre-diagnosis behaviour data in 

the SEER cancer registry data set using the BRFSS health survey data as an external 

reference. This Chapter describes the development of a model-based solution to the 100% 

missing value problem.  

The BRFSS health survey provided data on the health behaviours of participants and 

their demographic characteristics. The SEER data set contained the same demographic 

variables. A model of health behaviour in the BRFSS health survey using only demographic 

data can then be applied to the SEER OC cases to predict their missing health behaviour. The 

model provides the mechanism for information transfer between the BRFSS health survey 

data set and the SEER cancer registry data set. 

The 3-step analysis plan comprises: 1) using the BRFSS data set to develop logistic 

models describing the association between each health behaviour and the available 

demographic variables; 2) using these models to estimate the probability of pre-diagnosis 

health behaviour of OC cases based on their demographic variables; and 3) analysing the 

relationship between predicted pre-diagnosis health behaviour and post-diagnosis survival 

time in the OC using Cox regression.  
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This approach has been published as a peer-reviewed research paper which is 

presented in Section 4.2. Key examples of the R code used in the analysis are described in the 

thesis Appendix. Section 4.3 provides a critique the methods that were used and Section 4.4, 

reviews this work in relation to the overall goals of the thesis.  

 

4.2 Using estimated probability of pre-diagnosis behaviour as a predictor of cancer 

survival time: an example in oesophageal cancer. 

The material in this section has been published as a peer reviewed journal article. The 

citation is: Fahey, P. P., Page, A., Stone, G., & Astell-Burt, T. (2020). Using estimated 

probability of pre-diagnosis behavior as a predictor of cancer survival time: an example in 

esophageal cancer. BMC Medical Research Methodology, 20, 1-9. 

In 2020, the journal BMC Medical Research Methodology has a Q2 rating in 

Epidemiology in the Scimago rating scheme and a 2-year impact factor of 4.402.  

Following the CRediT Taxonomy (National Information Standards Organization, 

2021), author contributions were: 

• Paul Fahey contributed to Conceptualisation, Data curation, Formal analysis, 

Methodology and Writing the original draft. 

• Andrew Page, Glenn Stone and Thomas Astell-Burt contributed to 

Supervision 

• All authors contributed to Review and Editing of the draft paper. 

This material has been reformatted to suit the thesis with supplementary materials re-

integrated into the paper, tables and figures re-numbered, and text converted from US to 

Australian English. 
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 Abstract  

Background: Information on the associations between pre-diagnosis health behaviour 

and post-diagnosis survival time in oesophageal cancer could assist in planning health 

services but can be difficult to obtain using established study designs. It is postulated that, 

with a large data set, using estimated probability for a behaviour as a predictor of survival 

times could provide useful insight as to the impact of actual behaviour. 

Methods: Data from a national health survey and logistic regression were used to 

calculate the probability of selected health behaviours from participant’s demographic 

characteristics for each oesophageal cancer case within a large cancer registry data base.  The 

associations between survival time and the probability of the health behaviours were 

investigated using Cox regression.  

Results: Observed associations include: a 0.1 increase in the probability of smoking 

one year prior to diagnosis was detrimental to survival (Hazard Ratio (HR) 1.21, 95% CI 

1.19,1.23); a 0.1 increase in the probability of hazardous alcohol consumption 10 years prior 

to diagnosis was associated with decreased survival in squamous cell cancer (HR 1.29, 95% 

CI 1.07, 1.56) but not adenocarcinoma (HR 1.08, 95% CI 0.94,1.25); a 0.1 increase in the 

probability of physical activity outside the workplace is protective (HR 0.83, 95% CI 

0.81,0.84).  

Conclusions: It is concluded that probability for health behaviour estimated from 

demographic characteristics can provide an initial assessment of the association between pre-

diagnosis health behaviour and post-diagnosis health outcomes, allowing some sharing of 

information across otherwise unrelated data collections. 
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 Background 

With an incidence of 9.3/100,000 males and 3.5/100,000 females per year, 

oesophageal cancer led to more than half a million deaths worldwide in 2018 (Bray et al., 

2018). The majority of these deaths arise from modifiable lifestyle factors. In the US in 2014 

it was estimated that 71% of male and 59% of female oesophageal cancer deaths arose from 

modifiable lifestyle factors and that cigarette smoking, alcohol consumption and excess body 

weight could account for up to 50%, 17% and 27% of deaths respectively (Islami et al., 

2018).  

While there is considerable documentation of associations between health behaviour 

and onset of oesophageal cancer (Clara Castro et al., 2018), the impact of health behaviour on 

survival times is less well understood (Fahey, Mallitt, Astell-Burt, Stone, & Whiteman, 

2015). A more thorough understanding of predictors of survival time is needed to assist in 

anticipating health service needs and for health services planning.  

Health behaviour prior to a cancer diagnosis is often different from health behaviour 

post-diagnosis. Behaviour prior to diagnosis can be influenced by public health activity but 

post-diagnosis behaviour is strongly influenced by the diagnosis itself (Toohey, Pumpa, 

Cooke, & Semple, 2016) and by treatment (Demark-Wahnefried et al., 2005; Rock et al., 

2012). As oesophageal cancer has relatively short survival times (in the US, just 19% of cases 

survive 5-years (Siegel, Miller, & Jemal, 2019)), pre-diagnosis behaviour could have a strong 

carry over effect on survival time. 

Unfortunately, investigating the effect of pre-diagnosis behaviour on post-diagnosis 

survival can be difficult and expensive. As the disease is relatively rare, a prospective cohort 

study would be inefficient (on the figures above, surveillance of 100,000 men for 10 years 

would be expected to yield just 93 new oesophageal cancer cases). Retrospective studies 
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which enrol newly diagnosed cancer patients and ask them to recall their prior health 

behaviour still involve considerable expense and are fraught with recall and survivor biases. 

In one example, an Australian study enrolling newly diagnosed oesophageal cancer patients 

reported that patients with late-stage disease were difficult to enrol and under-represented 

(Smithers et al., 2010). 

Secondary analyses of already existing data can provide alternate, cost-effective 

opportunities. It is now common for governments to sponsor both regular health behaviour 

surveys and mandatory cancer registries.  For those cancer cases who contributed to a survey 

prior to diagnosis, their health behaviour and cancer outcomes can be linked to produce a 

retrospective cohort. Data linkage avoids recall and survivor biases and is cost efficient (as 

the required data are already collected, compiled and cleaned). 

But data linkage may not be feasible either. Confidentiality is one issue. But more 

fundamentally, as oesophageal cancer is relatively rare, the number of cancer cases who 

happened to have previously participated in the health survey is likely to be very small. If 

data linkage cannot be applied, is there any other way in which these rich (and expensive) 

data sets can be used to help provide insights into the association between pre-diagnosis 

behaviour and post-diagnosis survival times? 

Often the only measures in common between cancer registries and national health 

surveys are the demographic characteristics of participants.  It is known that demographically 

similar people are more likely to display similar health behaviour than people from different 

demographic groups (Morris, D'Este, Sargent-Cox, & Anstey, 2016). That is, different 

demographic groups have a different likelihood for particular behaviours. Probability of 

behaviour calculated from demographic variables, may be a weak indicator of actual 

behaviour, but with large data sets even weak signals are detectable.  
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This study investigated whether or not useful information on the association between 

pre-diagnosis health behaviours and post-diagnosis survival times could be obtained by 

analysing cancer cases estimated probability of engaging in these behaviours.  The analyses 

used US data and focused mainly on the three modifiable lifestyle factors identified above: 

cigarette smoking, alcohol consumption and excess body weight.  

 

 Methods 

The data sets  

Unit record data on oesophageal cancer cases and their outcomes was extracted from 

the Surveillance, Epidemiology, and End Results Program (SEER) cancer registry 

(Surveillance Epidemiology and End Results (SEER) Program). The SEER system is 

administered by the National Cancer Institute. SEER currently compiles data from cancer 

registries covering about 28% of the US population across 13 States. Most cancers, including 

oesophageal cancers, are recorded. De-identified unit record data made available for research 

include demographic measures, medical details of the cancer, treatment and outcomes 

(including survival time). 95.1% of oesophageal cases had positive histology with just 0.4% 

clinical diagnosis only; the remainder having unknown (2.4%) or other confirmation 

methods.  

Data on health behaviour was extracted from the Behavioral Risk Factor Surveillance 

System (BRFSS) health survey (Centers for Disease Control and Prevention (CDA)). The 

BRFSS is an annual national survey of health. It commenced in 1984 and now collects data 

from more than 400,000 telephone interviews each year covering adult residents of all US 

States and three Territories. The de-identified unit record information made available for 
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research included demographic and health behaviour measures, and State population 

sampling weights. 

Both collections provided access to cleaned, de-identified unit record data at no cost 

to the researcher. Although both data collections are large, with less than 0.2% of American 

adults participating in BRFSS and around 4,000 oesophageal cancer cases being recorded in 

the SEER data set each year, only about eight new oesophageal cancer cases each year could 

be expected to have participated in the previous BRFSS survey.  

Inclusions and exclusions 

This analysis focusses on the 15-year period from 2001 to 2015.  Data prior to 2001 

are excluded due to changes in the definitions of some health behaviours variables and 

because earlier data may be less relevant to current behaviour and outcomes. 2015 was the 

most recent year of SEER cancer registry data. 

As oesophageal cancer is rare in young ages, all cancer cases who were less than 35 

years of age are excluded as being atypical. 201 of 57025 (0.3%) cases are excluded. For the 

BRFSS health survey, all data records from respondents 25 or more years of age who lived in 

one of the 13 US States represented in the SEER cancer registries are included. Including the 

younger respondents allows information on health behaviour up to 10 years prior to cancer 

diagnosis to be retained.  

Outcome variable 

The outcome of interest is post-diagnosis survival time in months as recorded in the 

SEER cancer registry data set. That is, all cases with survival less than 30.4 days after 

diagnosis (including cancers detected post-mortem) have a survival time of 0 months, those 

who died between 30.4 and 60.8 days have a survival time of 1 month, etc. The maximum 
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possible survival time is 179 months. For those who are still alive and those who are lost to 

follow-up, survival time is censored at the date of last follow-up.  

Health behaviour variables 

The research focused mainly on measures relating to cigarette smoking, alcohol 

consumption and excess body weight. The choice of variables was restricted to measures 

available through the BRFSS health survey. The following variables, all recording self-

reported behaviour, were included: 

• Current smoker (yes/no) which includes those who smoke daily or less than daily; 

• Alcohol - heavy drinking (yes or no), which is defined as more than two standard 

drinks per day for men and more than one standard drink per day for women in 

the month prior to survey;  

• Alcohol - binge drinking (yes or no), which is defined as males reporting having 

five or more standard drinks or females reporting 4 or more standard drinks on 

one occasion in the month prior to survey; 

• Current smoking and alcohol consumption (yes/no), which is defined as both 

current smoker and an average consumption of ≥1 standard drink of alcohol per 

day in the past month. 

• Obese (yes/no) which is BMI ≥ 30 kg/m2 

• Undertook physical activity or exercise in the past 30 days other than regular job 

(yes or no)  
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Demographic variables 

As the cancer registry data did not include information on pre-diagnosis health 

behaviour, the probability of each pre-diagnosis health behaviour for each cancer case was 

estimated using the available demographic variables.  

Of the variables in common between the SEER cancer registry and the BRFSS health 

surveys it was hypothesized that year, age, sex, race, marital status and State of residence 

could be helpful for predicting health behaviour. For example, race is known to be associated 

with smoking (Jamal, 2016) and alcohol dependence (Gilman et al., 2008) in the US. Also, 

living as married ameliorates social isolation and social isolation is associated with adverse 

health behaviours such as smoking, higher BMI, and lower desire for exercise (Lauder, 

Mummery, Jones, & Caperchione, 2006).    

As age was recorded in 5-year age groups in the SEER cancer registry data, the same 

categories were applied to the BRFSS health survey data. Race was categorized as White; 

Black; Asian or Pacific Islander; and American Indian or Alaskan native. Participants in the 

BRFSS health survey who self-reported as mixed race (n=44,670, 3.1% of total) were 

omitted as there was no corresponding code in the SEER cancer registry data set. Marital 

status was categorized as married or living as married; divorced or separated; widowed; and 

single.  

Other factors considered 

Post-diagnosis survival time is sensitive to a range of factors, some of which could 

potentially confound associations with pre-diagnosis health behaviour and survival time. For 

example, the association between health behaviours and incidence of oesophageal cancer is 

known to differ by histological type (Clara Castro et al., 2018; Steevens et al., 2010) and 
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these differences appear to carry over into survival time (Thrift, Nagle, Fahey, Russell, et al., 

2012; Thrift, Nagle, Fahey, Smithers, et al., 2012). Therefore, sub-group analyses were 

conducted for squamous cell carcinoma (OSCC) and adenocarcinoma (OAC). Also age is 

associated with survival time (Njei et al., 2016) and health behaviour can change with age. 

Age, recorded in 5-year age groups but treated as a continuous variable, is included in the 

final models as a potential confounder.  

Somewhat more difficult was how to address cancer stage. Cancer stage at diagnosis 

is an important predictor of survival time (Njei et al., 2016) and could perhaps be associated 

with health behaviour, although this association may be an intermediary step between health 

behaviour and survival time rather than a true confounder. For completeness cancer stage was 

adjusted in the models. Disease stage at diagnosis (clinical assessment) was coded by SEER 

according to the according to the AJCC Cancer Staging Manual 6th Edition (Greene et al., 

2003).  

Recording of cancer stage at diagnosis was incomplete in the SEER cancer registry 

data; being unavailable from 2001 to 2003 and having 18% missing data across the other 

years.  Cancer stage was excluded prior to 2004 and categorized it into 5 categories (stage I, 

stage II, stage III, stage IV, not specified) from 2004 onwards.  

Other potential confounders of the association between behaviour and survival were 

considered to be of lesser impact or potentially on the disease pathway. For example, while 

the relationship between smoking history and post-diagnosis survival may differ by gender, 

the effect may be small. In contrast, the choice between curative or palliative treatment is a 

strong predictor of survival time but may partially lie on the association pathway. (Smoking, 

for example, may lead to a higher probability of significant co-morbidities and these in turn 

influence the decision of curative treatment and, hence, survival time.) Adjustment for 
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variables on the association pathway may remove some of the true association between health 

behaviour and survival time. 

Eligible data records 

56,824 SEER oesophageal cancer cases and 1,450,775 BRFSS health survey 

respondents met the eligibility criteria. Table 4.1 summarizes the characteristics of the two 

samples. Among the cancer cases, median time till death was 7 months with median follow-

up time of censored observations (18.6%) was 30 months. 52.9% of cases were OAC and 

33.7% OSCC. 16.1% of the BRFSS respondents were current smokers and 4.8% were judged 

to be heavy drinkers of alcohol. The BRFSS respondents included higher proportions of 

younger people and females than the SEER cases.  

 

Table 4.1 Disease characteristics and outcomes of eligible SEER cancer registry oesophageal 
cancer cases and BRFSS health survey respondents 2001-2015. 

  
Eligible oesophageal 

cancer cases 2001-2015 
(n=56,824) 

Eligible BRFSS 
respondents 2001-2015 

(n=1,450,775) 
 n % n % 

Number who died     
    died 46,242 81.40% 

censored 10,582 18.60% 
Cancer type   

  Squamous cell carcinoma (OSCC) 19,130 33.70% 

Adenocarcinoma (OAC) 30,067 52.90% 
other 7,627 13.40% 

Cancer stage   

  

I 7,215 15.60% 
II 7,756 16.70% 
III 8,390 8.10% 
IV 14,852 32.00% 
Unknown 8,164 17.60% 
Not collected 10,447  
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Table 4.1 (continued) Disease characteristics and outcomes of eligible SEER cancer registry 
oesophageal cancer cases and BRFSS health survey respondents 2001-2015. 

  
Eligible oesophageal 

cancer cases 2001-2015 
(n=56,824) 

Eligible BRFSS 
respondents 2001-2015 

(n=1,450,775) 
 n % n % 

Current smoker  

  

  

yes 233,533 16.10% 
no 1,195,828 82.40% 
missing 21,414 1.50% 

Alcohol - binge drinking  

  

  

yes 152,087 10.50% 
no 1,246,293 85.90% 
missing 52,395 3.60% 

Alcohol - heavy drinking 

  

  

yes 68,968 4.80% 
no 1,325,544 91.40% 
missing 56,263 3.90% 

Current smoking and alcohol consumption     

yes 
  

39,431 2.70% 
no 1,348,373 92.90% 
missing 62,971 4.30% 

Obese 

  

  

yes 370,146 25.50% 
no 1,004,366 69.20% 
missing 76,263 5.30% 

Undertook exercise in past 30 days other 
than regular job  

  

  

yes 1,071,481 73.90% 
no 353,711 24.30% 
missing 25,583 1.80% 

State of residence     

Alaskaa 93 0.20% 41,515 2.90% 
California 20,478 36.00% 135,572 9.30% 
Connecticut 3,222 5.70% 99,883 6.90% 
Georgia 6,299 11.10% 89,692 6.20% 
Hawaii 825 1.50% 82915 5.70% 
Iowa 2,893 5.10% 83015 5.70% 
Kentucky 3,571 6.30% 121288 8.40% 
Louisiana 3,412 6.00% 92248 6.40% 
Michigan 3,412 6.00% 114870 7.90% 
New Jersey 6,950 12.20% 159302 11.00% 
New Mexico 1,251 2.20% 90128 6.20% 
Utah 1,004 1.80% 109605 7.60% 
Washington 3,414 6.00% 230742 15.90% 
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Table 4.1 (continued) Disease characteristics and outcomes of eligible SEER cancer registry 
oesophageal cancer cases and BRFSS health survey respondents 2001-2015. 

  
Eligible oesophageal 

cancer cases 2001-2015 
(n=56,824) 

Eligible BRFSS 
respondents 2001-2015 

(n=1,450,775) 
 n % n % 

Year of diagnosis or survey     

2001 3,519 6.20% 54078 3.70% 
2002 3,410 6.00% 58489 4.00% 
2003 3,518 6.20% 76551 5.30% 
2004 3,791 6.70% 77720 5.40% 
2005 3,476 6.10% 92681 6.40% 
2006 3,675 6.50% 95708 6.60% 
2007 3,737 6.60% 94696 6.50% 
2008 3,810 6.70% 101275 7.00% 
2009 3,936 6.90% 116729 8.00% 
2010 3,879 6.80% 111233 7.70% 
2011 3,942 6.90% 127934 8.80% 
2012 3,979 7.00% 120058 8.30% 
2013 3,951 7.00% 112713) 7.80% 
2014 4,063 7.20% 106771 7.40% 
2015 4,138 7.30% 104139 7.20% 

Age      

25-29 years excluded excluded 75,187 5.20% 
30-34 years excluded excluded 95,776 6.60% 
35-39 years 341 0.60% 110,567 7.60% 
40-44 years 910 1.60% 123,417 8.50% 
45-49 years 2,311 4.10% 137,293 9.50% 
50-54 years 4,310 7.60% 156,343 10.80% 
55-59 years 6,608 11.60% 158,319 10.90% 
60-64 years 8,171 14.40% 151,202 10.40% 
65-69 years 8,622 15.20% 132,403 9.10% 
70-74 years 7,896 13.90% 107,064 7.40% 
75-79 years 7,288 12.80% 84,215 5.80% 
80-84 years 5,664 10.00% 105,523* 7.30% 
85+ years 4,703 8.30%   

Missing 
  

13,466 0.90% 
Sex     

male 43,856 77.20% 568,196 39.20% 
female 12,968 22.80% 882,579 60.80% 
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Table 4.1 (continued) Disease characteristics and outcomes of eligible SEER cancer registry 
oesophageal cancer cases and BRFSS health survey respondents 2001-2015. 

  
Eligible oesophageal 

cancer cases 2001-2015 
(n=56,824) 

Eligible BRFSS 
respondents 2001-2015 

(n=1,450,775) 
 n % n % 

Marital status     

married/defacto 30,553 53.80% 860,291 59.30% 
divorced/separated 6,761 11.90% 240,596 16.60% 
widowed 7,816 3.80% 185,631 12.80% 
single/never married 8,769 15.40% 156,718 10.80% 
missing 2925 5.10% 7539 0.50% 

Race     

white 47,447 83.50% 1,217,366 83.90% 
black 6,422 11.30% 108,396 7.50% 
Pacific or Asian 2,475 4.40% 79,878 5.50% 
American Indian/Alaskan Native 340 0.60% 26,893 5.50% 
Missing 140 0.20% 18242 1.30% 
excluded     44,670   

a  For Alaska, the SEER cancer registry records American Indians and Alaskan natives only 
 

Statistical analysis 

The characteristics of eligible cancer registry cases and health survey respondents are 

summarized using counts and percentages, with the exception of survival time which is 

summarized using medians, quartiles and maximums. 

The main analysis involves three discrete steps. Firstly, the probability of engaging in 

each health behaviour were estimated from the BRFSS health survey data using logistic 

models; with a separate model for each behaviour.  Each modelled the probability of having 

the behaviour of interest based on year of survey, age, sex, race, marital status and State of 

residence. Differences in the probability of health behaviours between sexes and between 

marital statuses at different ages were allowed for by including age by sex, age by marital 

status and marital status by sex interaction terms in each logistic model.   
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For example, let 𝑖𝑖 represent an eligible individual from the BRFSS data set and 

𝑝𝑝𝚤𝚤(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)�  represent the estimated probability that person 𝑖𝑖 is a smoker, then the logistic 

model has the form 

𝑙𝑙𝑠𝑠𝑙𝑙𝑖𝑖𝑙𝑙�𝑝𝑝𝚤𝚤(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)� � = 𝒙𝒙𝒊𝒊𝜷𝜷�        (1) 

where 

𝒙𝒙𝒊𝒊𝜷𝜷� = 𝛽𝛽0� + 𝛽𝛽1�(𝑦𝑦𝑠𝑠𝑦𝑦𝑠𝑠𝑖𝑖) + 𝛽𝛽2�(𝑦𝑦𝑙𝑙𝑠𝑠𝑖𝑖) + 𝛽𝛽3�(𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖) + 𝛽𝛽4−6�(𝑠𝑠𝑦𝑦𝑟𝑟𝑠𝑠𝑖𝑖) + 𝛽𝛽7�(𝑠𝑠𝑦𝑦𝑠𝑠𝑖𝑖𝑙𝑙𝑦𝑦𝑙𝑙 𝑠𝑠𝑙𝑙𝑦𝑦𝑙𝑙𝑠𝑠𝑠𝑠𝑖𝑖)

+ 𝛽𝛽8−19� (𝑆𝑆𝑙𝑙𝑦𝑦𝑙𝑙𝑠𝑠 𝑠𝑠𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑖𝑖) + 𝛽𝛽20� (𝑦𝑦𝑙𝑙𝑠𝑠𝑖𝑖)(𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖)

+ 𝛽𝛽21� (𝑦𝑦𝑙𝑙𝑠𝑠𝑖𝑖)(𝑠𝑠𝑦𝑦𝑠𝑠𝑖𝑖𝑙𝑙𝑦𝑦𝑙𝑙 𝑠𝑠𝑙𝑙𝑦𝑦𝑙𝑙𝑠𝑠𝑠𝑠𝑖𝑖) + 𝛽𝛽22� (𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖)(𝑠𝑠𝑦𝑦𝑠𝑠𝑖𝑖𝑙𝑙𝑦𝑦𝑙𝑙 𝑠𝑠𝑙𝑙𝑦𝑦𝑙𝑙𝑠𝑠𝑠𝑠𝑖𝑖) 

and the �̂�𝛽’s quantify the relationships between the demographic characteristics of the 

respondents and their likelihood of smoking.  

To correct for the complexities in the BRFSS health survey sampling and non-

response the logistic models were weighted by the sampling weights provided. In 2011, the 

BRFSS introduced a new method of calculating sampling weights which improved the 

weighting of some variables including race and marital status. However, as both systems 

weight to the State totals, the analyses do not differentiate between the different type of 

weights. Data records with extreme sampling weights were excluded: those which fell in 

either the top or bottom 0.5% of the distribution. Firth’s bias reduced penalized-likelihood 

was used to assist models to converge during fitting; using the logistf() package (version 

1.23) in R software  (version 3.5.2). The fitted models are summarized in Table 4.2 and 

Figure 4.1. 
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Table 4.2 Logistic regression models predicting health behaviours from demographic variables. 

  Year Age (5 year 
categories) Sex Married Race- black 

Race – 
American 

native 

Race – 
Asian 
pacific 

Age by 
sex 

Age by 
married 

Sex by 
married 

 
Current smoking  -0.0224 -0.1218 -0.2229 -1.1577 -0.0867  0.4801 -0.7785 -0.0076 0.0237  0.1009  

Undertook exercise in past 30 
days other than regular job  0.0007 -0.0800 -0.1807  0.2287 -0.3992 -0.3856 -0.1156 -0.0015 0.0054  0.0153  

Obese  0.0341 -0.0428  0.0473  0.4698  0.5654  0.4089 -1.0469  0.0124 0.0148 -0.4166  

Alcohol - binge drinking  0.0298 -0.2490 -0.9603 -0.7847 -0.5513 -0.0700 -0.8542 -0.0055 0.0494 -0.0261  

Alcohol - heavy drinking  0.0231 -0.1333 -0.6150 -1.7313 -0.5986 -0.0407 -0.9449  0.0171 0.0831  0.3203  

Current smoking and alcohol 
consumption -0.016 -0.1671 -1.2999 -1.2934 -0.2675  0.1399 -0.9132  0.0138 0.0364  0.1058  

Year and age are treated as numeric. All other variables are binary (dummy) variables. 
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Figure 4.1 Histograms displaying the estimated probabilities of each health behaviour 
modelled on age group, sex, marital status, race, State of residence and year. 
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Figure 4.1 (continued) Histograms displaying the estimated probabilities of each health 
behaviour modelled on age group, sex, marital status, race, State of residence and year. 
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Year and age category were fitted as numeric variables while sex, race, marital status 

and State of residence are categorical. Preliminary investigations (not reported) confirmed 

that a linear model was reasonable for both year and age category. Year is coded as 0 for 

2001 through to 14 for 2015 for analysis. 

The chosen risk profiling variables were confirmed to be predictors of each health 

behaviour by visual inspection of odds ratios from logistic regression models. To help gauge 

the predictive ability of each demographic variable areas under the curve (AUC) of the 

receiver operating characteristic (ROC) curve are presented for each predictor alone and for 

the full logistic model using the pROC package (version 1.13.0) in R software. The higher 

above 0.5 the AUC, the greater the ability of the model to predict the health behaviour. 

In the second step of the analysis, for each oesophageal cancer case in the SEER 

cancer registry, their probability of participating in each health behaviour was estimated by 

substituting their demographic characteristics into the logistic predictive model for that 

behaviour (Table 4.2).  

For example, let 𝑗𝑗 represent an eligible cancer case from the SEER data set and 𝒙𝒙𝒋𝒋 the 

set of observed values of the demographic variables for individual 𝑗𝑗 and 𝜷𝜷� represent the 

regression coefficients for the model predicting smoking (equation 1 above), then the 

estimated probability of cancer case 𝑗𝑗 being a smoker is  

𝑝𝑝𝚥𝚥(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)� = 𝑒𝑒𝒙𝒙𝒋𝒋𝜷𝜷
�

1+𝑒𝑒𝒙𝒙𝒋𝒋𝜷𝜷
�          (2) 

Given the specific interest in health behaviour prior to diagnosis three pre-diagnosis 

time points, 1, 5 and 10 years prior to diagnosis, were trialled. This entailed substituting 

diagnosis year minus 1, 5 or 10 as the year variable of the logistic model and 5-age group 

minus 0, 1 or 2. To avoid extrapolating earlier than the observed data, the 5-year lag analysis 
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was restricted to oesophageal cancer cases from 2006 to 2015 and the 10-year lag model was 

restricted to cases from 2011 to 2015.  

In the third step of the analysis, the relationship between the estimated probability of 

each behaviour and survival was investigated using Cox regression models using the survival 

package (version 2.43-3) in R software. Separate models were fitted for each behaviour. 

Results are presented as hazard ratios (HRs) with associated 95% confidence intervals (CIs) 

and p-values. Models were fitted with and without correction for age and cancer stage at 

diagnosis.  

For example, the Cox model of survival time of cancer case 𝑗𝑗 relative to their 

estimated probability of smoking, adjusting for age and disease stage, could be written  

𝑆𝑆(𝑙𝑙, 𝑠𝑠,𝛽𝛽) = [𝑆𝑆0(𝑙𝑙)]𝑒𝑒𝑒𝑒𝑒𝑒�𝛽𝛽1
∗�𝑒𝑒𝚥𝚥(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠)� �+𝛽𝛽2∗�𝑎𝑎𝑎𝑎𝑒𝑒𝑗𝑗�+𝛽𝛽3∗�𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐𝑒𝑒𝑠𝑠 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑒𝑒𝑗𝑗��   (3) 

where 𝑝𝑝𝚥𝚥(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)� , a number between 0 and 1, is the estimated probability that the 

SEER cancer case is a smoker from Equation (2). The * superscript denotes that these 𝛽𝛽’s are 

different to the 𝛽𝛽’s listed in Equation (1). Under this model 𝑠𝑠𝛽𝛽1∗  is the hazard ratio for the 

estimated probability of smoking, adjusted for age and disease stage. 

Subgroup analyses were performed for OSCC and OAC histological types. Missing 

values were excluded from analysis.  
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 Results 

Each of the risk profile variables were related to each of the health behaviours (Table 

4.3). For example, the prevalence of smoking decreased over the study period (odds ratio 

(OR)=0.98, 95% confidence interval (CI) 0.98-0.98 for each later year); the prevalence of 

obesity increased over time (OR=1.03, 95% CI 1.03-1.03 for each additional year); each 5-

year increase in age is associated with decreasing prevalence of smoking (OR=0.90, 95% CI 

0.90-0.90) and decreased risk of binge drinking (OR=0.82, 95% CI 0.82-0.82); females have 

lower prevalence of smoking (OR=0.74, 95% CI 0.74,0.74); when compared to those who are 

married, people who are single have higher prevalence of daily smoking (OR=2.14, 95% CI 

2.14-2.14), risk of binge drinking (OR=1.90, 95% CI 0.90-0.90) and risk of concurrently 

smoking and regular drinking (OR=2.50, 95% CI 2.50-2.50); people classifying as American 

Indian or Alaskan Native have higher prevalence of daily smoking (OR=1.69, 95% CI 1.68-

1.69) and people classified as black have higher risk of obesity (OR=1.75, 95% CI 1.75-1.75) 

than those who are classified as white; residents of Kentucky are more likely to smoke 

(OR=2.50, 95% CI 2.49-2.50) residents of Utah are less likely to be heavy drinkers 

(OR=0.52, 95% CI 0.52-0.52) than Californians. 
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Table 4.3 Associations between the selected demographic variables and health behaviours in 
the BRFSS health survey data set  

  Current smoking  Alcohol - binge drinking Alcohol - heavy 
drinking 

  OR 95% CI AUC OR 95% CI AUC OR 95% CI AUC 
State of residence          

Alaska a 1.93 1.93,1.93  1.36 1.36,1.36  1.14 1.14,1.14  

California 1.00   1.00    1.00    

Connecticut 1.25 1.25,1.25  1.06 1.06,1.06  0.93 0.93,0.93  

Georgia 1.63 1.63,1.63  0.85 0.85,0.85  0.74 0.74,0.74  

Hawaii 1.23 1.23,1.24  1.18 1.18,1.18  1.15 1.15,1.15  

Iowa 1.56 1.56,1.56  1.35 1.35,1.35  0.89 0.89,0.90  

Kentucky 2.5 2.49,2.50  0.71 0.70,0.71  0.6 0.60,0.61  

Louisiana 2.04 2.04,2.04  1.01 1.01,1.01  0.85 0.85,0.85  

Michigan 1.83 1.83,1.83  1.22 1.22,1.22  0.94 0.94,0.94  

New Jersey 1.32 1.32,1.32  0.96 0.96,0.97  0.74 0.74,0.74  

New Mexico 1.6 1.59,1.60  0.84 0.84,0.84  0.8 0.80,0.80  

Utah 0.79 0.79,0.79  0.65 0.65,0.65  0.52 0.52,0.52  

Washington 1.35 1.35,1.35 0.574 1.05 1.05,1.05 0.558 0.97 0.97.0.97 0.567 
Year of survey          

per additional year 0.98 0.98,0.98 0.544 1.03 1.03,1.03 0.516 1.02 1.02,1.02 0.523 
Age           

per additional 5- 
year age category 0.9 0.90,0.90 0.608 0.82 0.82,0.82 0.68 0.95 0.95,0.95 0.546 

Sex          

male 1.00    1.00    1.00    

female 0.74 0.74,0.74 0.519 0.37 0.37,0.37 0.62 0.81 0.81,0.81 0.529 
Marital status          

married/defacto 1.00    1.00    1.00    

separated/divorced 2.44 2.44,2.44  1.13 1.13,1.13  1.38 1.38,1.38  

widowed 0.95 0.94,0.95  0.31 0.31,0.31  0.77 0.77,0.77  

single 2.14 2.14,2.14 0.596 1.9 1.90,1.90 0.584 1.54 1.54,1.54 0.551 
Race         

 

white 1.00    1.00    1.00   
black 1.29 1.29,1.29  0.75 0.75,0.75  0.62 0.62,0.62 
Pacific or Asian 0.59 0.59,0.59  0.66 0.66,0.66  0.49 0.48,0.49 
American Indian 
or Alaskan Native 1.69 1.68,1.69 0.522 1.25 1.25,1.25 0.512 1.04 1.04,1.04 

All predictors 
combined     0.682     0.738     0.624 
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Table 4.3 (continued) Associations between the selected demographic variables and health 
behaviours in the BRFSS health survey data set  

  

  Current smoking and 
alcohol consumption 

Undertook exercise in 
past 30 days other than 

regular job 
Obese 

  OR 95% CI AUC OR 95% CI AUC OR 95% CI AUC 
State of residence          

Alaska a 1.73 1.72,1.74  0.96 0.96,0.96  1.21 1.21,1.21  

California 1.00    1.00    1.00    

Connecticut 1.17 1.16,1.17  0.96 0.95,0.96  0.92 0.92,0.92  

Georgia 1.2 1.20,1.20  0.76 0.76,0.76  1.27 1.27,1.27  

Hawaii 1.38 1.37,1.38  1.06 1.07,1.06  0.85 0.85,0.85  

Iowa 1.39 1.39,1.39  0.81 0.80,0.81  1.27 1.27,1.27  

Kentucky 1.14 1.14,1.14  0.58 0.58,0.58  1.38 1.38,1.38  

Louisiana 1.49 1.49,1.49  0.56 0.56,0.56  1.5 1.49,1.50  

Michigan 1.47 1.47,1.47  0.83 0.83,0.83  1.37 1.36,1.37  

New Jersey 1.04 1.04,1.04  0.77 0.77,0.77  0.99 0.99,0.99  

New Mexico 1.26 1.26,1.26  0.92 0.92,0.92  1.03 1.03,1.03  

Utah 0.8 0.79,0.80  1.17 1.17,1.17  1.02 1.02,1.03  

Washington 1.28 1.27,1.28 0.542 1.20 1.20,1.20 0.573 1.09 1.09,1.09 0.547 
Year of survey          

per additional year 0.99 0.99,0.99 0.525 1.00 1.00,1.00 0.499 1.03 1.03,1.03 0.529 
Age           

per additional 5- 
year age category 0.87 0.87,0.87 0.616 0.93 0.93,0.93 0.573 0.99 0.99,0.99 0.516 

Sex          

male 1.00    1.00   1.00    

female 0.33 0.33,0.33 0.627 0.8 0.80,0.81 0.528 0.93 0.93,0.93 0.507 
Marital status          

married/defacto 1.00    1.00    1.00     

separated/divorced 2.03 2.03,2.03  0.67 0.67,0.67  1.19 1.19,1.19  

widowed 0.73 0.73,0.74  0.49 0.49,0.49  0.94 0.94,0.94  

single 2.5 2.50,2.51 0.606 0.86 0.86,0.86 0.566 1.17 1.17,1.17 0.525 
Race          

white 1.00    1.00    1.00    

black 0.98 0.98,0.99  0.64 0.64,0.64  1.75 1.75,1.76  

Pacific or Asian 0.55 0.55,0.56  1.01 1.01,1.01  0.44 0.44,0.44  

American Indian 
or Alaskan Native 1.48 1.48,1.48 0.510 0.72 0.72,0.72 0.522 1.60 1.60,1.60 0.54 

All predictors 
combined     0.713     0.623     0.589 
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Of the fitted logistic models, the model predicting binge drinking (AUC 0.74) 

displayed the greatest ability to discriminate and the model for predicting obesity (AUC 0.59) 

showed the least ability to discriminate behaviour. 

Table 4.4 shows the associations between post-diagnosis survival time and probability 

of each pre-diagnosis health behaviour. Each line presents results from separate Cox 

regression models, for each health behaviour. The columns present results from three separate 

models: the unadjusted model with the probability of behaviour one year prior to diagnosis as 

the only predictor; the one-year lag model adjusted for age and cancer stage at diagnosis; and 

the adjusted model with a 10-year lag.  The hazard ratios reported show the impact of a 0.1 

increase in the probability of participating in that behaviour. Tables 4.5 and 4.6 provide the 

same results for the OSCC and OAC histological types separately.  Both adjusted variables 

(age and cancer stage at diagnosis) are significant predictors of survival (Table 4.7). Result 

for the 5-year lag model (Table 4.8) are similar to the corresponding one-year lag models.  
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Table 4.4 Association between survival time and probability of pre-diagnosis health behaviour; all oesophageal cancers.   
 1 year lag, unadjusted  1 year lag, adjusted b  10 year lag, adjusted b 

Health behavior HRa 95% CI P value  HRa 95% CI P value  HRa 95% CI P value 
Current smoker 0.99 0.99,1.01 0.252  1.20 1.18,1.22 <0.001  1.18 1.15,1.21 <0.001 
Alcohol - Heavy drinking 0.53 0.50,0.56 <0.001  0.82 0.76,0.88 <0.001  1.16 1.04,1.30 0.011 
Alcohol - Binge drinking 0.76 0.74,0.77 <0.001  0.96 0.93,0.99 0.012  1.04 0.99,1.08 0.093 
Current smoking and alcohol 
consumption 

0.87 0.83,0.92 <0.001  1.93 1.79,2.07 <0.001  1.69 1.56,1.84 <0.001 

Undertook exercise in past 30 days 
other than regular job 

0.78 0.77,0.79 <0.001  0.82 0.81,0.84 <0.001  0.80 0.78,0.83 <0.001 

Obese 0.95 0.94,0.97 <0.001  1.04 1.03,1.06 <0.001  1.10 1.07,1.14 <0.001 
Abbreviations: CI, confidence interval; HR, hazard ratio 
a The hazard ratio describes the impact of a 0.1 increase in the probability of having the specified health behaviour. 
b Adjusted for age and cancer stage at diagnosis 
  

Table 4.5 Association between survival time and probability of pre-diagnosis health behaviour; oesophageal squamous cell carcinomas.   
Health behavior 1 year lag, unadjusted  1 year lag, adjusted b  10 year lag, adjusted b 
 HRa 95% CI P value  HRa 95% CI P value  HRa 95% CI P value 
Current smoker 0.99 0.97,1.01 0.215  1.20 1.17,1.23 <0.001  1.19 1.16,1.22 <0.001 
Alcohol - Heavy drinking 0.50 0.45,0.56 <0.001  0.78 0.69,0.88 <0.001  1.30 1.08,1.57 0.007 
Alcohol - Binge drinking 0.75 0.73,0.78 <0.001  0.95 0.90,1.00 0.035  1.09 1.02,1.17 0.013 
Current smoker and ≥1 alcoholic 
drink /day 

0.85 0.79,0.93 <0.001  1.93 1.72,2.16 <0.001  1.68 1.51,1.88 <0.001 

Did exercise in past 30 days other 
than regular job 

0.78 0.76,0.79 <0.001  0.82 0.80,0.85 <0.001  0.79 0.77,0.82 <0.001 

Obese 0.97 0.94,0.99 0.004  1.07 1.04,1.10 <0.001  1.08 1.04,1.11 <0.001 
Abbreviations: CI, confidence interval; HR, hazard ratio 
a The hazard ratio describes the impact of a 0.1 increase in the probability of having the specified health behavior. 
b Adjusted for age and cancer stage at diagnosis 
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Table 4.6 Association between survival time and probability of pre-diagnosis health behaviour; oesophageal adenocarcinomas.   
 1 year lag, unadjusted  1 year lag, adjusted b  10 year lag, adjusted b 
Health behavior HRa 95% CI P value  HRa 95% CI P value  HRa 95% CI P value 
Current smoker 1.00 0.98,1.01 0.625  1.20 1.18,1.23 <0.001  1.18 1.16,1.21 <0.001 
Alcohol - Heavy drinking 0.55 0.51,0.59 <0.001  0.85 0.77,0.93 <0.001  1.10 0.95,1.26 0.216 
Alcohol - Binge drinking 0.76 0.74,0.78 <0.001  0.97 0.93,1.01 0.121  1.01 0.96,1.07 0.722 
Current smoker and ≥1 alcoholic 
drink /day 

0.89 0.83,0.95 <0.001  1.93 1.76,2.11 <0.001  1.79 1.65,1.94 <0.001 

Did exercise in past 30 days other 
than regular job 

0.78 0.77,0.80 <0.001  0.82 0.81,0.84 <0.001  0.83 0.81,0.85 <0.001 

Obese 0.94 0.92,0.96 <0.001  1.03 1.00,1.05 0.028  1.07 1.04,1.10 <0.001 
Abbreviations: CI, confidence interval; HR, hazard ratio 
a The hazard ratio describes the impact of a 0.1 increase in the probability of having the specified health behavior. 
b Adjusted for age and cancer stage at diagnosis 

  

Table 4.7 Relationship between adjusted variables and survival time 
  Relationship with survival time 

  HR 95% CI Pseudo 
R2 

Age 
per additional 5 year age category 

 
1.09 

 
1.09,1.09 

 
0.026 

Cancer stage    

-          Stage I 1.00   

-          Stage II 1.17 1.13,1.22  

-          Stage III 1.58 1.52,1.64  

-          Stage IV 3.34 3.23,3.46  

-          Unknown 2.5 2.41,2.60 0.151 
Abbreviations: CI, confidence interval; HR, hazard ratio  
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Table 4.8 Association between survival time and 5-year pre-diagnosis health behaviour.   
  All oesophageal cancer OSCC OAC 
Health behaviour 5 year lag, adjusted b 5 year lag, adjusted b 5 year lag, adjusted b 
  HRa 95% CI P value HRa 95% CI P value HRa 95% CI p-value 
Current smoker 1.18 1.17,1.20 <0.001 1.19 1.16,1.22 <0.001 1.18 1.16,1.21 <0.001 
Alcohol - Heavy drinking 0.98 0.90,1.06 0.568 0.85 0.75,0.98 0.026 1.05 0.95,1.16 0.343 
Alcohol - Binge drinking 1.00 0.97,1.03 0.818 0.97 0.92,1.02 0.21 1.01 0.97,1.05 0.515 
Current smoking and alcohol 
consumption 1.75 1.64,1.87 <0.001 1.68 1.51,1.88 <0.001 1.79 1.65,1.94 <0.001 

Undertook exercise in past 30 
days other than regular job 0.81 0.80,0.83 <0.001 0.79 0.77,0.82 <0.001 0.83 0.81,0.85 <0.001 

Obese 1.07 1.05,1.09 <0.001 1.08 1.04,1.11 <0.001 1.07 1.04,1.10 <0.001 
Abbreviations: CI, confidence interval; OAC, oesophageal adenocarcinoma; OSCC, oesophageal squamous cell carcinoma; HR, hazard ratio  
a The hazard ratio describes the impact of a 0.1 increase in the probability of having the specified health behaviour.    
b Adjusted for age and cancer stage at diagnosis        
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Smoking one year prior to diagnosis appears to be unrelated to survival until 

adjustment for age and disease stage at diagnosis. In the adjusted model, each 0.1 increase in 

the probability of pre-diagnosis smoking is associated with a 20% (HR 1.20, 95% CI 1.18-

1.23) relative increase in post-diagnosis hazard with no discernible difference in results for 

OSCC and OAC subgroups. 

Results for alcohol consumption are mixed. When using behaviour one year prior to 

diagnosis as the predictor, a 0.1 increase in the probability of heavy drinking appears to be 

protective of survival even after adjustment for age and cancer stage at diagnosis (HR 0.82, 

95% CI 0.76-0.88). However, when looking at behaviour 10 years prior to diagnosis, the 

adjusted model finds heavy drinking to be detrimental to post-diagnosis survival in OSCC 

(HR 1.30, 95% CI 1.08-1.57) and with no discernible association in OAC (HR 1.10, 95% CI 

0.95-1.26). The pattern of results for binge drinking is quite similar. 

A 0.1 increase in the probability of concurrently smoking and drinking ≥1 standard 

drink per day in the year prior to diagnosis is associated with double the risk of death 

(HR=1.93, 95% CI 1.79- 2.07), after adjustment for age and cancer stage with no difference 

between OSCC and OAC. 

After adjustment, a 0.1 increase in probability of obese one year prior to diagnosis is 

associated with an apparently trivial increase in post-diagnosis hazard (HR 1.04, 95% CI 

1.03-1.06). A slightly larger hazard (HR 1.10, 95% CI 1.07-1.14) was recorded for a 0.1 

increase in the probability of obese 10 years prior to diagnosis. A 0.1 increase in the 

probability of exercise outside employment one year prior to diagnosis is associated with 

improved survival (HR 0.82, 95% CI 0.81-0.84) with little difference between OSCC and 

OAC. 
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 Discussion 

The results above appear to support of the proposition that demographic-derived 

estimates of the probability of health behaviours can assist in identifying association between 

pre-diagnosis health behaviour and post-diagnosis survival time in oesophageal cancer. The 

hazard ratios quoted in this paper show the increased hazard of death associated with each 

additional 0.1 probability of the health behaviour of interest.  That is, the association between 

the estimated likelihood of engaging in a particular behaviour and survival time is reported. 

This is quite different from the association between the actual health behaviour and survival 

time and more difficult to interpret. Never-the-less, there is consistency between the results of 

the present study and previously published results: especially in the presence and direction of 

associations. 

A 0.1 increase in the probability of smoking one year prior to diagnosis, adjusted for 

age and cancer stage at diagnosis, had an estimated HR of 1.20 (95% CI 1.18-1.22) in 

oesophageal cancer survival. This association is consistent with findings from previous meta 

analyses such as HR 1.41 (95% CI 1.22,1.64) (Kuang et al., 2016) for smoking status at time 

of diagnosis in mainly OSCC patients and HR 1.19 (95% CI 1.04,1.36) for ever smoking 

(Fahey et al., 2015) in OSCC (although no evidence of association in OAC). Some more 

recently published studies found similar statistically significant HRs including HR=1.28 (Ma 

et al., 2016) and HR=1.34 (P. Sun et al., 2016) both from China, and HR=1.22 from a study 

across two sites in US and Canada (A. Spreafico et al., 2017). In contrast, recent results from 

Japan HR=0.97 (Okada et al., 2017) failed to find evidence of association between pre-

diagnosis smoking and post-diagnosis survival time. A study from South Africa reported an 

unadjusted HR=0.92 (Dandara, Robertson, Dzobo, Moodley, & Parker, 2015) but the present 
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study has shown the importance of adjustment for confounders such as age and cancer stage 

at diagnosis. 

The current analyses found that increased probability for ‘at risk’ alcohol 

consumption in the year prior to diagnosis were generally protective of survival but that a 0.1 

increase in ‘at risk’ alcohol behaviour 10 years prior to diagnosis was detrimental to survival 

in OSCC (heavy drinking HR 1.30 95% CI 1.08-1.57, binge drinking HR 1.09, 95% CI 1.02-

1.17).  The 10 year results are consistent with a previous meta-analysis (4) which found that 

ever drinking alcohol produced a significant increase in hazard (HR 1.36, 95% CI 1.15, 1.61) 

in OSCC but non-significant HR of 1.08 (95% CI 0.85, 1.37) in OAC although ever drinking 

and ‘at risk’ drinking are widely separate. More recent results from China HR=1.58 (Ma et 

al., 2016), HR=1.45 (P. Sun et al., 2016) and Japan HR=2.37 (95% CI 1.24,4.53) (Okada et 

al., 2017) also support the detrimental impact of pre-diagnosis alcohol consumption on post-

diagnosis survival.   

The unexpectedly protective result for alcohol consumption one-year prior to 

diagnosis could indicate insufficient adjustment for confounding (such as comorbidities or 

health symptoms) or weaknesses in the measurement tool (such as biases in the self-reporting 

of alcohol consumption in standard drinks).  

Previous authors have found that pre-diagnosis smoking and alcohol consumption 

combined produce a disproportionately high risk to post-diagnosis survival (for example, HR 

3.84, 95% CI 2.02,7.32 for OSCC (Thrift, Nagle, Fahey, Russell, et al., 2012)). It has also 

been found that a 0.1 increase in the probability of concurrent daily smoking and consuming 

one or more alcoholic drinks per day one year prior to diagnosis, adjusted for age and cancer 

stage at diagnosis, had a relatively high estimated HR of 1.93 (95% CI 1.79,2.07). 
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A 0.1 increase in the probability of obese one year prior to diagnosis was associated 

with slightly higher risk of death adjusted HR=1.04 (95% CI 1.03,1.06) mainly associated 

with OSCC (HR 1.07 95% CI 1.04,1.10). The association seems small and the literature on 

obesity is sparse with mixed findings. One review found pre-diagnosis obesity could be 

associated with higher risks of death in cancer (specifically breast, prostate and colorectal 

cancers) (Parekh, Chandran, & Bandera, 2012) but a later study reported that pre-diagnostic 

obesity increased hazard for all cancers except cancers of the upper digestive tract (obese 

compared to normal weight HR 0.87, 95% CI 0.62,1.22) (Reichle, Peter, Concin, & Nagel, 

2015). More recently a North American study (A. Spreafico et al., 2017) found recalled 

obesity in early adulthood was associated with lower survival times than normal weight (HR 

1.77, 95% CI 1.25, 2.51). The measure of obesity available in this study may not be optimal. 

Finally, it was found that a 0.1 increase in probability of pre-diagnosis physical 

activity outside of the workplace was associated with improved survival (adjusted HR=0.82, 

95% CI 0.81,0.84). This is consistent with a recent review (Lynch & Leitzmann, 2017) which 

found the relative risk of death between the highest versus lowest category of physical 

activity to be 0.71 (95% CI 0.57,0.89) for oesophageal cancer. 

Strengths and weaknesses 

Our analyses using estimated probability for health behaviours has produced results 

which have some face validity. A strength of this example is that the data sets used are large, 

public domain and well understood. Any interested researcher can reproduce, refine and/or 

extend these analyses using the same data sets.  

Both the data sets and the analysis technique used have some limitations and 

weaknesses. In relation to the data sets, there are response biases within the BRFSS 

(Schneider et al., 2012) which the sampling weights may not have fully addressed. Further, 
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the measures of behaviour available are limited and are dictated by the existing data base 

which was designed for other purposes and is not optimized for the research question of this 

paper. 

For the model, estimating the probability of a behaviour is less accurate than a direct 

measure of behaviour and conveys less information about that behaviour: so, will have less 

power for detecting associations. There may be residual confounding from unmeasured 

variables (such as education, socio-economic status or comorbidities). Finally, omitting 

interactions with year may have contributed to the apparent lack of difference in outcomes 

between behaviour one, five and ten years prior to diagnosis.  

 

 Conclusion 

The rarer the disease, the less feasible it is to conduct either prospective cohort studies 

or record linkage (retrospective cohort) studies. Retrospective data collection (including case-

control studies) are fraught with recall and survivor biases. Exploiting existing data provides 

cost-effective opportunities for investigations but may require different methodologies. 

Analyses of the associations between estimated probability for pre-diagnosis health 

behaviour (based on demographic characteristics) and survival time in oesophageal cancer 

produced results with some face validity. Expressing associations in units of changes in the 

probability of the health behaviour was cumbersome. However, the required data are already 

available, allowing relatively quick and inexpensive investigations of possible associations 

between pre-diagnosis behaviour and post-diagnosis outcomes for relatively rare diseases. 

And of course, most diseases are relatively rare.   
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4.3 Critique of the method 

The above published peer-reviewed paper describes a model-based method for 

addressing 100% missing data in the SEER Cancer registry data set. The missing data was 

replaced with estimates of the probability of each behaviour rather than actual behaviour. The 

fitted Cox models describe the association between the estimated probability of each pre-

diagnosis behaviour and post-diagnosis survival time in OC. All results are expressed in units 

of estimated probability of the behaviour.  

This is a very unusual measurement scale and is likely to have poor clinical 

interpretability. The hazard ratios quoted, describing relative effects of probabilities, are 

cognitively difficult for humans (Reyna & Brainerd, 2008) and there does not appear to be 

any precedents of using this type of measurement. 

The actual numeric values of the hazard ratios can be, and have been, manipulated. 

Hazard ratios are presented for a 0.1 increase in the estimated probability of displaying the 

behaviour mainly to produce hazard ratios of about the same magnitude as hazard ratios 

associated with measured behaviour. Choosing a 0.01 or 0.2 increase in estimated 

probabilities would have been just as valid but would have changed the magnitude of the 

hazard ratios. No justification was provided for visually comparing the hazard ratios from a 

0.1 increase in the estimated probability of displaying the behaviour against the previously 

published hazard ratios associated with actual behaviours. A comparison of hazard ratios 

obtained from actual behaviour with those obtained from estimated probability of behaviour 

is needed but would require data on the actual behaviour of the cancer registry cases. The 

lack of such data is the reason for this research. 

To avoid using the estimated probability of a behaviour the probability could be 

converted into an imputed behaviour. For example, a cutpoint could be applied such that 
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probabilities above the cutpoint are assigned to ‘behaviour present’ and those below are 

assigned to ‘behaviour absent’. This would mean that every OC case from the same 

demographic group would be assigned the same behaviour. Obviously, this is not realistic; 

not every individual within the same demographic group follows the same behaviour. 

Alternatively, OC cases could be randomly assignment to the behaviour present category 

relative to their estimated probability (the higher the estimated probability, the more likely 

that OC case would be randomly assigned to behaviour present). But random assignment 

results in misclassification. For example, true smokers will be assigned a non-smoking 

behaviour and vice versa. These issues relate to the imputation-based methods for addressing 

100% missing variables which shall be considered in more detail in the following Chapters. 

Here the possibility that model-based methods could be used in conjunction with imputation-

based methods is simply flagged. 

Given the difficulties with interpreting the hazard ratios for estimated probabilities, 

the focus could be reduced to whether or not there is evidence of a relationship and if so, in 

which direction. Although less information, these observations could still have important 

roles to play. For example, as the analysis is relatively quick and simple, the modelling of 

behaviour as a 100% missing variable could provide an intermediate check on the feasibility 

of a larger, more complex study such as cohort design which could give more interpretable 

results. 

In the above analyses the estimated probability for pre-diagnosis health behaviour was 

derived using a logistic model in which behavioural status was regressed on observed 

demographic characteristics. Compare this with “the propensity score is most often estimated 

using a logistic regression model, in which treatment status is regressed on observed baseline 

characteristics. The estimated propensity score is the predicted probability of treatment 

derived from the fitted regression model” (Austin, 2011, p. 403). Health behaviour is an 
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exposure rather than a treatment but all else is similar. The ‘estimated probability of 

behaviour’ could be considered a parallel to a ‘propensity score’ and among other things, 

propensity scores are useful in matching and stratification (Austin, 2011). Propensity score 

matching forms pairs of treated and untreated subjects based on their propensity allowing 

their outcomes to be compared in a matched analysis. An equivalent process in the current 

application could be to match SEER cancer registry cases with BRFSS health survey 

respondents based on their estimated probability for pre-diagnosis health behaviour. 

Comparing outcomes between these pairs would not be relevant as the BRFSS respondents 

do not have cancer outcomes. However, matching and stratifying on estimated probability for 

pre-diagnosis health behaviour could be helpful in improving both the cold deck imputation 

and confounder adjustment methods which will be described in Chapter 5 and 6. 

“All models are wrong, but some are useful.” (Box & Draper, 1987) 

Standard modelling methods were used throughout. Most quantitative researchers will 

be familiar with logistic regression and Cox proportional models.  

It was noted in Table 4.1 that some behaviours are quite uncommon: 4.8% were at 

risk of heavy drinking and just 2.7% were smokers and regular drinkers. With small numbers 

of events in logistic regression the maximum likelihood estimation is biased towards 

underestimating the probabilities of these events (King & Zeng, 2001). Firth’s correction on 

the maximum likelihood procedure addresses this bias. However, the bias occurs when there 

are small numbers of events rather than small rate of events.  Even at a rate of 2.7% there 

were still 39,431 eligible BRFSS health survey respondents with smoking and regular 

drinking. With such large numbers of events, standard maximum likelihood approach is 

effectively unbiased and would have given identical results to the models fitted using Firth’s 

method.   
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A major issue which has not yet been addressed in the analyses above is the 

cumulative error across the models. The logistic model-derived estimates of the probability of 

behaviour contain errors (for example, the AUC for the logistic models varied between 0.738 

for at risk of binge drinking to just 0.589 for obesity). It is simply not possible to accurately 

predict behaviour based on demographic variables alone.  But the problem is that these 

prediction errors have not been carried through to the Cox regression analysis. That is, the 

Cox regression assumes the predictor variable (the estimated probability of the behaviour) 

was measured without error. The estimated probabilities of obesity are treated the same as the 

estimated probability of binge drinking, even though the estimated probabilities of binge 

drinking appear to better discriminate behaviour according to the AUC statistics. By ignoring 

this error source, the confidence intervals from the Cox regression are narrower than they 

should be. 

 

4.4 Closing comments 

This Chapter developed and evaluated a model-based method for addressing 100% 

missing data for pre-diagnosis health behaviours among OC cases in the SEER cancer 

registries data set. This partially addresses the second aim of this thesis. 

However, the second aim was to develop the method such that it addressed the first 

aim of describing the relationship between pre-diagnosis health behaviours and post-

diagnosis survival in OC. In this, the method developed in this Chapter has been quite 

unsuccessful. For example, the hazard ratios produced from the Cox model failed to quantify 

the association between pre-diagnosis health behaviour and survival, concentrating on 

predicted health behaviour instead of actual health behaviour. Also, the confidence intervals 
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around these hazard ratios failed to capture all of the error present in the analyses and are 

incorrectly narrow. 

With these somewhat difficult problems arising from this model-based method of 

analysis the following chapter considers whether an alternate approach could produce more 

interpretable results. In Chapter 3 it was noted that imputation may be an alternative to 

model-based methods for addressing 100% missing data and this possibility shall be explored 

further next. 

In Chapters 5 and 6 an alternate method for addressing 100% missing data, this time 

imputing the missing values, while retaining the same data sets and variables described in 

Chapter 3. 
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Chapter 5 An imputation-based approach to addressing 

missing pre-diagnosis health behaviour 

 

5.1 Background 

In the previous chapter a model-based approach was used to estimate the probability 

of pre-diagnosis behaviours for OC cases and then used these estimated probabilities as 

predictors of post-diagnosis survival using Cox regression models. It was observed that the 

resulting hazard ratios were difficult to interpret and that estimating the precision these 

hazard ratios may be difficult (the calculated confidence intervals were too narrow). In this 

Chapter an imputation-based approach for replacing the missing behavioural data is 

introduced. 

Imputation provides actual values for the missing data, avoiding the difficulties of 

interpreting estimated probability of behaviour. But the values provided by the imputation are 

not the true behaviours of the OC cases. The imputed behaviour is, at best, an informed guess 

of the true health behaviour of each OC case.  

There are many different approaches to imputation, varying according to the 

information available to inform the guesswork. In this thesis a method is sought to impute OC 

cases unknown health behaviour using the known behaviour of the different individuals in the 

BRFSS health survey. It has been noted previously (Section 1.8) that individuals with the 

same demographic background are more likely to display similar behaviours than individuals 

from different backgrounds. So, a reasonable first step is to match each OC case with a 

demographically similar individual from the BRFSS health survey data set. If health 
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behaviours are clustered by demographic group, the demographically matched BRFSS 

respondents should contain some information about the health behaviours of the OC cases.  

The amount of information which can be conveyed from the BRFSS health survey 

respondents about OC cases behaviour will be determined by how strongly health behaviour 

clusters by demographic group. Given such clustering is likely to be modest, the health 

behaviours of BRFSS respondents are expected to provide little real information about the 

health behaviour of the demographically similar OC cases. It is certainly possible to detect 

these weak relationships, but sample sizes may need to be quite large. 

Cold deck imputation is the process of using ‘matching’ data records from an external 

data set as donors of missing data. In this thesis, BRFSS health survey respondents are 

matched to OC cases according to age group, gender, marital status, race, State of residence 

and year.  For each OC case, a matching BRFSS health survey data record is selected at 

random to ‘donate’ their health behaviour data. The donated health behaviour becomes the 

OC case’s imputed behaviour. 

In effect this is saying, “because Ms A is a smoker and because Ms A is of the same 

age, sex, marital status, race, State of residence and recording year as Ms B, then we’ll call 

Ms B a smoker too”. Obviously, these imputed values will be incorrect often. Ms B may be 

misclassified as a smoker when in truth she has never smoked. If smoking presents a hazard 

to survival, then misclassifying smokers as non-smokers will make the non-smoking group 

look like it has worse survival than it really does. Alternatively, classifying non-smokers as 

smokers, will make the smoker group look like it has better survival than it really does. The 

net impact is to attenuate any measure of risk towards the null. Section 5.2 explores cold deck 

imputation in more detail, quantifying the attenuation and factors which affect it.  
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If the misclassification rate can be measured, the associated attenuation can be 

corrected for during the analysis. Section 5.3 presents a published research article in which 

cold deck imputation is applied to estimate relative risks for one-year survival in OC while 

estimating and correcting for the misclassification error.  

Section 5.4 critiques the strengths and weakness of the algorithm and results. The 

coding approach used for the analyses in this Chapter are described in the thesis Appendix. 

The closing comments in section 5.5 review the material in this Chapter in the context 

of the research questions of the thesis and foreshadows the need for the additional analyses in 

next Chapter.  

 

5.2 Attenuation of risk in cold deck imputation 

Consider the hypothetical relationship between pre-diagnosis smoking status (yes or 

no) and 1-year post-diagnosis survival (yes or no).  Suppose 30% of cancer cases were 

smokers and that smoking increases the proportion dying at one year post-diagnosis at one 

year from 0.4 to 0.6 – a relative risk of 1.5.  Suppose that 20% of respondents in the wider 

population smoke. Suppose each of 10,000 OC cases are matched with randomly selected 

BRFSS health survey respondents from the same demographic group and impute the OC 

cases behaviour to be that of their matching BRFSS respondent (i.e. cold deck imputation). 

If smoking status does not cluster in demographic groups, the cold deck imputation 

will contain no information on the smoking status of OC cases, and the scenario summarized 

in Table 5.1 would be expected. In this case, both smoking OC cases and non-smoking OC 

cases would be merged to 20% smokers and 80% non-smokers and the relationship between 

smoking and survival would be completely lost. 
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Table 5.1 Expected attenuated relative risk when the true relative risk is 1.5, the samples size 
is 10,000 and the cold deck imputation of behaviour is no better than random chance. 
 

a) Results of matching categorised by true smoking status of cancer cases 
true smoking 
status 

expected 
number 

(a) 

true 
death rate 

(b) 

imputed smoking 
status 

expected 
number 

(c) 

expected deaths 
 

(d) = (b)x(c) 
smoker 
(30%) 

3,000 0.6 smoker (20%) 
non-smoker (80%) 

3,000x0.2=600 
3,000x0.8=2,400 

600x0.6=360 
2,400x0.6=1440 

non smoker 
(70%) 

7,000 0.4 smoker (20%) 
non smoker (80%) 

700x0.2=1,400 
700x0.8=5,600 

1,400x0.4=560 
5,600x0.4=2240 

 
b) Results of matching categorised by imputed smoking status 

imputed 
smoking 
status 

expected number 
 from (c) 

expected deaths 
from (d) 

expected death 
rate 

(e)=(d)/(c) 

attenuated 
relative risk 

smoker 600+1,400=2,000 360+560=920 920/2,000=0.46  
non smoker 2,400+5,600=8,000 1,440+2,240=3,680 3,680/8,000=0.46  
    0.46/0.46=1.0 

 
If, however, the cold deck matching increases the proportions of correct matches 

(smokers matched to smokers and non-smokers matched to non-smokers) by 10% the 

scenario shown in Table 5.2 would apply. The 10% increase in correct matches would mean 

22% of smokers could be expected to be matched with smokers (instead of 20%) and 88% of 

non-smokers to be matched with non-smokers (instead of 80%).   

Table 5.2 Expected attenuated relative risk when the true relative risk is 1.5, the samples size 
is 10,000 and the cold deck imputation produces 10% more correct coding of behaviour than 
would random chance. 

 
a) Results of matching categorised by true smoking status of cancer cases 

true smoking 
status 

expected 
number 

(a) 

true 
death rate 

(b) 

imputed 
smoking status 

expected 
number 

(c) 

expected deaths 
 

(d) = (a)x(c) 
smoker 
(30%) 

3,000 0.6 smoker 
non-smoker 

3,000x0.22=660 
3,000x0.78=2340 

660x0.6=396 
2340x0.6=1404 

non-smoker 
(70%) 

7,000 0.4 smoker 
non smoker 

7,000x0.12=840 
7,000x0.88=6160 

840x0.4=336 
6,160x0.4=2464 

 
b) Results of matching categorised by imputed smoking status 

imputed 
smoking 
status 

expected number 
from (c) 

expected deaths 
from (d) 

expected death 
rate 

 

attenuated 
relative risk 

smoker 660+840=1,500 396+336=732 732/1,500=0.488  
non-smoker 2,340+6,160=8,500 1,404+2,464=3,868 3,868/8,500=0.455  
    0.488/0.455=1.07 
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Table 5.2 demonstrates a scenario where informative cold deck matching flows 

through to an attenuated relative risk is 1.07 with an associated 95% confidence interval of 

1.01 to 1.14. This attenuated relative risk is statistically significantly different from the null 

(RR=1) with a p-value of 0.0159. Therefore, in this scenario the cold deck imputation has 

preserved a positive signal of the association between pre-diagnosis smoking and post-

diagnosis survival but information on the strength of this relationship  ̶  that the relative risk is 

equal to 1.5  ̶  has been under-estimated.  

For completeness, Table 5.3 demonstrates that in the unlikely event that cold cell 

imputation leads to entirely accurate assignment of behaviours (introduces no new error) the 

true relative risk will be preserved. 

Table 5.3 Expected attenuated relative risk when the true relative risk is 1.5, the samples size 
is 10,000 and the cold deck imputation produces entirely correct coding of behaviour. 
 

a) Results of matching categorised by true smoking status of cancer cases 
true smoking 
status 

expected 
number 

(a) 

true 
death 

rate (b) 

imputed 
smoking 

status 

expected 
number 

(c) 

expected deaths 
 

(d) = (a)x(c) 
smoker 
(30%) 

3,000 0.6 smoker 
non-smoker 

3,000 
0 

3,000x0.6=1,800 
0 

non-smoker 
(70%) 

7,000 0.4 smoker 
non smoker 

0 
7,000 

0 
7,000x0.4=2,800 

 
b) Results of matching categorised by imputed smoking status 

imputed 
smoking 
status 

expected number 
 from (c) 

expected deaths 
from (d) 

expected death 
rate 

(e)=(d)/(c) 

attenuated 
relative risk 

smoker 3,000 1,800 1,800/3,000=0.6  
non-smoker 7,000 2,800 2,800/7,000=0.4  
    0.6/0.4=1.5 

 

Table 5.2 demonstrates that cold deck imputation could, in some circumstances, 

preserve information on the existence of association between the pre-diagnosis health 

behaviour and the one-year survival in OC. Indeed, if all of the parameters in the above 

hypothetical scenario were able to be quantified, the ‘true’ relative risk could be derived from 
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the attenuated relative risk. That is, in Table 5.2, the attenuated relative of risk of 1.07 could 

be equated with a true relative risk of 1.5 via the known parameters: sample size; the increase 

in correct coding produced by cold deck imputation; the smoking rate in the OC population; 

and the smoking rate in the general population.  

 

 Parameters affecting the results 

For cold deck imputation to produce statistically significant evidence of a relationship 

between OC cases health behaviour and, say, one-year survival the following are required: 

a) the relationship must exist and be strong enough to be detected; 

b) the cold deck matching algorithm must provide sufficient information about the OC 

cases’ health behaviour; and 

c) the sample size must be large enough to detect the signal.  

Here some quantitative examples are presented of how strong the relationship may need to 

be, how informative the cold deck imputation may need to be and how large a sample size 

may need to be to produce statistically significant evidence of the relationship. 

Figures 5.2 to 5.4 present expected relative risks with associated 95% confidence 

intervals for a range of scenarios. Figure 5.1 shows how the formulas for these statistics were 

derived by formalising the calculations used in Tables 5.1 to 5.3.  
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Figure 5.1 Calculation of the post-matching confidence intervals 
 
Let 𝑟𝑟 represent the number of cases 
 𝑝𝑝𝑐𝑐 represent the proportion of OC cases who smoked 
 𝑝𝑝𝑒𝑒 represent the proportion of the general population who smoked 
 𝑠𝑠𝑠𝑠 represent the risk of death (within a given time period) for OC cases who smoked 
 𝑠𝑠𝑐𝑐 represent the risk of death (within a given time period) for OC cases who did not smoked 
 𝑠𝑠 represent improvement in matching derived from the matching variables 

 
Following the layout of Tables 5.1 to 5.3 the example can be generalised as follows: 

 
a) Results of matching categorised by true smoking status of cancer cases 

true smoking 
status 

expected 
number 

(a) 

true 
death 

rate (b) 

imputed 
smoking 

status 

expected 
number 

(c) 

expected deaths 
 

(d) = (a)x(c) 
Smoker 
 

𝑟𝑟𝑝𝑝𝑐𝑐 𝑠𝑠𝑠𝑠 smoker 
non-smoker 

𝑟𝑟𝑝𝑝𝑐𝑐𝑝𝑝𝑒𝑒(1 + 𝑠𝑠) 
𝑟𝑟𝑝𝑝𝑐𝑐�1− 𝑝𝑝𝑒𝑒(1 + 𝑠𝑠)� 

𝑟𝑟𝑝𝑝𝑐𝑐𝑝𝑝𝑒𝑒(1 + 𝑠𝑠)𝑠𝑠𝑠𝑠 
𝑟𝑟𝑝𝑝𝑐𝑐�1 − 𝑝𝑝𝑒𝑒(1 + 𝑠𝑠)�𝑠𝑠𝑠𝑠 

non-smoker 
 

𝑟𝑟(1 − 𝑝𝑝𝑐𝑐) 𝑠𝑠𝑐𝑐 smoker 
non smoker 

𝑟𝑟(1 − 𝑝𝑝𝑐𝑐)�1 − �1 − 𝑝𝑝𝑒𝑒�(1 +𝑠𝑠)� 
𝑟𝑟(1 − 𝑝𝑝𝑐𝑐)�1 − 𝑝𝑝𝑒𝑒�(1 +𝑠𝑠) 

𝑟𝑟(1 − 𝑝𝑝𝑐𝑐)�1− �1 − 𝑝𝑝𝑒𝑒�(1 + 𝑠𝑠)�𝑠𝑠𝑐𝑐 
𝑟𝑟(1 − 𝑝𝑝𝑐𝑐)�1 − 𝑝𝑝𝑒𝑒�(1 + 𝑠𝑠)𝑠𝑠𝑐𝑐 

 
b) Results of matching categorised by imputed smoking status 

imputed 
smoking status 

expected number 
 from (c) 

expected deaths 
 from (d) 

expected 
death rate 

attenuated 
relative risk 

smoker 𝑏𝑏= 
𝑟𝑟𝑝𝑝𝑐𝑐𝑝𝑝𝑒𝑒(1 + 𝑠𝑠) + 

𝑟𝑟(1 − 𝑝𝑝𝑐𝑐)�1 − �1 − 𝑝𝑝𝑒𝑒�(1 + 𝑠𝑠)� 
 

𝑦𝑦= 
𝑟𝑟𝑝𝑝𝑐𝑐𝑝𝑝𝑒𝑒(1 +𝑠𝑠)𝑠𝑠𝑠𝑠 + 

𝑟𝑟(1 − 𝑝𝑝𝑐𝑐)�1− �1 − 𝑝𝑝𝑒𝑒�(1 + 𝑠𝑠)�𝑠𝑠𝑐𝑐 
 

 
𝑦𝑦 𝑏𝑏⁄  

 

non-smoker 𝑟𝑟= 
𝑟𝑟𝑝𝑝𝑐𝑐�1− 𝑝𝑝𝑒𝑒(1 + 𝑠𝑠)� + 

𝑟𝑟(1 − 𝑝𝑝𝑐𝑐)�1 − 𝑝𝑝𝑒𝑒�(1 + 𝑠𝑠) 

𝑟𝑟= 
𝑟𝑟𝑝𝑝𝑐𝑐�1− 𝑝𝑝𝑒𝑒(1 +𝑠𝑠)�𝑠𝑠𝑠𝑠 + 

𝑟𝑟(1 − 𝑝𝑝𝑐𝑐)�1 − 𝑝𝑝𝑒𝑒�(1 + 𝑠𝑠)𝑠𝑠𝑐𝑐 

 
𝑟𝑟 𝑟𝑟⁄  

 

    𝑦𝑦 𝑏𝑏⁄
𝑟𝑟 𝑟𝑟⁄
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Thus the components are as follows: 

a. The expected number of cases classified as smokers who die within the time period 
𝑟𝑟𝑝𝑝𝑐𝑐𝑝𝑝𝑒𝑒(1 + 𝑠𝑠)𝑠𝑠𝑠𝑠 + 𝑟𝑟(1 − 𝑝𝑝𝑐𝑐)�1 − �1 − 𝑝𝑝𝑒𝑒�(1 + 𝑠𝑠)�𝑠𝑠𝑐𝑐 

b. The expected number of cases classified as smokers 
𝑟𝑟𝑝𝑝𝑐𝑐𝑝𝑝𝑒𝑒(1 + 𝑠𝑠) + 𝑟𝑟(1 − 𝑝𝑝𝑐𝑐)�1 − �1 − 𝑝𝑝𝑒𝑒�(1 + 𝑠𝑠)� 

c. The expected number of cases classified as non-smokers who die within the time period 
𝑟𝑟𝑝𝑝𝑐𝑐�1 − 𝑝𝑝𝑒𝑒(1 + 𝑠𝑠)�𝑠𝑠𝑠𝑠 + 𝑟𝑟(1 − 𝑝𝑝𝑐𝑐)�1 − 𝑝𝑝𝑒𝑒�(1 + 𝑠𝑠)𝑠𝑠𝑐𝑐 

d. The expected number of cases classified as non-smokers 
𝑟𝑟𝑝𝑝𝑐𝑐�1 − 𝑝𝑝𝑒𝑒(1 + 𝑠𝑠)�+ 𝑟𝑟(1 − 𝑝𝑝𝑐𝑐)�1 − 𝑝𝑝𝑒𝑒�(1 + 𝑠𝑠) 

 
Which can be used to construct the attenuated relative risk (Altman, 1990) as  

𝑅𝑅𝑅𝑅� =
𝑦𝑦 𝑏𝑏⁄
𝑟𝑟 𝑟𝑟⁄

 

 
and the variance of the log of the attenuated relative risk (Altman, 1990) as 

var�log �𝑅𝑅𝑅𝑅� �� =
1
𝑦𝑦

+
1
𝑟𝑟
−

1
𝑏𝑏
−

1
𝑟𝑟

 
 

The associated 95% confidence interval is  

exp� ln (𝑅𝑅𝑅𝑅� ) ± 1.96�
1
𝑦𝑦

+
1
𝑟𝑟
−

1
𝑏𝑏
−

1
𝑟𝑟
� 
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Figure 5.2 shows the expected relative risks and associated 95% confidence intervals 

from the scenario in Table 5.2 but with varying sample sizes. That is, the true relative risk 

between smoking and one-year survival is 1.5, 30% of OC cases smoked (𝑝𝑝𝑐𝑐 = 0.3), 20% of 

the wider population smoked �𝑝𝑝𝑒𝑒 = 0.2�, cold deck imputation is 10% better than random 

chance at imputing OC cases smoking status (𝑠𝑠 = 0.1) and sample sizes vary from 𝑟𝑟 =

1000 to 𝑟𝑟 = 10,000 in steps of 1000. 

Figure 5.2 Expected confidence intervals for sample sizes between 1000 and 10,000 when 
relative risk is 1.5 and imputed smoking status is 10% more successful than chance. 

  

 

As expected, Figure 5.2 confirms that the attenuated relative risk is not affected by 

variation in sample size and remains at the 1.07 computed in Table 5.2. Also as expected, the 

varying sample size changes the width of the confidence interval. The first confidence 

interval to exclude the null (RR=1) occurs at 7000. That is, a sample size of 7000 or more is 

needed in order to return statistically significant evidence of relationship when the true 

relationship has an relative risk of 1.5 and cold deck imputation is 10% better than random 

chance at assigning the correct behaviour to OC cases. 
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Equivalent results can be obtained by varying the percentage improvement over 

chance in the cold deck imputation, where the sample size and relative risk are held constant 

and by varying the true relative risk while holding percentage improvement over chance and 

sample size constant. Example results are provided in Figures 5.3 and 5.4.  

Figure 5.3 shows relative risks and associated 95% confidence intervals obtained in 

the same scenario, except varying the percentage improvement over chance in the cold deck 

imputation from 2% to 20% in steps of 2%. That is, the true relative risk is set at 1.5, the 

sample size at 10,000, the proportion of OC cases who smoke is 30% and the proportion of 

the wider population who smoke is 20%. As expected, the higher the rate of correct matches 

in excess of chance, the more likely it to find statistically evidence for the true association. 

For example, obtaining statistically significant evidence of a relationship when the true 

relative risk is 1.5 and the sample size is 10,000, would need the cold deck imputation to 

produce about 10% higher matches than chance. 

Figure 5.3 Expected confidence intervals for improvement in  behaviour matching from 2% 
to 20% greater than chance when sample size is 10,000 and relative risk is 1.5. 
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Finally, in Figure 5.4 the 10,000 sample size, a 10% improvement in correct matches 

from the imputation relative to chance and the same proportions of smokers are maintained 

but the true relative risk varies from 1.05 to 1.50 in 0.05 increments. In this scenario, the true 

relative risk would need to be 1.45 before the cold deck imputation process would provide 

statistically significant evidence of a relationship between smoking and one-year survival. 

Figure 5.4 Expected confidence intervals for relative risks between 1.05 and 1.50 when 
sample size is 10,000 and imputed smoking status is 10% more successful than chance. 

  

The above results confirm that if the underlying association between health behaviour 

and one-year survival is large enough and the sample size is large enough and the clustering 

of behaviour within demographic groups strong enough, the cold deck imputation process can 

provide statistically significant evidence that the relationship exists. 

Unfortunately, providing statistical evidence of the relationship between pre-diagnosis 

health behaviour and one-year post-diagnosis survival in OC is insufficient. The effect size 

and its clinical importance for decision making need to be established. (For example, a true 

relative risk of 1.20 will be clinically less interesting than a true relative risk of 2.10 even if 

both are found to be statistically significant.) In the scenario presented in Table 5.2 where all 

parameters were known, the attenuated relative risk of 1.07 could be equated with a true 
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relative risk of 1.5. But in a real world setting, it would appear difficult to quantify how much 

the proportion of correctly imputed behaviour from cold deck imputation differs from chance.  

At this point the focus turns from the proportion of OC cases receiving correctly 

imputed behaviour to the proportion receiving incorrectly imputed behaviour. Incorrectly 

imputed behaviour (such as true smokers imputed to be non-smokers and true non-smokers 

imputed to be smokers) is a misclassification and misclassification leads to attenuation. If the 

misclassification rate can be measured the attenuation can be adjusted for during the 

statistical analysis. 

The approach to measuring and correcting for misclassification arising through cold 

deck imputation is described in the published research paper presented in the next section. 

 

5.3 Augmenting cancer registry data with health survey data with no cases in 

common: the relationship between pre-diagnosis health behaviour and post-

diagnosis survival in oesophageal cancer. 

The material in this section has been published as a peer reviewed journal article. The 

citation is: Fahey, P. P., Page, A., Stone, G., & Astell-Burt, T. (2020). Augmenting cancer 

registry data with health survey data with no cases in common: the relationship between pre-

diagnosis health behaviour and post-diagnosis survival in oesophageal cancer. BMC Cancer, 

20, 1-11. 

In 2020, the journal BMC Cancer has a Q2 rating in Cancer Research in the Scimago 

rating scheme and a 2-year impact factor of 4.069.  

Following the CRediT Taxonomy (National Information Standards Organization, 

2021), author contributions were: 
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• Paul Fahey contributed to Conceptualisation, Data curation, Formal analysis, 

Methodology and Writing the original draft. 

• Andrew Page, Glenn Stone and Thomas Astell-Burt contributed to 

Supervision 

• All authors contributed to Review and Editing of the draft paper. 

 

This material has been reformatted to suit the thesis with supplementary materials re-

integrated into the paper, tables and figures re-numbered, and text converted from US to 

Australian English. 

 

 Abstract 

Background: For epidemiological research, cancer registry datasets often need to be 

augmented with additional data. Data linkage is not feasible when there are no cases in 

common between data sets. A novel approach to augmenting cancer registry data by imputing 

pre-diagnosis health behaviour and estimating its relationship with post-diagnosis survival 

time is presented.  

Methods: Six measures of pre-diagnosis health behaviours (focussing on tobacco 

smoking, ‘at risk’ alcohol consumption, overweight and exercise) were imputed for 28,000 

cancer registry data records of US oesophageal cancers using cold deck imputation from an 

unrelated health behaviour dataset. Each data point was imputed twice. This calibration 

allowed the estimation of the misclassification rate. Statistical correction for the 

misclassification is applied to estimate the relative risk of dying within one year of diagnosis 
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for each of the imputed behaviour variables. Subgroup analyses were conducted for 

adenocarcinoma and squamous cell carcinoma separately. 

Results: Simulated survival data confirmed that accurate estimates of true relative 

risks could be retrieved for health behaviours with greater than 5% prevalence, although 

confidence intervals were wide. Applied to real datasets, the estimated relative risks were 

largely consistent with current knowledge. For example, tobacco smoking status 5 years prior 

to diagnosis was associated with an increased age-adjusted risk of all cause death within one 

year of diagnosis for oesophageal squamous cell carcinoma (RR=1.99 95% CI 1.24,3.12) but 

not oesophageal adenocarcinoma (RR=1.61, 95% CI 0.79,2.57).  

Conclusions: A novel imputation-based algorithm for augmenting cancer registry data 

for epidemiological research has been demonstrated which can be used when there are no 

cases in common between data sets. The algorithm allows investigation of research questions 

which could not be addressed through direct data linkage. 

 

 Background  

In 2011 it was estimated that that the cost of maintaining the United States’ National 

Program of Cancer Registries was $US60.77 per case (Tangka et al., 2016). The estimated 

number of new United States cancer cases in 1999 was 1,291,451 (Centers for Disease 

Control and Prevention) and 1,762,450 in 2019 (American Cancer Society, 2019) an increase 

of 36% in 20 years. As in any public investment, there is always a need to maintain, and 

indeed increase, benefits of cancer registries relative to costs.  

The role of cancer registries has changed considerably over time (Roder, Fong, 

Brown, Zalcberg, & Wainwright, 2014). Since the 1990s, for example, the development of 

specialised data linkage infrastructure has open wide new research applications (Roder et al., 



   169 

pg. 169 
 

2014). However, data linkage may not be feasible in all circumstances. There are still 

research questions which are waiting for a suitable method of analysis. 

Oesophageal cancer is the seventh most common cancer by site (Bray et al., 2018), 

has low survival (Siegel et al., 2019), and caused an estimated 1 in 20 cancer deaths 

worldwide in 2018 (Bray et al., 2018). It has been estimated that 71% of male and 59% of 

female oesophageal cancer deaths in the US arise from modifiable health behaviours: 

including smoking (50%), alcohol consumption (17%) and excess body weight (27%) (Islami 

et al., 2018). The impact of pre-diagnosis health behaviour on oesophageal cancer survival is 

uncertain. As survival times are short, the carry-over effect of pre-diagnosis behaviour may 

be important, and potentially impact treatment choices (Shitara et al., 2010). Further, as 

health behaviours in populations change over time (Grant et al., 2017; Méndez, Tam, 

Giovino, Tsodikov, & Warner, 2016), predicting the impact of behaviour on cancer survival 

would assist in forecasting future disease burden and health service requirements. 

Associations between oesophageal cancer incidence and health behaviour (including 

tobacco smoking, alcohol consumption, body mass index and physical activity) differ by 

histological sub-type (Clara Castro et al., 2018; Steevens et al., 2010) with oesophageal 

squamous cell carcinoma (OSCC) and oesophageal adenocarcinoma (OAC) usually 

examined separately. Similar differences may exist for survival time (Thrift, Nagle, Fahey, 

Russell, et al., 2012; Thrift, Nagle, Fahey, Smithers, et al., 2012).   

Nowadays, cancer survival data is generally available through cancer registries (A. H. 

Siddiqui & Zafar, 2018), but not data on pre-diagnosis health behaviour. Registry data needs 

to be augmented with additional data collection or linkage to external data sources. 

Additional data collection can be time consuming, expensive and subject to survivor bias 

(Smithers et al., 2010) and data linkage needs the same individuals to be present and 
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identifiable in both data collections and is less feasible for rare disease like oesophageal 

cancer. 

When faced with missing data, researchers sometimes use imputation (De Waal, 

Pannekoek, & Scholtus, 2011). Imputing data is likely to lead to misclassification of health 

behaviours (such as smokers classified as non-smokers and vice-versa). However, repeated 

observations of the same behaviour can be used to quantify, and subsequently correct for 

misclassification (de Klerk, English, & Armstrong, 1989). In this paper the possibility is 

investigated that, with large datasets and careful calibration, imputing a completely missing 

variable could return valid results. An algorithm is described and evaluated for assessing the 

relationship between pre-diagnosis health behaviours and survival at one-year post-diagnosis 

for oesophageal cancer where survival is derived from cancer registry data and key health 

behaviours are fully imputed using unrelated health survey data.  

 

 Methods 

Data sources 

Oesophageal cancer cases were extracted from the Surveillance, Epidemiology, and 

End Results Program (SEER) cancer registries database, which combines data from cancer 

registries in up to 13 US States covering up to 28% of the US population (Surveillance 

Epidemiology and End Results (SEER) Program). Available data included patient 

demographics and outcomes (including survival time).  

All records of primary oesophageal cancers diagnosed between 2006 to 2014 were 

downloaded using the SEER*Stat utility (Surveillance Research Program, 2020). After 
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excluding 112 cases <35 years of age as atypical, the dataset contained 34,972 oesophageal 

cancer cases. 

Health behaviour data of US residents were extracted from the Behavioural Risk 

Factor Surveillance System (BRFSS) (Centers for Disease Control and Prevention (CDA)). 

This telephone survey of the adult population of US residents (all States) has been conducted 

annually since 1984. All 3,018,830 records from 2001 to 2009 were included.  

Given that health behaviour can change after diagnosis (Demark-Wahnefried et al., 

2005; Toohey et al., 2016) the BRFSS health behaviour best represented the health behaviour 

of oesophageal cancer cases pre-diagnosis. A 5-year lag was added to minimise the risk of 

early symptoms influencing behaviour. The initial year was the earliest year in which BRFSS 

used a consistent definition for health behaviours selected for the present study. The end year 

was the most recently available SEER cancer registry data which allowed at least 12-months 

follow-up. 

Outcomes, predictors and subgroups  

The dichotomous outcome was all-cause mortality within one year of diagnosis.  

Six self-reported measures of health behaviour were selected based on previous 

associations with oesophageal cancer (Clara Castro et al., 2018; Fahey et al., 2015) and 

availability in the BRFSS dataset:  

• Current tobacco smoking (yes or no), defined as daily or less than daily smoking;  

• Alcohol consumption – possible binge drinking (yes or no), defined as ≥5 standard 

drinks for males or ≥4 standard drinks for females on at least one occasion in the 

month prior to survey; 
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• Alcohol consumption – possible heavy drinking (yes or no), defined as >2 standard 

drinks per day for men and >1 standard drink per day for women in the month prior 

to survey;  

• Physical activity (yes or no), defined as any physical activity or exercise in the past 

30 days other than for regular job; 

• Obese (yes/no), defined as body mass index ≥ 30 kg/m2; and 

• Current tobacco smoking with regular alcohol (yes or no), defined as current tobacco 

smoking with ≥1 standard drink of alcohol per day on average in the previous month. 

Histological subgroups were defined using International Classification of Diseases for 

Oncology, third edition (ICD-O-3) with 805-808 indicating OSCC (n=10,454) and 814-838 

indicating OAC (n=17,950).  

Imputation method and covariates 

The complete absence of data on health behaviour meant that regression-based 

imputation and multiple imputation could not be used (Sterne et al., 2009). Random cold 

deck imputation (De Waal et al., 2011) based on demographic strata was appropriate, as there 

were demographic variables in common between the two datasets and individuals from the 

same demographic group have a greater likelihood of engaging in similar health behaviours 

(Moore et al., 2016).  

In random cold deck imputation individuals are allocated into strata according to 

auxiliary variables and then, within each stratum, one ‘donor’ record is randomly selected for 

each ‘recipient’ record. The BRFSS health behaviour data were the donor records and the 

SEER cancer registry data were the recipients. The recipient record is assigned the behaviour 

of the donor record. The more, and the more informative, the auxiliary variables the greater 

the chance the imputed behaviour will be correct. 
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Six auxiliary variables were used: 

- Age category at diagnosis (5-year groups from 35-39y to 75-79y then >80y); 

- Gender (male; female); 

- Marital status (married, including common law; single or never married; widowed; 

divorced); 

- Race (white; black; Asian or Pacific Islander; American Indian or Alaska Native);  

- State of residence (Alaska; California; Connecticut; Georgia; Hawaii; Iowa; 

Kentucky; Louisiana; Michigan; New Jersey; New Mexico; Utah; Washington); 

- Year of diagnosis (2006 to 2014).  

To produce the 5-year lag, the donor records were defined to be BRFSS health 

behaviour records which were five years earlier and one age-group younger than the 

corresponding SEER cancer case. 

There were 37,440 possible combinations of the auxiliary variable categories, 7,397 

of which occurred within the SEER oesophageal cancer cases. Of these, 6,986 (94.4%) 

contained at least one eligible BRFSS donor record.  

To allow calibration, two BRFSS donor records were randomly selected for each 

SEER case (without replacement), such that each cancer case had two imputed values for 

each lifestyle variable. Where donor records were exhausted before cancer cases, the cancer 

case was omitted from the analysis. The conceptual steps of the imputation algorithm are 

summarised in the flow chart in Figure 5.5. In practice, this algorithm was operationalized 

strata by strata rather than case by case. The imputation algorithm (and all analyses) was 

written in R software. 
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Figure 5.5 A conceptual map of the algorithm used to impute the pre-diagnosis behaviour of 
oesophageal cancer cases. 

 

 

 

 

 

 

 

 

 

 

 

         

 

       
 

 

 

 

 

 

 

 

 

 

 

 

      

 

       
 

 

a Matches are BRFSS health behaviour records which are 5 years earlier in time and one age-
group younger than the corresponding SEER cancer case, with all other variables equal. 
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Missing data, exclusions, and the final dataset 

Approximately 80% of the 35,084 eligible oesophageal cancer cases were included in 

the analyses (Figure 5.6). SEER cases were excluded for missing survival time or auxiliary 

variables (n=2784, 8.0%) or failing to find two donor records (from 4353 to 4453 (12.4% to 

12.7%) varying between health behaviours).  
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Figure 5.6 Flow chart of inclusions and exclusions of SEER oesophageal cancer cases 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.4 shows the proportions of eligible SEER cancer cases that were unable to be 

matched with two donor records with non-missing smoking status.  Proportions of unmatched 

cases are shown for each category of each of the auxiliary variables used in matching. Results 

for the other behaviours were similar – varying slightly due to the different distribution of 

missing data in the different variables.  

SEER oesophageal 
cancer cases from 

2006 to 2014 
n=35,084 

Under 35 years of age 
n=112 

n=34,972 

Missing survival time 
n=456 

n=34,516 

Censored at <1-year post-diagnosis 
n=301 

n=34,215 

Missing marital status and/or race 
n=2,027 

n=32,188 

No BRFSS data records in same strata 
n=580 

n=31,608 

Insufficient BRFSS records to provide two 
imputations 
• Current smoker n=3,773 
• Binge drinking n=3,858 
• Heavy drinking n=3,859 
• Physical activity n=3,778 
• Obese n=3,812 
• Current smoking with regular  

alcohol n=3,873 

Included in the analysis 
• Current smoking n=27,835 
• Binge drinking n=27,750 
• Heavy drinking n=27,749 
• Physical activity n=27,830 
• Obese n=27,796 
• Current smoking with regular 

alcohol n=27,735 
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Table 5.4 Number of SEER oesophageal cancer cases seeking donor records for current 
smoking behaviour and the proportion of these failing to obtain two donor records. 
 Seeking Donor Records  Failed to Obtain 2 Donor Records 
 Frequency % of total  Frequency % of group 
Total 32,188 100.0%  4,353 13.5% 
Status at one year 

- Dead 
- Alive 

 
17,490 
14,698 

 
54.3% 
45.7% 

  
2,563 
1,790 

 
14.7% 
12.2% 

Cancer type 
- ESCC 
- EAC 

 
10,454 
17,950 

 
32.5% 
55.8% 

  
1,540 
2,224 

 
14.7% 
12.4% 

Year 
- 2006 
- 2007 
- 2008 
- 2009 
- 2010 
- 2011 
- 2012 
- 2013 
- 2014 

 
3,364 
3,519 
3,539 
3,675 
3,564 
3,591 
3,636  
3,613  
3,597 

 
10.7% 
10.9% 
11.0% 
11.4% 
11.1% 
11.2% 
11.3% 
11.2% 
11.2% 

  
691 
659 
620 
727 
502 
423 
496 
148 
87 

 
20.0% 
18.7% 
17.5% 
19.8% 
14.1% 
11.8% 
13.6% 
4.1% 
2.4% 

Age group 
- 35-39 
- 40-44 
- 45-49 
- 50-54 
- 55-59 
- 60-64 
- 65-69 
- 70-74 
- 75-79 
- 80+ 

 
179 
477 

1,258 
2,399 
3,849 
4,919 
5,028 
4,273 
4,010 
5,796 

 
0.6% 
1.5% 
3.9% 
7.5% 

12.0% 
15.3% 
15.6% 
13.3% 
12.5% 
18.0% 

  
2 
5 

25 
138 
368 
692 
810 
725 
736 
852 

 
1.1% 
1.0% 
2.0% 
5.8% 
9.6% 

14.1% 
16.1% 
17.0% 
18.4% 
14.7% 

Sex 
- Male 
- Female 

 
25,131 
7,057 

 
78.1% 
21.9% 

  
4,059 
294 

 
16.2% 
4.2% 

Marital status 
- Married 

(including 
common law) 

- Divorced 
- Widowed 
- Single (Never 

married) 

 
 

18,363 
 
 

4,046 
4,394 
5,384 

 

 
 

57.0% 
 
 

12.6% 
13.7% 
16.7% 

  
 

2238 
 
 

287 
518 

1,309 
 

 
 

12.2% 
 
 

7.1% 
11.8% 
24.3% 

Race 
- White 
- Black 
- Asian or 

Pacific 
Islander 

- American 
Indian or 
Alaska 
Native 

 
27,184 
3,410 
1,406 

 
 

187 

 
84.5% 
10.6% 
4.4% 

 
 

0.6% 

  
3,115 
681 
474 

 
 

82 

 
11.5% 
20.0% 
33.7% 

 
 

43.9% 
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Table 5.4 (continued) Number of SEER oesophageal cancer cases seeking donor records for 
current smoking behaviour and the proportion of these failing to obtain two donor records. 
 Seeking Donor Records  Failed to Obtain 2 Donor Records 
 Frequency % of total  Frequency % of group 
Total 32,188 100.0%  4,353 13.5% 
State of residence 

- Alaska 
- California 
- Connecticut 
- Georgia 
- Hawaii 
- Iowa 
- Kentucky 
- Louisiana 
- Michigan 
- New Jersey 
- New Mexico 
- Utah 
- Washington 

 
39 

11,672 
1,799 
3,599 
479 

1,727 
3,028 
1,972 
1,902 
3,629 
648 
613 

1,980 

 
0.1% 

36.3% 
5.6% 

11.2% 
1.5% 
5.4% 
9.4% 
6.1% 
5.9% 

11.3% 
2.0% 
1.9% 
6.2% 

  
39 

3,551 
34 

308 
55 
35 
53 
81 
70 
81 
9 

10 
26 

 
100.0% 
30.4% 
1.9% 
8.6% 

11.5% 
2.0% 
1.8% 
4.1% 
3.7% 
2.2% 
1.4% 
1.6% 
1.3% 

 

Table 5.4 shows that failure to find donor records were more common: 

• in earlier years when the number of people interviewed by BRFSS was smaller.  

• in the older age categories where there are more cancer cases and relatively fewer 

BRFSS respondents. 

• in California, where the population (and hence number of cancer cases) is quite 

large. The BRFSS surveys a similar number per State regardless of population size. 

• In marital and race groups where the BRFSS is known to be under-representative 

of the true population (Schneider et al., 2012). 

Only 458,780 of the BRFSS health behaviour records matched the SEER cases on the 

auxiliary variables (Figure 5.7). The number with missing health behaviour ranged from 564 

(0.1%) for physical activity to 17,624 (3.9%) for obesity. To avoid imputing a missing value 

into a missing value, these records were excluded. To avoid cumulative effects, six separate 

donor datasets were created (each containing complete cases for one of the six health 

behaviours) and each health behaviour was imputed independently. 
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Figure 5.7 Flow chart of inclusions and exclusions of BRFSS health behaviour data records 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BRFSS data records 
from 2001 to 2009 

n=3,018,830 

Not from any of the 13 SEER States, 
n=2,182,086 

n=836,744 

Missing age, marital status and/or race, 
n=16,225 

 n=820,519 

Cannot matcha age <30 n=89,229 

n=731,290 

Cannot matcha mixed race n=21,314 

 n=709,976 

No SEER records in same strata, n=251,196 

n=458,780 

Missing behaviour data 
• Current smoking n=2,531 
• Binge drinking n=8,974 
• Heavy drinking n=10,839 
• Physical activity n=564 
• Obese n=17,624 
• Current smoking with regular alcohol 

n=12,894 

Eligible donor records 
• Current smoking n=456,249 
• Binge drinking n=449,806 
• Heavy drinking n=447,941 
• Physical activity n=58,216 
• Obese n=441,156 
• Current smoking with regular 

alcohol n=445,886 

Used in imputations 
• Current smoker n=55,670 ●    Physical activity n=55,660 
• Binge drinking n=55,500 ●    Obese n=55,592 
• Heavy drinking n=55,498 ●    Current smoker with regular alcohol 

n=55,470 
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a All auxiliary variables could be coded identically in both SEER cancer registry data and BRFSS 
health behaviour data except the BRFSS data included an additional category for race. Unlike the 
SEER cancer registry data, the BRFSS data collection allowed respondents to describe their race as 
“mixed”. About 3.5% of BRFSS respondents selected this option. As these records did not match any 
SEER cancer registry records they did not contribute to the analysis. Similarly, with a minimum age 
of 35 years for SEER cancer cases and a 5-year lag, BRFSS respondents under 30 years of age could 
not match any SEER cancer registry records. 

 

Calibrating the effectiveness of imputation 

For each health behaviour the agreement between the two donor records was used to 

estimate of the amount of information on health behaviour retained by the cold deck 

imputation. 

Let 𝑝𝑝𝑖𝑖 represent the proportion of imputed values where the behaviour is present. If 

the imputation process retained no information on behaviour, the expected proportion of 

behaviour present to behaviour present matches is 𝑝𝑝𝑖𝑖2 - the agreement arising through chance 

alone. If the imputation process is informative, the proportion of behaviour present to 

behaviour present matches is greater than chance. Following Lunn & Davies (Lunn & 

Davies, 1998) this improvement in matching was modelled as 𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖) 𝜌𝜌 where  𝜌𝜌 is a 

measure of correlation. 

Table 5.5 summarizes how the agreement between the two imputed values was 

modelled. The observed number of behaviour present to behaviour present matches is 

designated E and E is modelled as the number of behaviour present to behaviour present 

matches expected by chance alone, 𝑟𝑟𝑝𝑝𝑖𝑖2, plus the excess matches arising from the information 

retained by the imputation algorithm, 𝑟𝑟𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝜌𝜌.  
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Table 5.5 Observed and expected agreement between the two sets of imputations. 
Imputed 
behaviour #1 

Imputed behaviour #2 
Behaviour present Behaviour absent total 

Behaviour present  
-observed 
-expected 

 
𝐸𝐸 

𝑟𝑟𝑝𝑝𝑖𝑖2 + 𝑟𝑟𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝜌𝜌 

 
𝐹𝐹 

𝑟𝑟𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖) − 𝑟𝑟𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝜌𝜌 

 
𝐸𝐸 + 𝐹𝐹 
𝑟𝑟𝑝𝑝𝑖𝑖 

Behaviour absent 
-observed 
-expected 

 
𝐺𝐺 

𝑟𝑟𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖) − 𝑟𝑟𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝜌𝜌 

 
𝐻𝐻 

𝑟𝑟(1 − 𝑝𝑝𝑖𝑖)2 + 𝑟𝑟𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝜌𝜌 

 
𝐺𝐺 + 𝐻𝐻 

𝑟𝑟(1 − 𝑝𝑝𝑖𝑖) 
Total 

-observed 
-expected 

 
𝐸𝐸 + 𝐺𝐺 
𝑟𝑟𝑝𝑝𝑖𝑖 

 
𝐹𝐹 + 𝐻𝐻 

𝑟𝑟(1 − 𝑝𝑝𝑖𝑖) 

 
𝑟𝑟 
 

 

The values 𝑟𝑟,𝐸𝐸,𝐹𝐹,𝐺𝐺 and 𝐻𝐻 are obtained by cross tabulation of the two imputed 

values. Two potential estimates of 𝑝𝑝𝑖𝑖 are the observed proportion in the first set of imputed 

values and the observed proportion in the second set of imputed values. In the current study 

𝑝𝑝𝑖𝑖 is estimated using the average of these two observed proportions: 

𝑝𝑝𝚤𝚤� =
1
2
�
𝐸𝐸 + 𝐹𝐹
𝑟𝑟

+
𝐸𝐸 + 𝐺𝐺
𝑟𝑟

� 

The value of 𝜌𝜌 is estimated by the phi coefficient, 𝜑𝜑, (the correlation coefficient for 

dichotomous variables) between the pairs of imputed values. 

  

Statistical analysis 

For each behaviour, the first set of imputed values were cross-tabulated against one 

year survival status and calculated the relative risk of death within one year, 𝑅𝑅𝑅𝑅𝑖𝑖. The 

subscript 𝑖𝑖 signifies that the imputed data were used in the calculations.  

Other potential predictors of survival times were investigated using log-binary 

regression with associated log likelihood ratio statistics and area under the receiver operator 

curves (Appendix 1). Age was identified as a confounder as both post-diagnosis survival and 

proportion recording each health behaviours were lower among older age groups (Appendix 

1).  To adjust for this, age-adjusted relative risks, 𝑦𝑦𝑟𝑟𝑗𝑗𝑅𝑅𝑅𝑅𝑖𝑖, were estimated using the Cochran-
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Mantel-Haenszel method (Agresti, 2013). Other potential demographic predictors of survival 

were found to be of lesser impact or confounded with age (Appendix 1).  

Beyond the demographic variables, cancer stage at diagnosis (coded by SEER 

according to the AJCC Cancer Staging Manual 6th Edition (Greene et al., 2003)) was 

confirmed as a stronger predictor of survival (Appendix 1) but, occurring after health 

behaviour exposure, may partially lie on the disease pathway. That is, smokers may have 

more advanced disease at diagnosis due to their smoking and so correcting for cancer stage at 

diagnosis may falsely attenuate the association between pre-diagnosis smoking and survival 

post diagnosis (Cole & Hernán, 2002). However, for completeness, subgroup analyses were 

conducted for cancer stage at diagnosis. 

Non-differential misclassification errors will, barring random error and confounding, 

attenuate the estimated relative risk toward the null (Jurek, Greenland, Maldonado, & 

Church, 2005). The mathematical relationship between the relative risk using the imputed 

data, 𝑅𝑅𝑅𝑅𝑖𝑖, and the true relative risk for the cancer cases, 𝑅𝑅𝑅𝑅𝑇𝑇, is derived in Appendix 2. In 

brief, if the prevalence of behaviour is the same between the donor records and cancer cases 

in each stratum, the true relative risk can be estimated using 

𝑅𝑅𝑅𝑅𝑇𝑇 =  1 −
(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)

(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)𝑝𝑝𝑖𝑖( 1 − 𝜌𝜌) − 𝜌𝜌
 

Extreme values of 𝑝𝑝𝑖𝑖 and/or 𝜌𝜌 can be problematic. For example, when 𝜌𝜌 = 0, 𝑅𝑅𝑅𝑅𝑇𝑇 is 

negative: an impossible value for a relative risk.  

Random cold deck imputation was repeated 100 times, separately for each of the six 

health behaviours. As donor records were selected at random within strata, each statistic 

varied between repetitions. Results were reported as the median value from the 100 

repetitions with the associated 2.5 and 97.5 percentiles as empirical 95% confidence 
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intervals. Subgroup analyses are reported for ESCC and EAC. Where more than 5% of the 

estimates of the true relative risk 𝑅𝑅𝑅𝑅𝑇𝑇 were impossible, the imputation process was labelled 

as ‘failed’. 

 Checking the algorithm with simulated data 

In the absence of a cohort showing the true relationship between pre-diagnosis health 

behaviour and post-diagnosis survival time, simulated data were used to test the algorithm.  

The first set of imputed behaviour was designated to be the ‘true’ health behaviour of 

each cancer case. For each health behaviour simulated seven survival status variables were 

separately simulated (repeated 100 times): to produce relative risks of  0.50, 0.66, 0.80, 1.00, 

1.25, 1.50 and 2.00 while maintaining the overall rate of the health behaviour 𝑝𝑝𝑖𝑖 and one year 

death rate (Appendix 3). 

The imputed relative risks were obtained using the second set of imputed health 

behaviours. As the second set of imputed values were selected independently and without 

replacement, they had a similar relationship with the first set of simulated data as with the 

actual cancer cases. The main difference is that the simulated survival data, being based only 

on the behaviour of interest, have no relationship with (confounding from) any other 

variables. The true data were likely to display more complex relationships. 
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 Results 

Calibrating the imputation 

The estimated proportion of cancer cases with a given health behaviour, 𝑝𝑝𝑖𝑖, ranged 

from a median of 0.737 for physical activity to 0.034 for current smoking with regular 

drinking (Table 5.6). The phi coefficients, 𝜑𝜑, show that there is usually a positive correlation 

between the two imputed values, albeit weak (medians between 0.008 and 0.077). This 

confirms that some information about health behaviour is being conveyed through the 

random cold deck imputation. The value  𝑟𝑟𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝜌𝜌, the number of correct matches 

greater than would be expected through chance, quantifies the information conveyed through 

the imputation.  ‘Heavy drinking’, and ‘current smoking with regular drinking’, had the 

lowest prevalence (median of 0.05 or less), the lowest correlations between imputed 

observations (median less than 0.025) and hence lowest information (medians below 20 

matches beyond chance). 
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Table 5.6 The estimated proportions with each health behaviour, the phi coefficient between imputed values and the estimated excess matches for each 
analysis. 
Behaviour 5 years 
before diagnosis 

N Estimated proportion with 
behaviour, 𝑝𝑝𝚤𝚤�  

Estimated phi coefficient,  
𝜌𝜌� = 𝜑𝜑 

Estimated excess matches,  
𝑟𝑟𝑝𝑝𝚤𝚤�(1 − 𝑝𝑝𝚤𝚤� )𝜌𝜌� 

  Median 95% CI Median 95% CI Median 95% CI 
Current smoking 

- overall 
- ESCC 
- EAC 

 
27,835 
8,914 
15,726 

 
0.159  
0.166 
0.157 

 
 0.157,0.162 
 0.162,0.170 
 0.153,0.159 

 
0.071 
0.077 
0.066 

 
 0.059,0.084 
 0.061,0.097 
 0.052,0.081 

 
262.2 
94.8 

137.0 

 
 220.1,312.2 
 74.5,120.7 

 107.4,169.5 
Binge drinking 

- Overall 
- ESCC 
- EAC 

 
27,750 
8,891 
15,673 

 
0.100 
0.086 
0.109 

 
 0.098, 0.102 
 0.082,0.089 
 0.106,0.111 

 
0.060 
0.060 
0.058 

 
 0.049,0.077 
 0.042,0.086 
 0.042,0.079 

 
150.5 
42.2 
88.6 

 
 121.5,192.1 

 29.8,61.1 
 63.6,120.3 

Heavy drinking 
- Overall 
- ESCC 
- EAC 

 
27,749 
8,888 
15,676 

 
0.048 
0.046 
0.050 

 
 0.047,0.050 
 0.043,0.049 
 0.048,0.052 

 
0.011 
0.015 
0.008 

 
 0.002,0.025 
 -0.002,0.036 
 -0.004,0.028 

 
14.3 
5.7 
6.0 

 
 2.7,32.0 
 -0.7,14.2 
 -3.0,20.8 

Physical activity 
- Overall 
- ESCC 
- EAC 

 
27,830 
8,912 
15,724 

 
0.737 
0.716 
0.750 

 
 0.734,0.740 
 0.709,0.721 
 0.746,0.754 

 
0.034 
0.036 
0.031 

 
 0.026,0.046 
 0.016,0.056 
 0.013,0.047 

 
185.1 
64.7 
91.4 

 
 139.4,247.4 
 29.6,100.2 
 40.0,138.4 

Obese 
- Overall 
- ESCC 
- EAC 

 
27,796 
8,898 
15,709 

 
0.257 
0.262 
0.256 

 
 0.254,0.261 
 0.255,0.268 
 0.251,0.261 

 
0.030 
0.045 
0.023 

 
 0.020,0.042 
 0.024,0.061 
 0.012,0.041 

 
160.2 
77.0 
67.8 

 
 108.4,226.8 
 41.4,104.6 
 35.0,122.4 

Current smoker 
with regular drink 

- Overall 
- ESCC 
- EAC 

 
 

27,735 
8,883 
15,670 

 
 

0.034 
0.031 
0.035 

 
 

 0.033,0.035 
 0.029,0.033 
 0.034,0.037 

 
 

0.022 
0.024 
0.021 

 
 

 0.009,0.038 
 -0.000,0.049 
 0.004,0.042 

 
 

19.8 
6.2 

11.5 

 
 

 8.0,34.2 
 -0.0,13.5 
 2.1,22.4 
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𝑝𝑝𝚤𝚤�  proportion of imputed values where the health behaviour is present 

𝜌𝜌� = 𝜑𝜑 the correlation between the pairs of imputed values (calculated as the phi coefficient) 

𝑟𝑟𝑝𝑝𝚤𝚤� (1 − 𝑝𝑝𝚤𝚤� )𝜌𝜌�= the excess number of correct matches greater than would be expected through chance alone 

Median= median of 100 repetitions of the imputation algorithm,  

95% CI= empirical 95% confidence interval created from the 2.5 and 97.5 percentiles obtained from 100 repetitions of the imputation algorithm,  

N=number of SEER oesophageal cancer cases receiving data from two donor records from the BRFSS health behaviour datasets. 

ESCC=oesophageal squamous cell carcinoma,  

EAC=oesophageal adenocarcinoma 
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Analyses using simulated survival status 

The simulated relative risks of survival were accurate to two-decimal places and 

precise (with a maximum margin of error of 0.07) (Table 5.7). The relative risks obtained by 

using the (second) imputed behaviour (𝑅𝑅𝑅𝑅𝑖𝑖) were substantially attenuated toward the null 

differing from 1.0 only in the second decimal place.  
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Table 5.7 Result of simulation-based testing of whether or not the imputation can be used to predict relative risk 
Target RR Simulated data RR  Imputed RR (𝑅𝑅𝑅𝑅𝑖𝑖) Impossible Result  

(𝑅𝑅𝑅𝑅𝑇𝑇 < 0) 
Estimated true RR (𝑅𝑅𝑅𝑅𝑇𝑇) 

 Median  95% CI  Median  95% CI Frequency Median 95% CIb 
Current smoking 

RR=0.5 
RR=0.66 
RR=0.80 
RR=1.00 
RR=1.25 
RR=1.50 
RR=2.00 

 
0.501 
0.660 
0.799 
1.001 
1.249 
1.499 
2.000 

 
 0.475,0.521 
 0.635,0.683 
 0.771,0.823 
 0.976,1.026 
 1.220,1.287 
 1.465,1.528 
 1.974,2.034 

  
0.964 
0.973 
0.983 
0.997 
1.017 
1.032 
1.064 

 
 0.934,0.993a 
 0.944,0.999a 
 0.952,1.017 
 0.967,1.027 
 0.989,1.048 
 1.005,1.059a 
 1.034,1.092a 

 
0 
0 
0 
0 
0 
0 
0 

 
0.519 
0.638 
0.753 
0.957 
1.254 
1.486 
2.047 

 
 0.163,0.904a 
 0.300,0.985a 
 0.375,1.226 
 0.577,1.444 
0.856,1.793 
1.069,1.947a 
 1.542,2.532a 

Binge drinking 
RR=0.5 

RR=0.66 
RR=0.80 
RR=1.00 
RR=1.25 
RR=1.50 
RR=2.00 

 
0.501 
0.659 
0.798 
0.997 
1.245 
1.499 
1.999 

 
 0.474,0.526 
 0.624,0.692 
 0.758,0.830 
 0.963,1.033 
 1.213,1.278 
 1.463,1.534 
 1.978,2.028 

  
0.967 
0.976 
0.988 
0.999 
1.016 
1.030 
1.058 

 
 0.940,0.996a 
 0.945,1.015 
 0.959,1.025 
 0.971,1.032 
 0.984,1.054 
 0.990,1.068 
 1.021,1.093a 

 
0 
1 
0 
0 
0 
0 
0 

 
0.478 
0.629 
0.805 
0.981 
1.271 
1.517 
2.014 

 
 0.087,0.927a 
 0.173,1.316 
 0.341,1.448 
 0.518,1.492 
 0.739,2.029 
 0.831,2.246 
 1.352,2.717a 

Heavy Drinking 
RR=0.5 

RR=0.66 
RR=0.80 
RR=1.00 
RR=1.25 
RR=1.50 
RR=2.00 

 
0.500 
0.661 
0.799 
0.997 
1.251 
1.497 

Not possible 

 
0.450,0.548 
0.606,0.697 
0.746,0.847 
0.949,1.045 
1.210,1.300 
1.459,1.535 
Not possible 

  
0.995 
0.995 
0.997 
0.998 
1.003 
1.012 

 

 
 0.945,1.046 
 0.946,1.046 
 0.944,1.053 
 0.940,1.041 
 0.959,1.053 
 0.956,1.059 

 

 
40 
34 
43 
32 
22 
24 

 
failed 
failed 
failed 
failed 
failed 
failed 

 

 
failed 
failed 
failed 
failed 
failed 
failed 
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Table 5.6 (continued) Result of simulation-based testing of whether or not the imputation can be used to predict relative risk 
Target RR Simulated data RR  Imputed RR (𝑅𝑅𝑅𝑅𝑖𝑖) Impossible Result  

(𝑅𝑅𝑅𝑅𝑇𝑇 < 0) 
Estimated true RR (𝑅𝑅𝑅𝑅𝑇𝑇) 

 Median  95% CI  Median  95% CI Frequency Median 95% CIb 
Physical activity 

RR=0.5 
RR=0.66 
RR=0.80 
RR=1.00 
RR=1.25 
RR=1.50 
RR=2.00 

 
0.500 
0.659 
0.800 
1.002 
1.250 
1.499 
2.003 

 
0.491,0.509 
0.645,0.671 
0.782,0.818 
0.976,1.022 
1.219,1.276 
1.455,1.549 
1.939,2.083 

  
0.974 
0.983 
0.993 
1.001 
1.006 
1.013 
1.021 

 
 0.951,0.997a 
 0.959,1.006 
 0.971,1.017 
 0.978,1.021 
 0.977,1.030 
 0.987,1.037 

 1.002,1.047* 

 
0 
0 
0 
0 
0 
2 
3 

 
0.504 
0.632 
0.833 
1.025 
1.206 
1.514 
2.127 

 
 0.319,0.901a 
 0.367,1.231 
 0.449,1.907 
 0.488,2.092 
 0.541,2.961 
 0.722,4.078 

 1.055,10.987a 
Obese 

RR=0.5 
RR=0.66 
RR=0.80 
RR=1.00 
RR=1.25 
RR=1.50 
RR=2.00 

 
0.499 
0.660 
0.802 
1.002 
1.250 
1.500 
2.002 

 
0.485,0.517 
0.634,0.680 
0.777,0.823 
0.981,1.024 
1.222,1.274 
1.468,1.534 
1.961,2.041 

  
0.983 
0.989 
0.995 
0.999 
1.009 
1.014 
1.025 

 
0.960,1.008 
0.962,1.016 
0.967,1.015 
0.980,1.024 
0.989,1.030 
0.987,1.039 
0.997,1.044 

 
1 
2 
1 
0 
0 
0 
0 

 
0.550 
0.665 
0.846 
0.962 
1.335 
1.440 
1.995 

 
 0.028,1.322 
 0.114,1.772 
 0.316,1.676 
 0.461,2.067 
 0.601,2.300 
 0.606,2.796 
 0.886,3.234 

Current smoker 
with regular drink 

RR=0.5 
RR=0.66 
RR=0.80 
RR=1.00 
RR=1.25 
RR=1.50 
RR=2.00 

 
 

0.504 
0.660 
0.797 
0.996 
1.250 
1.497 

Not possible 

 
 

0.441,0.550 
0.600,0.713 
0.744,0.863 
0.943,1.049 
1.183,1.298 
1.454,1.545 
Not possible 

  
 

0.988 
0.997 
0.991 
1.001 
1.009 
1.000 

 
 

0.931,1.034 
0.932,1.066 
0.928,1.052 
0.940,1.059 
0.954,1.059 
0.958,1.065 

 
 

37 
31 
34 
25 
16 
19 

 
 

failed 
failed 
failed 
failed 
failed 
failed 

 

 
 

failed 
failed 
failed 
failed 
failed 
failed 
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Target RR – the relative risk the simulated data attempted to achieve 

Simulated data RR – the relative risk which was actually achieved between the first imputed value and the simulated one-year survival status  

Imputed RR (𝑅𝑅𝑅𝑅𝑖𝑖) – the relative risk calculated using the second imputed data point as the imputed behaviour 

Impossible result – instances where the estimated true relative risk was impossible (a negative value) 

Estimated True RR (𝑅𝑅𝑅𝑅𝑇𝑇) – the estimated true relative risk derived from the imputed relative risk and calibration parameters 𝑝𝑝𝚤𝚤�  and 𝜌𝜌� 

Median= median of 100 repetitions of the imputation algorithm,  

95% CI= empirical 95% confidence interval created from the 2.5 and 97.5 percentiles obtained from 100 repetitions of the imputation algorithm,  

a 95% confidence intervals exclude no association (i.e. exclude relative risk equals 1) 

b excludes impossible result 
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Estimation of the true relative risk from the imputed relative risk failed for the two 

least common health behaviours: ‘heavy drinking’ and ‘current smoking with regular 

drinking’.  For the other four behaviours, the median of the estimated true relative risk was 

accurate to one, and often two, decimal places. However, the confidence intervals were wide 

and few excluded no association. 

Analyses using true survival status 

When imputing the health behaviours onto SEER cancer cases, the median imputed 

relative risks (𝑅𝑅𝑅𝑅𝑖𝑖) are attenuated to close to 1.0 (Table 5.8). Less expectedly, most of the 

median risks are less than 1.0; suggesting that most behaviours were associated with a lower 

rate of death within one year of diagnosis. Many of the age-adjusted imputed relative risks 

had the opposite direction of association confirming the potential for confounding by age. 

Current tobacco smoking 5 years prior to diagnosis was detrimental to one-year survival after 

diagnosis following adjustment for age, particularly in ESCC where the estimated relative 

risk was 1.99 (95%CI 1.24, 3.12). For ESCC, the median relative risk for binge drinking 5 

years prior to diagnosis was 1.52 although the range of possible relative risks was wide (95% 

CI 0.44,2.75). Similar results were seen for obesity (ESCC estimated RR 1.73, 95%CI 

0.83,4.17). Physical activity 5-years prior to diagnosis was protective for survival with 

median estimated relative risks of approximately 0.50 (95%CI 0.31, 1.03) for oesophageal 

cancer overall. 
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Table 5.8 Estimated relative risks of 1-year survival derived from imputed pre-diagnosis behaviours for SEER oesophageal cancer cases, 2006-2014; 
unadjusted and age adjusted. 

 Imputed RR 
 (𝑅𝑅𝑅𝑅𝑖𝑖) 

 

Impossible 
Result  

(𝑅𝑅𝑅𝑅𝑖𝑖 < 0) 

Estimated True RR 
(𝑅𝑅𝑅𝑅𝑇𝑇) 

 

 Age-adjusted Imputed 
RR 

(𝑦𝑦𝑟𝑟𝑗𝑗𝑅𝑅𝑅𝑅𝑖𝑖) 
 

Impossible 
Result  

(𝑦𝑦𝑟𝑟𝑗𝑗𝑅𝑅𝑅𝑅𝑖𝑖 < 0) 

Age-adjusted Estimated 
True RR 

(𝑦𝑦𝑟𝑟𝑗𝑗𝑅𝑅𝑅𝑅𝑇𝑇) 

 Median 95% CI Frequency Median 95% CI  Median 95% CI Frequency Median 95% CI 
Current smoking 

All 
ESCC 
EAC 

 
0.986 
1.025 
0.959 

 
 0.954,1.009 
 0.981,1.067 
 0.914,1.000 a 

 
0 
0 
5 

 
0.806 
1.349 
0.478 

 
 0.380,1.130 
 0.733,2.142 
 0.039,1.003 b 

  
1.051 
1.064 
1.038 

 
1.014,1.078 
1.016,1.111 
0.985,1.085 

 
0 
0 
0 

 
1.794 
1.990 
1.613 

 
 1.215,2.357a 
1.240,3.117 a 
 0.785,2.571 

Binge drinking 
All 

ESCC 
EAC 

 
0.933 
0.998 
0.914 

 
 0.900,0.964 
 0.936,1.059 
 0.863,0.961 a 

 
49 
4 

72 

 
failed 
0.991 
failed 

 
failed 

 0.167,1.995 b 
failed 

  
0.997 
1.033 
0.989 

 
0.961,1.032 
0.968,1.101 
0.935,1.046 

 
1 
0 
3 

 
0.951 
1.515 
0.818 

 
 0.445,1.539 b 
 0.440,2.754 
 0.181,1.890 b 

Heavy drinking 
All 

ESCC 
EAC 

 
0.981 
0.995 
0.974 

 
 0.932,1.028 
 0.912,1.066 
 0.907,1.039 

 
61 
48 
66 

 
failed 
failed 
failed 

 
failed 
failed 
failed 

  
1.010 
1.012 
1.011 

 
0.963,1.060 
0.929,1.088 
0.938,1.077 

 
23 
36 
35 

 
failed 
failed 
failed 

 
failed 
failed 
failed 

Physical activity 
All 

ESCC 
EAC 

 
0.954 
0.959 
0.957 

 
 0.934,0.978 a 
 0.925,0.991 
 0.929,0.986 a 

 
0 
2 
1 

 
0.319 
0.345 
0.311 

 
 0.165,0.564 a 

 0.073,0.811 a,b 
 0.109,0.675 a,b 

  
0.974 
0.971 
0.984 

 
0.956,1.001 
0.933,1.003 
0.954,1.013 

 
0 
1 
0 

 
0.507 
0.452 
0.627 

 
 0.307,1.030 
 0.102,1.071b 
0.285,2.180 

Obese 
All 

ESCC 
EAC 

 
0.969 
1.000 
0.949 

 
 0.946,0.993 a 
 0.968,1.039 
 0.917,0.987 a 

 
24 
0 

76 

 
failed 
1.004 
failed 

 
failed 

 0.134,2.378 
failed 

  
1.008 
1.027 
0.996 

 
0.983,1.036 
0.992,1.068 
0.960,1.035 

 
0 
0 
8 

 
1.262 
1.733 
failed 

 
 0.559,2.931 
 0.834,4.167 

failed 
Current smoking 
with regular 
drinking 

All 
ESCC 
EAC 

 
 
 

0.987 
1.044 
0.963 

 
 
 

 0.930,1.058 
 0.946,1.146 
 0.861,1.052 

 
 
 

40 
12 
60 

 
 
 

failed 
failed 
failed 

 
 
 

failed 
failed 
failed 

  
 
 

1.044 
1.076 
1.032 

 
 
 

0.986,1.120 
 0.973,1.180 
 0.919,1.123 

 
 
 

2 
11 
13 

 
 
 

3.254 
failed 
failed 

 
 
 

 0.771,11.843 b 
failed 
failed 
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Imputed RR (𝑅𝑅𝑅𝑅𝑖𝑖) – the relative risk calculated using the imputed behaviour 

Impossible result – instances where the estimated true relative risk was impossible (a negative value) 

Estimated True RR (𝑅𝑅𝑅𝑅𝑇𝑇) – the estimated true relative risk derived from the imputed relative risk and calibration parameters 𝑝𝑝𝚤𝚤�  and 𝜌𝜌� 

Median= median of 100 repetitions of the imputation algorithm,  

95% CI= empirical 95% confidence interval created from the 2.5 and 97.5 percentiles obtained from 100 repetitions of the imputation algorithm,  

a 95% confidence intervals exclude no association (i.e. exclude relative risk equals 1) 

b excludes impossible result 
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Estimates of the relative risks could not be retrieved for the less common behaviours 

‘heavy drinking’ and ‘current smoking with regular drinking’. The one relative risk which 

was retrieved - a median RR of 3.35 for current smoking with regular drinking in all 

oesophageal cancer - was accompanied by wide uncertainty (95% CI 0.77,11.84). 

Subgroup analyses on cancer stage at diagnosis (Table 5.9), suggests that pre-

diagnosis health behaviours have stronger relationships with one-year survival in those who 

are not metastatic at diagnosis. In Table 5.9 the final column shows age-adjusted estimates of 

the relative risk for each health behaviour for all cases, individuals with stage IV (metastatic) 

cancer at diagnosis and for stages I-III cancers at diagnosis combined. Results are available 

for current smoking, non-work related physical activity and obesity each 5 years prior to 

diagnosis. Review of the relative risks suggests that these pre-diagnosis health behaviours 

appear to have larger effects on survival for those with stage I-III cancer at diagnosis than for 

those with metastatic cancers. 
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Table 5.9 Estimated relative risks of 1-year survival derived from imputed pre-diagnosis behaviours for SEER oesophageal cancer cases, 2006-
2014; unadjusted and age adjusted. Showing subgroup analysis for cancer stage at diagnosis. 

 Imputed RR 
 (𝑅𝑅𝑅𝑅𝑖𝑖) 

 

Impossible 
Result  

(𝑅𝑅𝑅𝑅𝑖𝑖 < 0) 

Estimated True RR 
(𝑅𝑅𝑅𝑅𝑇𝑇) 

 

 Age-adjusted Imputed 
RR 

(𝑦𝑦𝑟𝑟𝑗𝑗𝑅𝑅𝑅𝑅𝑖𝑖) 
 

Impossible 
Result  

(𝑦𝑦𝑟𝑟𝑗𝑗𝑅𝑅𝑅𝑅𝑖𝑖 < 0) 

Age-adjusted Estimated 
True RR 

(𝑦𝑦𝑟𝑟𝑗𝑗𝑅𝑅𝑅𝑅𝑇𝑇) 

 Median 95% CI Frequency Median 95% CI  Median 95% CI Frequency Median 95% CI 
Current smoking 

All 
Stage IV 
Stage I, II or III 

 
0.986 
0.996 
0.969 

 
 0.954,1.009 
 0.968,1.024 
0.917,1.120 

 
0 
0 
3 

 
0.806 
0.949 
0.570 

 
 0.380,1.130 
 0.531,1.455 
0.125,1.186 b 

  
1.051 
1.033 
1.085 

 
1.014,1.078 a 
1.000,1.063 a 
1.025,1.138 a 

 
0 
0 
0 

 
1.794 
1.486 
2.499 

 
 1.215,2.357a 
1.006,2.360 a 
1.428,3.900 a 

Binge drinking 
All 
Stage IV 

Stage I, II or III 

 
0.933 
0.965 
0.866 

 
 0.900,0.964 a 
 0.933,0.997 a 
0.803,0.928 a 

 
49 
12 
97 

 
failed 
failed 
failed 

 
failed 
failed 
failed 

  
0.997 
1.003 
0.977 

 
0.961,1.032 
0.967,1.137 
0.906,1.052 

 
1 
0 
18 

 
0.951 
1.050 
failed 

 
 0.445,1.539 b 
 0.409,1.833 

failed 
Heavy drinking 

All 
Stage IV 

Stage I, II or III 

 
0.981 
0.993 
0.955 

 
 0.932,1.028 
 0.936,1.041 
0.871,1.052 

 
61 
49 
72 

 
failed 
failed 
failed 

 
failed 
failed 
failed 

  
1.010 
1.006 
1.006 

 
0.963,1.060 
0.948,1.058 
0.912,1.101 

 
23 
31 
39 

 
failed 
failed 
failed 

 
failed 
failed 
failed 

Physical activity 
All 
Stage IV 

Stage I, II or III 

 
0.954 
0.976 
0.915 

 
 0.934,0.978 a 
 0.946,0.999 a 
0.868,0.947 a 

 
0 
1 
17 

 
0.319 
0.541 
failed 

 
 0.165,0.564 a 
 0.207,0.994 a,b 

failed 

  
0.974 
0.987 
0.947 

 
0.956,1.001 
0.958,1.008 
0.897,0.978 a 

 
0 
0 
3 

 
0.507 
0.711 
0.258 

 
 0.307,1.030 
 0.306,1.474b 
0.039,0.588 a 

Obese 
All 
Stage IV 

Stage I, II or III 

 
0.969 
0.988 
0.954 

 
 0.946,0.993 a 
 0.963,1.015 
0.912,1.002 

 
24 
8 
54 

 
failed 
failed 
failed 

 
failed 
 failed 
failed 

  
1.008 
1.008 
1.018 

 
0.983,1.036 
0.981,1.034 
0.974,1.067 

 
0 
3 
2 

 
1.262 
1.267 
1.794 

 
 0.559,2.931 
 0.506,4.319 b 
0.376,8.612 b 

Current smoker 
with regular drink 

All 
Stage IV 

Stage I, II or III 

 
 

0.987 
0.983 
0.967 

 

 
 

 0.930,1.058 
 0.936,1.040 
0.860,1.097  

 
 

40 
43 
59 

 
 

failed 
failed 
failed 

 
 

failed 
failed 
failed 

  
 

1.044 
1.016 
1.073 

 
 

0.986,1.120 
 0.966,1.071 
0.956,1.228 

 
 

2 
22 
9 

 
 

3.254 
failed 
failed 

 
 

 0.771,11.843 
failed 
failed 
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Imputed RR (𝑅𝑅𝑅𝑅𝑖𝑖) – the relative risk calculated using the imputed behaviour 

Impossible result – instances where the estimated true relative risk was impossible (a negative value) 

Estimated True RR (𝑅𝑅𝑅𝑅𝑇𝑇) – the estimated true relative risk derived from the imputed relative risk and calibration parameters 𝑝𝑝𝚤𝚤�  and 𝜌𝜌� 

Median= median of 100 repetitions of the imputation algorithm,  

95% CI= empirical 95% confidence interval created from the 2.5 and 97.5 percentiles obtained from 100 repetitions of the imputation algorithm,  

a 95% confidence intervals exclude no association (i.e. exclude relative risk equals 1) 

b excludes impossible result 
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 Discussion  

This study shows that an entirely missing variable can be imputed and return accurate 

estimates of relative risks. Nearly all correlation coefficients were positive, indicating that the 

imputation conveyed some information about health behaviour, although confidence intervals 

were wide. Age confounding was evident, and so this discussion focuses on the age-adjusted 

results. However, for the less common behaviours (heavy drinking and current smoking with 

regular drinking), no interpretable information could be retrieved.  

The choice of health behaviour variables was restricted to measures available through 

the BRFSS health survey. However, the results are consistent with the literature. Tobacco 

smoking five years prior to diagnosis was found to be associated with increased risk of death 

one year after diagnosis in ESCC (RR=1.99, 95% CI 1.24,3.12) and, with less certainty, EAC 

(RR=1.61, 95% CI 0.79,2.57). Recent meta analyses estimated hazard ratios (HRs) of 1.41 

(95% CI 1.22,1.64) and 1.41 (95% CI 0.96,2.09) for current smoking relative to never 

smoked in mainly ESCC populations (Kuang et al., 2016; McMenamin et al., 2017) and 1.19 

(95% CI 1.04,1.36) for ever smoking compared to never smoked in ESCC (Fahey et al., 

2015) with no evidence of association between smoking and survival in EAC (Fahey et al., 

2015; McMenamin et al., 2017). The unadjusted protective effects of smoking has also been 

reported (Dandara et al., 2015; Mirinezhad et al., 2012) as has the change in the direction of 

the association following age adjustment (Mirinezhad et al., 2012). 

A previous meta-analysis found that ever drinking alcohol had a detrimental 

association with survival in ESCC (HR 1.36, 95% CI 1.15, 1.61) but not in EAC (HR=1.08 

95% CI 0.85, 1.37) (Fahey et al., 2015). More recent results from China (HR=1.58, 95% CI 

1.21,2.07 (Ma et al., 2016; P. Sun et al., 2016), HR=1.45 95% CI 1.13,1.87 (P. Sun et al., 

2016)) and Japan (HR=2.37 95% CI 1.24,4.53 (Okada et al., 2017)) also support the 
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detrimental impact of pre-diagnosis alcohol consumption on survival in ESCC.  The 

association between heavy drinking and survival could not be estimated. However, for binge 

drinking five years prior to diagnosis, the median relative risk was 1.52 in ESCC, although 

the confidence interval (95% CI 0.44,2.75) allows no association.  

Previous studies have reported that pre-diagnosis smoking with regular alcohol 

consumption produced a disproportionately high risk to post-diagnosis survival in ESCC (HR 

3.84, 95% CI 2.02,7.32 (Thrift, Nagle, Fahey, Russell, et al., 2012)). In the current analyses, a 

similar association was observed with wider confidence intervals (RR = 3.25, 95% CI 

0.77,11.84).  

In relation to obesity, a recent North American study (A. Spreafico et al., 2017) found 

self-reported obesity was associated with lower survival times in EAC compared to normal 

weight (HR 1.77, 95% CI 1.25, 2.51) and a 27 year follow-up of 29,446 participants in China 

(S. M. Wang et al., 2016) found higher body mass index protective of death from ESCC 

(HR=0.97 per unit increase, 95% CI 0.95,0.99) . The results of the current analyses, in 

contrast, suggested that obesity five years pre-diagnosis may be detrimental to one-year post 

diagnosis survival for ESCC (median RR=1.73) although confidence intervals were wide 

(95% CI 0.83,4.17).  

One benefit of the algorithm is that it does not add any additional information about 

individuals to the cancer registry data and so, unlike direct data linkage, does not exacerbate 

the issues of confidentiality and data security. (The imputed behaviours are only slightly 

more likely to be correct than an uninformed guess.) The algorithm also provides protection 

against biases. Data were obtained from the SEER cancer registries which are censuses with 

good population coverage. Many sampling and non-response biases in the BRFSS health 

behaviour data (Iachan et al., 2016) are eliminated when using a census as the reference. 
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However, rigid matching criteria was used and failed to match 20% of cases. Further 

investigation of the trade-off between exact matching and biases arising from failure to match 

is required. 

As with direct data linkage, the investigations were limited to available health 

behaviour measures, rather than all clinically important risk factors. Potentially important 

health behaviours such as diet (Abnet, Arnold, & Wei, 2018; Clara Castro et al., 2018) and 

hot beverages (Abnet et al., 2018) were unavailable. The number and variety of auxiliary 

variables available for matching donor to recipient records was also limited. the only 

investigation of clustering in health behaviours (Meader et al., 2016) in this paper was for the 

combination of current smoking and regular alcohol consumption. 

The results display considerable uncertainty with few instances where the empirical 

confidence intervals excluded the null. The width of the confidence intervals is sensitive to 𝑟𝑟, 

𝑝𝑝𝑖𝑖 and 𝜌𝜌. Larger 𝑟𝑟 can be achieved by looking at more common cancers, and/or combining 

data from more cancer registries and/or more years. The proportion with the health 

behaviour, 𝑝𝑝𝑖𝑖, can be adjusted through inclusion and exclusion criteria (but will impact on 𝑟𝑟). 

Larger 𝜌𝜌 requires more informative auxiliary variables for the imputation.   

A ‘gold standard’ could not be accessed for validity testing. A gold standard would be 

an oesophageal cancer dataset where behaviour was measured five years prior to diagnosis.   

 

 Conclusion 

This paper has demonstrated a novel imputation-based algorithm for augmenting 

cancer registry data for epidemiological research and established its face-validity. The 

algorithm adds information obtained from an external data set with (presumed) no cases in 
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common, to the cancer registry data via demographic variables in common. The algorithm is 

subject to much higher random error than direct data linkage (depending on how informative 

the demographic variables are), and requires larger sample sizes to compensate. However, it 

does avoid confidentiality issues (and associated data security costs) arising from direct data 

linkage.  

This algorithm is likely to allow, at least preliminary, investigations of a range of 

research questions which cannot be addressed through direct data linkage; due to insufficient 

individuals in common, insufficient matching variables and/or costs associated with data 

confidentiality and security. By increasing the range of research question which can be 

addressed with cancer registry data, the algorithm further augments the benefits of cancer 

registries. 

 

 Appendix 1 The association between health behaviours and cancer stage at 

diagnosis and survival time  

The relationship between death within 1 year of diagnosis (yes/no) and each predictor 

was modelled separately using log-binary regression (sometimes called relative risk 

regression). The explanatory power of each predictor was summarised using the likelihood 

ratio test statistic and the area under the receiver operator curve. The likelihood ratio test 

statistics are only comparable if the degrees of freedom is equal. The area under the receiver 

operator curve is 0.5 for an uninformative predictor variable to 1.0 for a perfectly informative 

predictor. Results are presented in Table 5.10. 
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Table 5.10 Relationships between demographic variables and cancer stage at diagnosis and 
death within the first year of diagnosis. 

 Estimated relative 
risk (RR) 

Improvement 
over the null 

model 
(likelihood ratio 

test statistic) 

Area under the 
receiver operator 

curve 

Year of diagnosis (n=34215) 
- per year 

 
0.992 (0.988,0.995) 

 
18.8, df=1 

 
0.514 (0.507,0.520) 

Sex (n=34215) 
- male 
- female 

 
reference 

1.031 (1.007,1.054) 

 
 

6.8, df=1 

 
 

0.506 (0.501,0.510) 
Age group (n=34215) 
- per 5 year age group 

 
1.060 (1.055,1.065) 

 
653.2, df=1 

 
0.575 (0.569,0.581) 

Marital status (n=32236) 
- Married 
- Divorced/separated 
- Widowed 
- Single 

 
reference 

1.171 (1.136,1.207) 
1.341 (1.306,1.375) 
1.207 (1.176,1.240) 

 
 
 
 

514.7, df=3 

 
 
 
 

0.565 (0.559,0.570) 
Race (n=34140) 
- White 
- Black 
- Asian/Pacific 
- American Native 

 
reference 

1.186 (1.154, 1.219) 
1.062 (1.013,1.110) 
1.122 (0.995,1.246) 

 
 
 
 

133.8, df=3 

 
 
 
 

0.522 (0.518,0.526) 
State of residence (n=34215) 
- Alaska 
- California 
- Connecticut 
- Georgia 
- Hawaii 
- Iowa 
- Kentucky 
- Louisiana 
- Michigan 
- New Jersey 
- New Mexico 
- Utah 
- Washington 

 
0.832 (0.590, 1.081) 

reference 
0.857 (0.815,0.901) 
1.034 (1.001,1.067) 
1.120 (1.041,1.197) 
0.900 (0.855,0.944) 
1.031 (0.991,1.072) 
1.044 (1.002,1.085) 
0.939 (0.897,0.981) 
0.915 (0.884,0.947) 
1.020 (0.953,1.087) 
0.975 (0.903,1.046) 
0.956 (0.915,0.997) 

 
 
 
 
 
 
 
 
 
 
 
 
 

128.2, df=12 

 
 
 
 
 
 
 
 
 
 
 
 
 

0.533 (0.527,0.539) 
    
Cancer stage (n=34215) 
- Stage I 
- Stage II 
- Stage III 
- Stage IV 
- Unknown 

 
0.462 (0.445,0.480) 
0.464 (0.447,0.482) 
0.597 (0.579,0.615) 

reference 
0.886 (0.866,0.905) 

 
 
 
 
 

4216.5, df=4 

 
 
 
 
 

0.689 (0.684,0.695) 
df is an abbreviation of degrees of freedom 
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Among the demographic variables, 5-year age group was the strongest predictor of 

dead within 1 year of diagnosis.  Many of the behaviour variables also differ by age group. 

For example, the relationship between age group and died within 1 year of diagnosis is 

present in Figure 5.8. To avoid confounding, the main analyses were age-adjusted. 

Marital status, the next highest predictor, is strongly related to age. For example, 1.6% 

of those 35-39 year of age are widowed compared to 46.0% of those 80 or more years of age 

and 38.0% of those 35-39 years of age are single compared to 7.6% of those 80 or more years 

of age. Other demographic variables were found to be less predictive of death within one year 

of diagnosis. 

As would be expected, cancer stage at diagnosis is a very strong predictor of death 

with one year of diagnosis with those diagnosed with stage I and II cancers having less than 

half the risk of dying as those diagnosed with stage IV disease. 

In Figure 5.8 the association between age and one-year survival in SEER oesophageal 

cancer cases is depicted by the solid line and the relationships between age and health 

behaviours in the imputed data are shown. Notice that the proportion surviving one-year post 

diagnosis decreases in the older age groups as does the proportion with each health 

behaviour. As age is associated with both the predictor variable (health behaviour) and the 

outcome variable (death within one year of survival) it is likely to confound understanding of 

the relationship between these variables. 
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than by chance alone. This excess of correct matches can be modelled so long as estimates of 

𝑝𝑝𝑇𝑇, 𝑝𝑝𝑖𝑖 and the correlation between them are available (Oman & Zucker, 2001). 

As the health behaviour of cancer patients is not recorded in the SEER cancer registry 

data, 𝑝𝑝𝑇𝑇 is unknown. One temptation may be to estimate 𝑝𝑝𝑇𝑇 based on the relative risk of 

incidence. For example, if current smoking is a risk factor for being diagnosed with 

oesophageal cancer with a relative risk of 2, then twice as many people with current smoking 

would be expected in the cancer population than in the general population and hence 𝑝𝑝𝑇𝑇 =

2𝑝𝑝𝑖𝑖. The flaw here is that 𝑝𝑝𝑖𝑖 is not the smoking rate in the general population, it is the 

smoking rate in a sample with an identical demographic profile to the cancer cases. 

For the current analyses it has been assumed that the proportion of imputed values 

with the behaviour provides a good approximation to the true proportion with the behaviour:  

𝑝𝑝𝑇𝑇 = 𝑝𝑝𝑖𝑖. This may or may not be true. (Suppose for example, even after correction for age, 

sex, race, marital status, State and year, that education status remained an independent 

predictor of the prevalence of current smoking. Then any difference in education status 

between the SEER cancer registry cases and BRFSS health survey respondents would 

produce differences between 𝑝𝑝𝑇𝑇 and 𝑝𝑝𝑖𝑖.) It is assumed that the auxiliary variables which have 

been used are sufficient to encompass most of the variation in other factors which differ 

between the two data sets. That is, it is assumed that differences between the two data sets in, 

for example, education status are largely explained and corrected for by the existing auxiliary 

variables age, sex, race, marital status, State and year. 

Using 𝑝𝑝𝑖𝑖 as an estimate of 𝑝𝑝𝑇𝑇 and the correlation between the two sets of imputed 

values as an estimate of the correlation between the true behaviour and the imputed behaviour 

the relationship between the true and imputed behaviour can be modelled as shown in Table 

5.11. 
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Table 5.11 A model of the association between the true and imputed health behaviours 
True (unknown) 
value of health 
behaviour 

Imputed value of health behaviour 
Behaviour present Behaviour absent total 

Behaviour present 
- observed 
- expected 

 
𝐴𝐴 

𝑟𝑟𝑝𝑝𝑖𝑖2 + 𝑟𝑟𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝜌𝜌 

 
𝐵𝐵 

𝑟𝑟𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖) −  𝑟𝑟𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝜌𝜌 

 
𝐴𝐴 + 𝐵𝐵 
𝑟𝑟𝑝𝑝𝑇𝑇 

Behaviour absent 
- observed 
- expected 

 
𝐶𝐶 

𝑟𝑟𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖) −  𝑟𝑟𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝜌𝜌 

 
𝐷𝐷 

𝑟𝑟(1 − 𝑝𝑝𝑖𝑖)2 +  𝑟𝑟𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝜌𝜌 

 
𝐶𝐶 + 𝐷𝐷 

𝑟𝑟(1 − 𝑝𝑝𝑇𝑇) 
Total 

- observed 
- expected 

 
𝐴𝐴 + 𝐶𝐶 
𝑟𝑟𝑝𝑝𝑖𝑖 

 
𝐵𝐵 + 𝐷𝐷 

𝑟𝑟(1 − 𝑝𝑝𝑖𝑖) 

 
𝑟𝑟 
𝑟𝑟 

 

Suppose the risk of death within one year of diagnosis is 𝑠𝑠𝑒𝑒 for cancer cases where the 

behaviour is present and 𝑠𝑠𝑎𝑎 for cancer cases where the behaviour is absent. The true relative 

risk of death within one year of diagnosis is  𝑅𝑅𝑅𝑅𝑇𝑇 = 𝑠𝑠𝑒𝑒 𝑠𝑠𝑎𝑎⁄ . Notice that cells A and B in Table 

5.11 have 𝑠𝑠𝑒𝑒 risk of death and cells C and D have 𝑠𝑠𝑎𝑎 risk. Cross tabulating imputed health 

behaviour against one-year survival status would produce the results summarized in Table 

5.12. 

 

Table 5.12 Cross-tabulation of true one-year survival status against imputed health 
behaviour  
Imputed value of the 
health behaviour 

1-year survival status 
died lived total 

Behaviour present 
- observed 
- expected 

 
𝐼𝐼 

𝐴𝐴𝑠𝑠𝑒𝑒 + 𝐶𝐶𝑠𝑠𝑎𝑎 

 
𝐽𝐽 

𝐴𝐴�1 − 𝑠𝑠𝑒𝑒� + 𝐶𝐶(1 − 𝑠𝑠𝑎𝑎) 

 
𝐼𝐼 + 𝐽𝐽 =  𝐴𝐴 + 𝐶𝐶 

𝑟𝑟𝑝𝑝𝑖𝑖 
Behaviour absent 

- observed 
- expected 

 
𝐾𝐾 

𝐵𝐵𝑠𝑠𝑒𝑒 + 𝐷𝐷𝑠𝑠𝑎𝑎 

 
𝐿𝐿 

𝐵𝐵�1 − 𝑠𝑠𝑒𝑒�+ 𝐷𝐷(1 − 𝑠𝑠𝑎𝑎) 

 
𝐾𝐾 + 𝐿𝐿 = 𝐵𝐵 + 𝐷𝐷  
𝑟𝑟(1 − 𝑝𝑝𝑖𝑖) 

Total 
- observed 
- expected 

 
𝐼𝐼 + 𝐾𝐾 

 
𝐽𝐽 + 𝐿𝐿 

 
𝑟𝑟 
𝑟𝑟 
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The relative risk calculated using the imputed data is  

𝑅𝑅𝑅𝑅𝑖𝑖 =  
𝐼𝐼 (𝐼𝐼 + 𝐽𝐽)⁄
𝐾𝐾 (𝐾𝐾 + 𝐿𝐿)⁄  

=  
𝐼𝐼 𝑟𝑟𝑝𝑝𝑖𝑖⁄

𝐾𝐾 𝑟𝑟(1 − 𝑝𝑝𝑖𝑖)⁄  

=
�𝐴𝐴𝑠𝑠𝑒𝑒  + 𝐶𝐶𝑠𝑠𝑎𝑎� 𝑟𝑟𝑝𝑝𝑖𝑖⁄

�𝐵𝐵𝑠𝑠𝑒𝑒  + 𝐷𝐷𝑠𝑠𝑎𝑎� 𝑟𝑟(1 − 𝑝𝑝𝑖𝑖)⁄
 

=
�𝐴𝐴𝑠𝑠𝑒𝑒  + 𝐶𝐶𝑠𝑠𝑎𝑎�

𝑟𝑟𝑝𝑝𝑖𝑖
×

𝑟𝑟(1 − 𝑝𝑝𝑖𝑖)
�𝐵𝐵𝑠𝑠𝑒𝑒  + 𝐷𝐷𝑠𝑠𝑎𝑎�

 

=
�𝐴𝐴𝑠𝑠𝑒𝑒  + 𝐶𝐶𝑠𝑠𝑎𝑎�
�𝐵𝐵𝑠𝑠𝑒𝑒  + 𝐷𝐷𝑠𝑠𝑎𝑎�

×
(1 − 𝑝𝑝𝑖𝑖)

𝑝𝑝𝑖𝑖
 

This equation can be re-arranged to produce the formula for the true relative risk as 

follows:  

𝑝𝑝𝑖𝑖𝐵𝐵𝑠𝑠𝑒𝑒𝑅𝑅𝑅𝑅𝑖𝑖 + 𝑝𝑝𝑖𝑖𝐷𝐷𝑠𝑠𝑎𝑎𝑅𝑅𝑅𝑅𝑖𝑖 = 𝐴𝐴𝑠𝑠𝑒𝑒  + 𝐶𝐶𝑠𝑠𝑎𝑎 − 𝐴𝐴𝑠𝑠𝑒𝑒𝑝𝑝𝑖𝑖 − 𝐶𝐶𝑠𝑠𝑎𝑎𝑝𝑝𝑖𝑖 

𝑠𝑠𝑒𝑒(𝑝𝑝𝑖𝑖𝐵𝐵𝑅𝑅𝑅𝑅𝑖𝑖 − 𝐴𝐴 + 𝐴𝐴𝑝𝑝𝑖𝑖) =  𝑠𝑠𝑎𝑎(𝐶𝐶 − 𝐶𝐶𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖𝐷𝐷𝑅𝑅𝑅𝑅𝑖𝑖) 

𝑅𝑅𝑅𝑅𝑇𝑇 =  
𝑠𝑠𝑒𝑒
𝑠𝑠𝑎𝑎

=  
𝐶𝐶 − 𝐶𝐶𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖𝐷𝐷𝑅𝑅𝑅𝑅𝑖𝑖
𝑝𝑝𝑖𝑖𝐵𝐵𝑅𝑅𝑅𝑅𝑖𝑖 − 𝐴𝐴 + 𝐴𝐴𝑝𝑝𝑖𝑖
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Now substituting the models for 𝐴𝐴,𝐵𝐵,𝐶𝐶 and 𝐷𝐷 shown in Table 5.11: 

𝑅𝑅𝑅𝑅𝑇𝑇 =  
𝑟𝑟(𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖) −  𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝜌𝜌) − 𝑟𝑟�(𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖) −  𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝜌𝜌)�𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖 �𝑟𝑟�(1 − 𝑝𝑝𝑖𝑖)(1 − 𝑝𝑝𝑖𝑖) +  𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝜌𝜌��𝑅𝑅𝑅𝑅𝑖𝑖

𝑝𝑝𝑖𝑖�𝑟𝑟(𝑝𝑝𝑖𝑖(1− 𝑝𝑝𝑖𝑖) −  𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝜌𝜌)�𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑟𝑟(𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝜌𝜌) + �𝑟𝑟(𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝜌𝜌)�𝑝𝑝𝑖𝑖
 

Note 𝑟𝑟 and 𝑝𝑝𝑖𝑖 cancel out to give: 

𝑅𝑅𝑅𝑅𝑇𝑇 =  
(1 − 𝑝𝑝𝑖𝑖) −  (1 − 𝑝𝑝𝑖𝑖)𝜌𝜌 − (𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖) −  𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝜌𝜌) − �(1 − 𝑝𝑝𝑖𝑖)(1 − 𝑝𝑝𝑖𝑖) + 𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝜌𝜌�𝑅𝑅𝑅𝑅𝑖𝑖

(𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖) −  𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝜌𝜌)𝑅𝑅𝑅𝑅𝑖𝑖 − (𝑝𝑝𝑖𝑖 + (1 − 𝑝𝑝𝑖𝑖)𝜌𝜌) + 𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝜌𝜌
 

=  
1 − 𝑝𝑝𝑖𝑖 −  (𝜌𝜌 − 𝑝𝑝𝑖𝑖𝜌𝜌) − �𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖2 −  (𝑝𝑝𝑖𝑖𝜌𝜌 − 𝑝𝑝𝑖𝑖2𝜌𝜌)� − (1 − 𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑖𝑖2 + (𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖2)𝜌𝜌)𝑅𝑅𝑅𝑅𝑖𝑖

(𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖2 −  (𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖2)𝜌𝜌)𝑅𝑅𝑅𝑅𝑖𝑖 − (𝑝𝑝𝑖𝑖 + 𝜌𝜌 − 𝑝𝑝𝑖𝑖𝜌𝜌) + 𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖 + (𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖2)𝜌𝜌
 

=  
1 − 𝑝𝑝𝑖𝑖 −  𝜌𝜌 + 𝑝𝑝𝑖𝑖𝜌𝜌 − (𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖2 −  𝑝𝑝𝑖𝑖𝜌𝜌 + 𝑝𝑝𝑖𝑖2𝜌𝜌) − (1 − 𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑖𝑖2 + 𝑝𝑝𝑖𝑖𝜌𝜌 − 𝑝𝑝𝑖𝑖2𝜌𝜌)𝑅𝑅𝑅𝑅𝑖𝑖

(𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖2 −  𝑝𝑝𝑖𝑖𝜌𝜌 + 𝑝𝑝𝑖𝑖2𝜌𝜌)𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑖𝑖 − 𝜌𝜌 + 𝑝𝑝𝑖𝑖𝜌𝜌 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑖𝑖𝜌𝜌 − 𝑝𝑝𝑖𝑖2𝜌𝜌
 

=  
1 − 𝑝𝑝𝑖𝑖 −   𝜌𝜌 + 𝑝𝑝𝑖𝑖 𝜌𝜌 − 𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑖𝑖2 +  𝑝𝑝𝑖𝑖 𝜌𝜌 − 𝑝𝑝𝑖𝑖2 𝜌𝜌 − (𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑅𝑅𝑅𝑅𝑖𝑖 + 𝑝𝑝𝑖𝑖2𝑅𝑅𝑅𝑅𝑖𝑖 +  𝑝𝑝𝑖𝑖 𝜌𝜌𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑖𝑖2 𝜌𝜌𝑅𝑅𝑅𝑅𝑖𝑖)

𝑝𝑝𝑖𝑖𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑖𝑖2𝑅𝑅𝑅𝑅𝑖𝑖 −  𝑝𝑝𝑖𝑖 𝜌𝜌𝑅𝑅𝑅𝑅𝑖𝑖 + 𝑝𝑝𝑖𝑖2 𝜌𝜌𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑖𝑖 −  𝜌𝜌 + 𝑝𝑝𝑖𝑖 𝜌𝜌 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑖𝑖 𝜌𝜌 − 𝑝𝑝𝑖𝑖2 𝜌𝜌
 

=  
1 − 𝑝𝑝𝑖𝑖 −   𝜌𝜌 + 𝑝𝑝𝑖𝑖 𝜌𝜌 − 𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑖𝑖2 +  𝑝𝑝𝑖𝑖 𝜌𝜌 − 𝑝𝑝𝑖𝑖2 𝜌𝜌 − 𝑅𝑅𝑅𝑅𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑅𝑅𝑅𝑅𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑖𝑖2𝑅𝑅𝑅𝑅𝑖𝑖 −  𝑝𝑝𝑖𝑖 𝜌𝜌𝑅𝑅𝑅𝑅𝑖𝑖 + 𝑝𝑝𝑖𝑖2 𝜌𝜌𝑅𝑅𝑅𝑅𝑖𝑖

𝑝𝑝𝑖𝑖𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑖𝑖2𝑅𝑅𝑅𝑅𝑖𝑖 −  𝑝𝑝𝑖𝑖 𝜌𝜌𝑅𝑅𝑅𝑅𝑖𝑖 + 𝑝𝑝𝑖𝑖2 𝜌𝜌𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑖𝑖 −  𝜌𝜌 + 𝑝𝑝𝑖𝑖 𝜌𝜌 + 𝑝𝑝𝑖𝑖2 + 𝑝𝑝𝑖𝑖 𝜌𝜌 − 𝑝𝑝𝑖𝑖2 𝜌𝜌
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=  
−𝑅𝑅𝑅𝑅𝑖𝑖 + 1 + 𝑝𝑝𝑖𝑖𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑖𝑖 −  𝜌𝜌 + 𝑝𝑝𝑖𝑖𝜌𝜌 + 𝑝𝑝𝑖𝑖𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖2𝑅𝑅𝑅𝑅𝑖𝑖 + 𝑝𝑝𝑖𝑖2 −  𝑝𝑝𝑖𝑖𝜌𝜌𝑅𝑅𝑅𝑅𝑖𝑖 +  𝑝𝑝𝑖𝑖𝜌𝜌 + 𝑝𝑝𝑖𝑖2𝜌𝜌𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑖𝑖2𝜌𝜌

𝑝𝑝𝑖𝑖𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖2𝑅𝑅𝑅𝑅𝑖𝑖 + 𝑝𝑝𝑖𝑖2 −  𝑝𝑝𝑖𝑖𝜌𝜌𝑅𝑅𝑅𝑅𝑖𝑖 + 𝑝𝑝𝑖𝑖𝜌𝜌 + 𝑝𝑝𝑖𝑖2𝜌𝜌𝑅𝑅𝑅𝑅 − 𝑝𝑝𝑖𝑖2𝜌𝜌 − 𝜌𝜌 + 𝑝𝑝𝑖𝑖𝜌𝜌
 

=  
−(𝑅𝑅𝑅𝑅𝑖𝑖 − 1) + 𝑝𝑝𝑖𝑖(𝑅𝑅𝑅𝑅𝑖𝑖 − 1) −  𝜌𝜌(1 − 𝑝𝑝𝑖𝑖) + 𝑝𝑝𝑖𝑖(𝑅𝑅𝑅𝑅𝑖𝑖 − 1) − 𝑝𝑝𝑖𝑖2(𝑅𝑅𝑅𝑅𝑖𝑖 − 1) −  𝑝𝑝𝑖𝑖𝜌𝜌(𝑅𝑅𝑅𝑅𝑖𝑖 −  1) + 𝑝𝑝𝑖𝑖2𝜌𝜌(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)

𝑝𝑝𝑖𝑖(𝑅𝑅𝑅𝑅𝑖𝑖 − 1) − 𝑝𝑝𝑖𝑖2(𝑅𝑅𝑅𝑅𝑖𝑖 − 1) −  𝑝𝑝𝑖𝑖𝜌𝜌(𝑅𝑅𝑅𝑅𝑖𝑖 − 1) + 𝑝𝑝𝑖𝑖2𝜌𝜌(𝑅𝑅𝑅𝑅 − 1) − 𝜌𝜌(1 − 𝑝𝑝𝑖𝑖)
 

=  
−(𝑅𝑅𝑅𝑅𝑖𝑖 − 1) + (𝑅𝑅𝑅𝑅𝑖𝑖 − 1)(𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖2 −  𝑝𝑝𝑖𝑖𝜌𝜌 + 𝑝𝑝𝑖𝑖2𝜌𝜌) −  𝜌𝜌(1 − 𝑝𝑝𝑖𝑖) + 𝑝𝑝𝑖𝑖(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)

(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)(𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖2 −  𝑝𝑝𝑖𝑖𝜌𝜌 + 𝑝𝑝𝑖𝑖2𝜌𝜌) − 𝜌𝜌(1 − 𝑝𝑝𝑖𝑖)
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𝑅𝑅𝑅𝑅𝑇𝑇 =  
(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)(𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖2 −  𝑝𝑝𝑖𝑖𝜌𝜌 + 𝑝𝑝𝑖𝑖2𝜌𝜌) −  𝜌𝜌(1 − 𝑝𝑝𝑖𝑖) − (1 − 𝑝𝑝𝑖𝑖)(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)

(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)(𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖2 −  𝑝𝑝𝑖𝑖𝜌𝜌 + 𝑝𝑝𝑖𝑖2𝜌𝜌) − 𝜌𝜌(1 − 𝑝𝑝𝑖𝑖)
 

=  1 −
(1 − 𝑝𝑝𝑖𝑖)(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)

(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)(𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖2 −  𝑝𝑝𝑖𝑖𝜌𝜌 + 𝑝𝑝𝑖𝑖2𝜌𝜌) − 𝜌𝜌(1 − 𝑝𝑝𝑖𝑖)
 

=  1 −
(1 − 𝑝𝑝𝑖𝑖)(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)

(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖 −  𝜌𝜌 + 𝑝𝑝𝑖𝑖𝜌𝜌) − 𝜌𝜌(1 − 𝑝𝑝𝑖𝑖)
 

=  1 −
(1 − 𝑝𝑝𝑖𝑖)(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)

(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)( 1− 𝜌𝜌) − 𝜌𝜌(1 − 𝑝𝑝𝑖𝑖)
 

=  1 −
(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)

(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)𝑝𝑝𝑖𝑖( 1 − 𝜌𝜌) − 𝜌𝜌
 

Notice that when 𝑅𝑅𝑅𝑅𝑖𝑖 = 1 then 𝑅𝑅𝑅𝑅𝑇𝑇 =  1 as would be expected. However, extreme 

values of 𝑝𝑝𝑖𝑖 and/or 𝜌𝜌 may be problematic. When 𝜌𝜌 = 0 then 𝑅𝑅𝑅𝑅𝑇𝑇 =  1 − 1
𝑒𝑒𝑖𝑖

 which is always 

negative and hence an impossible value for a relative risk. Also when either 𝑝𝑝𝑖𝑖 or (1 − 𝑝𝑝𝑖𝑖) 

approach 0,  𝑅𝑅𝑅𝑅𝑇𝑇 approaches 1 − (𝑅𝑅𝑅𝑅𝑖𝑖−1)
0−𝜌𝜌

,  or  (𝑅𝑅𝑅𝑅𝑇𝑇 − 1) approaches  1
𝜌𝜌

(𝑅𝑅𝑅𝑅𝑖𝑖 − 1). That is 

when 𝑝𝑝𝑖𝑖 or (1 − 𝑝𝑝𝑖𝑖) are close to zero, 𝑅𝑅𝑅𝑅𝑇𝑇 becomes particularly sensitive to small  𝜌𝜌.  

 

 Appendix 3 Simulating data with prescribed relative risks 

The aim is to assign health behaviour and survival status to cancer cases in such a way 

as to produce the target relative risk 𝑅𝑅𝑅𝑅𝑠𝑠 while maintaining the proportion of people with the 

behaviour and proportion of people dying within one year at the true levels. It was assumed 

that the first set of imputed values were actually the true measurements of behaviour. This 
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ensured the correct proportion of people with the behaviour. Survival status was then 

simulated for these behaviours to deliver the target relative risk. 

In Table 5.13 below: 

𝐴𝐴 + 𝐵𝐵 is the observed number of cancer cases who have the behaviour; 

𝐶𝐶 + 𝐷𝐷 is the observed number of cancer cases who do not have the behaviour;  

𝐴𝐴 + 𝐶𝐶 is the observed number of cancer cases who died within 1 year;  

𝐵𝐵 + 𝐷𝐷 is the observed number of cancer cases who lived for 1 year or more; and  

𝑦𝑦′ and 𝑟𝑟′ be the number of deaths required to produce a target relative risk,  𝑅𝑅𝑅𝑅𝑠𝑠 

 

Table 5.13 Values required for the simulation 
  1 year survival status 
  died lived total 

Imputed 
value of 

the health 
behaviour 

Behaviour 
present 

 
𝑦𝑦′ 

 
 

 
𝐴𝐴 + 𝐵𝐵 

Behaviour 
absent 

 
𝑟𝑟′ 

 
 

 
𝐶𝐶 + 𝐷𝐷  

Total 𝐴𝐴 + 𝐶𝐶 𝐵𝐵 + 𝐷𝐷 𝑟𝑟 
 

To achieve any given target relative risk 𝑅𝑅𝑅𝑅𝑠𝑠, 𝑦𝑦′ and 𝑟𝑟′ need to be selected such that 

𝑦𝑦′ (𝐴𝐴 + 𝐵𝐵)⁄
𝑟𝑟′ (𝐶𝐶 + 𝐷𝐷)⁄ = 𝑅𝑅𝑅𝑅𝑠𝑠 

First, note that 

𝑦𝑦′ + 𝑟𝑟′ = 𝐴𝐴 + 𝐶𝐶 

So 𝑦𝑦′ can be replaced by 

 𝑦𝑦′ = (𝐴𝐴 + 𝐶𝐶) − 𝑟𝑟′ 

  



   211 

pg. 211 
 

To get: 

�(𝐴𝐴 + 𝐶𝐶) − 𝑟𝑟′� (𝐴𝐴 + 𝐵𝐵)⁄
𝑟𝑟′ (𝐶𝐶 + 𝐷𝐷)⁄ = 𝑅𝑅𝑅𝑅𝑠𝑠 

Solving for 𝑟𝑟′ : 

(𝐴𝐴 + 𝐶𝐶) − 𝑟𝑟′

𝐴𝐴 + 𝐵𝐵
=
𝑅𝑅𝑅𝑅𝑠𝑠𝑟𝑟′
𝐶𝐶 + 𝐷𝐷

 

(𝐴𝐴 + 𝐶𝐶)(𝐶𝐶 + 𝐷𝐷) − 𝑟𝑟′(𝐶𝐶 + 𝐷𝐷) = 𝑅𝑅𝑅𝑅𝑠𝑠𝑟𝑟′(𝐴𝐴 + 𝐵𝐵) 

(𝐴𝐴 + 𝐶𝐶)(𝐶𝐶 + 𝐷𝐷) = 𝑅𝑅𝑅𝑅𝑠𝑠𝑟𝑟′(𝐴𝐴 + 𝐵𝐵) + 𝑟𝑟′(𝐶𝐶 + 𝐷𝐷) 

(𝐴𝐴 + 𝐶𝐶)(𝐶𝐶 + 𝐷𝐷) = 𝑟𝑟′�𝑅𝑅𝑅𝑅𝑠𝑠(𝐴𝐴 + 𝐵𝐵) + (𝐶𝐶 + 𝐷𝐷)� 

𝑟𝑟′ =
(𝐴𝐴 + 𝐶𝐶)(𝐶𝐶 + 𝐷𝐷)

𝑅𝑅𝑅𝑅𝑠𝑠(𝐴𝐴 + 𝐵𝐵) + (𝐶𝐶 + 𝐷𝐷) 

Which, in turn, allows the value to be calculated for:  

𝑦𝑦′ = (𝐴𝐴 + 𝐶𝐶) − 𝑟𝑟′ 

For data records in the behaviour present group 1-year survival status was randomly 

assigned with the probability of dying within 1 year equal to  𝑦𝑦′ (𝐴𝐴 + 𝐵𝐵)⁄ . For those imputed 

to be in the behaviour absent group 1-year survival status was randomly assigned with the 

probability of dying within 1 year equal to 𝑟𝑟′ (𝐶𝐶 + 𝐷𝐷)⁄ . 

These random selections were implemented using the sample() command in R 

software. 
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5.4 Further exploration of matching 

Table 5.6 shows that 15.9% of cancer cases were imputed to be current smokers 5 

years prior to diagnosis. In the corresponding years, 2001 to 2009, the overall US smoking 

rate was estimated to have considerably higher, ranging from 22.8% to 20.6% (Méndez et al., 

2016). But cancer patients are not expected to be a random sample from the wider population 

and not expected to have the same health behaviours as the general population. For example, 

the incidence of OC in the US is known to be higher in older ages and males (American 

Cancer Society, 2022). Perhaps the older age profile led to the lower smoking rates in the US 

OC population than in the US general population.   

However, other comparable (Western) studies examining pre-diagnosis health 

behaviours in OC, listed in Table 2.1, also reported higher proportions of pre-diagnosis 

current smoking in OC. For example, in the US in the slightly earlier period 1999-2004 one 

study reported that 28% of OC cases had smoked within 1 year prior to diagnosis (Cescon et 

al., 2009) while another, which included cases from Canada as well as the US, reported that 

19.1% of their OC cases were smokers (Anna Spreafico et al., 2017). Further afield pre-

diagnosis smoking rates were reported as 22.5% in a 2006-2013 study from Canada 

(Korpanty et al., 2017), 25.1% in a 2001-2005 study from Australia (Thrift, Nagle, Fahey, 

Russell, et al., 2012; Thrift, Nagle, Fahey, Smithers, et al., 2012) and 22.5% in a 1994-1997 

study from Sweden (Sundelöf et al., 2008). 

Table 5.6 also shows that when using the imputed values, the estimated prevalence of 

binge drinking (males ≥5 drinks on one occasion, females ≥4 drinks on one occasion) 5 years 

prior to diagnosis was 10% and the estimated prevalence of heavy drinking (men ≥2 

drinks/day, women ≥1 drinks/day) was 4.8%. In contrast the estimated 2018 US prevalence 

of binge drinking was 26.5% and for heavy drinking was 6.6% (National Institute on Alcohol 

Abuse and Alcoholism, 2021a). But again, there is no reason to expect cancer cases to be a 
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representative sample from the wider US population or to exhibit the same profile of alcohol 

consumption. 

No comparable (Western) studies of pre-diagnosis alcohol consumption in OC cases 

used comparable definitions of ‘at risk’ alcohol behaviour. One study from Scotland in 1996-

2010 applied higher alcohol cutpoints of 2-3 units/day for women and 3-4 units per day for 

men and classified 8.1% of OC cases as heavy drinkers pre-diagnosis. Studies from Australia 

2001-2005 (Thrift, Nagle, Fahey, Russell, et al., 2012; Thrift, Nagle, Fahey, Smithers, et al., 

2012) and Sweden 1994-1997 (Sundelöf et al., 2008) provided lower alcohol cutpoints of ≥70 

grams/week  per week and >70 grams/week (20 years before interview) respectively and 

reported prevalences of 63.5% and 33.9% among OC patients respectively. No comparative 

results were available for ‘binge’ drinking or ‘current smoker with regular drinking’. 

Although evidence is limited, it seems possible that the prevalence of pre-diagnosis ‘at risk’ 

alcohol consumption in OC may be underestimated when using cold deck imputation.  

Results for obesity are more varied. From Table 5.6, the estimated rate of pre-

diagnosis obesity in OC arising from the imputed data is 25.7%. This is around the centre of 

the 32.3% reported in a 2004-2016 US study (Loehrer et al., 2020), 19.1% reported in a 

1994-2004 US/Canada study (A. Spreafico et al., 2017) and 26.8% reported in a 2001-2005 

Australian study (Thrift, Nagle, Fahey, Russell, et al., 2012; Thrift, Nagle, Fahey, Smithers, 

et al., 2012).  

The estimated prevalence of pre-diagnosis physical activity outside of employment 

within the imputed data was 73.7%, but no comparative results were available. 

One possible explanation for these findings is that people who engage in risky 

behaviours, such as heavy alcohol consumption or smoking, are less likely to participate in 
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the BRFSS health survey. Alternatively, when these people do participate in the BRFSS 

health survey they under-report their risk-taking behaviours. 

The question arising is whether the potential underestimate of the prevalence of pre-

diagnosis health behaviours is of relevance to the research aim of this thesis: to describe the 

association between pre-diagnosis health behaviour and post-diagnosis survival. If for 

example, pre-diagnosis smokers are twice as likely to die within 12 months of diagnosis, this 

is true no matter how many smokers and non-smokers are included in the sample. Relative 

risk is independent of prevalence. 

However, in this thesis behaviour status is not measured but is imputed using a 

method expected to produce high misclassification rates. Section ‘5.3.8 Appendix 2 The 

relationship between the true relative risk and the imputed relative risk’ develops the formula 

for misclassification correction under the assumption that the imputed prevalence of 

behaviour, 𝑝𝑝𝑖𝑖, is equal to the true prevalence of behaviour, 𝑝𝑝𝑇𝑇. Replacing the 𝑝𝑝𝑇𝑇 = 𝑝𝑝𝑖𝑖 

assumption with 𝑝𝑝𝑇𝑇 > 𝑝𝑝𝑖𝑖 produces the following alternate calculations and result. 
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Table 5.14 A model of the association between the true and imputed health behaviours assuming imputation  

underestimates true prevalence of the behaviour  
True (unknown) 
value of health 
behaviour 

Imputed value of health behaviour 
Behaviour present Behaviour absent total 

Behaviour present 
- observed 
- expected 

 
𝐴𝐴 

𝑟𝑟𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 + 𝑟𝑟𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑇𝑇)𝜌𝜌 

 
𝐵𝐵 

𝑟𝑟(1 − 𝑝𝑝𝑖𝑖)𝑝𝑝𝑇𝑇 −  𝑟𝑟𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑇𝑇)𝜌𝜌 

 
𝐴𝐴 + 𝐵𝐵 
𝑟𝑟𝑝𝑝𝑇𝑇 

Behaviour absent 
- observed 
- expected 

 
𝐶𝐶 

𝑟𝑟𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑇𝑇) −  𝑟𝑟𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑇𝑇)𝜌𝜌 

 
𝐷𝐷 

𝑟𝑟(1 − 𝑝𝑝𝑖𝑖)(1 − 𝑝𝑝𝑇𝑇) +  𝑟𝑟𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑇𝑇)𝜌𝜌 

 
𝐶𝐶 + 𝐷𝐷 

𝑟𝑟(1 − 𝑝𝑝𝑇𝑇) 
Total 

- observed 
- expected 

 
𝐴𝐴 + 𝐶𝐶 
𝑟𝑟𝑝𝑝𝑖𝑖 

 
𝐵𝐵 + 𝐷𝐷 

𝑟𝑟(1 − 𝑝𝑝𝑖𝑖) 

 
𝑟𝑟 
𝑟𝑟 

 

𝑅𝑅𝑅𝑅𝑇𝑇 =  
𝑟𝑟(𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑇𝑇) −  𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑇𝑇)𝜌𝜌) − 𝑟𝑟�(𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑇𝑇) −  𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑇𝑇)𝜌𝜌)�𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖 �𝑟𝑟�(1 − 𝑝𝑝𝑖𝑖)(1 − 𝑝𝑝𝑇𝑇) + 𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑇𝑇)𝜌𝜌��𝑅𝑅𝑅𝑅𝑖𝑖

𝑝𝑝𝑖𝑖�𝑟𝑟(𝑝𝑝𝑇𝑇(1− 𝑝𝑝𝑖𝑖) −  𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑇𝑇)𝜌𝜌)�𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑟𝑟(𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 + 𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑇𝑇)𝜌𝜌) + �𝑟𝑟(𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 + 𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑇𝑇)𝜌𝜌)�𝑝𝑝𝑖𝑖
 

Note 𝑟𝑟 and 𝑝𝑝𝑖𝑖 cancel out to give: 

𝑅𝑅𝑅𝑅𝑇𝑇 =  
(1 − 𝑝𝑝𝑇𝑇) −  (1 − 𝑝𝑝𝑇𝑇)𝜌𝜌 − (𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑇𝑇) −  𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑇𝑇)𝜌𝜌) − �(1 − 𝑝𝑝𝑖𝑖)(1− 𝑝𝑝𝑇𝑇) +  𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑇𝑇)𝜌𝜌�𝑅𝑅𝑅𝑅𝑖𝑖

(𝑝𝑝𝑇𝑇(1− 𝑝𝑝𝑖𝑖) −  𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑇𝑇)𝜌𝜌)𝑅𝑅𝑅𝑅𝑖𝑖 − (𝑝𝑝𝑇𝑇 + (1 − 𝑝𝑝𝑇𝑇)𝜌𝜌) + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 + 𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑇𝑇)𝜌𝜌
 

=  
1 − 𝑝𝑝𝑇𝑇 −  (𝜌𝜌 − 𝑝𝑝𝑇𝑇𝜌𝜌) − �𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 −  (𝑝𝑝𝑖𝑖𝜌𝜌 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇𝜌𝜌)� − (1 − 𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑇𝑇 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 +  (𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇)𝜌𝜌)𝑅𝑅𝑅𝑅𝑖𝑖

(𝑝𝑝𝑇𝑇 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 −  (𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇)𝜌𝜌)𝑅𝑅𝑅𝑅𝑖𝑖 − (𝑝𝑝𝑇𝑇 + 𝜌𝜌 − 𝑝𝑝𝑇𝑇𝜌𝜌) + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 + (𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇)𝜌𝜌
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=  
1 − 𝑝𝑝𝑇𝑇 −  𝜌𝜌 + 𝑝𝑝𝑇𝑇𝜌𝜌 − (𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 −  𝑝𝑝𝑖𝑖𝜌𝜌 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇𝜌𝜌) − (1 − 𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑇𝑇 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 +  𝑝𝑝𝑖𝑖𝜌𝜌 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇𝜌𝜌)𝑅𝑅𝑅𝑅𝑖𝑖

(𝑝𝑝𝑇𝑇 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 −  𝑝𝑝𝑖𝑖𝜌𝜌 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇𝜌𝜌)𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑇𝑇 − 𝜌𝜌 + 𝑝𝑝𝑇𝑇𝜌𝜌 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 + 𝑝𝑝𝑖𝑖𝜌𝜌 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇𝜌𝜌
 

=  
1 − 𝑝𝑝𝑇𝑇 −   𝜌𝜌 + 𝑝𝑝𝑇𝑇 𝜌𝜌 − 𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 +  𝑝𝑝𝑖𝑖 𝜌𝜌 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 𝜌𝜌 − (𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖 +  𝑝𝑝𝑖𝑖 𝜌𝜌𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 𝜌𝜌𝑅𝑅𝑅𝑅𝑖𝑖)

𝑝𝑝𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖 −  𝑝𝑝𝑖𝑖 𝜌𝜌𝑅𝑅𝑅𝑅𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 𝜌𝜌𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑇𝑇 −  𝜌𝜌 + 𝑝𝑝𝑇𝑇 𝜌𝜌 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 + 𝑝𝑝𝑖𝑖 𝜌𝜌 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 𝜌𝜌
 

=  
1 − 𝑝𝑝𝑇𝑇 −   𝜌𝜌 + 𝑝𝑝𝑇𝑇 𝜌𝜌 − 𝑝𝑝𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 +  𝑝𝑝𝑖𝑖 𝜌𝜌 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 𝜌𝜌 − 𝑅𝑅𝑅𝑅𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑅𝑅𝑅𝑅𝑖𝑖 + 𝑝𝑝𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖 −  𝑝𝑝𝑖𝑖 𝜌𝜌𝑅𝑅𝑅𝑅𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 𝜌𝜌𝑅𝑅𝑅𝑅𝑖𝑖

𝑝𝑝𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖 −  𝑝𝑝𝑖𝑖 𝜌𝜌𝑅𝑅𝑅𝑅𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 𝜌𝜌𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑇𝑇 −  𝜌𝜌 + 𝑝𝑝𝑇𝑇 𝜌𝜌 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 + 𝑝𝑝𝑖𝑖 𝜌𝜌 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 𝜌𝜌
 

=  
−𝑅𝑅𝑅𝑅𝑖𝑖 + 1 + 𝑝𝑝𝑖𝑖𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑖𝑖 −  𝜌𝜌 + 𝑝𝑝𝑇𝑇𝜌𝜌 + 𝑝𝑝𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑇𝑇 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 −  𝑝𝑝𝑖𝑖𝜌𝜌𝑅𝑅𝑅𝑅𝑖𝑖 +  𝑝𝑝𝑖𝑖𝜌𝜌 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇𝜌𝜌𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇𝜌𝜌

𝑝𝑝𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑝𝑝𝑇𝑇 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 −  𝑝𝑝𝑖𝑖𝜌𝜌𝑅𝑅𝑅𝑅𝑖𝑖 + 𝑝𝑝𝑖𝑖𝜌𝜌 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇𝜌𝜌𝑅𝑅𝑅𝑅 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇𝜌𝜌 − 𝜌𝜌 + 𝑝𝑝𝑖𝑖𝜌𝜌
 

=  
−(𝑅𝑅𝑅𝑅𝑖𝑖 − 1) + 𝑝𝑝𝑖𝑖(𝑅𝑅𝑅𝑅𝑖𝑖 − 1) −  𝜌𝜌(1 − 𝑝𝑝𝑇𝑇) + 𝑝𝑝𝑇𝑇(𝑅𝑅𝑅𝑅𝑖𝑖 − 1) − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇(𝑅𝑅𝑅𝑅𝑖𝑖 − 1) −  𝑝𝑝𝑖𝑖𝜌𝜌(𝑅𝑅𝑅𝑅𝑖𝑖 −  1) + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇𝜌𝜌(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)

𝑝𝑝𝑇𝑇(𝑅𝑅𝑅𝑅𝑖𝑖 − 1) − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇(𝑅𝑅𝑅𝑅𝑖𝑖 − 1) −  𝑝𝑝𝑖𝑖𝜌𝜌(𝑅𝑅𝑅𝑅𝑖𝑖 − 1) + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇𝜌𝜌(𝑅𝑅𝑅𝑅 − 1) − 𝜌𝜌(1 − 𝑝𝑝𝑖𝑖)
 

=  
−(𝑅𝑅𝑅𝑅𝑖𝑖 − 1) + (𝑅𝑅𝑅𝑅𝑖𝑖 − 1)(𝑝𝑝𝑇𝑇 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 −  𝑝𝑝𝑖𝑖𝜌𝜌 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇𝜌𝜌) −  𝜌𝜌(1 − 𝑝𝑝𝑖𝑖) + 𝑝𝑝𝑖𝑖(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)

(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)(𝑝𝑝𝑇𝑇 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 −  𝑝𝑝𝑖𝑖𝜌𝜌 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇𝜌𝜌) − 𝜌𝜌(1 − 𝑝𝑝𝑖𝑖)
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𝑅𝑅𝑅𝑅𝑇𝑇 =  
(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)(𝑝𝑝𝑇𝑇 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 −  𝑝𝑝𝑖𝑖𝜌𝜌 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇𝜌𝜌) −  𝜌𝜌(1 − 𝑝𝑝𝑖𝑖) − (1 − 𝑝𝑝𝑖𝑖)(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)

(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)(𝑝𝑝𝑇𝑇 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 −  𝑝𝑝𝑖𝑖𝜌𝜌 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇𝜌𝜌) − 𝜌𝜌(1 − 𝑝𝑝𝑖𝑖)
 

=  1 −
(1 − 𝑝𝑝𝑖𝑖)(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)

(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)(𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇 −  𝑝𝑝𝑖𝑖𝜌𝜌 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑇𝑇𝜌𝜌) − 𝜌𝜌(1 − 𝑝𝑝𝑖𝑖)
 

=  1 −
(1 − 𝑝𝑝𝑖𝑖)(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)

(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑇𝑇 −  𝜌𝜌 + 𝑝𝑝𝑇𝑇𝜌𝜌) − 𝜌𝜌(1 − 𝑝𝑝𝑖𝑖)
 

=  1 −
(1 − 𝑝𝑝𝑖𝑖)(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)

(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑇𝑇)( 1− 𝜌𝜌) − 𝜌𝜌(1 − 𝑝𝑝𝑖𝑖)
 

=  1 −
(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)(1 − 𝑝𝑝𝑖𝑖)

(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)𝑝𝑝𝑖𝑖( 1 − 𝜌𝜌)(1 − 𝑝𝑝𝑇𝑇) − 𝜌𝜌(1 − 𝑝𝑝𝑖𝑖)
 

=  1 −
(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)

(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)𝑝𝑝𝑖𝑖( 1 − 𝜌𝜌) (1 − 𝑝𝑝𝑇𝑇)
(1 − 𝑝𝑝𝑖𝑖)

− 𝜌𝜌
 

That is, replacing the assumption 𝑝𝑝𝑇𝑇 = 𝑝𝑝𝑖𝑖 with 𝑝𝑝𝑇𝑇 > 𝑝𝑝𝑖𝑖, introduces the new term 

(1−𝑒𝑒𝑇𝑇)
(1−𝑒𝑒𝑖𝑖)

 into the equation. As 𝑝𝑝𝑇𝑇 > 𝑝𝑝𝑖𝑖, (1 − 𝑝𝑝𝑇𝑇) < (1 − 𝑝𝑝𝑖𝑖) then (1−𝑒𝑒𝑇𝑇)
(1−𝑒𝑒𝑖𝑖)

< 1.   If for example, 

the imputed prevalence of pre-diagnosis smoking 𝑝𝑝𝑖𝑖=0.159 is only half of the true prevalence 

then 𝑝𝑝𝑇𝑇=0.318 then  (1−𝑒𝑒𝑇𝑇)
(1−𝑒𝑒𝑖𝑖)

= (1−0.318)
(1−0.159) = 0.811. However, as the 𝑝𝑝𝑇𝑇 > 𝑝𝑝𝑖𝑖 assumption may 

also some impact on estimates of  𝑅𝑅𝑅𝑅𝑖𝑖 and 𝜌𝜌 there are too many unknowns to predict how the 

misclassification corrected relative risk will be affected. 

Instead simulated data are used to help illustrate and quantify the various 

relationships. This simulation is described as a series of steps supported by a numeric 

example. 
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Step 1: Set the population parameters 

The analysis of the association between pre-diagnosis smoking status and post-

diagnosis 1 year survival, reported in the first line of Table 5.6, is simulated. The simulation 

contains the same number of data records (n=27,825), the same proportion of deaths one-year 

post-diagnosis (14,927/27,825) and the same prevalence of smoking (𝑝𝑝𝑖𝑖 = 0.159) as the true 

SEER OC data set. The simulation will allow 𝑝𝑝𝑇𝑇 > 𝑝𝑝𝑖𝑖. Specifically, the ‘true’ prevalence of 

pre-diagnosis smoking, 𝑝𝑝𝑇𝑇 , will be set twice as high as the prevalence of pre-diagnosis 

smoking in the imputed behaviour, so 𝑝𝑝𝑇𝑇 = 2 × 𝑝𝑝𝑖𝑖 = 0.318. This is chosen as a plausible 

upper limit for the true prevalence given the observed prevalences (0.191, 0.225, 0.225, 0.251 

and 0.280) from the comparable studies presented above.  

Step 2: Randomly allocate pre-diagnosis smoking status (smoker or non-smoker) and 

survival status (dead 1 year after diagnosis or alive 1 year after diagnosis), with a known 

relative risk of say 2.0.  

The relative risk will be achieved using the method developed in section ‘5.3.9 

Appendix 3 Simulating data with prescribed relative risks’. A cross-tabulation from one 

simulated data set is shown in Table 5.15. 

Table 5.15 Simulated true one-year survival status cross-tabulated against smoking status  
Pre-diagnosis 
smoking status 

Post-diagnosis 1-year survival status 
died lived total 

Smoker 7,244 1,723 8,967 
Non-smoker 7,636 11,232 18,868 

 
Total 

 
14,880 

 
12,955 

 
27,835 
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This simulated data set has the following prescribed characteristics: 

𝑟𝑟 = 27835,    𝑟𝑟𝑑𝑑𝑒𝑒𝑎𝑎𝑑𝑑 = 14880,     𝑝𝑝𝑠𝑠 =
8967

27835
= 0.322 

𝑅𝑅𝑅𝑅𝑠𝑠 =
7244/8967

7636 18868⁄ =
0.8079
0.4047

= 1.996 

Step 3: Randomly allocate imputed smoking status with prevalence of 0.159. 

A new ‘imputed’ smoking variable is added such that 

𝑟𝑟 = 27835,    𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 = 4491 

𝑝𝑝𝑖𝑖 =
4491

27835
= 0.161 

Step 4: Create a relationship between the ‘imputed’ smoking status and ‘real’ 

smoking status. 

From the first line of Table 5.6, the median number of matches in excess of chance 

between the ‘real’ and ‘simulated’ pre-diagnosis smoking status is approximately 262.  This 

improvement over chance was simulated by randomly selecting 262 ‘true’ smokers who were 

‘imputed’ to be non-smokers and 262 ‘true’ non-smokers who were ‘imputed’ to be smokers 

and changing their imputed smoking status to match the truth. Table 5.16 shows the cross-

tabulation of ‘true’ and ‘imputed’ pre-diagnosis smoking status in the example data set. 

Table 5.16 Simulated data set, cross-tabulation of ‘true’ and ‘imputed’ pre-diagnosis 
smoking status 
‘True’ smoking 
status 

‘Imputed’ smoking status 
Smoker Non-smoker total 

Smoker 1,699 (0.061) 7,268 (0.261) 8,967 
Non-smoker 2,792 (0.100) 16,076 (0.578) 18,868 

 
Total 

 

 
4,491 

 
23,344 

 
27,835 
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This table meets the required characteristics as 

𝑝𝑝𝑠𝑠 = 8967
27835

= 0.322  and  𝑝𝑝𝑖𝑖 = 4491
27835

= 0.161   

 

The results in Table 5.16 allow us to estimate the correlation 𝜌𝜌�  between ‘true’ and 

‘imputed’ smoking status. When 𝑝𝑝𝑇𝑇 = 𝑝𝑝𝑖𝑖 is assumed, the excess matches are modelled as 

𝑟𝑟𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝜌𝜌  (see Table 5.11) which implies 

𝜌𝜌� =
262

𝑟𝑟𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)
=

262
27825 × 0.159 × (1 − 0.159) = 0.070 

 but when 𝑝𝑝𝑇𝑇 > 𝑝𝑝𝑖𝑖, the relationship is modelled as 𝑟𝑟𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑇𝑇)𝜌𝜌 (see Table 5.14) 

which implies 

𝜌𝜌� =
262

𝑟𝑟𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑠𝑠)
=

262
27825 × 0.159 × (1 − 0.318) = 0.087 

 

Step 5: Calculate the relative risk using the ‘imputed’ smoking status 

Table 5.17 summarises the relationship between the imputed pre-diagnosis smoking 

status and ‘real’ 1 year post-diagnosis survival status for the example simulated data set. 

Table 5.17 Simulated true one-year survival status cross-tabulated against smoking status  
‘Simulated’ 
smoking status 

1-year survival status 
died lived total 

Smoker 2,509 1,982 4,491 
Non-smoker 12,371 10,973 23,344 

 
Total 

 

 
14,880 

 
12,955 

 
27,835 
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Notice that this data set complies with the requirements as 

𝑟𝑟 = 27835,    𝑟𝑟𝑑𝑑𝑒𝑒𝑎𝑎𝑑𝑑 = 14880 

𝑝𝑝𝑠𝑠 =
4491

27835
= 0.161 

Analysing the imputed smoking status, the relative risk is: 

𝑅𝑅𝑅𝑅𝑖𝑖 =
2509/4491

12371 23344⁄ =
0.5586
0.5299

= 1.054 

This estimate of the relative risk is attenuated towards the null by the high levels of 

misclassification error arising from the imputation. Applying misclassification correction 

under the incorrect assumption 𝑝𝑝𝑠𝑠 = 𝑝𝑝𝑖𝑖 produces a misclassification corrected estimated 

relative risk of  

𝑅𝑅𝑅𝑅𝑠𝑠 =  1 −
(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)

(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)𝑝𝑝𝑖𝑖( 1 − 𝜌𝜌) (1 − 𝑝𝑝𝑇𝑇)
(1 − 𝑝𝑝𝑖𝑖)

− 𝜌𝜌
 

𝑅𝑅𝑅𝑅𝑠𝑠 =  1 −
(1.054 − 1)

(1.054 − 1)0.161( 1 − 0.069) − 0.069
= 1.883 

Knowing the true prevalence of pre-diagnosis smoking was 𝑝𝑝𝑠𝑠 = 0.312 and applying 

the formula allowing 𝑝𝑝𝑠𝑠 > 𝑝𝑝𝑖𝑖 the misclassification corrected estimate of the relative risk is: 

𝑅𝑅𝑅𝑅𝑠𝑠 =  1 −
(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)

(𝑅𝑅𝑅𝑅𝑖𝑖 − 1)𝑝𝑝𝑖𝑖( 1 − 𝜌𝜌) (1 − 𝑝𝑝𝑇𝑇)
(1 − 𝑝𝑝𝑖𝑖)

− 𝜌𝜌
 

𝑅𝑅𝑅𝑅𝑠𝑠 =  1 −
(1.054 − 1)

(1.054 − 1)0.161( 1 − 0.087) (1 − 0.322)
(1 − 0.161) − 0.086

= 1.670 

  



   222 

pg. 222 
 

Step 6: Repeat the simulation  

This simulation was repeated 100 times and estimated relative risks recorded for each 

repetition. In the simulation, the ‘true’ proportion of OC cases who were current smokers pre-

diagnosis was set at 0.318, twice as high as the ‘imputed’ proportion.  The relative risk of 

death within 1-year post-diagnosis was set at 2.0.  

It was demonstrated that underestimating the true prevalence of smoking during 

misclassification correction process caused the misclassification corrected relative risk to be 

underestimated. If the ‘true’ proportion of pre-diagnosis smokers, 0.318, were known and 

adjusted for in the misclassification correction the relative risk of 2.0 was estimated to be just 

1.65 with an associated 95% empirical confidences interval of 1.28 to 2.13. This inaccuracy 

appears to arise through the definition and measurement of the level of excess agreement 

beyond chance (effectively the information component of the matching process). The higher 

assumed smoking rate, the higher the number of smoker-to-smoker matches which are 

expected to arise by chance alone. Some of the excess deaths become falsely attributed to 

chance and misclassification correction is underestimated. 

The problem appears to be partially alleviated by the algorithm which assumes the 

‘true’ proportion of smokers is accurately reflected in ‘imputed’ smoking status. In this case 

the median misclassification corrected relative risk was estimated to be 1.83 with an 

associated 95% empirical confidence interval from 1.35 to 2.50. 

The problems associated with underestimating the true prevalence of behaviour 

appear to be inherent to the calibration step, the measurement of ‘excess’ information beyond 

chance produced by imputation. An entirely new approach may be required. 
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In the meantime, the misclassification corrected relative risks which are being 

reported may be underestimates of the true relative risk. Fortunately, the effects are modest 

with the median relative risk of 1.83 being a relatively small underestimate of the true relative 

risk of 2.0 even when the proportion of smokers was underestimated by a factor of two.  

 

5.5 Critique of the method 

The above published peer-reviewed paper describes a method to impute 100% 

missing health behaviour variables in the SEER cancer registry data set, using the BRFSS 

health survey as an external reference. The simulation studies (Table 5.7) demonstrated that, 

so long as the incidence of the behaviour was greater than about 5%, the algorithm returned 

accurate relative risks estimates (to the first decimal place), but with much reduced precision 

(wide confidence intervals reflecting the additional random error arising from 

misclassification).  

There were three main steps in the process: imputing the behaviour (twice); 

measuring misclassification by comparing the two imputed values; and incorporating 

misclassification correction into the final analysis.  

For this trial cold deck imputation was used; allowing BRFSS health survey 

respondents to donate their behaviour to demographically similar OC cases. The simulation 

studies demonstrated that the cold deck imputation allowed information to be transferred 

between these independent data sets. However, the rigid rule that only people from a 

corresponding age by sex by marital status by race by State of residence by year group could 

donate to the OC case, left 4,353 (13.5%) of the 32,188 eligible OC cases without the 

required two donors and hence excluded from the analysis. These exclusions created potential 

biases with younger, female, and white race OC cases overrepresented in the analysis. 
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Lack of donor records could be addressed by some ‘nearest neighbour’ matching rules 

allowing the unmatched OC cases to be matched with BRFSS health survey respondents from 

different but similar demographic groups (such as one age group younger or older, 

neighbouring States, adjacent years, etc). This would increase the sample size, increase 

statistical power and reduce the potential non-response bias for, presumably, very little loss 

of precision. 

Alternatively, the imputation could be based on the estimated probability of engaging 

in the behaviour obtained from the logistic regression models described in Chapter 4. That is, 

each OC case could have each behaviour randomly assigned relative to their estimated 

probability. Using the logistic models would allow behaviour to be imputed for all OC cases 

and, if required, could be extended to imputing more than two values for each behaviour for 

each OC case. A potential weakness of this approach is that, as the models do not contain 

higher order interactions terms, they may fail to identify more isolated pockets of behaviour. 

Machine learning techniques (Westreich, Lessler, & Funk, 2010) may provide a more natural 

model for complex systems although some investigators have suggested there is little 

difference in predictive ability (Christodoulou et al., 2019; Faisal et al., 2020).  

To estimate the misclassification rate in the imputed data, the misclassification 

between two imputed values for the behaviour was used. Consider an example demographic 

group which contains at least one OC case: 60-64 year old, female, white, widowed, 

California. There will be hundreds of US adults falling into this demographic group. A small 

number of these will be diagnosed with OC in a particular year and a small number may 

respond to the BRFSS health survey in the corresponding year. The estimate of the 

misclassification rate assumes that, in each particular demographic group, the difference in 

behaviour between the BRFSS survey respondents is about the same magnitude as the 

difference in behaviour between the OC cases and BRFSS survey respondents. This 
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assumption would be untrue if there was another factor which differentiated OC cases and 

BRFSS survey respondents in the same demographic cluster. Consider if, within the cluster, 

the OC cases had lower education hence were more likely to engage in smoking and BRFSS 

survey respondents had higher education and hence less likely to engage in smoking. In this 

case, the agreement in smoking status between BRFSS survey respondents would be greater 

than the agreement between OC cases and BRFSS survey respondents. Any such error in the 

misclassification rate could have a significant impact on the final, misclassification corrected, 

estimate of relative risk.  

The issue could be addressed by adding more, and more informative, demographic 

variables in the imputation process. In the above example, it would be addressed by adding 

an education variable. But it is highly unlikely that compatible education variables will be 

added to both the cancer registry and health survey data collections in the foreseeable future. 

Instead it is necessary to validate whether the variables which are currently available are 

sufficient to provide an accurate estimate the misclassification rate between the imputed and 

true behaviour. 

There is also some evidence to suggest that the imputation process underestimated the 

proportion of people with ‘at risk’ pre-diagnosis behaviour in the OC cases. It has been 

shown that this could lead to the underestimation of misclassification corrected relative risk. 

The calibration step warrants further development or complete replacement with a model 

which allows underestimation of the prevalence of behaviour to be specifically estimated and 

corrected. 

This validation if all the information used in the analysis were available, plus the true 

pre-diagnosis health behaviour for a group of OC cases and a data set large enough to support 

the method (i.e. many thousands). But if such a data set existed, the first research aim could 
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have been addressed using standard analyses. The rationale for this thesis is that the required 

data set does not exist. It may be possible to conduct the validation step using a more 

common cancer, such as colorectal cancer, where one-to-one linkage between the cancer 

registry and health survey data sets may provide a large data set. Of course, colorectal cancer 

has longer survival times, perhaps weakening the carry-over effects of pre-diagnosis 

behaviour on post-diagnosis survival.   

There are likely to be other methods to measure misclassification rates which have not 

yet been considered. Strong agreement between two independent measures of the 

misclassification rate could also help establish the validity of both.  

To correct for misclassification, a formula was derived based on the phi statistic as a 

measure of correlation 𝜌𝜌. It was observed that the method sometimes failed, returning 

impossible negative relative risks (Table 5.7). This occurred when the imputation process 

delivered very few correct matches in excess of chance agreement. That is, there wasn’t 

enough information for the algorithm to use despite the very large sample sizes. There are 

other approaches to misclassification adjustment which have not yet trialled (Barron, 1977; 

Copeland, Checkoway, McMichael, & Holbrook, 1977). Further research is warranted to 

clarify whether there are any practical differences between the different approaches to 

misclassification correction and, if so, which misclassification adjustment is best suited to the 

very high levels of misclassification that are evident in this thesis.  

The imputation-based approach to addressing the missing health behaviour of OC 

cases has provided results (relative risks) which are more readily interpretable than the results 

in the previous Chapter (hazard ratios for 10% change in probability of having the 

behaviour). However, dichotomising survival time into survival status at 1-year failed to use 

all of the information available in the data set. That is, the 301 (about 1%) OC cases who 
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were censored at less than 1-year (Figure 5.6) were excluded from the analysis and the 

continuous measure of survival time in months was dichotomised for all other OC cases.  

The thesis research question was not limited to any specific time point and so the 

analysis above does not fully address the research question. 

 

5.6 Closing comments 

The analyses in this Chapter have demonstrated the plausibility of an imputation-

based method for quantifying the relationship between pre-diagnosis health behaviour and 

post-diagnosis 1-year survival in OC cases. As such some progress has been made towards 

addressing the second aim of this thesis. However, the method is not universal. It appears to 

be limited to behaviours which are sufficiently common, data sets which share informative 

demographic measures, and large sample sizes. Further exploration is warranted. 

The results in this Chapter (such as Table 5.8) have also progressed the first aim of 

the thesis which was to describe the relationship between pre-diagnosis health behaviour and 

post-diagnosis survival times in OC cases. Point estimates of relative risks were obtained for 

current smoking, binge drinking, and physical activity for ESCC and EAC in agreement with 

previous research and expectations. But one concern is whether relative risk of survival for 

some fixed period (1-year in the current analyses) is sufficient to address this first research 

question. Survival analysis, which uses all of the survival time data and described differences 

survival trajectories between OC cases with and without the behaviour over time may provide 

a more complete answer. 

Therefore, while progress has been made in addressing both aims of the research 

thesis, further investigations are warranted to see if a more general solution can be found. 
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Chapter 6 discusses generalising the ‘impute, impute, calibrate the misclassification, correct 

for this misclassification’ algorithm for use with survival analysis.   
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Chapter 6 Extending the imputation-based approach to 

Cox regression 

 

6.1 Background 

In the previous chapter a novel algorithm for imputing the missing pre-diagnosis 

behaviours of OC cancer registry cases was developed and evaluated. The algorithm was 

successfully employed to estimate the relative risk of death within 1-year post diagnosis, at 

least for pre-diagnosis smoking status and exercise behaviours outside of employment. The 

face validity of these relative risk estimates was confirmed through simulations and 

comparison with the existing literature. Overall, this algorithm progressed both the second 

and the first aims of this thesis. 

However, the misclassification corrected relative risk in the previous Chapter cannot 

be easily generalised to include multiple predictors of survival. Many factors impact on a 

person’s risk of death. A model-based approach, such as logistic regression or log-binomial 

regression, would allow more predictor variables, including multiple health behaviours, to be 

included within the same model and would allow interactions to be explored. The models that 

could be used to predict 1-year survival include logistic regression and log-binomial 

regression. There are established methods for misclassification correction in logistic 

regression (Spiegelman, Rosner, & Logan, 2000) and applying these would allow a 

considerably broader range of analyses. 

However, even logistic and log-binomial regression models fail to use all of the 

available information in the cancer registry data set. With survival time in months available 

for each OC case, it is unnecessarily restrictive to dichotomise these data at 1-year survival 
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status (or any other single time point). Survival analysis allows inclusion of multiple 

predictor variables and estimating interactions and uses the full information on survival time. 

To extend the initial imputation-based algorithm to be of more practical use, in this 

Chapter misclassification corrected Cox regression models are developed as the analysis step 

of the algorithm. 

In Section 6.2 the misclassification correction method when fitting Cox proportional 

hazards models is introduced. Section 6.3 contains a journal article currently under peer-

review, which demonstrates the misclassification corrected Cox model within the imputation-

based algorithm for replacing 100% missing pre-diagnosis health behaviours.  

In the previous Chapter age-confounding was addressed through stratification 

(Cochran-Mantel-Haenszel method) but in the analyses that follow it is shown that the 

sample size is too small to support age-stratified misclassification corrected Cox models. In 

Section 6.4 investigation of sample size and age-stratification is extended with some informal 

analyses. Examples of the important coding elements in simulating survival times, running 

the misclassification corrected Cox models and visualisation of the results are presented int 

eh thesis Appendix. Section 6.5 critiques the methods introduced in this Chapter and Section 

6.6 reviews progress towards the thesis goals and introduces the final discussion Chapter of 

the thesis. 

 

6.2 Misclassification correction in Cox regression 

The primary focus of this Chapter is to use misclassification corrected Cox models in 

the analysis phase of the algorithm for replacing 100% missing health behaviour data. Bang 

et al (2013) reviewed five distinct approaches to misclassification correction in Cox 
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regression. However, given the characteristics of the current research (dichotomous 

misclassified predictor variables and external estimates of misclassification error), only the 

corrected score method (Zucker & Spiegelman, 2008) was applicable to the analyses in this 

thesis. The corrected score method is applied as part of the model fitting process for Cox 

regression.  Full details are available in the source article (Zucker & Spiegelman, 2008). This 

section contains a brief overview how the method is applied.  

A simple Cox regression model, without time-varying predictors or censored 

observations, can be written 

𝜆𝜆(𝑙𝑙|𝑿𝑿) = 𝜆𝜆0(𝑙𝑙)exp(𝜷𝜷′𝑿𝑿) 

where 

• 𝑿𝑿 represents the matrix of observed values for each individual (rows) on each 

predictor variable (columns) 

• 𝜆𝜆(𝑙𝑙|𝑿𝑿) represents the hazard (predicted probability of dying at time 𝑙𝑙 given 

value of the predictor variables in 𝑿𝑿) 

• 𝜆𝜆0(𝑙𝑙) represents the baseline hazard (predicted probability of dying at time 𝑙𝑙 

when the value of all the predictor variables in 𝑿𝑿 are zero) 

• 𝜷𝜷 is the vector of coefficients which describe the relationship between the 

predictor variables 𝑿𝑿, and the probability of dying at time 𝑙𝑙, 𝜆𝜆(𝑙𝑙|𝑿𝑿) 

Suppose (𝑌𝑌𝑖𝑖,𝑿𝑿𝑖𝑖) for individual 𝑖𝑖 was observed, where  

• 𝑌𝑌𝑖𝑖 is the survival time for individual 𝑖𝑖 

• 𝑿𝑿𝑖𝑖 represents the values of the predictor variable for individual 𝑖𝑖  
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The aim of fitting the Cox model is to provide the most accurate possible prediction 

of the survival time 𝑌𝑌𝑖𝑖 using only the predictor variables 𝑿𝑿𝑖𝑖 for all individuals 𝑖𝑖 = 1, … ,𝑟𝑟. In 

practice, this is achieved by identifying the set of regression coefficients 𝜷𝜷 which maximise 

the probability (likelihood) of the sample displaying the observed survival times 𝒀𝒀 for the 

observed predictor variables 𝑿𝑿. So, to fit the model the likelihood first needs to be 

considered. 

Suppose each survival time is unique (no ties) such that there are 𝑟𝑟 distinct survival 

times. Let the risk set be  𝓡𝓡(𝑙𝑙)  =  {𝑖𝑖 ∶  𝑌𝑌𝑖𝑖 ≥  𝑙𝑙}  the set of individuals who are “at risk” for 

failure at time 𝑙𝑙 (i.e. have not died before 𝑙𝑙). At each failure time 𝑌𝑌𝑗𝑗 , the contribution to the 

likelihood is:  

𝐿𝐿𝑗𝑗(𝜷𝜷) =  𝑃𝑃(individual 𝑗𝑗 fails | one failure from 𝓡𝓡(𝑌𝑌𝑗𝑗))  

=  
𝑃𝑃(individual 𝑗𝑗 fails | at risk at 𝑌𝑌𝑗𝑗)

∑ 𝑃𝑃(individual 𝑙𝑙 fails | at risk at 𝑌𝑌𝑗𝑗)𝑙𝑙 ∈ ℛ(𝑋𝑋𝑗𝑗 )
  

=
 𝜆𝜆(𝑌𝑌𝑗𝑗 |𝑿𝑿𝑗𝑗)

∑ 𝜆𝜆(𝑌𝑌𝑗𝑗 |𝑿𝑿𝑙𝑙)𝑙𝑙 ∈ ℛ(𝑌𝑌𝑗𝑗 )
 

=
 𝜆𝜆(𝑌𝑌𝑗𝑗 |𝑿𝑿𝑗𝑗)

∑ 𝜆𝜆(𝑌𝑌𝑗𝑗 |𝑿𝑿𝑙𝑙)𝑙𝑙 ∈ ℛ(𝑌𝑌𝑗𝑗 )
 

=  
𝜆𝜆0(𝑌𝑌𝑗𝑗)exp�𝜷𝜷′𝑿𝑿𝑗𝑗� 

∑ 𝜆𝜆0(𝑌𝑌𝑗𝑗)exp(𝜷𝜷′𝑿𝑿𝑙𝑙)𝑙𝑙 ∈ ℛ(𝑌𝑌𝑗𝑗)
 

=  
exp�𝜷𝜷′𝑿𝑿𝑗𝑗� 

∑ exp(𝜷𝜷′𝑿𝑿𝑙𝑙)𝑙𝑙 ∈ ℛ(𝑌𝑌𝑗𝑗)
 

So the likelihood of individual j dying at time 𝑙𝑙 is determined by their observed risk 

(determined by their particular combination of predictor variable 𝜷𝜷′𝑿𝑿𝑗𝑗) relative to the total 
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risk of everyone who is a risk at time 𝑙𝑙. Notice that on the fifth line, the baseline hazard 

𝜆𝜆0(𝑌𝑌𝑗𝑗) was cancelled out. This means that the final equation is a partial likelihood for the 

death of individual 𝑗𝑗 as the constant baseline hazard component of the hazard has been 

removed.  

The is to fit the model which works best for all individuals in the data set and so the 𝜷𝜷 

which simultaneously maximises the likelihood of all 𝑟𝑟 individuals in the data set needs to be 

found. The partial likelihood function for all deaths is 

𝐿𝐿(𝜷𝜷)  =  �
exp�𝜷𝜷′𝑿𝑿𝑗𝑗� 

∑ exp(𝜷𝜷′𝑿𝑿𝑙𝑙)𝑙𝑙 ∈ ℛ(𝑌𝑌𝑗𝑗)
 

𝑐𝑐

𝑗𝑗=1

 

The task is to identify the values of 𝜷𝜷 which maximise the likelihood of obtaining the 

observed survival times 𝒀𝒀 given the values of the predictor variables 𝑿𝑿. That is, identify the 

values of 𝜷𝜷 which maximise the total likelihood 𝐿𝐿(𝜷𝜷). 

Selecting 𝜷𝜷 so as to maximise 𝐿𝐿(𝜷𝜷) is difficult but some standard apporaches have 

been developed. Firstly, it has been recognised that the 𝜷𝜷 values which maximise the 

likelihood function 𝐿𝐿(𝜷𝜷) will also maximise the logarithm of the likelihood function 𝑙𝑙(𝜷𝜷) and 

vice-versa. 

The fitted Cox model is the model where the observed survival times have the highest 

probability of occurring. That is, the 𝜷𝜷 vector which maximises the likelihood or maximises 

the logarithm (log) of the likelihood function needs to be identified as this will occur at the 

same location (𝜷𝜷 coefficients). The advantage of log-likelihood is that it adds the partial 

likelihoods across individuals rather than multiplies them. 
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𝑙𝑙(𝜷𝜷)  = log ��
exp�𝜷𝜷′𝑿𝑿𝑗𝑗� 

∑ exp(𝜷𝜷′𝑿𝑿𝑙𝑙)𝑙𝑙 ∈ ℛ(𝑌𝑌𝑗𝑗)
 

𝑐𝑐

𝑗𝑗=1

� 

=  ��log�𝜷𝜷′𝑿𝑿𝑗𝑗� − log �� exp(𝜷𝜷′𝑿𝑿𝑙𝑙)
𝑙𝑙 ∈ ℛ(𝑌𝑌𝑗𝑗)

��
𝑐𝑐

𝑗𝑗=1

 

= �𝑙𝑙𝑗𝑗(𝜷𝜷)
𝑐𝑐

𝑗𝑗=1

 

To identify the maximum value of 𝑙𝑙(𝜷𝜷) calculus is used. At the maximum value, the slope of 

the line 𝑙𝑙(𝜷𝜷)  in 𝜷𝜷 changes direction and so the first derivative in 𝜷𝜷 (which is the slope of the 

line) momentarily achieves a value of zero. So differentiating the log-partial likelihood and 

setting the results to equal zero, will allow the identification of the values of the 𝜷𝜷 vector of 

coefficients which maximise the partial likelihood function and hence the fit of the Cox 

regression model. 

𝑈𝑈(𝜷𝜷) =
𝜕𝜕
𝜕𝜕𝛽𝛽

𝑙𝑙(𝜷𝜷) = ��𝑋𝑋𝑖𝑖 −
∑ 𝑋𝑋𝑙𝑙exp(𝜷𝜷′𝑿𝑿𝑙𝑙)𝑙𝑙 ∈ ℛ(𝑌𝑌𝑗𝑗)

∑ exp(𝜷𝜷′𝑿𝑿𝑙𝑙)𝑙𝑙 ∈ ℛ(𝑌𝑌𝑗𝑗)
�

𝑐𝑐

𝑖𝑖=1

 

𝑈𝑈(𝜷𝜷), the first derivative of the log-likelihood function in 𝜷𝜷, is called the score 

function and this is the level at which the ‘corrected score method’ for misclassification 

correction is applied.  

The corrected score approach first separates the predictor variables in 𝑿𝑿 into two 

subgroups: those affected by misclassification error 𝑾𝑾 and those which are not affected 𝒁𝒁. In 

the current case, 𝑾𝑾 would contain the single dichotomous health behaviour variable and 𝒁𝒁 

would contain any other predictors in the model (such as age and/or cancer stage). For 

variables affected by misclassification 𝑾𝑾, the estimated proportion correctly classified and 

the estimated proportion misclassified in each category (such as proportion of smokers 
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classified and smokers, non-smokers classified as smokers, non-smokers classified as 

smokers and non-smokers classified as non-smokers) is recorded in a matrix 𝑨𝑨. The higher 

the misclassification rate, the greater the attenuation of results towards the null and so the 

greater the misclassification correction which needs to be applied. Therefore, the magnitude 

of misclassification correction is determined by 𝑩𝑩 = 𝑨𝑨−1.  

As shown in equations 6 to 11 in the source article (Zucker & Spiegelman, 2008), the 

misclassification corrected score equation splits the 𝑋𝑋𝑖𝑖 and 𝑿𝑿𝑙𝑙 in the 𝑈𝑈(𝜷𝜷) equation above 

into misclassification affected 𝑾𝑾 predictors weighted by 𝑩𝑩 and the unaffected 𝒁𝒁 predictors. 

The covariance matrix of the 𝑩𝑩s could be obtained from the second derivative of the 

log-likelihood equation, but in this thesis empirical confidence intervals are used and the 

calculation standard errors is ignored. 

 

6.3 Imputing pre-diagnosis health behaviour in cancer registry data and investigating 

its relationship with oesophageal cancer survival time 

The material in this section is currently under review in the peer reviewed journal 

PlosOne.  

Following the CRediT Taxonomy (National Information Standards Organization, 

2021), author contributions were: 

• Paul Fahey contributed to Conceptualisation, Data curation, Formal analysis, 

and Writing the original draft. 

• Paul Fahey, Glenn Stone and Andrew Page contributed to Methodology. 

• Andrew Page, Glenn Stone and Thomas Astell-Burt contributed to 

Supervision 
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• All authors contributed to Review and Editing of the draft paper. 

The analyses in this Chapter uses the same method of imputation and same method of 

estimation of misclassification rates as in Chapter 5. Indeed Figures 6.1 and 6.2 are copies of 

Figures 5.6 and 5.7 updated to include an additional year of data and Table 6.1 is an updated 

version of Table 5.4. All the remaining material is new. 

 

 Abstract 

Background: As oesophageal cancer has short survival, it is likely pre-diagnosis 

health behaviours will have carry-over effects on post-diagnosis survival times. Cancer 

registry data sets do not usually contain pre-diagnosis health behaviours and so need to be 

augmented with data from external health surveys. This paper introduces and tests a new 

algorithm to augment cancer registries with external data when one-to-one data linkage is not 

available. 

Methods: The algorithm is to use external health survey data to impute pre-diagnosis 

health behaviour for cancer patients, estimate misclassification errors in these imputed values 

and then fit misclassification corrected Cox regression to quantify the association between 

pre-diagnosis health behaviour and post-diagnosis survival. 

Results: The algorithm worked effectively on simulated smoking data when there is 

no age confounding. But age confounding does exist (risk of death increases with age and 

most health behaviours change with age) and interferes with the performance of the 

algorithm. The estimate of the hazard ratio of pre-diagnosis smoking was 1.32 (95% CI 

0.82,2.68) with 1.93 (95% CI 1.08,7.07) in the squamous cell sub-group and pre-diagnosis 
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physical activity was protective of survival with a hazard ratio of 0.25 (95% CI 0.03, 0.81). 

But the method failed for less common behaviours (such as heavy drinking). 

Conclusions: Further improvements in the I2C2 algorithm will permit enrichment of 

cancer registry data through imputation of new variables with negligible risk to patient 

confidentiality, opening new research opportunities in cancer epidemiology. 

 

 Introduction 

Oesophageal cancer is an important cancer. Worldwide it is estimated that it accounts 

for 3.1% of all cancers and 5.5% of all cancer deaths (Sung et al., 2021). But it is still a 

relatively rare disease. In the US for example, the estimated risk of being diagnosed with 

oesophageal cancer before age 75 is just 1.15% in males and 0.44% in females (Sung et al., 

2021). There were an estimated 184,400 new cases (4.3 per 100,000 population) in the US in 

2020 with an estimated 5-year relative survival of just under 20% (National Cancer Institute, 

2021a) . 

Given the relatively short survival time, it is likely that pre-diagnosis health behaviour 

is an important contributor to post-diagnosis survival time. This relationship should be 

documented to help understand how current changes in health behaviour (such as decreasing 

smoking rates (Agaku, Odani, Okuyemi, & Armour, 2020), changes in alcohol consumption 

patterns (Azagba, Shan, Latham, & Manzione, 2020; Grucza et al., 2018), increasing leisure 

time physical activity (Morseth & Hopstock, 2020) and increasing obesity rate (Ward et al., 

2019)) will impact on the future number of oesophageal cancer survivors and their associated 

health service needs. Also, at the patient level, clearer understanding of the effect of pre-



   238 

pg. 238 
 

diagnosis health behaviour may assist in addressing the current weaknesses in prognostic 

indexes for oesophageal cancer (Gupta et al., 2018).  

Cancer registries provide high quality, census data for cancers and often record 

patient outcomes such as survival. Unfortunately, cancer registries rarely contain pre-

diagnosis behavioural risk factors. Retrospective data collection (contacting cases from the 

cancer registry and interviewing them about their pre-diagnosis behaviours) are subject to 

survival and recall biases and data collection costs. An alternative approach is to augment the 

cancer registry data through record linkage with an external data source. But locating 

routinely collected pre-diagnosis records of oesophageal cancer patients’ health behaviour is 

challenging. While regular population-based surveys of health behaviour are conducted 

across a range of settings, the rarity of oesophageal cancer (4.3 people per 100,000 per year 

in the US (National Cancer Institute, 2021a)), means that very few survey respondents would 

have gone on to experience oesophageal cancer. Individually linked data sets will be small 

and, with a low proportion of correct links, and linkage errors may dominate. 

An algorithm called the I2C2 (Impute, Impute, Calibrate, Correct) approach was 

recently described, to investigate the relationship between health behaviour and relative risk 

of surviving 12 months after diagnosis (Fahey, Page, Stone, & Astell-Burt, 2020a). This does 

not require cancer registry cases to be present in the health survey data set. It only requires 

survey participants to be demographically similar to those with data in the cancer registry. 

This not only avoids the small sample sizes for true matches, but also avoids issues of 

confidentiality and costs associated with data linkage. 

The results of the previous application of this approach (Fahey et al., 2020a) 

displayed sufficient face-validity to extend the algorithm to the estimation of hazard ratios 

through Cox regression. Accordingly, the aim of this paper is to describe the relationship 
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between pre-diagnosis health behaviour and post-diagnosis cancer survival by augmenting a 

cancer registry data set with information from an external, no-cases-in-common, health 

behaviour data set. 

 

 Methods 

The project was approved by the Western Sydney University Human Research Ethics 

Committee (H12305). 

Data sources 

Cancer registry data were obtained from the US Surveillance, Epidemiology, and End 

Results Program (SEER) cancer registries data base (https://seer.cancer.gov/data/). The SEER 

data base is compiled annually and collates data from US cancer registries with a combined 

coverage of approximately 28% of the US population (Doll, Rademaker, & Sosa, 2018). Data 

from all 39,233 cases of primary malignant oesophageal cancer for the 10 most recent years 

(2006-2015 at time of data access) were extracted. The 123 cancer cases aged less than 35 

years were excluded as atypical. 

Reference data on health behaviours, used to help impute health behaviour for the 

SEER cancer cases, were obtained from the Behavioural Risk Factor Surveillance System 

(BRFSS) (https://www.cdc.gov/brfss/data_documentation/index.htm). This is an annual 

telephone survey conducted in each US State and Territory, compiling behavioural data for 

more than 400,000 adult residents per year (Centers for Disease Control and Prevention, 

2013b). To meet the criteria of ‘pre-diagnosis’, BRFSS data records were used from 5-years 

prior to cancer diagnosis. That is, the 3,469,905 BRFSS health survey data records from 2001 

to 2010 were included.  But the 2,515,009 data records from residents of US States outside 
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the SEER population catchments were excluded, leaving 954,896 records. (With an estimated 

incidence of 4.3 per 100,000 (National Cancer Institute, 2021a) just 41 of these 954,896 

health survey respondents could be expected to be diagnoses with oesophageal cancer in any 

given year.)  

Variables 

The outcome variable was post-diagnosis all cause survival time measured in months. 

Individuals who survived beyond 2015 and those who were lost to follow-up had their 

censored survival time recorded at their last known survival date. The maximum possible 

follow-up time was 119 months. SEER cancer registry records with missing survival time 

(n=512) were excluded from the analysis. 

Self-reported health behaviour variables were selected from the BRFSS health survey, 

and included: 

- Current tobacco smoking (yes or no), defined as daily or less than daily smoking;  

- Alcohol consumption – possible binge drinking (yes or no), defined as ≥5 standard 

drinks for males or ≥4 standard drinks for females on at least one occasion in the 

month prior to survey; 

- Alcohol consumption – possible heavy drinking (yes or no), defined as >2 standard 

drinks per day for men and >1 standard drink per day for women in the month prior to 

survey;  

- Physical activity (yes or no), defined as any physical activity or exercise in the past 30 

days other than for regular job; 

- Obese (yes/no), defined as body mass index ≥ 30 kg/m2; and 

- Current tobacco smoking with regular alcohol (yes or no), defined as current tobacco 

smoking with ≥1 standard drink of alcohol per day on average in the previous month. 
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The SEER cancer registry variables used to inform the imputation process were: 

 - Age category at diagnosis (5-year groups from 35-39y to 75-79y then >80y); 

- Gender (male; female); 

- Marital status (married, including common law; single or never married; widowed; 

divorced); 

- Race (white; black; Asian or Pacific Islander; American Indian or Alaska Native);  

- State of residence (Alaska; California; Connecticut; Georgia; Hawaii; Iowa; 

Kentucky; Louisiana; Michigan; New Jersey; New Mexico; Utah; Washington); 

- Year of diagnosis (2006 to 2015).  

 

The same variables were extracted from the BRFSS health survey data sets from 2001 

to 2010. The BRFSS health survey records were from 5 years earlier than the SEER cancer 

cases so as to correspond to ‘pre-diagnosis’ behaviour. SEER cancer registry data records 

(n=2,344, 6.0%) and BRFSS health survey data records (n=18,770, 2.0%) with missing data 

on any of these variables were excluded from further analyses.  

Sub-group analyses were conducted on adenocarcinoma and squamous cell carcinoma 

as different health behaviours may have different impacts on the two types of oesophageal 

cancer (Fahey et al., 2015). 

The I2C2 algorithm 

Conceptually, start with the view that the pre-diagnosis health behaviours are 

variables in the SEER cancer registry with 100% missing data. Then seek to address this 

missing data by imputation. As health behaviour is missing for all SEER cancer registry 

records, the imputation requires external data on health behaviour: in this case the BRFSS 

health survey data set. 
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In previous publications two different approaches have been described for imputing 

SEER cancer cases’ behaviour from BRFSS health survey data via common demographic 

variables. One approach was to develop a logistic regression model predicting behaviour 

from demographic variables in the BRFSS health survey data and then apply that model to 

each SEER cancer case to estimate their probability of having the behaviour (Fahey, Page, 

Stone, & Astell-Burt, 2020b). The second approach was to stratify both data sets into age by 

sex by race by marital status by State of residence by year subgroups, and then within each 

strata randomly assign one BRFSS health survey data record to donate their behaviour to 

each SEER cancer registry data record (Fahey et al., 2020a). This latter approach is referred 

to as cold deck imputation (Nordholt, 1998), and is the method employed in the current study. 

Some of the BRFSS health survey data records did not have complete data for all six 

of the health behaviour measures. To avoid imputing a missing value to replace the missing 

behaviour, six copies for the BRFSS data set were created, each containing complete data for 

one of the six behaviours. For each behaviour two BRFSS ‘donor’ records were randomly 

assigned, without replacement, to each SEER cancer registry case. Donor records had to be of 

the same sex, race, marital status and State of residence and had to be recorded 5 years earlier 

in time and be one 5-year age category younger than the SEER cancer registry case they were 

assigned to. As the required number of replications of the imputation process increases as the 

percentage of non-response gets larger (Nordholt, 1998), this cold deck imputation was 

repeated 100 times for each of the six health behaviours. SEER cancer registry cases with less 

than two eligible donor records were excluded from subsequent analyses on that behaviour. 

Figure 6.1 is a flow chart showing SEER cancer cases who were included and excluded from 

the analysis. Figure 6.2 is an equivalent flow chart for the BRFSS health survey data records.    
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Figure 6.1 Flow chart of inclusions and exclusions of SEER oesophageal cancer cases 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

SEER oesophageal 
cancer cases from 

2006 to 2015 
n=39,233 

Under 35 years of age 
n=123 

n=39,110 

Missing survival time 
n=512 

n=38,598 

Missing marital status (n=2,279) and/or 
race (n=121) 

 
n=36,254 

 
No BRFSS data records in same strata 

n=606 
 

n=35,648 

 
Insufficient BRFSS records to provide two 

imputations 
• Current smoker n=3,894 
• Binge drinking n=3,974 
• Heavy drinking n=3,977 
• Physical activity n=3,890 
• Obese n=3,930 
• Current smoking with regular  

alcohol n=3,995 

Included in the analysis 
• Current smoking n=31,754 
• Binge drinking n=31,674 
• Heavy drinking n=31,671 
• Physical activity n=31,758 
• Obese n=31718 
• Current smoking with regular 

alcohol n=31,653 



   244 

pg. 244 
 

Figure 6.2 Flow chart of inclusions and exclusions of BRFSS health behaviour data records 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BRFSS data records 
from 2001 to 2010 

n=3,469,905 

Not from any of the 13 SEER States, n=2,515,009 

n=954,896 

Missing age (n=7,437), marital status (4,039) 
and/or race (n=9,463), total n=18,770 

 
n=936,126 

Cannot matcha age <30 n=96,729 

n=839,397 

Cannot matcha mixed race n=24,120 
 

n=815,277 

No SEER records in same strata, n=280,060 

n=535,217 

Missing behaviour data 
• Current smoking n=3,477 
• Binge drinking n=10,958 
• Heavy drinking n=13,294 
• Physical activity n=638 
• Obese n=20,731 
• Current smoking with regular alcohol 

n=16,017 

Eligible donor records 
• Current smoking n=531,740 
• Binge drinking n=524,259 
• Heavy drinking n=521,923 
• Physical activity n=534,579 
• Obese n=534,579 
• Current smoking with regular 

alcohol n=519,200 

Used in imputations 
• Current smoker n=63,508 ●    Physical activity n=63,516 
• Binge drinking n=63,348 ●    Obese n=63,436 
• Heavy drinking n=63,342 ●    Current smoker with regular alcohol n=63,306 
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a All auxiliary variables could be coded identically in both SEER cancer registry data and BRFSS health 
behaviour data except the BRFSS data included an additional category for race. Unlike the SEER cancer 
registry data, the BRFSS data collection allowed respondents to describe their race as “mixed”. About 3.5% of 
BRFSS respondents selected this option. As these records did not match any SEER cancer registry records 
they did not contribute to the analysis. Similarly, with a minimum age of 35 years for SEER cancer cases and 
a 5-year lag, BRFSS respondents under 30 years of age could not match any SEER cancer registry records. 

 

Table 6.1 describes the eligible SEER cancer registry cases and the proportion of 

these who were excluded due to unavailability of matching BRFSS health survey donor 

records for ‘Current smoking’. Exclusions were higher in earlier years, older age groups, 

males, non-whites and Californians. The relatively large difference in matching success 

across follow-up status is a reflection of the poor matching success in the earlier years. For 

example, as those who are still alive are censored, 46.5% of censored observations occur in 

the final two study years when failure to match rates were 2.8% and 2.7%. Very similar 

results would be expected for the other five behaviours. 

 

Table 6.1 Number of SEER oesophageal cancer cases seeking donor records for current 
smoking behaviour and the proportion of these failing to obtain two donor records. 

 Seeking Donor Records Failed to Obtain 2 Donor 
Records 

 Frequency % of total Frequency % of group 
Total 36,254 100.0% 4,500 12.4% 
Cancer type 

ESCC 
EAC 

 
11,694 
20,354 

 
32.3% 
56.1% 

 
1,616 
2,282 

 
13.8% 
11.2% 

Year 
2006 
2007 
2008 
2009 
2010 
2011 
2012 
2013 
2014 
2015 

 
3,462 
3,525 
3,553 
3,693 
3,579 
3,608 
3,653 
3,649 
3,716 
3,816 

 
9.5% 
9.7% 
9.8% 

10.2% 
9.9% 

10.0% 
10.1% 
10.1% 
10.2% 
10.5% 

 
693 
661 
622 
731 
508 
426 
501 
150 
100 
108 

 
20.0% 
18.8% 
17.5% 
19.8% 
14.2% 
11.8% 
13.7% 
4.1% 
2.7% 
2.8% 
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Table 6.1 (continued) Number of SEER oesophageal cancer cases seeking donor records for 
current smoking behaviour and the proportion of these failing to obtain two donor records. 

 Seeking Donor Records Failed to Obtain 2 Donor 
Records 

 Frequency % of total Frequency % of group 
Total 36,254 100.0% 4,500 12.4% 
Age group 

35-39 years 
40-44 years 
45-49 years 
50-54 years 
55-59 years 
60-64 years 
65-69 years 
70-74 years 
75-79 years 
80+ years 

 
206 
535 

1407 
2684 
4337 
5553 
5726 
4888 
4467 
6451 

 
0.6% 
1.5% 
3.9% 
7.4% 

12.0% 
15.3% 
15.8% 
13.5% 
12.3% 
17.8% 

 
2 
7 

28 
148 
385 
725 
828 
751 
745 
881 

 
1.0% 
1.3% 
2.0% 
5.5% 
8.9% 

13.1% 
14.5% 
15.4% 
16.7% 
13.7% 

Sex 
Male 
Female 

 
28274 
7980 

 
78.0% 
22.0% 

 
4190 
310 

 
14.8% 
3.9% 

Race 
White 
Black 
Asian or Pacific Islander 
American Indian or Alaska 
Native  

 
30619 
3783 
1640 
212 

 
84.5% 
10.4% 
4.5% 
0.6% 

 
3164 
727 
515 
94 

 
10.3% 
19.2% 
31.4% 
44.3% 

Marital status 
Married (incl common law) 
Divorced 
Widowed 
Single (Never married) 

 
20621 
4584 
4860 
6189 

 
56.9% 
12.6% 
13.4% 
17.1% 

 
2275 
301 
532 

1392 

 
11.0% 
6.6% 

10.9% 
22.5% 

State of residence 
Alaskaa 
Californiab 
Connecticut 
Georgia 
Hawaii 
Iowa 
Kentucky 
Louisiana 
Michigan 
New Jersey 
New Mexico 
Utah 
Washington 

 
48 

13209 
2024 
4046 
533 

1946 
2384 
2209 
2129 
4087 
738 
676 

2225 

 
0.1% 

36.4% 
5.6% 

11.2% 
1.5% 
5.4% 
6.6% 
6.1% 
5.9% 

11.3% 
2.0% 
1.9% 
6.1% 

 
48 

3625 
38 

355 
55 
38 
52 
86 
70 
87 
11 
10 
27 

 
100.0% 
27.4% 
1.9% 
8.8% 

10.3% 
2.0% 
2.2% 
3.9% 
3.3% 
2.1% 
1.5% 
1.5% 
1.2% 

Follow-up status 
Censored 
Died 

  
8705 

27549 

 
24% 
76% 

 
608 

3892 

 
7.0% 
14.1% 

a This is a small cancer registry specific to Alaska Natives. 

b Given the large population of California the number oesophageal cancer cases was higher, but the number of 
BRFSS health surveys is constant for each State. 
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Any imputed data will contain errors, and imputation informed by demographic 

characteristics alone will contain many errors. However, it is known that people from similar 

demographic groups have a higher likelihood of having similar behaviour than people from 

different demographic groups (Boersma, Villarroel, & Vahratian, 2020; Centers for Disease 

Control and Prevention, 2021b; Leventhal, Bello, Galstyan, Higgins, & Barrington-Trimis, 

2019; National Center for Health Statistics, 2021c). If the behaviour of the SEER cancer case 

is donated by a demographically similar individual, then it should have a slightly higher 

likelihood of being correct than if it were obtained from a completely random donor. Given 

the selection of donors is random, the resulting misclassification errors will also be random. 

In statistics, random error is generally controlled through sample size. The more random 

error, the larger the sample size required to confidently detect the remaining signal amongst 

the random noise. 

The requirement for a large data set may be the limiting factor when the disease is 

rare. However, the more variables in common and more informative those variables (stronger 

their relationship with the behaviour) the stronger the information signal (Schneeweiss et al., 

2009) and the more likely the analyses will detect it. 

The effect of misclassification is to attenuate the results of the analysis towards the 

null (no effect) (Jurek et al., 2005), but if the misclassification can be measures, it is possible 

to statistically correct this attenuation.  

In the current study misclassification was estimated by imputing the behaviour twice 

and quantifying the disagreement between these two imputed values. The misclassification 

between the two imputed values is an estimate of the misclassification between the ‘true’ 

behaviour and the ‘imputed’ behaviour. That is, the agreement between behaviour between 
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two individuals from the same demographic strata in BRFSS health survey was used as an 

estimate of the agreement in behaviour between an individual in the SEER cancer registry 

and an individual in the BRFSS health survey from the same demographic strata.  

Of the 5 methods for misclassification correction for Cox regression models reviewed 

by Bang et al (Bang et al., 2013), the method used in the current study is corrected score 

estimation (as it is suitable for a dichotomous predictor, and external measure of the 

misclassification error)  (Zucker & Spiegelman, 2008). For each of the 100 repetitions of the 

imputations in the data set, the misclassification rate was separately calculated and the 

misclassification corrected Cox regression model was fitted with corrected score estimation. 

Simulation method 

As the true hazard ratios (HRs) are unknown, it was not possible to evaluate the 

effectiveness of the I2C2 algorithm using the real data alone. To test the algorithm, 100 

copies of the SEER cancer registry data were simulated, each containing both a ‘true’ and an 

‘imputed’ smoking status. 

Starting with the 100 repetitions of the SEER cancer registry data set with imputed 

smoking status, censored data were excluded, leaving 23,657 data records in each data set.  

The proportion of cancer cases in each age group was recorded as well as the average 

proportion of imputed smokers and non-smokers in each age category, and the average 

agreement between the two smoking categories in each age category across the 100 data sets. 

Finally, an appropriate Weibull model was identified to describe the distribution of survival 

times with the aid of the fitdistrplus() package in R software. 
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Next 100 simulated data sets were created, each of which contained  

• A code number of the data set 

• Age group 

• A smoking status representing the ‘true’ smoking status 

• A smoking status representing the ‘imputed’ smoking status 

• 14 simulated survival times 

In each simulated data set, there were 23,657 data records. These were randomly 

assigned to age groups and ‘true’ and ‘imputed’ smoking status groups such that the 

proportion of cases in each age group, the proportion of smokers in each age category and the 

misclassification between the ‘true’ and ‘imputed’  smoking status were all approximately the 

same as in the real dataset. The simulated survival times were produced by the method of 

Bender et al (Bender, Augustin, & Blettner, 2005) for simulating Weibull survival times with 

specified HRs, and then rounded to the nearest integer (months). The first seven survival 

times for each data record correspond to HRs of 0.50, 0.67, 0.80, 1.00, 1.25, 1.50 and 2.00 

given ‘true’ smoking as the only predictor. The second set of seven HRs are calculated with 

both smoking and age category as predictors of survival status, with the HR for age set at the 

value in the SEER cancer registry data and the HRs for ‘true’ smoking at HRs of 0.50, 0.67, 

0.80, 1.00, 1.25, 1.50 and 2.00 as above. 

The first set of seven survival times are not confounded with age (as age is omitted in 

the development of the HRs) but the second set of survival times have the same level of  

confounding by age as the real data (as the proportion of smokers differed by age and both 

smoking status and age are predictors of survival). 
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Statistical analysis 

Each of the six health behaviours were recorded as dichotomous variables. Each of 

the 100 repetitions of the data set for each health behaviour contained two records of that 

health behaviour: two imputed values for the SEER cancer registry data and a designated 

‘true’ and a designated ‘imputed’ measure in the simulations. 

Each statistic was estimated in each of the 100 repetitions of the data set for each 

health behaviour. Results are presented as the median of these 100 observations and the 

corresponding 95% empirical confidence interval (CI); the 2.5 and 97.5 percentiles. 

To summarise how much information had been retained through the imputation 

process, the level of agreement beyond chance between the two imputed values (or between 

the true and imputed value in the simulations) is reported. Both Cohen’s Kappa and the direct 

calculation of the difference in the observed and expected number of people recorded as 

having the behaviour on both imputations from the cross-tabulation of the two imputed 

values (or true against imputed values in the simulated data sets) are reported. 

Analyses of survival time were conducted using Cox models using the Breslow 

method for addressing ties. For the simulated data the proportionality assumption was tested 

using the z-test on Schoenfeld residuals against transformed time. (Given the ideal 

distributions of the simulation, the median p-value was about 0.5.)  Correction for 

misclassification was applied using the corrected scores estimation method. Results were 

presented as the median of the estimated HRs with associated 95% empirical CIs.  

All analyses were conducted in R v4.0.2. The corrected score estimation software was 

provided by its creator, Prof David Zucker, as a Fortran 77 program which was called from 

within R using the foreign function interface (dyn.load() command).  It was not possible to 
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Figure 6.3 shows the estimated Cox regression coefficients for the behaviour ‘Current 

tobacco smoking with regular alcohol’ after age-standardisation. As more than 5 of the 100 

data sets have returned extreme estimates of the coefficients, these results are rejected. 

 

 Results 

Agreement beyond chance was highest for imputed ‘smoking status’ with a median 

Kappa of 0.07 and a median of 299 more smoker-to-smoker matches (and 299 more non-

smoker to non-smoker matches) observed than expected through chance agreement alone 

(Table 6.2). This agreement beyond chance scaled to the sample size is estimated to be 0.009. 

The next highest rates of information transfer were observed for ‘Physical activity’ followed 

by ‘Obesity’ and ‘Binge drinking’. The two least common behaviours – ‘Heavy drinking’ and 

‘Smoking with regular alcohol’ with median prevalence of 4.8% and 3.3% respectively – had 

virtually no information retained through the imputation process. 
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Table 6.2  Selected statistics describing the agreement between the two donor records across the 100 repetitions of the SEER cancer registry 
data for each of the six behaviours. 

 Sample size Proportion with 
behaviour 

Median (95% CI) 

Kappa (95% CI) 
 

Median (95% CI) 

Agreement beyond 
chance (number) 
Median (95% CI) 

Agreement beyond chance 
(rate) 

Median (95% CI) 
Smoking status 31,754 15.7 (15.7,15.9) 0.07 (0.06,0.08) 299 (246,353) 0.009 (0.008,0.011) 
Binge drinking 31,674 10.0 (9.9,10.2) 0.06 (0.04,0.07) 167 (124,203) 0.005 (0.004,0.006) 
Heavy drinking 31,671 4.8 (4.7,5.0) 0.01 (<0.01,0.02) 16 (2,33) <0.001 (<0.001,0.001) 
Physical activity 31,758 73.8 (73.6,74.1) 0.03 (0.02,0.04) 214 (145,273) 0.007 (0.005,0.009) 
Obesity 31,718 26.1 (25.8,26.3) 0.03 (0.02,0.04) 194 (130,261) 0.006 (0.004,0.008) 
Smoking with 
regular alcohol 

31,653 3.3 (3.2,3.4) 0.02 (0.01,0.04) 22 (10,39) <0.001 (<0.001,0.001) 

Simulated smoking 
status 

23,657 15.8 (15.5,16.2) 0.07 (0.06,0.09) 236 (194,279) 0.010 (0.008,0.012) 
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Figure 6.4 shows the effectiveness of the I2C2 algorithm when applied to simulated 

data with smoking status as sole predictor of survival time in Cox regression. The median HR 

obtained from the I2C2 estimation conforms quite well with the median of the true HRs but, 

as expected, the CIs arising from the I2C2 algorithm are much wider. The wider CIs reflect 

the additional random error arising from the misclassification errors in the imputation. 

 

Figure 6.4 Results from 100 simulated data sets each with the same sample size and 
proportion of smokers as the SEER cancer registry data.   

 

Each simulated data set contains seven different survival times associated with the target HRs on the 
horizontal axis. The vertical axis shows median and 95% empirical CIs of estimated HRs arising from 
Cox models. The first CI in each pair is obtained from fitting designated ‘true’ smoking status as a 
predictor of survival using the standard Cox model. The second is obtained from fitting designated 
‘imputed’ smoking status using Cox regression with corrected score estimation (the I2C2 algorithm). 
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Figure 6.5 shows that the I2C2 algorithm fails when the relationship between smoking 

status and survival time is confounded by age. The ‘effect’ of smoking status (which is 

subject to high levels of misclassification error) shown in the first graph is being incorrectly 

attributed to age (which is measured without misclassification error) shown in the second 

graph. 
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Figure 6.5 Results from 100 simulated data sets containing age confounding.  

 

 

The first chart shows estimated HRs for smoking status and the second shows estimated HRs for 5-
year age group. The CIs with circles joined by solid lines are obtained from fitting the designated 
‘true’ smoking status and 5-year age group as predictors of survival using standard Cox regression. 
The CIs with squares joined by dotted lines are obtained from fitting the designated ‘imputed’ 
smoking status using, adjusted for 5-year age category, using the I2C2 algorithm. 
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Age confounding was addressed using both standardisation and stratification. All 

survival times were first standardised to the average age group. That is, the Cox regression 

was first fitted predicting survival time using age group alone. The observed survival times 

were then scaled by the predicted age effect (using the predict() option in R). Figure 6.6 

shows that weight-based confounding adjustment works quite well for the designated ‘true’ 

smoking with little residual attenuation to the null. Unfortunately, this small attenuation 

becomes much larger when magnified by the high levels of misclassification error arising 

through the I2C2 algorithm. Figure 6.6 shows considerable residual attenuation of the median 

HR towards null effect (and, as expected, the much wider CIs for the estimated HRs arising 

from the misclassification errors) associated with ‘imputed’ smoking status after age 

standardisation. 

Figure 6.6 Estimates of the HR of smoking 5 years prior to diagnosis on post-diagnosis 
survival from simulated data sets.  

 

Three CIs are presented at each target HR. The first (denoted by circles joined by a solid line) are the 
estimated HRs obtained from Cox regression where ‘true’ smoking status and age are predictors of 
survival time. The second CIs (squares connected by a dashed line) shows the estimated HRs for 
‘true’ smoking status after age-standardisation of survival times. The third set of CIs (triangles 
connected by a dotted line) shows the estimated HR for imputed smoking status after age 
standardisation (I2C2).  
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Results from applying the I2C2 algorithm to the SEER cancer registry data with 

imputed behaviour are shown in in Figure 6.7. The bar chart shows that the algorithm has, as 

expected, often failed to converge on a HR estimate for ‘Heavy drinking’ and ‘Smoking with 

alcohol’ and has also failed for ‘Obesity’.  Therefore, results for these behaviours have been 

suppressed. The second chart suggests that smoking 5 years prior to diagnosis may be a 

hazard to survival (HR 1.32, 95% CI 0.82,2.68) but binge drinking could be protective 

(HR=0.49, 95% CI 0.13,1.29). But both CIs include the null effect. Physical activity outside 

work is a statistically significantly protective of survival (HR=0.25, 95% CI 0.03,0.81). 
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Figure 6.7 A summary of the results obtained after age-standardisation of survival times.  

 

The bar chart shows the number of data sets where the algorithm has returned extreme values (<0.01 
or >100) for estimated HRs. The second chart shows the median estimated HR and associated 95% 
empirical CIs for those behaviours which have recorded 5 or less extreme HRs.  
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Equivalent analyses for the squamous cell carcinoma sub-group and the 

adenocarcinoma sub-group are presented in Figure 6.8 and Figure 6.9 respectively. For most 

of these analyses there was insufficient information passed through the imputation process to 

allow misclassification correction to converge.  ‘Smoking status’ was associated with a 

statistically significantly increase in hazard in the squamous cell carcinoma subgroup (HR 

1.93, 95%CI 1.08-7.07), but appeared to have no association with the adenocarcinomas (HR 

0.92, 95%CI 0.51-1.74), ‘Physical activity’ may be protective in squamous cell carcinoma 

(HR 0.34, 95%CI 0.07-1.64), but the results were not statistically significant, and ‘Obesity’ 

appears to have no relationship with survival time in squamous cell carcinoma (HR 1.08, 

95%CI 0.22-4.96). The simulations suggest these results are likely underestimates. 
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Figure 6.12 shows the relationship between sample size, agreement beyond chance 

rate and estimated HRs, using the prevalence of smoking from the impute values across the 

SEER cancer registry data sets. It shows that with simulated survival times (Weibull, no 

censoring), the I2C2 algorithm gives accurate point estimate (albeit with wide uncertainty) 

when agreement beyond chance as a rate is 0.008 or more and sample sizes are 20,000 or 

more. For agreement beyond chance of 0.006 point estimates start becoming accurate from 

sample sizes of 40,000 or 50,000 but for lower signal strengths the algorithm seems to 

generally do poorly. Therefore, the available sample size of around 31,700 (including 

censored observations), stratified into 5-year age groups seems too small to support age 

stratified I2C2 analysis in this thesis. 
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 Discussion 

This study investigated the relationship between pre-diagnosis health behaviour and 

post-diagnosis oesophageal cancer survival by applying an imputation algorithm (the Impute, 

Impute, Calibrate, Correct, or I2C2, approach) to augment a cancer registry data set with 

information from an external, no-cases-in-common, health behaviour data set. Findings from 

the study showed that, using simulated data without age confounding, the I2C2 algorithm 

provides an accurate estimate of the median HR for the predictor variable, albeit with wider 

CIs arising from the additional random error arising from misclassification.  

In practice, despite encouraging results, the I2C2 algorithm is vulnerable to a number 

of problems. Sample size and information retention through the imputation process are 

important issues. In the current example, the I2C2 algorithm failed to produce any estimates 

for behaviours with low prevalence such as ‘Heavy drinking’ and ‘Current smoking with 

regular drinking’ (both with an estimated prevalence of <5% among the cancer cases) and in 

age groups with low prevalence such as ‘Smoking status’ among those 75 or more years of 

age.  

Another issue was age confounding. Survival times decrease as age increases, and 

prevalence of many health behaviours also differ by age. For example, among the SEER 

cancer registry cases imputed smoking rates are lower in older age groups, while prevalence 

of obesity and physical activity outside of employment are both higher in older age groups. 

Age-standardisation was only partially successful at removing the age effect and sample sizes 

were insufficient for age-stratification. 

The I2C2-based analyses did produce some suggestive results. Of the six behaviour 

measures studied, imputed smoking status 5-years prior to diagnosis appeared to retain the 
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most information through the imputation with a median excess smoking-to-smoking matches 

of 299 (95% CI 246,353), or 0.009 (95% CI 0.008,0.011) of the sample. In the current study 

the age-standardised estimated median HR for smoking was 1.32 (95% CI 0.82,2.68). But 

previous studies have suggested the effect of smoking on survival may differ between sub-

groups (Fahey et al., 2015). 

Recent meta analyses estimated HRs of 1.41 (95% CI 1.22,1.64) and 1.41 (95% CI 

0.96,2.09) for current smoking relative to never smoked in mainly squamous cell populations 

(Kuang et al., 2016; McMenamin et al., 2017) with no evidence of association between 

smoking and survival in EAC (Fahey et al., 2015; McMenamin et al., 2017). In the current 

study age-standardised results showed a statistically significantly increased HR in squamous 

cell carcinoma (HR=1.93, 95%CI 1.08,7.07) with no apparent effect in adenocarcinoma 

(HR=0.89, 95%CI 0.05,3.53). Based on the simulations, these results are likely to 

underestimate the true hazards.  

Physical activity outside employment 5 years prior to diagnosis, recorded 214 (95% 

CI 145-273) more agreements between imputed values than predicted by chance. Physical 

activity appeared to be protective of survival age-standardised estimated HR of 0.25 (95%CI 

0.03,0.81). A recent meta-analysis (Friedenreich, Stone, Cheung, & Hayes, 2020) combined 

results from a US and a Korean study and reported that pre-diagnosis physical activity to be 

protective of post-diagnosis survival in oesophageal cancer (HR=0.77, 95%CI 0.59-1.00). No 

evidence was found for a difference between squamous cell and adenocarcinoma in the 

association between physical activity outside work and survival. 
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I2C2-derived HR estimates for other health behaviours were sparse and in one case 

problematic: the tendency for ‘binge drinking’ 5 years prior to diagnosis to be protective of 

age-standardised survival (HR 0.49, 95% CI 0.13,1.29) may suggest a failure of age 

standardisation. 

These findings suggest potential in the I2C2 algorithm, and with the benefit of 

experience, there are many ways to improve its performance. Sample size could be increased 

in a variety of ways. For example, the collection could be broadened to include more cancer 

registries or more years of data. However, data from the non-SEER cancer registries in the 

US are less accessible and the number of years included is limited by changing data 

definitions and changing clinical practices. But minimising data losses arising from the 

matching algorithm is readily achievable in the short-term. The variables used in this paper 

are quite limited: each of the 6 behaviours were dichotomous and obviously dichotomous 

variables convey the least possible information about behaviour. Some of the demographic 

variables (such as 5-year age groups, State of residence, etc) could have conveyed more 

information if divided into smaller categories. The imputation process used was 

parsimonious: simply excluding cancer registry cases with less than two donor records rather 

than attempt to find nearest neighbours etc. Model-based imputation (Blanchette, DeKoven, 

De, & Roberts, 2013) may be more informative than simple donor records. Additional 

investigation of the measurement of misclassification would also strengthen the approach. 

For example, internal calibration, confirming the true health behaviour from a sub-set of the 

cancer cases could give a more direct measure of misclassification. Similarly, a quick and 

simple method for age-standardisation was used, which has been subject to previous criticism 

(Nieto & Coresh, 1996).  Ideally, it may be possible to refine the corrected scores estimation 

algorithm to address confounding variables directly (such as ability to specify offsets or fix 
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the coefficient for age). Finally, the I2C2 needs to be more thoroughly tested. A prospective 

or retrospective cohort which contained true pre-diagnosis behaviours as well post-diagnosis 

survival times would allow gold standard comparisons between true the HR and I2C2-

estimated HR. 

The variety and size of health surveys and prospective cohorts will continue to 

increase over time. All such large human data sets tend to contain a good variety of 

demographic measures allowing differentiation of people with similar and dissimilar risk 

factors. Unlike one-to-one matching, the I2C2 algorithm produces almost no additional 

confidentiality risk over and above the original cancer registry. (The data which is being 

added to the cancer registry is largely misclassifications.)  

Further improvements in the I2C2 algorithm will permit enrichment of cancer registry 

data through imputation of new variables with negligible risk to patient confidentiality, 

opening new research opportunities in cancer epidemiology. 

 

6.4 Further exploration of stratification for age confounding 

In the draft manuscript above, stratification for confounding adjustment was 

dismissed because the sample sizes were too small. For the sake of completeness, this section 

considers with what may have happened if the sample sizes were increased 10-fold or 20-

fold. To generate a larger sample size, 10 of the simulated data sets were randomly selected 

(with replacement) and combined into a single data set of 10 times the size. This was done 

100 times to generate 100 larger data sets for analysis. 

Increasing the sample sizes in this way will not affect the median estimated HR (point 

estimate) but does invalidate the empirical CIs. That is, when combining 10 data sets, those 
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with randomly lower HRs tend to be combined with those with randomly higher HRs leading 

to an overall cancelling out in variability. Figure 6.13 provides a visual demonstration of this 

effect. Here the empirical confidence intervals are calculated for the designated ‘true’ 

smoking status in the simulated data sets using standard Cox modelling (i.e. no need for 

misclassification correction because these are the ‘true’ values.). Notice that artificially 

inflating the sample size, is artificially narrowing the empirical confidence intervals. As the 

CIs are misleading and they are supressed in all further analyses. 
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the lower end of the age range, the first 4 age groups were concatenated as sample sizes were 

too small, and at the upper end of the age range sample sizes are large but the number of 

smokers is so small that there still seems to be insufficient information for the algorithm to 

work. 
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The I2C2 algorithm was then applied to the 10-fold inflated SEER cancer registry 

data augmented by imputed health behaviours. Even with 10-fold inflation of the sample 

sizes, Figure 6.15 shows that there is insufficient information to support the analysis of most 

health behaviours in most age groups. Information levels only appear to be sufficient for 

smoking status among those less than 75 years, binge drinking among those less than 60 

years and non-employment physical activity in those 65 years and older. Figure 8 provides 

the estimated median HRs for these groups. 
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Figure 6.16 shows that the point estimate hazard ratio for binge drinking five years 

prior to diagnosis is slightly higher than the null (median HR 1.42) in 55-59 year age group. 

Smoking 5 years prior to diagnosis has consistently high point estimate HRs across the 

younger age groups (3.65, 4.77, 3.92, 4.15 and 5.4 for 34-54 years to 70-74 year age groups). 

Physical activity outside employment 5 years prior to diagnosis has point estimate HRs 

consistent with being protective of survival in the over 65-year age groups (estimated median 

HRs 0.32 for 65-69 years, 0.30 for 70-74 years and less effective 0.57 and 0.77 in the two 

older age groups).  
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The results which are available are summarised in Figure 6.16. Notice that median 

estimated HRs tend to cluster above the null for ‘Smoking status’ and below the null for 

‘Physical Activity’ with effect sizes reducing for those 75 or more years of age. Results for 

other behaviours are sparse to non-existent.  

For ‘Smoking status’ among those under 75 years, the estimated median HRs are 5.1, 

4.0, 2.6 for the squamous cell subgroup, generally higher than the 2.1, 3.2, 2.1 and 3.4 

estimated median HRs observed in the adenocarcinoma group, but for ‘Physical activity’ the 

there are no marked differences between the subgroups (with estimated median HRs of 0.38, 

0.34, 0.36 for squamous cell carcinoma and 0.36, 0.45, 0.27 for adenocarcinoma subgroups.). 
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6.5 Critique of the method 

In this Chapter the data sets (with one additional year) and variables introduced in 

Chapter 3 and the method of imputation and estimation of misclassification error introduced 

in Chapters 5 were used. The issues arising have been discussed previously. The new focus of 

this Chapter was on identifying and testing misclassification adjusted Cox proportional 

hazards models for use with the I2C2 algorithm. 

The corrected score method for Cox regression was developed by Prof David Zucker 

and Prof Donna Spiegelman. Prof Zucker kindly provided his program for the corrected score 

method which he had written in Fortran 77. As the fitting algorithm is complex and written in 

an unfamiliar programming language, it was difficult to modify this program to suit the 

specific requirements of this research project.   

The maximum number of lines of data which could be processed by the program was 

less than 100,000. As the estimated HR was of interest but not the associated estimated 

standard deviations, the error messages from the program were not fully aligned with the 

needs of this thesis. In this thesis quite crude criteria (HR<0.01 or HR>100) was used to 

indicate failure of the model. This will need to be reviewed and perhaps improved in the 

future. 

The Fortran 77 standard was released in 1977. Today’s computers and computing are 

very different now. Software such as R or Python are preferred choice for programming 

statistical algorithms (T. Siddiqui, Alkadri, & Khan, 2017).  Coding the corrected score 

method into one of these more common languages would make the algorithm more accessible 

to users and aid in its expansion and development. As R is open source, it may possible to 

copy and edit the macros for fitting Cox regression (such as the coxph() command) rather 
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than developing a whole new program. But this is beyond the scope of the current thesis and 

recommended as an issue for future research. 

The corrected score method of misclassification adjustment worked as expected in the 

absence of confounding (Figure 6.4). However, when age was added as a confounding 

variable to the simulated data sets the corrected scores algorithm misassigned much of the 

effect of smoking (measured with misclassification) to age group (measured without 

classification error) (Figure 6.5).  

Using the corrected scores method the estimated coefficient of age varied instead of 

the hazard ratio of smoking status. The coefficient of for age group is readily estimated by 

fitting age as a sole predictor of survival time in the Cox regression. Age group and survival 

time are both recorded in the cancer registry data set and so are not subject to imputation or 

misclassification error. Indeed the estimated coefficient, 0.04, was used when simulating the 

survival times (beta_age <- 0.040 in the example R code above). Given that the correct 

coefficient of age was known, this should have been fixed in the model fitting algorithm. A 

fixed coefficient can be included in a regression analysis using the offset option. An offset 

variable has a fixed coefficient of 1. So using R 

coxph(Surv(sm_time2,status)~smoker2+offset(0.04*agegrp),data=...) 

would produce an estimated coefficient for the second imputed smoking status, where the 

effect of age group is fixed at the known value of 0.04. Unfortunately, the corrected scores 

program in Fortran 77 did not provide an option for offset variables  and modification of the 

original program was not possible. 

When the coefficient of age is unknown or cannot be offset, the options of correcting 

age confounding are stratification, standardization, multivariable analysis and propensity 
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score methods (Kahlert, Gribsholt, Gammelager, Dekkers, & Luta, 2017). Propensity score 

matching requires the exposed group and unexposed group to be correctly identified, which is 

not possible with misclassification. The multivariate analysis was not effective for the correct 

score method as previously described. In Sections 6.3 and 6.4 age stratification was 

investigated in sufficient detail to demonstrate that very large sample size are required to 

make this approach potentially viable. 

Age-stratification did reveal that the oldest groups have very much reduced 

prevalence of smoking and the models appear ineffective at these age strata even though the 

total number of people in the older strata were quite large. Similar effects were found for all 

behaviours, even though not reported in this thesis. This may warrant further consideration of 

either the 5-year definition of pre-diagnosis behaviour and/or the inclusion of the older age 

groups in the analyses. For example, research questions looking at ‘lifetime tobacco smoking’ 

or ‘ever smoked’ may be more interesting than questions about 5-years pre-diagnosis. 

The only remaining method for correcting for age confounding appears to be 

standardisation. In the current analyses survival times were adjusted according to age group. 

Findings indicated that the hazard ratios produced by this method were slightly attenuated to 

the null in the absence of misclassification, but that this small residual attenuation became 

magnified by the misclassification correction process, leading to considerable 

underestimation of the hazard ratios. One alternate approach which has been suggested is, 

instead of applying weights to survival times according to age groups, try applying weights to 

age groups at each observed survival time (Nieto & Coresh, 1996). However, it is not clear if 

this method could be applied to the current situation where the confounder, age-group, has 10 

categories. 
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The methods described in this thesis have potential but require additional 

investigation and development. Further research of offset variables and standardisation 

methods may lead to further improvements. 

 

6.6 Closing comments 

This Chapter advanced and attempted to generalise the method to impute 100% 

missing variables in cancer registry data, formalising the process as the I2C2 algorithm. 

Additional estimates of the associations between pre-diagnosis health behaviour and post-

diagnosis survival in OC were obtained. So both thesis aims were at least partially addressed. 

Further research is warranted for each step of the analysis process: how to improve 

imputation, how to improve the measurement of misclassification and how to improve the 

misclassification correction algorithm, particularly in relation to confounding. Further 

research is also required into the accuracy and robustness of the estimates of association 

between pre-diagnosis health behaviour and post-diagnosis survival in OC, ideally comparing 

the results of I2C2 against some gold-standard prospective or retrospective (data-linkage) 

cohort study where results from observed and imputed health behaviours can be compared. 

This thesis has made considerable progress in documenting and testing an entirely 

new research approach that has potential for further development. Chapter 7 reviews the key 

findings from this research, discusses additional investigations that need to be pursued, and 

considers applications and implications of the material in this thesis.  
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Chapter 7 Discussion 

7.1 Background  

The first aim of this thesis was to document association between pre-diagnosis health 

behaviour and post-diagnosis survival times in OC. The review of the literature (Chapter 2) 

confirmed evidence of associations for a variety of health behaviours, but also indicated that 

more research was needed. As this is an association across time, the main research question 

would typically be addressed through a cohort study; either prospective or retrospective 

(record linkage). But suitable data for OC could not be obtained. 

When looking for alternative methods to prospective cohorts and record linkage 

studies, surprisingly little was found. This led to the second aim of this thesis: to develop, 

describe and evaluate a new method for addressing the first aim. 

This chapter reviews what has been achieved, make recommendations for further 

research and explore the implications of the research to date. 

Section 7.2 reviews findings from first aim of this thesis: what has been learned to 

date, what is not yet resolved and recommendations for future research. Section 7.3 presents a 

similar review of progress in addressing the second aim of this thesis. In Section 7.4 the 

potential implications and applications of this research are discussed, and in Section 7.5 

conclusions from this thesis are presented. 
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7.2 Progress in addressing the first aim 

OC has poor survival and so it is reasonable to expect that pre-diagnosis health 

behaviour could have an important carry-over effect on survival times. The clinical 

mechanisms for any such associations have not yet been explored. This thesis was 

specifically interested in pre-diagnosis behaviour because this can be influenced by public 

health programs. Post-diagnosis behaviour is subjected to other factors such as the treatment 

regimen and the trauma of the cancer diagnosis itself. Pre-diagnosis health behaviour is a 

factor in survival beyond the influence of the treating medical team, but within the influence 

of public health professionals. 

The systematic review (Chapter 2) investigated the association between pre-diagnosis 

smoking, alcohol consumption, body mass index, physical exercise and/or regular 

consumption of non-steroidal anti-inflammatory drugs (NSAIDs) and post-diagnosis survival 

in OC. The 2014 review located 13 eligible studies: the majority from Asia. The 2021 update 

identified a further 14 eligible studies. This doubling of eligible studies in the past 7 years is 

consistent with increasing interest in the research question. The pooled hazard ratios from the 

systematic review combined study results from around the world with most studies from 

Asia. These studies were typically relatively small, conducted on a few hundred OC cases.  

Analyses of similar pre-diagnosis health behaviours were also conducted using OC 

cases from the US SEER cancer registry, 2001 to 2015, with around 25,000 to 30,000 OC 

cases (Chapters 4 to 6). All behaviour measures were self-reported and dichotomised.  
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 Tobacco smoking 

Within this thesis there was consistent evidence that pre-diagnosis smoking is 

associated with poorer survival in OC. There is more evidence of association in the OSCC 

subgroup than in OAC. The results are summarised in Table 7.1 with discussion below. 

 

Table 7.1 Summary of evidence for association between pre-diagnosis smoking and survival 
measure documented OSCC 

HR/RR (95%CI) 
OAC 

HR/RR (95%CI) 
Pooled hazard ratios 
- Ever versus never smoked 
- Highest smoking (pack years) vs lowest 

 
Chapter 2 

 
1.09 (0.97,1.23) 
1.55 (1.24,1.94) 

 
1.07 (0.96,1.19) 

n/a 
Hazard ratio for 0.1 increase in the 
probability of being a smoker 

Chapter 4 1.20 (1.17,1.23) 1.20 (1.18,1.23) 

Age adjusted relative risk of death within 1 
year of diagnosis 

Chapter 5 1.99 (1.24,3.12) 1.61 (0.79,2.57) 

Age adjusted hazard ratio for smoker 5-
years pre-diagnosis 

Chapter 6 1.93 (1.08,7.07) failed 

 

All exposure data were based on self-report and it is possible there may be a bias 

towards under-reporting smoking quantity. For example, an analysis using the US National 

Survey of Drug Use and Health and US National Health Interview Survey found that self-

reported cigarette consumption was only about 65% of cigarette sales (Liber & Warner, 

2018). However, most results reported in the current thesis relate to binomial measures of 

smoking which may have lower bias. For example, 15.7% of OC cases include in the 

analyses were imputed to be smokers compared to US adult population estimates of 20.6% to 

15.1% for 2006 to 2015 (American Lung Association, 2021). Given the OC population is 

older, with smoking rates decreasing in the oldest age groups, this small disparity may be 

understandable. 
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The measures of tobacco smoking also differ between the systematic review and the 

analyses of the SEER cancer registry OC cases. The smoking measures reported in the 

systematic review were longitudinal (ever smoked, lifetime exposure in pack years), whereas 

the analyses of OC cases from the SEER cancer registry was cross sectional (current smoker 

at some time point prior to diagnosis). As a result, the classification of former smokers 

differs. In the longitudinal measures, former smokers were included in the exposure groups 

but in the cross-sectional analyses they were included in the non-exposure (not a current 

smoker) group. It is known that risk of OC is lower in former smokers than current smokers, 

particularly for OSCC (Q.-L. Wang, Xie, Li, & Lagergren, 2017) and it may be reasonable to 

assume that there is a similar effect for survival time. That is, the lower estimated hazard 

ratios from the systematic review may be consistent with a large group of former smokers 

whose hazards are much lower than the current smokers with whom they are grouped. 

From Table 7.1 the estimated hazard ratios associated with a 0.1 increase in 

probability of being a smoker presented in Chapter 4 fail to differentiate between OSCC and 

OAC cases. (The hazard ratios are the same and hence represent the hazard ratio of the 

combined OSCC and OAC groups.) These results can also be criticised for the arbitrary 

choice of a 0.1 increase in probability, the difficulty in interpreting the results and the 

artificially narrow confidence intervals. The results from these analyses should be discounted 

or even dismissed. 

It can be seen in the final row of Table 7.1 that models failed to produce a 

misclassification corrected, age-adjusted hazard ratio for pre-diagnosis smoking in OAC, 

even though the OAC sample was more than 1.5 times larger than the OSCC sample. There is 

a temptation to assume that the algorithm failed because the association between pre-

diagnosis smoking and post-diagnosis survival in OAC was very weak. However other 
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explanations, such as different age structure and/or different survival distributions between 

OAC to OSCC, are perhaps more likely. 

Most confidence intervals for the effect of pre-diagnosis smoking on survival in 

OSCC excluded the null, but in OAC only the artificially narrow confidence interval for a 0.1 

increase in probability of pre-diagnosis smoking excluded the null.  

 

 Alcohol consumption (without and with smoking) 

Different countries have different views on alcohol consumption. Fourteen countries 

prohibit alcohol entirely (WorldAtlas, 2021), but the majority permit alcohol consumption 

while designating consumption levels “at risk” to health. Because “at risk” alcohol 

consumption is based on self-reported consumption it is prone to under-reporting and this 

under-reporting has been shown to be worse among the “at risk” groups that the analyses in 

the current thesis were attempting to identify (Boniface et al., 2014). Misclassifying 

individuals who are truly “at risk” as “not at risk” will weaken observed hazard ratios 

towards the null.  

In Australia in 2019 an estimated 16.8% of people aged 14 years and older consumed 

2 standard drinks per day and 25% of people aged 14 and over consumed more than 4 

standard drinks in one sitting at least monthly (Australian Institute of Health and Welfare, 

2021). While these at-risk behaviours have quite similar definitions to the ‘heavy drinking’ 

and ‘binge drinking’ variables which were obtained from the BRFSS health survey data, the 

corresponding rates in the imputed behaviours for OC cases from the SEER cancer registries 

were only 4.8% and 10.0% respectively. These are less than half of the number that might be 

expected. This suggests considerable under-reporting or under-representation of ‘at risk’ 
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behaviour: with ‘at risk’ people selected for inclusion in the BRFSS health survey either 

under-estimating their alcohol consumption or declining to participate in the survey.  

The systematic review produced pooled estimates of hazard ratios for the 

dichotomous variables ‘ever’ versus ‘never’ and ‘highest’ alcohol consumption versus 

‘lowest’. If under-reporting is common across all drinking, the at risk drinkers will still likely 

cluster in the highest self-report category even though the entire distribution of alcohol 

consumption has been shifted downward.  

The systematic review found a positive hazard of about 1.4 for pre-diagnosis alcohol 

consumption in OSCC (subject to considerable heterogeneity) and somewhat lower for OAC. 

The analysis of the cancer registry data found a similar 1.52 hazard ratio associated with 

binge drinking in OSCC but with wide confidence intervals. The results are summarised in 

Table 7.2. 

Table 7.2 Summary of evidence for association between pre-diagnosis alcohol consumption 
and survival 

measure documented OSCC 
HR/RR (95%CI) 

OAC 
HR/RR (95%CI) 

Pooled hazard ratios 
- Ever vs never alcohol consumption 
- Highest weekly alcohol vs lowest 

 
Chapter 2 

 
1.43 (1.08,1.89) 
1.32 (0.92,1.89) 

 
1.22 (1.07,1.39) 
1.08 (0.87,1.32) 

0.1 increase in the probability of 
- Binge drinking 
- Heavy drinking 
- Smoking and regular drinking 

 
Chapter 4 

 
0.95 (0.90,1.00) 
0.78 (0.69,0.88) 
1.93 (1.72,2.16) 

 
0.97 (0.93, 1.01) 
0.85 (0.77,0.93) 
1.93 (1.76,2.11) 

Age-adjusted relative risk 
- Binge drinking 
- Heavy drinking 
- Smoking and regular drinking 

 
Chapter 5 

 
1.52 (0.44, 2.75) 

failed 
failed 

 
0.82 (0.18,1.89) 

failed 
failed 

Age-adjusted Cox regression 
- Binge drinking 
- Heavy drinking 
- Smoking and regular drinking 

 
Chapter 6 

 
failed 
failed 
failed 

 
failed 
failed 
failed 
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Given the very high levels of misclassification produced by cold deck imputation, 

when a behaviour is rare, there appears to be insufficient information to support 

misclassification correction in a number of the analyses. The imputation-based analyses of 

heavy drinking, with an imputed prevalence of 4.8% among SEER OC cases, failed 

throughout. For the somewhat more common binge drinking, the age-adjusted relative risk of 

dying within 1 year returned confidence intervals wide enough to include the null effect for 

both OSCC and OAC, and the adjusted Cox regression analyses failed. 

The results of the investigation of the combined regular drinking with smoking 

behaviour are also presented in Table 7.2. It had been observed that combining “at risk” 

alcohol consumption with smoking produces a disproportionate increase in risk on OC 

(Castellsagué et al., 1999) and there was some evidence of a similar effect on post-diagnosis 

survival in OSCC (Thrift, Nagle, Fahey, Russell, et al., 2012). No other studies had addressed 

the association between pre-diagnosis regular alcohol with smoking and post-diagnosis 

survival and so there were no pooled estimates arising from the systematic review. The 

definition of 1.0 drinks/day used to the define alcohol consumption component of this 

variable is lower than the standard definitions of ‘at risk’ alcohol consumption. Including 

those who drink less into the ‘at risk’ group may have diffused the predictive power of this 

behaviour. The hazard ratios for a 0.1 increase in the prevalence of regular drinking and 

smoking produced an estimated hazard ratio of 1.93 with an artificially narrow confidence 

interval. But given the relative rarity of this behaviour combination, a 0.1 increase is 

extrapolating far beyond the observed data. Indeed, just 3.3% of the SEER OC cases were 

imputed to have had regular drinking with smoking. The imputation-based methods failed, 

presumably due to this low prevalence. 
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 Physical activity  

Physical activity differs with the level of economic development. People in less 

developed economies have higher levels of work and transport related physical activity while 

people in more developed economies are more likely to have sedentary work and transport 

and be more reliant on leisure time physical activity (Bauman et al., 2011). Measuring 

physical activity can be complex and there are a variety of measurement tools available.  

Only three previous studies of the association between pre-diagnosis physical activity 

and post-diagnosis survival in OC were identified, and these studies used different measures 

of physical activity. 

In the analyses of the SEER OC cancer registry cases the BRFSS health survey 

dichotomous variable “physical activity other than for regular job” was used, concentrating 

on leisure time physical activity levels. The results are presented in Table 7.4. 

Table 7.3 Summary of evidence for association between pre-diagnosis physical activity and 
survival 

measure documented OSCC 
HR/RR (95%CI) 

OAC 
HR/RR (95%CI) 

Pooled hazard ratios 
- Pre-diagnosis physical activity 

 
Chapter 2 

 
0.92 (0.67,1.27) 

 
1.20 (0.91,1.58) 

0.1 increase in the probability of leisure 
time physical activity 

 
Chapter 4 

 
0.82 (0.80,0.85) 

 
0.83 (0.81,0.85) 

Age-adjusted relative risk Chapter 5 0.45 (0.10, 1.07) 0.63 (0.29,2.18) 
Age-adjusted Cox regression Chapter 6 0.34 (0.07,1.64) failed 

 

Analyses suggested that pre-diagnosis leisure time physical activity in the US was 

associated with a lower post-diagnosis risk of death than for those who do not exercise. 

However, all confidence interval included the null (except the artificially narrow confidence 

intervals for 0.1 increase in the probability of leisure time physical activity). 
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 Overweight and obesity 

Overweight and obesity is an indicator of diet and physical activity. Overweight and 

obesity were defined using the WHO cutpoints on body mass index (Hubbard, 2000). The 

systematic review found that the combined overweight and obese group had a small survival 

advantage (HR about 0.80) over normal weight in both OSCC and OAC and the confidence 

intervals excluded the null, but this disappeared in obese only group. The apparent advantage 

of overweight may be related to the fact that OC can often interfere with feeding. However, 

the pooled results come from just 5 papers for OSCC and 5 papers for OAC, with marked 

heterogeneity between these studies.  

All other analyses were conducted on the obese group alone and all confidence 

intervals included the null (except the artificially narrow confidence intervals for 0.1 increase 

in the probability of being obese). Overall, any association between pre-diagnosis overweight 

or obese on survival time appears to be less consequential than the associations observed for 

smoking and physical activity. The results are summarised in Table 7.2. 

Table 7.4 Summary of evidence for association between pre-diagnosis overweight and/or 
obesity and survival 

measure documented OSCC 
HR/RR (95%CI) 

OAC 
HR/RR (95%CI) 

Pooled hazard ratios 
- Overweight or obese versus normal 
- Obese versus normal 

 
Chapter 2 

 
0.79 (0.61, 1.03) 
1.05 (0.76, 1.46) 

 
0.87 (0.73,1.04) 
0.95 (0.77, 1.18) 

0.1 increase in the probability of being 
obese 

 
Chapter 4 

 
1.07 (1.04,1.10) 

 
1.03 (1.00, 1.05) 

Age-adjusted relative risk for obese Chapter 5 1.53 (0.83,4.17) failed 
Age-adjusted Cox regression for obese Chapter 6 1.08 (0.22,4.96) failed 
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 Regular NSAID consumption 

The systematic review revealed high heterogeneity between studies and the pooled 

results (HR 0.98, 95%CI 0.82,1.18, I2=77.8%) provided no evidence that regular 

consumption of NSAIDs pre-diagnosis was associated with post-diagnosis survival times in 

OC. NSAID consumption could not be included in the analyses of SEER cancer registry 

cases, as the BRFSS health survey did not collect this information. 

 

 What has been learnt and what is yet to do 

This thesis has presented consistent evidence that pre-diagnosis smoking is associated 

with decreased post-diagnosis survival in OSCC, with less consistent evidence for OAC. 

Smoking about 1 to 5 years prior to OSCC diagnosis was associated with a doubling of the 

hazard / risk of death. Leisure time physical activity 1 to 5 years prior to diagnosis may be 

associated with a halving of the post-diagnosis hazard / risk of death in OC, but stronger 

evidence is required. The association between pre-diagnosis overweight and/or obesity may 

not be large enough to warrant further investigation. The association between ‘at risk’ pre-

diagnosis alcohol consumption and post-diagnosis survival time is somewhat less certain. A 

new measure approach may be required to address the apparent under-reporting. In the 

analyses of the SEER OC cases, the choice of variables was decided by the developers of the 

BRFSS health survey and so were not optimised for the specific research aims of the thesis. 
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7.3 Progress in addressing the second aim 

A new algorithm was developed to research the association between pre-diagnosis 

behaviour and post-diagnosis survival time in cancer which started with the SEER cancer 

registry data and then added pre-diagnosis health behaviour variables. When first added, 

these variables were empty (that is, contained 100% missing data) and it was hypothesised 

that a method could be developed for addressing missing data: either through modelling or 

imputation. As the data were 100% missing, an external data source was required to inform 

the missing value correction. The BRFSS national health survey was identified as a suitable 

external source for health behaviour variables. It was assumed unlikely that there would be 

many individuals in common between the cancer registry and the health survey, but (as often 

occurs with human data sets) there were a range of demographic measures in common. 

To communicate information from the external health survey data to the cancer 

registry the analyses relied on the fact that two individuals from the same demographic group 

are more likely to display similar behaviour than two individuals with different demographic 

backgrounds; in alcohol consumption for example (Boersma et al., 2020) or smoking 

(Leventhal et al., 2019). That is, it was hypothesised the demographic variables could convey 

some, albeit small, information about health behaviour. The expected weakness of this signal 

component suggested the need for a large sample size to detect it. 

 

 A model-based solution 

Using the health survey data only, a logistic model was used to predict the probability 

of a behaviour, using only demographic variables as predictors. The model was then applied 

to each OC cancer registry case, using those demographic variables to estimate their 
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probability of participating in that behaviour pre-diagnosis. These estimated probabilities of 

behaviour were then used as the predictor in the Cox regression model for survival time. 

There are three main problems identified in using this approach. Firstly, the resulting 

hazard ratios were for a 0.1 increase in the probability of the behaviour rather than describing 

the difference between having the behaviour or not. The increase in probability measure is 

very difficult to interpret clinically. Secondly, the logistic model contained just main effects 

and a few two-way interactions between the demographic variables. This is unlikely to be 

sufficient to convey the complexity of the real world or identify behavioural subgroups 

within the population. Identifying the unique behaviour of young, black, unmarried, males, 

for example, would require 4-way interactions in the model. Even with a very large data set, 

such complex models would be affected by areas of sparse data and overfitting. The third 

issue arising was that the uncertainty of the estimated probabilities was not carried across to 

the final Cox model. The estimated probability of having the behaviour variable was treated 

as an accurate measurement rather than an estimate. Thus, the uncertainty in the resulting 

hazard ratios was understated. 

A hybrid solution, using the OC cases’ estimated probabilities of having the 

behaviour to inform the imputation process rather than as a direct predictor, was also 

considered. This could address the awkward hazard ratio but not the potential importance of 

complex demographic subgroups and the associated need for modelling higher-level 

interactions.  Overall, these analyses suggested there was little potential for further 

development of this model-based method. 
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 An imputation-based solution 

An alternative, an imputation-based algorithm for augmenting cancer registry data 

was more promising. Using simulated data based on the actual SEER OC cases, this thesis 

demonstrated that the method produced point estimates of hazard ratios and relative risks 

which were quite close to true values, albeit with much wider confidence intervals. However, 

all the difficulties of this approach have not yet been solved, with age-confounding one issue 

proving to be difficult to address. Indeed, there are considerable opportunities for 

improvement at each step in this initial algorithm. 

The algorithm is referred to as the I2C2 algorithm; standing for impute, impute, 

calibrate and correct. As the impute step is repeated, the algorithm consists of 3 main steps, 

described below.  

The first step is to impute values for the missing health behaviour data in the SEER 

OC cancer registry data set. Again, the BRFSS health survey data was chosen as an external 

reference to help impute the missing health behaviour, relying upon the demographic 

variables in common to transfer information from the BRFSS health survey to the SEER 

cancer registry data set. 

It was assumed that the two data sets are completely independent, and few imputation 

methods can be applied to completely independent data sets. OC cancer cases were matched 

with demographically similar individuals in the BRFSS health survey. The health survey 

respondents then donated their behaviour to their matched OC cancer cases. This approach is 

referred to as cold deck imputation (Nordholt, 1998).  

The matching process needs to be improved. All OC cases who had less than two 

matches in the BRFSS health survey data were excluded and this produced considerable 
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potential for bias (exclusions were higher in older age groups, males, non-whites, etc). 

Allowing matching to the next most similar individual may have resulted in lower bias, more 

efficient use of available data allowing the method to be applied smaller data sets.   

Further, the more variables and the more informative the variables used for matching; 

the more information which could be transferred from the BRFSS health survey to the SEER 

OC data set. There is evidence (section 5.4 Further exploration of matching) that the 

imputation applied in this thesis produced an underestimation of the prevalence of some pre-

diagnosis health behaviours in OC. This may have led to an underestimation of the 

association between these pre-diagnosis behaviours on post-diagnosis survival. The desire to 

maximise the number of demographic variables in common was an important contributor to 

selecting the SEER cancer registry data set and BRFSS health survey. Some other data sets 

have fewer variables in common, potentially undermining the success of the I2C2 algorithm. 

The quality of the information is also important. It has been noted that self-reported 

behaviours are sometime inaccurate (e.g. (Ward et al., 2016)). There may also be errors in 

self-reported demographic variables such as race. Minimising such errors will increase the 

power of the I2C2 algorithm. Finally, the information in the available variables is partly 

determined by the coarseness of the categories. More detailed categories (such as age in years 

instead of 5-year age groups and smaller geographic regions than States) would equate to 

more information but would also decrease the likelihood of exact matches. This reinforces the 

need to develop criteria for matching across similar demographic groups when exact matches 

are unavailable. 

The calibration step is the measurement of misclassification. In all analyses the 

behaviour twice followed by cross-tabulation of the imputed values. This can only be applied 

to dichotomous measures of behaviour and alternate approaches for polytomous or 
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continuous variables (such as pack-years, alcohol consumption, BMI, metabolic equivalent of 

tasks (METs) have not been considered. Further, the thesis did not consider whether three or 

more imputed values could provide a more accurate estimate of misclassification than just 

two.  

An additional approach to validating the misclassification measure would be to survey 

a random sample of SEER OC cases to obtain actual measures of their pre-diagnosis 

behaviours. This would allow the estimated misclassification rate produced by cross-

tabulating the two imputed behaviours to be validated against the true misclassification rate 

between the true behaviour and the imputed behaviour. It is important to note however, that 

surveys of OC survivors would be subject to sources of bias such as survivor bias, response 

bias, recall bias.  A more rigorous validation approach would be to find a cohort study (or 

record linkage) which included pre-diagnosis behaviours, death of OC diagnosis and date of 

death. Behaviours could be imputed for the cohort and estimated misclassification rates from 

two imputed values could be compared with true misclassification between true and imputed 

behaviour. Unfortunately, attempts to access a suitable validation cohort for OC outcomes 

have so far been unsuccessful, and future investigation of this approach may need to be 

conducted on alternate health outcomes. 

The final step in the I2C2 algorithm is to correct, which means to incorporate 

misclassification correction into the analysis of the augmented cancer registry data set. 

Misclassification correction was demonstrated for age-adjusted relative risk of death at 1-year 

post diagnosis and Cox regression models. Misclassification correction for logistic and/or 

log-binary models of death at a post-diagnosis timepoint should also be possible (Spiegelman 

et al., 2000) using methods like the corrected scores algorithm that were trialled in the thesis 

in the Cox regression models.  
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 Despite high misclassification rates, the misclassification correction algorithms were 

successful when applied to simulated data, but only when the behaviour was not too rare. A 

comprehensive rule of thumb to define “not too rare” has not yet been established, although 

some initial results from simulations were presented which shown that, given the linkage 

variables used in this thesis, misclassification correction failed for behaviours with a 

prevalence less than 5%. This issue of feasibility is very important in deciding whether to 

pursue further development of the I2C2 algorithm and warrants future research priority. 

Although the misclassification correction methods worked well with simplified 

simulated data sets, adding age-confounding into the data sets created some complex 

problems. Age-confounding was addressed via age-stratification when estimating relative 

risks for death within 1-year post-diagnosis, and via age-standardisation when estimating 

hazard ratios from Cox regression models. However, age-stratification did not work for Cox 

regression, perhaps because the stratified sample sizes were too small and that age-

standardisation results seemed to be incompletely adjusted. Alternative methods for 

confounder adjustment in misclassification correction warrant further research. 

Finally, software code for conducting misclassification adjustment is currently under-

developed. Code was specifically developed in this thesis for misclassification correction on 

relative risk, and misclassification correction in Cox regression relied upon Fortran 77 

program. This thesis highlights the need to develop misclassification correction options for 

logistic, log-binary and Cox regression models in modern statistical software. 
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 What has been learnt and what is yet to do 

This thesis has proposed new methods to augment cancer registry data sets with 

health behaviour data when data linkage is not possible, and has begun the process of 

developing such a method. 

The conceptual approach of regarding the health behavioural variables as variables 

with 100% missing data in the cancer registry data set, and applying missing value methods 

to add whole variables to data sets has not been undertaken previously. 

  Findings show that predicting missing values using statistical models is likely to be a 

very complex process as it is difficult for the model to convey the true complexity of the real 

world. In contrast, imputation-based approaches may be more achievable. 

The I2C2 algorithm was developed and tested. The algorithm involved imputing 

values for missing health behaviour variable using values donated from an external health 

behaviour data set, repeating the imputation, calibrating the misclassification by cross-

tabulating the two imputed values and finally correcting for the attenuation of results arising 

from the misclassification by employing appropriate misclassification correction during the 

final analysis.  

The I2C2 algorithm can provide accurate estimates of association under the idealised 

conditions of large, simulated data sets; albeit it with a certain lack of precision manifested as 

wide confidence intervals. However, there are difficulties in confounder adjustment (in this 

case age-adjustment) when using the misclassification correction tools and the algorithm has 

yet to be fully validated using actual data. 

There are data sets available which may be appropriate for a validation study of the 

I2C2 algorithm, and this remains a priority for future research. 
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7.4 Potential applications of this research 

Combinations of public health programs and government regulation can modify 

health behaviours associated with cancer outcomes. For example, in Australia the proportion 

people aged 14 and over who were daily smokers has more than halved in less than 30 years, 

from 24% in 1991 to 11% in 2019 (Australian Institute of Health and Welfare, 2020b). Also, 

between 2001 and 2019 the proportion of 18-24 year old Australians abstaining from alcohol 

increased from 10% to 21% but the proportion of those aged 70 or more abstaining from 

alcohol decreased from 32% to 28% (Australian Institute of Health and Welfare, 2020b). The 

prevalence of discretionary physical activity among Canadian adults rose from 20.6% to 

41.1% between 1981 and 2000 (Craig et al., 2004). Between 2012 and 2021 recreational 

Marijuana use has been legalised in 19 US States and two Territories (US News, 2021).  

Changing health behaviours have impacts on the future health needs of communities. 

Preparing for future health service needs requires long-term planning as it takes time to train 

clinicians and other health professionals, and to develop infrastructure. Accurate projections 

of future health needs are required to inform planning. This includes projections of how many 

people will be diagnosed with cancer and how long they will survive.  

To predict the future number of cancer survivors requires the current number of 

cancer survivors (current state), the incidence rate (additions) and the mortality rate 

(subtractions). With changing health behaviours, the future incidence rate and future 

mortality rate may not be the same as current rates. Many current projection methods take 

current trends in incidence and mortality rates and extrapolate these into the future 

(Maddams, Utley, & Møller, 2012; Mariotto, Robin Yabroff, Shao, Feuer, & Brown, 2011), 

without any consideration of the underlying causes of changing incidence and mortality; such 

as the changing rates of health behaviour in the community. The work in this thesis to 
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document the association between health behaviour in the community and survival times can 

help how changes in the community’s health behaviour might alter survival times and thus 

inform next generation projection models. 

At the individual level, the results in this thesis confirm that pre-diagnosis health 

behaviour is an important factor in the prognosis of OC. Current prognostic indexes for OC 

have been criticised (Gupta et al., 2018) for not being particularly effective. But none include 

behaviour. The results in this thesis should help improve prognostic tools for OC, leading to 

better lifestyle and treatment choices at the individual level. 

Finally, the results in this thesis add additional information to the costs and benefits of 

public health programs. Not only do programs reducing smoking, for example, decrease the 

risk of cancer, but they may also increase the survival of those who do get cancer. The results 

generated in this thesis can assist in quantifying the full value of such public health programs 

and in so improve cost-benefit analyses and program decision making. 

The final application of the results presented in this thesis is to encourage further 

research.  This thesis has shown that information on the effect of pre-diagnosis health 

behaviour on post-diagnosis survival in OC is fragmented, incomplete and perhaps poor 

quality. More research is required using more sophisticated behavioural measures and truly 

prospective cohorts. 

The I2C2 algorithm is an approach that is still under development. There are 

opportunities for improvement in each step (imputation, calibration and misclassification 

correction) and the results of analyses have not been fully validated using data where pre-

diagnosis health behaviour is known for cancer. The algorithm requires large data sets and, 
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even under the ideal conditions offered by simulation, the results have wide uncertainty and 

wide confidence intervals. 

Despite this, it is proposed that the approach has a role as a relatively quick and cheap 

alternative to prospective cohort studies and record linkage (retrospective cohort) studies. 

Prospective cohorts are complex and expensive and take many years to produce new 

knowledge. Record linkage is an alternative, however there are logistical and resource 

implications associated with data linkage, the need for identifiable data (and attendant 

confidentiality issues), and issues of statistical power associated with the size of available 

data sets for linkage.. 

Confidentiality is protected by legislation and data custodians and Ethics Committees, 

as well as researchers, can face legal sanction for breaches (Palamuthusingam, Johnson, 

Hawley, Pascoe, & Fahim, 2019). As data sets continue to get larger with more linkage 

between them and interrogative methods become more sophisticated, the risk of breaches in 

confidentiality grow. In response data protection methods grow more complex.  It is now 

common for the potentially identifying demographic data to be separated from the potentially 

sensitive clinical variables. A label (master key) created from the demographic data but with 

no information about the demographics can be used to link the clinical data (NSW Health, 

2021). It is also common to maintain linked data within secure workspaces where no data can 

be exported from the system, only vetted results (Sax Institute, 2021). These confidentiality 

processes add to the complexity and cost of record linkage studies. 

A key advantage of the I2C2 algorithm is that the imputed values added to the cancer 

registry data set adds almost no additional information about any individual in the data set. 

Given the very high levels of misclassification, the imputed data is probably incorrect most of 

the time. Rather than make individuals easier to identify, the incorrect imputed values can 
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obscure individuals and make it more difficult to identify them. Unlike data linkage, the I2C2 

algorithm adds virtually no additional threat to the confidentiality of the cancer cases. 

The other advantage of I2C2 over record linkage is that it does not require the same 

individuals to be recorded in both data sets. Locating cancer cases in other data sets requires 

linkage algorithms which can add costs and time to projects, and are subject to record linkage 

errors. The rarer the cancer, the fewer the number of individuals who will be located in the 

external data sets and as the number of correct linkages decrease the relative proportion of 

linkage errors increases. So the I2C2 is of particular advantage when the disease is rare. 

As well as avoiding matching errors for data linkage and participation biases in 

prospective cohort studies, the I2C2 algorithm can also somewhat avoid the biases within the 

external reference data within the process. Cancer registries are generally a census of all 

cancer cases, subject to very little participation bias. If the I2C2 algorithm can be improved to 

produce imputed values for all cancer cases, then the augmented data set will be similarly 

unbiased. Even some of the known biases in the BRFSS health survey will be addressed 

through the cold deck imputation method. That is, groups which are over-represented in the 

BRFSS such as white, younger age, etc (Schneider et al., 2012) will be sampled less, and 

groups who are underrepresented in the BRFSS will be sampled more. However other biases, 

such as under-participation of ‘at risk’ drinkers, may not be resolved by the imputation 

process. 

This thesis has shown that the I2C2 algorithm is feasible for examining the 

associations between pre-diagnosis behaviour and post-diagnosis survival with appropriate 

large data sets already existing in most developed countries. The method could easily be 

applied to other outcome measures such as the association between health behaviour and 

stage at diagnosis, other tumour characteristics, or choice of curative versus palliative 
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treatment. The I2C2 method is also readily applicable to predictors of outcome which could 

be linked through demographics, such as environmental exposure. There may also be 

instances when different linking variables could be used: say using tumour characteristics as 

the linking variables to add additional laboratory variables to the cancer registry data set. 

With increasing large scale data collection throughout society there are also likely 

other potential applications of the I2C2 algorithm outside of augmenting cancer registries 

which have yet to be identified. 

 

7.5 Conclusion 

OC survival does appear to be associated with pre-diagnosis behaviour. For example, 

pre-diagnosis smoking is associated with decreased survival times in OSCC and exercise may 

be associated with increased survival as would be expected. However, the literature is still 

incomplete with unresolved questions relating to the measurement tools, and quality and 

quantity of evidence. 

This thesis has described a new method for augmenting cancer registry data bases 

with 100% imputed pre-diagnosis health behaviour variables, called the I2C2 algorithm. The 

algorithm still needs further refinement and validation, but it is proposed that it could become 

an efficient potential alternative to cohort and record linkage studies in preliminary studies of 

cancer epidemiology. 
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Appendix 2 Coding elements 

Chapter 2 

While using R software throughout the rest of the thesis, for the meta-analyses the 

‘metan’ and ‘metafunnel’ packages in STATA were used. Formatting forest plots is more 

straightforward in ‘metan’ than in the ‘metafor’ package in R software. The code below was 

run in STATA version 12 but will work in any recent version. 

When fitting meta-analyses, ratio measures were log-transformed to a linear scale and 

the analyses conducted using linear mixed effects models. That is, the logarithm of (hazard 

A)/(hazard B) is the linear expression log(hazard A)+log(hazard B).  Results are back-

transformed into the ratio scale using the ‘eform’ option in metan. Example STATA code is 

provided below. 

/************************************************************/ 
/* Read in the comma separated data file containing:        */ 
/*     author, a text field of author and year              */ 
/*     hr, the hazard ratio for pre-diagnosis smoking       */ 
/*     lcl and ucl, the associated 95% confidence interval  */ 
/*     cancercat, indicating which histological subgroup    */ 
/*                the HR pertains to.                       */ 
/************************************************************/ 
 
insheet using "oesoph_smoke2.csv", comma 
 
/************************************************************/ 
/* Convert the hazard ratios and confidence intervals       */ 
/* to effect sizes and associated standard errors.          */ 
/************************************************************/ 
 
gen log_hr=ln(hr) 
gen log_se_ucl=(ln(ucl)-log_hr)/(1.959964) 
gen log_se_lcl=(log_hr-ln(lcl))/(1.959964) 
gen log_se_hr=(log_se_ucl+log_se_lcl)/2 
 
label variable log_hr "Log(hazard ratio)" 
label variable log_se_hr "Std Error log(hazard ratio)" 
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/************************************************************/ 
/* In this case, retain statistics for ‘ever smoke’ versus  */ 
/* ‘never smoke’ for analysis                               */ 
/************************************************************/ 
 
keep if (reference=="never" & comparison=="ever") 
 
/************************************************************/ 
/* Run the random effect meta-analysis and format the forest*/ 
/* plot using the metan application for STATA using the     */ 
/* pre-defined format s1mono.                               */ 
/* The variable cancercat defines the OSCC and OAC subgroups*/                                
/************************************************************/ 
 
metan log_hr log_se_hr, random /* completes the meta-analysis*/ 
  /* all of the rest is setting up the forest plot */ 
  /* present HRs not log(HRs) */ 
  eform effect("Hazard Ratio")  
  /* add author names */ 
  label(namevar=author)         
  /* format the x-axis */ 
  xlabel (0.25,0.5, 1, 2,4) force nowarning null(1)  
  favours("decreased risk of death" # "increased risk of death") 
  /* separate into OSCC and OAC subgroups */ 
  by(cancercat) nooverall       
  /* additional formatting on the forest plot */   
  textsize(130) diamopt(lcolor(black)) olineopt(lc(black) 
  lp(shortdash) lwidth(thin)) scheme(s1mono) 
 
/************************************************************/ 
/* Produce a funnel plot, using the pre-defined             */ 
/* format s1mono                                            */ 
/************************************************************/ 
 
metafunnel log_hr log_se_hr, scheme(s1mono) 
 
/************************************************************/ 
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Chapter 3 

Having selected the data sets and variables for analysis, data were collected for 

analysis.  

The SEER data set was downloaded from https://seer.cancer.gov/ using the 

SEER*STAT utility. SEER*STAT is used interactively producing no code to show how the 

data were extracted. The data were downloaded from SEER*STAT in comma separated 

values (.csv) format. The following examples of code show how these data were read into 

and R software ready for analysis. 

#################################################################### 
# Read in the comma separated SEER cancer registry data file.      # 
#                                                                  # 
# The data file was produced using the data listing function       # 
# in the SEER*STAT program: all SEER OC cases in 2001 to 2015.     # 
#################################################################### 
 
oesoph <- read.csv(".../All_oesophagael_2001_15.csv", header=TRUE) 
 
#################################################################### 
# recode text variables into numeric variables                     # 
#################################################################### 
 
# sex 
summary(oesoph$Sex) 
oesoph$sex1<- recode(oesoph$Sex,"'Female'=1; 'Male'=0",  
       as.numeric=TRUE, as.factor=FALSE)                  
 
# Age in 5 year categories 
summary(oesoph$Agecat) 
oesoph$agegrp<- recode(oesoph$Agecat, 
      "'05-09 years'=2; '10-14 years'=3;'15-19 years'=4;  
       '20-24 years'=5; '25-29 years'=6;'30-34 years'=7; 
       '35-39 years'=8; '40-44 years'=9; '45-49 years'=10; 
       '50-54 years'=11;'55-59 years'=12; '60-64 years'=13; 
       '65-69 years'=14; '70-74 years'=15;'75-79 years'=16; 
       '80-84 years'=17; '85+ years'=17",  
       as.numeric=TRUE, as.factor=FALSE) 

 
 

# AJCC stage, excluding the missing 2001-2003 data 
oesoph$stage<- recode(oesoph$AJCCstage, 

         "'I'='I'; 'IIA'='II'; 'IIB'='II'; 'III'='III'; 
         'IV'='IV';'IVA'='IV';'IVB'='IV';'IVNOS'='IV'; 
          else='UNK Stage'",  
          as.numeric=TRUE, as.factor=FALSE) 
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for(i in 1:length(oesoph$stage)) { 
  if(oesoph$Yeardiag[i]==2001 | oesoph$Yeardiag[i]==2002 |  
     oesoph$Yeardiag[i]==2003) { 

 oesoph$stage[i]<-NA 
  } 
} 
 

... 
 
#################################################################### 
# Save the processed data into a new R-formatted data set.         # 
#################################################################### 
 
seeroesoph <- oesoph[,c(7,24:34)] 
save(seeroesoph,file="all_oesophagael_2001_2015.RData") 
 
#################################################################### 
 
 
 

The BRFSS health survey data sets are compiled each year separately. The 15 files for 

2001 to 2015 were downloaded from https://www.cdc.gov/brfss/ as column 

formatted text files. Each file was individually read into R and saved in R format. Only 

variables relevant to the study were retained. The relevant demographic variables were re-

coded to match the corresponding SEER cancer registry variables and the chosen behavioural 

variables were coded to be dichotomous with ‘1’ representing behaviour present and ‘0’ 

representing behaviour absent. Example R code is provided below. 

 
 
#################################################################### 
# Read in the relevant variables from the BRFSS yearly file.       # 
# This example is 2001.                                            #                                                   
#################################################################### 
 
 
df1 <- read.fwf("cdbrfss2001asc.ASC", widths=c(2,-96,1,-10,2,-8,1, 
       -18,1,-488,2,-56,10,-29,6,-8,1,-5,6,1,1,-3,1),header=FALSE) 
 
 
#################################################################### 
# Name the variables                                               # 
#################################################################### 
 
library(car) 
df1 <- rename(df1,replace=c("V1"="state",V2"="smoke100","V3"="age", 
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        "V4"="marital","V5"="sex","V6"="prace","V7"="finalwt", 
        "V8"="bmi","V9"="smoker3","V10"="drnkday","V11"="rfbinge", 
        "V12"="rfdrhvy","V13"="totinda")) 
... 
 
#################################################################### 
# Recode the demographic variables to be consistent with SEER      # 
# coding.                                                          #  
# This example is marital status.                                  # 
#################################################################### 
 
df1$marital <- recode(df1$marital, "1=1;2=2;3=3;4=2;5=4;6=1;9=NA") 
df1$marital <- factor(df1$marital, levels = c(1,2,3,4),  
               labels = c("married","divorced/separated","widowed", 
                          "single/never married")) 
... 
 
#################################################################### 
# Recode the behavioural variables as 0=behaviour absent,          # 
# 1=behaviour present.                                             # 
# This example shows a  number of smoking status variables.        # 
#################################################################### 
 
df1$smoke.daily <- recode(df1$smoker3, "1=1; 9=NA; else=0") 
df1$smoke.some <- recode(df1$smoker3, "2=1; 9=NA; else=0") 
df1$smoke.ex <- recode(df1$smoker3, "3=1; 9=NA; else=0") 
df1$smoke.never <- recode(df1$smoker3, "4=1; 9=NA; else=0") 
... 
 
#################################################################### 
# Save the processed data into a new R-formatted data set.         # 
# (finalwt are the sampling weights calculated by the BRFSS        # 
# analysts.)                                                       # 
#################################################################### 
 
brfss2001 <-data.frame(df1$state,df1$smoke100,df1$age,df1$marital, 
               df1$sex,df1$smoke.daily,df1$smoke.some,df1$smoke.ex, 
               df1$smoke.never,df1$race,df1$bmicat,df1$drnkany, 
               df1$drnkday,df1$rfbinge,df1$rfdrhvy, 
               df1$totinda,df1$finalwt) 
save(brfss2001,file="BRFSS2001.RData") 
 
#################################################################### 
 
 
 

The final step was to combine the 15 yearly files into a single R formatted data set for 

analysis. While doing so the year was added to each file and added some further coding of 

demographic variables (to be consistent with the SEER cancer registry data set) and added 

one computed behaviour variable: smoking with regular drinking. The final step was to 
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exclude all BRFSS health survey data records that did not match the States or race categories 

within the SEER cancer registry. Example R code is provided below. 

 
#################################################################### 
# Read in the previously saved BRFSS data files for each year from # 
# 2001 to 2015.                                                    # 
#################################################################### 
 
load(".../BRFSS2001.RData") 
load(".../BRFSS2002.RData") 
... 
load(".../BRFSS2015.RData") 
 
 
year <- rep(2001,dim(brfss2001)[1]) 
brfss2001 <- data.frame(brfss2001,year) 
year <- rep(2002,dim(brfss2002)[1]) 
brfss2002 <- data.frame(brfss2002,year) 
 
brfsstemp <- rbind(brfss2001,brfss2002,brfss2003,brfss2004, 
                   brfss2005,brfss2006,brfss2007,brfss2008, 
                   brfss2009,brfss2010,brfss2011,brfss2012) 
 
#################################################################### 
# Coding age into age groups to match the SEER cancer registry     # 
# variable.                                                        # 
# There is slightly different code (omitted) for 2013-2015 as age  # 
# was provided in 5-year age groups instead of age in years.       #                        
#################################################################### 
 
brfsstemp$age_cat <- recode(brfsstemp$age, "0=0; 1:4=1; 5:9=2; 
      10:14=3; 15:19=4; 20:24=5; 25:29=6; 30:34=7; 35:39=8; 
      40:44=9; 45:49=10; 50:54=11; 55:59=12; 60:64=13; 65:69=14; 
      70:74=15; 75:79=16; 80:99=17; else=NA") 
brfsstemp <- brfsstemp[(brfsstemp$age_cat>=6),] 
brfsstemp <- brfsstemp[,-3] 
 
 
... 
brfss <- rbind(brfsstemp,brfss2013,brfss2014,brfss2015) 
 
#################################################################### 
# The only new behavioural measure created was smoking with        # 
# regular alcohol consumption.                                     # 
# Daily smoking and Some smoking were both coded 0,1 and people    # 
# could not be coded as 1 on both. Average drinks per day was      # 
# coded numerically. (As there is no natural upper bound, I have   #   
# used the exaggerated 80 drinks per day.)                         # 
#################################################################### 
 
brfss$drnk1 <- recode(brfss$drnkday, "0:0.999=0; 1:80=1") 
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brfss$smoker <- brfss$smoke.daily+brfss$smoke.some 
temp1 <- brfss$drnk1+brfss$smoker 
brfss$smkalc <- recode(temp1, "2=1; 1=0; 0=0") 
 
#################################################################### 
# Exclude BRFSS health survey respondents from non-SEER states and # 
# those who selected the ‘mixed race’ option. Mixed race was not   # 
# an option in the SEER cancer registry collection.                #                                           
#################################################################### 
 
save(brfss,file="BRFSS.RData") 
 
 
brfss_short <- brfss[brfss$state=="Alaska" | 
    brfss$state=="California" | brfss$state=="Connecticut" | 
    brfss$state=="Georgia" | brfss$state=="Hawaii" | 
    brfss$state=="Iowa" | brfss$state=="Kentucky" | 
    brfss$state=="Louisiana" | brfss$state=="Michigan" | 
    brfss$state=="New Jersey" | brfss$state=="New Mexico" | 
    brfss$state=="Utah" | brfss$state=="Washington",] 
 
brfss_short <- brfss_short[brfss_short$race!=7,] 
 
#################################################################### 
# Save the processed data into a new R-formatted data set.         # 
#################################################################### 
 
save(brfss_short,file="BRFSS_short.RData") 
 
#################################################################### 
 

 

Chapter 4 

The first coding tasks was to take the previously prepared BRFSS health survey data 

set and fit a logistic regression model for predicting each health behaviour using year, age, 

sex, marital status, race, State of residence, sex by age interaction, marital status by age and 

sex by marital status interactions.  The following R code example illustrates how this was 

done. 

 
#################################################################### 
# Read in the previously prepared BRFSS health survey data file.   # 
#################################################################### 
 
load(".../BRFSS_short.RData") 
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#################################################################### 
# Exclude data records falling into the top and bottom 0.5% of     # 
# sample weights.                                                  # 
# (Data errors are often found at the ends of the distribution).   # 
#################################################################### 
 
quantile(brfss_short$finalwt,c(0.005,0.995))    
brfss_short <- brfss_short[brfss_short$finalwt>10.00 &  
                           brfss_short$finalwt<7478,] 
 
################################################################### 
# Set up categorical variables as factors prior to model fitting. # 
################################################################### 
 
brfss_short$racef <- factor(brfss_short$race,labels=c("white", 
           "black","Asian pacific","Americian native")) 
brfss_short$msf <- factor(brfss_short$married,labels=c("married", 
           "divor_sep","widow","single")) 
... 
 
################################################################### 
# Fit the logistic regression model which predicts smoking status # 
# (in this example) using year, the demographic variables and     # 
# the interactions between sex and age and sex and marital status.#        
################################################################### 
 
smk.r <- logistf(smoker~statef+yearf+age_cat+sexf+msf+racef+ 
                 sexf*age_cat+msf*age_cat+msf*sexf, 
                 data=brfss_short, pl=TRUE, firth=TRUE, 
                 weights=finalwt) 
 
################################################################### 
# Document the predictive ability of the model using area under   # 
# the receiver operator curve (AUC ROC).                          # 
################################################################### 
 
library(pROC) 
roc.smk.r <- roc(smk.r$y~smk.r$predict, na.rm=TRUE, algorithm=2,  
                 auc=TRUE, ci=TRUE) 
auc(roc.smk.r) 
 
 
################################################################### 
# Save the (22) coefficients from the fitted model in a vector.   # 
################################################################### 
 
b.smk.r <- coef(smk.r) 
b.smk.r.ci <- confint(smk.r) 
 
#################################################################### 
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Having recorded each fitted model as a vector of coefficients, the next task was to 

apply this model to each of the SEER cancer registry OC cases estimating their probability of 

undertaking the corresponding health behaviour. The following code example illustrates how 

this was done. 

 
#################################################################### 
# Read in the previously prepared SEER cancer registries data file.# 
#################################################################### 
 
load(".../all_oesophagael_2001_2015.RData") 
 
#################################################################### 
# Three options are separately coded (but very similar):           # 
#     1 year pre-diagnosis,                                        # 
#     5 years pre-diagnosis, 1 age category younger                # 
#     10 years pre-diagnosis, 2 age categories younger             # 
# The code below is for the 1 year pre-diagnosis option.           # 
#################################################################### 
 
#################################################################### 
# Exclude OC cases under 35 years.                                 # 
# The 80-84 year and 85+ year age categories were combined in the  # 
# SEER cancer registry data as the later years of the BRFSS health #   
# survey only provide age categories to 80+ years                  # 
#################################################################### 
 
seeroesoph <- seeroesoph[seeroesoph$agegrp>7,] 
seeroesoph$agegrp <- recode(seeroesoph$agegrp,"18=17") 
 
#################################################################### 
# Apply the linear component of the logistic model to the OC cases # 
# using the regression coefficients developed on the BRFSS         # 
# health survey data set.                                          # 
# In this case the model is for smoking status.                    # 
#################################################################### 
 
b <- b.smk.r 
 
for(i in 1:dim(seeroesoph)[1]) { 
  seeroesoph$risk[i]<-b[1,1] + b[14,1]*(seeroesoph$Yeardiag[i]-1) + 
  b[15,1]*seeroesoph$agegrp[i] + b[16,1]*seeroesoph$sex1[i] + 
  b[23,1]*seeroesoph$sex1[i]*seeroesoph$agegrp[i]  
     
  if(seeroesoph$state[i]=="AK") { 
    seeroesoph$risk[i] <- seeroesoph$risk[i] + b[13,1] }  
  else if(seeroesoph$state[i]=="CT") { 
    seeroesoph$risk[i] <- seeroesoph$risk[i] + b[2,1] } 
  ... 
  else if(seeroesoph$state[i]=="WA") { 
    seeroesoph$risk[i] <- seeroesoph$risk[i] + b[12,1] } 
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  if(seeroesoph$marital2[i]==0) { 
    seeroesoph$risk[i] <- NA } 
  else if(seeroesoph$marital2[i]==2) { 
    seeroesoph$risk[i] <- seeroesoph$risk[i] + b[17,1] + 
       b[24,1]*seeroesoph$agegrp[i] + b[27,1]*seeroesoph$sex1[i] } 
  else if(seeroesoph$marital2[i]==3) { 
    seeroesoph$risk[i] <- seeroesoph$risk[i] + b[18,1] + 
       b[25,1]*seeroesoph$agegrp[i] + b[28,1]*seeroesoph$sex1[i] } 
  else if(seeroesoph$marital2[i]==4) { 
    seeroesoph$risk[i] <- seeroesoph$risk[i] + b[19,1] + 
       b[26,1]*seeroesoph$agegrp[i] + b[29,1]*seeroesoph$sex1[i] } 
  if(seeroesoph$race1[i]==0) { 
    seeroesoph$risk[i] <- NA } 
  else if(seeroesoph$race1[i]==2) { 
    seeroesoph$risk[i] <- seeroesoph$risk[i] + b[20,1] } 
  else if(seeroesoph$race1[i]==3) { 
    seeroesoph$risk[i] <- seeroesoph$risk[i] + b[21,1] } 
  else if(seeroesoph$race1[i]==4) { 
    seeroesoph$risk[i] <- seeroesoph$risk[i] + b[22,1] } 
} 
 
#################################################################### 
# Convert the linear component of the logistic model into a        # 
# probability.                                                     # 
#################################################################### 
 
seeroesoph$prob.smk.r <- 
(exp(seeroesoph$risk.smk.r)/(1+exp(seeroesoph$risk.smk.r))) 
 
#################################################################### 
 
 
 

Having estimated the probability of each behaviour for each SEER OC case, this 

estimated probability was then used as a predictor of survival time through fitting Cox 

regression models. Unadjusted and adjusted (for age and disease stage) models were fitted. 

Subgroup analyses were conducted in OSCC and OAC. The following code example 

illustrates how this was done. 

 
#################################################################### 
# This probability has been multiplied by 10 prior to being used   # 
# in the Cox model to ensure that hazard ratios are associated     #       
# with steps of 0.10 probability.                                  #                                  
# The data frame seer_risk below is equivalent to seeroesoph above.# 
#################################################################### 
 
seer_risk$prob10.smk.r<- seer_risk$prob.smk.r*10 
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#################################################################### 
# Fit the Cox regression model, with and without adjustment for    # 
# the potential confounders age and disease stage.                 # 
#################################################################### 
 
library(survival) 
 
p.smk.r <- coxph(Surv(survmonth,status1==1~prob10.smk.r, 
                 data=seer_risk) 
summary(p.smk.r) 
p.smk.r.agestg <- coxph(Surv(survmonth,status1==1)~prob10.smk.r+ 
                        agegrp+stage, data=seer_risk) 
summary(p.smk.r.agestg) 
 
 
#################################################################### 
# Conduct subgroup analysis by histological type. In this case     # 
# adenocarcinoma.                                                  # 
#################################################################### 
 
 
SCCAC <- seer_risk[complete.cases(seer_risk$type),] 
AC <- seer_risk[SCCAC$type==2,] 
 
ac.p.smk.r <- coxph(Surv(survmonth,status1==1~prob10.smk.r,data=AC) 
summary(ac.p.smk.r) 
ac.p.smk.r.agestg <- coxph(Surv(survmonth,status1==1)~prob10.smk.r+ 
                                agegrp+stage,data=AC) 
summary(ac.p.smk.r.agestg) 
 
#################################################################### 
 
 

Chapter 5 

The following R code segment explains the process used to match SEER OC cases 

with randomly selected BRFSS health survey respondents. In this example, a 5-year lag is 

incorporated from BRFSS health survey to the SEER OC case record. This simulates health 

behaviour 5-years prior to OC diagnosis. 

################################################################## 
# Read in the SEER OC data set and adjust category codes and     # 
# to ensure compatibility with the BRFSS health survey data.     # 
################################################################## 
 
load(".../all_oesophagael_2001_2015.RData") 
... 
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################################################################## 
# Given that the earliest available BRFSS data set is 2001 and   # 
# given a built-in 5-year lag between health behaviour and       # 
# cancer diagnosis, the earliest cancer data set used is 2006.   # 
################################################################## 
 
seeroesoph <- seeroesoph[seeroesoph$Yeardiag>=2006 & 
                         seeroesoph$Yeardiag<=2015,] 
 
################################################################## 
# The outcome variable is survival status at 1-year              # 
# coded as alive or dead. Records censored at less than 1-year   # 
# are excluded, those censored at 1-year or more are alive, etc  # 
################################################################## 
 
n <- dim(seeroesoph)[1] 
seeroesoph$dead1y <- rep(-1,n) 
for(t in 1:n) { 
  if(seeroesoph$survmonth[t]>=12 ) { 
         seeroesoph$dead1y[t]<-0 
      }  
  else { 
    if(seeroesoph$status1[t]==1 & seeroesoph$survmonth[t]<12) { 
         seeroesoph$dead1y[t]<-1 
      } 
    }  
  } 
seeroesoph <- seeroesoph[seeroesoph$dead1y~=-1,] 
 
################################################################## 
# Each OC case belongs to a particular year by age by sex by     # 
# martial status by race by State cluster. This adds a cluster   # 
# label to each OC case.                                         # 
##################################################################  
 
seeroesoph$Key <- paste(seeroesoph$year,seeroesoph$sex, 
                        seeroesoph$agegrp,seeroesoph$marital2, 
                        seeroesoph$race,seeroesoph$state, sep="~") 
 
################################################################## 
# Some demographic clusters contain more than one OC case.       # 
# Here the clusters which contain at least one OC case are       # 
# listed.                                                        # 
################################################################## 
 
ks <- unique(c(seeroesoph$Key))                     
 
################################################################## 
# Now read in the BRFSS health survey data, make variables       # 
# compatible with SEER exclude data records which will not match # 
# due to the 5-year time lag, missing data, etc.# 
################################################################## 
 
load(".../BRFSS_short.RData") 
... 
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brfss_short <- brfss_short[brfss_short$year>=2001 & 
                          brfss_short$year<=2010,]  
brfss_short <- brfss_short[complete.cases( 
                           brfss_short[,c(1,2,3,4,9,10)]),] 
... 
 
################################################################## 
# Specify the OC cases’ year and age group which each BRFSS      # 
# survey data record matches with and add the corresponding      # 
# cluster label.                                                 # 
################################################################## 
 
brfss_short$year <- recode(brfss_short$year,"2001=2006; 
                           2002=2007;2003=2008;2004=2009;2005=2010; 
                           2006=2011;2007=2012;2008=2013;2009=2014; 
                           2010=2015;2011=2016;2012=2017;2013=2018; 
                           2014=2019;2015=2020") 
brfss_short$agegrp<- recode(brfss_short$agegrp, 
"6=7;7=8;8=9;9=10;10=11;11=12;12=13;13=14;14=15;15=16;16=17;17=17") 
 
brfss_short$Key <- paste(brfss_short$year,brfss_short$sex, 
                         brfss_short$agegrp,brfss_short$marital2, 
                         brfss_short$race,brfss_short$state,sep="~") 
 
 
################################################################## 
# Exclude BRFSS health survey data from demographic clusters     # 
# where there are no OC cases and vice-versa.                    # 
##################################################################  
 
brfss_short <- brfss_short[brfss_short$Key%in%ks,]  
ks_brfss <- unique(c(brfss_short$Key)) 
seeroesoph <- seeroesoph[seeroesoph$Key%in%ks_brfss,]  
ks <- unique(c(seeroesoph$Key)) 
 
################################################################## 
# To avoid cumulating missing values across the health behaviour # 
# variables, each health behaviour was analysed separately.      # 
################################################################## 
 
brfss_short$ID <- seq.int(nrow(brfss_short)) 
 
brfss_smoker <-brfss_short[complete.cases(brfss_short$smoker), 
                           c(1,2,3,4,7,8,9,13,14)] 
brfss_binge <- brfss_short[complete.cases(brfss_short$rfbinge), 
                           c(1,2,3,4,5,7,8,13,14)] 
... 
rm(brfss_short) 
 
#################################################################### 
# For each OC case, randomly select (without replacement) two      # 
# BRFSS data records from the same demographic cluster. Record     # 
# the behaviour of both BRFSS health survey records onto the       # 
# OC case’s data record.                                           #  
#################################################################### 
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## start a new data frame to record the 100 data sets 
 
loop <- 0; year<-0; status1<-0; survmonth<-0; sex<-0; agegrp<-0; 
marital2<-0; race<-0; curative<-0; stage<-0; state<-0; type<-0; 
dead1y <- 3; Key <-"2005~0~17~3~1~CA";  
smoker1<-3; smoker2<-3; binge1<-3; binge2<-3; ... 
 
samples <- data.frame(year,status1,survmonth,sex,agegrp,marital2, 
                      race,curative,stage,state,type,dead1y,Key, 
                      smoker1,smoker2,binge1,binge2,...,loop) 
 
 
## repeat the random selection 100 times, to create 100 data sets 
 
for(loop in 1:100) { 
   
## start a new data frame to record an individual data set 
   
year<-0; status1<-0; survmonth<-0; sex<-0; agegrp<-0; marital2<-0; 
race<-0; curative<-0; stage<-0; state<-0; type<-0; dead1y <- 3 
Key <-"2005~0~17~3~1~CA";  
smoker1<-3; smoker2<-3;binge1<-3; binge2<-3; ... 
 
sample <- data.frame(year,status1,survmonth,sex,agegrp,marital2, 
                 race, curative,stage,state,type,dead1y,Key, 
                 smoker1,smoker2,binge1,binge2,...) 
 
## address each demographic cluster one at a time     
 
for(k in ks) { 
 
## pull out all of the BRFSS health survey records in that cluster 
 
  miniseer <- seeroesoph[k==seeroesoph$Key,] 
  mini_smoker <- brfss_smoker[k==brfss_smoker$Key,] 
  mini_binge <- brfss_binge[k==brfss_binge$Key,] 
  ... 
 
  n_seer <-dim(miniseer)[1] 
  n_smoker <- dim(mini_smoker)[1] 
  n_binge <- dim(mini_binge)[1] 
  ... 
 
## randomise the order of BRFSS records within the cluster  
 
  mini_smoker$order <- runif(n_smoker,0,1) 
  mini_binge$order <- runif(n_binge,0,1) 
  ... 
 
  mini_smoker2 <- mini_smoker[order(mini_smoker$order),] 
  mini_binge2 <- mini_binge[order(mini_binge$order),] 
  ... 
 
## If there is an odd number of number of BRFSS records, 
## ignore the last. It can never be part of the two matches. 
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  if (n_smoker %% 2 !=0) {n_smoker <- n_smoker-1}  
 
## Write two randomly ordered BRFSS health behaviours side-by-side  
## on a single data line. 
 
  if(n_smoker>=2) { 
    n2_smoker <- n_smoker/2 
    mini_smoker3a <- mini_smoker2[1:n2_smoker,7] 
    mini_smoker3b <- mini_smoker2[(n2_smoker+1):n_smoker,7] 
    mini_smoker3 <- data.frame(cbind(mini_smoker3a,mini_smoker3b)) 
    mini_smoker3 <- rename(mini_smoker3,c("mini_smoker3a"="smoker1", 
                           "mini_smoker3b"="smoker2")) 
  } 
 
  if (n_binge %% 2 !=0) {n_binge <- n_binge-1}  
  if(n_binge>=2) { 
    n2_binge <- trunc((n_binge+1)/2) 
    mini_binge3a <- mini_binge2[1:n2_binge,5] 
    mini_binge3b <- mini_binge2[(n2_binge+1):n_binge,5] 
    mini_binge3 <- data.frame(cbind(mini_binge3a,mini_binge3b)) 
    mini_binge3 <- rename(mini_binge3, 
c("mini_binge3a"="binge1","mini_binge3b"="binge2")) 
  } 
... 
 } 
 
## This macro adds each pair of health behaviours to next OC  
## data record from the same cluster, (checking for instances  
## where there are fewer pairs of health behaviours than OC cases). 
 
combine.df <- function(x,y) { 
  rows.x <- nrow(x) 
  rows.y <- nrow(y) 
  if (rows.x > rows.y) { 
    diff <- rows.x - rows.y 
    df.na <- matrix(NA, diff, ncol(y)) 
    colnames(df.na) <- colnames(y) 
    cbind(x, rbind(y, df.na)) 
       }  
  else { 
    diff <- rows.y - rows.x 
    df.na <- matrix(NA, diff, ncol(x)) 
    colnames(df.na) <- colnames(x) 
    cbind(rbind(x, df.na), y) 
       } 
  } 
 
## Run the macro. Notice that it is cumulative: the data frame 
## from the previous iteration is fed back into the macro. 
## On the first iteration, the two smoking values are attached to 
## the OC case record, on the second iteration the two binge 
## drinking value are added, etc for all 6 behaviours. 
 
  add_smoker <- combine.df(miniseer,mini_smoker3) 
  add_binge <- combine.df(add_smoker,mini_binge3) 
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  ... 
 
## Any data records created beyond the available OC cases will 
## have missing OC case data, including year. This trims any 
## behaviour only data records from the data set. 
 
  sample1 <- add_smkalc[complete.cases(add_smkalc$year),] 
 
## Add the data from this demographic cluster to the data frame 
 
  sample <- rbind(sample,sample1) 
  } 
 
## Number this data frame and add it (minus the first dummy line)  
## to the 100 samples data frame 
 
sample <- sample[-1,] 
sample$loop  <- rep(loop,dim(sample)[1]) 
samples <- rbind(samples,sample) 
} 
 
samples <- samples[-1,] 
 
## Save the 100 repetitions of the data set with imputed behaviours. 
 
save(samples,file=".../sample_5yearlag.RData") 
 
#################################################################### 
 

Having created 100 data sets with two random cold deck imputed values for each 

health behaviour, these two imputed values were cross-tabulated and the results recorded for 

use in the eventual estimation of the relative risks and associated 95% confidence intervals. 

Specifically, for each of 6 behaviours in each of the 100 data sets the cell counts from the 

cross-tabulation (values E, F, G and H values defined in Table 5.5) and the correlation 

coefficient were recorded. The (first) imputed behaviour was cross-tabulated with 1-year 

survival and recorded the cell counts (the values I, J, K and L defined in Table 5.12). This 

level of detail formed a basis from which a variety of intermediatory and diagnostic statistics 

could be created and tested.  
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The calculation of age-adjusted relative risk using Cochran-Mantel-Haenszel method 

has been added into the same loop. This attenuated relative risk, uncorrected for 

misclassification, is also an input into the final analyses.   

#################################################################### 
# Load the 100 data sets with random cold deck imputed behaviours  # 
#################################################################### 
 
load(".../sample_5yearlag.RData") 
 
 
#################################################################### 
# These analyses were repeated for various subgroups – this is how # 
# squamous cell carcinomas would have been selected.               # 
#################################################################### 
 
#samples <- samples[complete.cases(samples$type),] 
#samples <- samples[samples$type==1,] 
 
#################################################################### 
# For each of the 100 data sets for each of the 6 behaviours       # 
# record cell frequencies from the cross-tabulation of the two     # 
# imputed values for the behaviour (E, F, G, H) and associated     # 
# correlation. Also record the cell frequencies from the cross-    # 
# tabulation of imputed behaviour against observed survival status # 
# at 1-year (I, J, K, L) for each of the 6 behaviours.             # 
#################################################################### 
 
## Create data frame for recording the results 
 
loop<-0; age<--1;  
n_sm<--1;E_sm<--1;F_sm<--1;G_sm<--1;H_sm<--1;I_sm<--1;J_sm<--
1;K_sm<--1;L_sm<--1; 
n_bi<--1;E_bi<--1;F_bi<--1;G_bi<--1;H_bi<--1;I_bi<--1;J_bi<--
1;K_bi<--1;L_bi<--1;  
... 
cor_sm<--1;cor_bi<--1; ... 
rrcmh_sm<--1;rrcmh_bi<--1;rrcmh_dr<--1; ... 
rrcmh2_sm<--1;rrcmh2_bi<--1; ... 
 
results <- data.frame(loop,age, 
                      n_sm,E_sm,F_sm,G_sm,H_sm,I_sm,J_sm,K_sm,L_sm, 
                      n_bi,E_bi,F_bi,G_bi,H_bi,I_bi,J_bi,K_bi,L_bi, 
                      ...,cor_sm,cor_bi,...,rrcmh_sm,rrcmh_bi,..., 
                      rrcmh2_sm,rrcmh2_bi,...) 
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## This function returns all the cell counts and correlations 
## for a single data set. 
 
extract.results <- function(z) { 
 
  # smoker 
  rrm_tab_sm<-table(z$smoker1,z$dead1y) 
  I_sm <- rrm_tab_sm[2,2] 
  J_sm <- rrm_tab_sm[2,1] 
  K_sm <- rrm_tab_sm[1,2] 
  L_sm <- rrm_tab_sm[1,1] 
  n_sm <- sum(rrm_tab_sm) 
 
  rel_tab_sm <- table(z$smoker1,z$smoker2) 
  E_sm <- rel_tab_sm[2,2] 
  F_sm <- rel_tab_sm[2,1] 
  G_sm <- rel_tab_sm[1,2] 
  H_sm <- rel_tab_sm[1,1] 
 
  cor_sm <- cor.test(z$smoker1,z$smoker2)$estimate 
 
# binge 
  rrm_tab_bi<-table(z$binge1,z$dead1y) 
  I_bi <- rrm_tab_bi[2,2] 
  J_bi <- rrm_tab_bi[2,1] 
  K_bi <- rrm_tab_bi[1,2] 
  L_bi <- rrm_tab_bi[1,1] 
  n_bi <- sum(rrm_tab_bi) 
   
  rel_tab_bi <- table(z$binge1,z$binge2) 
  E_bi <- rel_tab_bi[2,2] 
  F_bi <- rel_tab_bi[2,1] 
  G_bi <- rel_tab_bi[1,2] 
  H_bi <- rel_tab_bi[1,1] 
 
  cor_bi <- cor.test(z$binge1,z$binge2)$estimate 
 
  ...   
 
  loop.result <- data.frame(loop, age, 
                      n_sm,E_sm,F_sm,G_sm,H_sm,I_sm,J_sm,K_sm,L_sm, 
                      n_bi,E_bi,F_bi,G_bi,H_bi,I_bi,J_bi,K_bi,L_bi, 
                      ...,cor_sm,cor_bi,...) 
  return(loop.result) 
}       
 
## All 100 data sets are stored consecutively in the same data 
## frame. 'looplen' is the number of data records per data set. 
 
looplen <- dim(samples)[1]/100 
 
## For each of the 100 data sets ... 
 
for(i in 1:100) { 
  start <- (i-1)*looplen+1 
  end <- (start-1)+looplen 
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  sample <- samples[start:end,] 
   
## extract the required cell counts and correlations. 
  age <- 0 
  loop.result <- extract.results(sample) 
 
 
## Then stratify the data set by age ... 
 
sample8<- sample[sample$agegrp==8,] 
sample9 <- sample[sample$agegrp==9,] 
... 
 
## and for each age, record the numeric elements for the numerator 
## and denominator of the Cochran-Mantel-Haenszel relative risk.  
 
sm_rr_tab8 <- table(sample8$smoker1,sample8$dead1y);  
n8_sm<-sum(sm_rr_tab8) 
top8_sm<-0; bot8_sm <-0 
if(dim(sm_rr_tab8)[1]==2) { 
  top8_sm <- sm_rr_tab8[2,2]*(sm_rr_tab8[1,2]+sm_rr_tab8[1,1]) 
  bot8_sm <- sm_rr_tab8[1,2]*(sm_rr_tab8[2,2]+sm_rr_tab8[2,1]) 
} 
sm_rr_tab9 <- table(sample9$smoker1,sample9$dead1y); n9_sm<-
sum(sm_rr_tab9) 
top9_sm <- sm_rr_tab9[2,2]*(sm_rr_tab9[1,2]+sm_rr_tab9[1,1]) 
bot9_sm <- sm_rr_tab9[1,2]*(sm_rr_tab9[2,2]+sm_rr_tab9[2,1]) 
... 
 
## Calculate the Cochran-Mantel-Haenszel relative risk for this  
## data set. 
 
rrcmh2_sm <-top8_sm/n8_sm+top9_sm/n9_sm+...+top17_sm/n17_sm)/ 
           (bot8_sm/n8_sm+bot9_sm/n9_sm+...+bot17_sm/n17_sm)           
 
## Store all of the results for this data set and repeat. 
 
loop.result1 <- cbind(loop.result,rrcmh_sm,rrcmh_bi,..., 
                      rrcmh2_sm,rrcmh2_bi,...) 
results <- rbind(results, loop.result1) 
} 
 
## Save the data frame containing the results from each of  
## the 100 data sets. 
 
results <- results[-1,] 
save(results,file=".../samp_result_5yearlag.RData") 
 
#################################################################### 
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The cross-tabulations, correlations and attenuated relative risks can now be processed 

to estimate 𝑝𝑝𝑐𝑐 the proportion of OC cases who smoked, 𝑝𝑝𝑒𝑒 the proportion of the wider population 

who smoked (assumed equal to 𝑝𝑝𝑐𝑐), 𝑠𝑠 the improvement in matching derived from the matching 

variables and the association between true and imputed health behaviours (summarised as expected 

cell sizes A, B, C and D) described in Table 5.11. The misclassification adjusted relative risk can be 

estimated from the observed relative risk from imputed behaviours using  

𝑅𝑅𝑅𝑅𝑇𝑇 =  
𝐶𝐶 − 𝐶𝐶𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖𝐷𝐷𝑅𝑅𝑅𝑅𝑖𝑖
𝑝𝑝𝑖𝑖𝐵𝐵𝑅𝑅𝑅𝑅𝑖𝑖 − 𝐴𝐴 + 𝐴𝐴𝑝𝑝𝑖𝑖

 

derived immediately after Table 5.12. Finally, the excess number of OC cases with correctly 

imputed behaviour codes (such as true smokers imputed to be smokers and true non-smoker 

imputed to be non-smokers) relative to the number expected by chance alone is calculated as 

a measure of the amount of information conveyed though the imputation process. 

Results are presented as medians and empirical 95% confidence intervals (0.025 and 

0.975 percentiles) across the 100 data sets. 

#################################################################### 
# Calculate intermediate statistics, including the relative        # 
# risk from the imputed behaviour                                  # 
#################################################################### 
 
results$pp_sm <- ((results$E_sm+results$F_sm)/results$n_sm + 
                  (results$E_sm+results$G_sm)/results$n_sm)/2 
results$pc_sm <- results$pp_sm 
results$ms_sm <- sqrt((results$E_sm/results$n_sm-results$pp_sm^2)/ 
                  (results$pp_sm*(1-results$pp_sm))) 
excess_sm <- results$n_sm*((results$pc_sm*(1-results$pp_sm))* 
             results$cor_sm) 
results$RR1_sm <- (results$I_sm/(results$I_sm+results$J_sm))/ 
                  (results$K_sm/(results$K_sm+results$L_sm)) 
 
 
#################################################################### 
# Estimate the true relative risk using the relative risk          # 
# from the imputed behaviours.                                     # 
#################################################################### 
 
results$A1_sm <- results$n_sm*(results$pc_sm*results$pp_sm+ 
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                (results$pc_sm*(1-results$pp_sm))*results$cor_sm) 
results$B1_sm <- results$n_sm*(results$pc_sm*(1-results$pp_sm)- 
                (results$pc_sm*(1-results$pp_sm))*results$cor_sm) 
results$C1_sm <- results$n_sm*(results$pc_sm*(1-results$pp_sm)- 
                (results$pc_sm*(1-results$pp_sm))*results$cor_sm) 
results$D1_sm <- results$n_sm*((1-results$pc_sm)*(1-results$pp_sm)+ 
                (results$pc_sm*(1-results$pp_sm))*results$cor_sm) 
 
results$RRt_sm3 <- (results$C1_sm-results$C1_sm*results$pp_sm- 
                    results$pp_sm*results$D1_sm*results$RR1_sm)/ 
                   (results$pp_sm*results$B1_sm*results$RR1_sm- 
                    results$A1_sm+results$pp_sm*results$A1_sm) 
 
## Repeat for the age-adjusted relative risk 
 
results$RRt_sm_age_adj3<-(results$C1_sm-results$C1_sm*results$pp_sm- 
                     results$pp_sm*results$D1_sm*results$rrcmh2_sm)/ 
                    (results$pp_sm*results$B1_sm*results$rrcmh2_sm- 
                     results$A1_sm+results$pp_sm*results$A1_sm) 
 
#################################################################### 
# Present the results.                                             # 
#################################################################### 
 
## Count how often estimate of the true relative risk was valid 
## (i.e. positive). 
 
RRt_sm <- results$RRt_sm3[results$RRt_sm3>0]  
length(RRt_sm) 
 
## For combined age ... 
 
result_all <- results[results$age==0,] 
 
## present the medians and empirical 95% confidence intervals. 
 
quantile(result_all$n_sm,c(0.025,0.5,0.975)) 
quantile(result_all$pp_sm,c(0.025,0.5,0.975)) 
quantile(result_all$cor_sm,c(0.025,0.5,0.975)) 
quantile(excess_sm,c(0.025,0.5,0.975)) 
quantile(result_all$RR1_sm,c(0.025,0.5,0.975)) 
quantile(RRt_sm,c(0.025,0.5,0.975)) 
quantile(result_all$rrcmh2_sm,c(0.025,0.5,0.975)) 
quantile(RRt_sm_age_adj,c(0.025,0.5,0.975)) 
 
#################################################################### 
 
 

The final coding step was to create simulated survival times corresponding to relative 

risks of 2.0, 1.5, 1.25, 1.0, 0.8, 0.67 and 0.5. Starting with the 100 samples previously 

generated, the first imputed behaviour was designated as the true behaviour and the second as 
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the imputation. The methods in Section 5.3.9 above were then used to randomly generate the 

seven 1-year survival statuses for each of the 6 behaviours.  

Please note the coded formula is mathematically identical to the formula in Section 

5.3.9. 

𝑟𝑟′ =
(𝐵𝐵 + 𝐷𝐷)

1 + 𝑅𝑅𝑅𝑅𝑠𝑠((𝐴𝐴 + 𝐵𝐵) (𝐶𝐶 + 𝐷𝐷)⁄ ) 

=
(𝐵𝐵 + 𝐷𝐷)

�(𝐶𝐶 + 𝐷𝐷) + 𝑅𝑅𝑅𝑅𝑠𝑠(𝐴𝐴 + 𝐵𝐵)� (𝐶𝐶 + 𝐷𝐷)⁄
 

=
(𝐴𝐴 + 𝐶𝐶)(𝐶𝐶 + 𝐷𝐷)

𝑅𝑅𝑅𝑅𝑠𝑠(𝐴𝐴 + 𝐵𝐵) + (𝐶𝐶 + 𝐷𝐷) 

#################################################################### 
# Set up a data frame to record the results                        # 
#################################################################### 
 
... 
 
#################################################################### 
# Determine how many data records to add into each simulated data  # 
# set.                                                             # 
#################################################################### 
 
looplen <- dim(samples)[1]/100 
 
## For each of the 100 data sets ... 
 
for(i in 1:100) { 
 
  start <- (i-1)*looplen+1 
  end <- (start-1)+looplen 
  sample <- samples[start:end,] 
 
#################################################################### 
# Designate the first imputed value of each behaviour as the true  # 
# value of that behaviour then randomly create 7 survival statuses # 
# for each of the 6 behaviours corresponding to true relative      # 
# risks of 2.0, 1.5, 1.25, 1.0, 0.8, 0.67 and 0.5 using the method # 
# derived in Section 5.3.9.                                        # 
#################################################################### 
 
  ... 
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## Record the proportion of designated smokers and non-smokers in 
## the data set, A+B and C+D. 
 
  wtab_sm <- table(sample$smoker1,sample$dead1y) 
  wtab_ab_sm <- wtab_sm[2,1]+wtab_sm[2,2] 
  wtab_cd_sm <- wtab_sm[1,2]+wtab_sm[1,1] 
 
## Set the true relative risk to 0.5 and calculate the expected 
## proportion of deaths among the smokers and among the non-smokers 
 
  sim_rr <- 0.50 
  mult50_sm <- sim_rr*(wtab_ab_sm/wtab_cd_sm) 
  wtab50_c_sm <- (wtab_sm[2,2]+wtab_sm[1,2])/(1+mult50_sm) 
  wtab50_a_sm <- wtab_sm[2,2]+wtab_sm[1,2]-wtab50_c_sm 
  sim_prob_died50_sm <- wtab50_a_sm/wtab_ab_sm 
  sim_prob_died50_nonsm <- wtab50_c_sm/wtab_cd_sm 
 
## Repeat for all other relative risks and all other behaviours 
 
  sim_rr <- 0.66 
  mult66_sm <- sim_rr*(wtab_ab_sm/wtab_cd_sm) 
  wtab66_c_sm <- (wtab_sm[2,2]+wtab_sm[1,2])/(1+mult66_sm) 
  wtab66_a_sm <- wtab_sm[2,2]+wtab_sm[1,2]-wtab66_c_sm 
  sim_prob_died66_sm <- wtab66_a_sm/wtab_ab_sm 
  sim_prob_died66_nonsm <- wtab66_c_sm/wtab_cd_sm 
  ... 
 
## Set up vectors to record the imputed survival status under 
## each of the 7 relative risks across each of the 6 behaviours. 
 
  sample$sim_died1y50_sm <- rep(-1,looplen) 
  sample$sim_died1y66_sm <- rep(-1,looplen) 
  ... 
 
## Randomly allocate smokers 1-year survival status and non-smokers 
## 1-year survival status to produce the required relative risk  
 
  for(w in 1:looplen) { 
    if(!is.na(sample$smoker1[w])) { 
      if(sample$smoker1[w]==1 & sim_prob_died50_sm>0 & 
                   sim_prob_died50_sm<1)  
         sample$sim_died1y50_sm[w]<- 
           sample(c(0,1),1,replace=TRUE,p=c(1-sim_prob_died50_sm, 
                   sim_prob_died50_sm)) 
      if(sample$smoker1[w]==0 & sim_prob_died50_nonsm>0 &  
                   sim_prob_died50_nonsm<1) 
         sample$sim_died1y50_sm[w]<- 
           sample(c(0,1),1,replace=TRUE,p=c(1-sim_prob_died50_nonsm, 
                 sim_prob_died50_nonsm)) 
      if(sample$smoker1[w]==1 & sim_prob_died66_sm>0 & 
                   sim_prob_died66_sm<1) 
         sample$sim_died1y66_sm[w]<- 
          sample(c(0,1),1,replace=TRUE,p=c(1-sim_prob_died66_sm, 
                   sim_prob_died66_sm)) 
      if(sample$smoker1[w]==0 & sim_prob_died66_nonsm>0 & 
                   sim_prob_died66_nonsm<1) 
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         sample$sim_died1y66_sm[w]<- 
          sample(c(0,1),1,replace=TRUE,p=c(1-sim_prob_died66_nonsm, 
                 sim_prob_died66_nonsm)) 
     ... 
 
    } 
  } 
 
  sample$sim_died1y50_sm <- recode(sample$sim_died1y50_sm,"-1=NA") 
  sample$sim_died1y66_sm <- recode(sample$sim_died1y66_sm,"-1=NA") 
  ... 
... 
 
#################################################################### 
 

As with the analyses above, before this loop was closed, the two simulated behaviours were 

cross-tabulated and also behaviour against 1-year survival status were cross-tabulated and 

cell frequencies were saved for analysis. 

The final analyses, presented in ‘Section 5.4 Further exploration of matching’ were to 

explore what might happen if the imputed proportion of OC cases who were pre-diagnosis 

smokers, were an underestimate of the true proportion. The R code for this simulation is 

presented below.  

 
################################################################## 
# Explore what might happen if the proportion of pre-diagnosis   # 
# smokers in OC is an underestimate of the true proportion       # 
################################################################## 
 
set.seed(1111) 
 
## Create a storage device for results from the 100 iterations 
i<--1; p_t_sim<--1; RR_t<--1; p_i_sim<--1; phi_t<--1;   
phi_i<--1; RR_i<--1; RR_corrected<--1; RR_approx <--1 
 
res <- data.frame(cbind(i,p_t_sim,RR_t,p_i_sim,phi_t,phi_i,RR_i, 
                        RR_corrected,RR_approx) 
 
## Simulate 100 data sets 
for(i in 1:100) { 
 
################################################################## 
# Step 1 Set the population parameters.                          # 
################################################################## 
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## set the sample size  
n <- 27835  
 
## set the probability of dying with 1 year post diagnosis 
prob_dead <- 14927/27835  
 
## set the 'true' proportion of smokers in OC cases 
p_t <- 0.318    
 
## set the 'imputed' proportion of smokers in OC cases 
p_i <- 0.159    
 
################################################################## 
# Step 2 Randomly allocate 'true' pre-diagnosis smoking status   # 
#        and 'true' survival status, with rr=2.0.                # 
################################################################## 
 
rr <- 2  
 
## Apply the formula in Section 5.3.9 to determine the  
## proportion in each cell of the relative risk table,  
## for the given RR=2. 
c_t <- (prob_dead*(1-p_t))/(rr*p_t+(1-p_t)) 
a_t <- prob_dead-c_t 
b_t <- p_t-a_t 
d_t <- (1-p_t)-c_t 
 
# Draw a random sample with the desired proportions 
sm1 <- sample(1:4, n, replace=TRUE,prob=c(a_t,b_t,c_t,d_t)) 
 
## Code the 'true' smoking status (smoking1) and survival  
## status (dead) of individuals in each cell of the relative  
## risk table. 
smoker1 <- rep(-1,n) 
dead <- rep(-1,n) 
 
for(i in 1:n) { 
if(sm1[i]==1) {smoker1[i]<-1; dead[i]<-1} 
if(sm1[i]==2) {smoker1[i]<-1; dead[i]<-0} 
if(sm1[i]==3) {smoker1[i]<-0; dead[i]<-1} 
if(sm1[i]==4) {smoker1[i]<-0; dead[i]<-0} 
} 
 
## Confirm the proportion of smokers and relative risk 
tab_t <- table(smoker1,dead); tab_t 
p_t_sim <- (tab_t[2,2]+tab_t[2,1])/sum(tab_t); p_t_sim 
RR_t <- (tab_t[2,2]/(tab_t[2,1]+tab_t[2,2]))/(tab_t[1,2]/ 
        (tab_t[1,1]+tab_t[1,2])); RR_t 
 
################################################################## 
# Step 3: Randomly generate 'imputed' smoking status (smoking2)  # 
#         with prevalence 0.159.                                 # 
################################################################## 
 
p_i <- 0.159 
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## draw the sample 
smoker2 <- sample(c(0,1), n, replace=TRUE,prob=c((1-p_i), p_i)) 
 
## Confirm the prevalence 
table(smoker2) 
prop.table(table(smoker2)) 
 
################################################################## 
# Step 4: Create a relationship between the ‘imputed’ smoking    # 
#         status and ‘real’ smoking status.                      # 
################################################################## 
 
## Combine the variables into a data set. 
comb <- data.frame(cbind(dead,smoker1,smoker2)) 
 
## set the number of matches beyond chance, c 
c<-262 
 
## In first c smoker/non-smoker divergent pairs and the  
## first c non-smoker/smoker divergent pairs, recode 'imputed'  
## smoking status to match 'true' smoking status 
count_sm<-0; count_ns<-0 
 
for(i in 1:n) { 
  if(comb$smoker1[i]==1 & comb$smoker2[i]==0 & count_sm<c) { 
    comb$smoker2[i]<-1; count_sm<-count_sm+1 
    } 
  if(comb$smoker1[i]==0 & comb$smoker2[i]==1 & count_ns<c) { 
    comb$smoker2[i]<-0; count_ns<-count_ns+1 
    } 
} 
 
## confirm the matching 
a_tab <- table(comb$smoker1,comb$smoker2); a_tab 
a_tab_p <- a_tab/sum(a_tab) 
 
## confirm the simulated 'true' smoking status 
p_t_sim <- (a_tab[2,1]+a_tab[2,2])/sum(a_tab); p_sim_t 
 
## confirm the simulated 'imputed' smoking status 
p_i_sim <- (a_tab[1,2]+a_tab[2,2])/sum(a_tab); p_sim_i 
 
## check the correlation between 'true' and 'imputed'  
## smoking status assuming p_t>p_i 
phi_t <- c/(n*p_i_sim*(1-p_t_sim)); phi_t 
 
## check the correlation between 'true' and 'imputed'  
## smoking status assuming p_t=p_i 
phi_i <- c/(n*p_i_sim*(1-p_i_sim)); phi_i 
 
 
################################################################## 
# Step 5: Estimate relative risk using ‘imputed’ smoking status  # 
################################################################## 
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## create the relative risk table 
tab_i <- table(comb$smoker2,comb$dead) 
tab_i  
 
## calculate the attenuated estimate of relative risk, 
## uncorrected for the misclassification errors 
RR_i <- (tab_i[2,2]/(tab_i[2,1]+tab_i[2,2]))/(tab_i[1,2]/ 
        (tab_i[1,1]+tab_i[1,2])) 
RR_i 
 
## estimate of relative risk assuming p_t>p_i 
RR_corrected <- 1 - ((RR_i-1)/((RR_i-1)*p_i_sim*((1-p_t_sim)/ 
                    (1-p_i_sim))*(1-phi_t)-phi_t)) 
RR_corrected 
 
## estimate of relative risk assuming p_t=p_i 
RR_approx<- 1 - ((RR_i-1)/((RR_i-1)*p_i_sim*(1-phi_i)-phi_i)) 
RR_approx 
 
## store the results of this iteration 
loop_res <- data.frame(cbind(i,p_t_sim,RR_t,p_i_sim,phi_t,phi_i, 
                             RR_i,RR_corrected,RR_approx)) 
res <- rbind(res,loop_res)   
} 
 
## read the median results and 95% empirical confidence intervals 
## from the 100 iterations 
res <- res[-1,] 
 
quantile(res$p_i_sim,c(0.025,0.5,0.975)) 
quantile(res$p_t_sim,c(0.025,0.5,0.975)) 
quantile(res$phi_i,c(0.025,0.5,0.975)) 
quantile(res$phi_t,c(0.025,0.5,0.975)) 
quantile(res$RR_corrected,c(0.025,0.5,0.975)) 
quantile(res$RR_approx,c(0.025,0.5,0.975)) 
 
#################################################################### 
 

 

Chapter 6 

The code for data input, imputation and misclassification measurements have been 

reviewed in previous Chapters. The novel coding elements in this Chapter include simulating 

the survival time data, running the corrected score software and producing lattice plots. 
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The first section of R code provides an example of how the simulated data for 

smoking status were produced. The 100 simulated data sets were constructed to have the 

following similarities with the uncensored cases from the SEER OC data set: 

a) the same total number of cases as in the OC cases who died 

b) the same overall rate of misclassification (smokers classified as non-smokers and 

non-smokers classified as smokers) as in the OC cases who died 

c) the same number of cases within each age group as in the OC cases who died 

d) the same proportion of smokers within each age group as in the OC cases who 

died 

e) the same misclassification rate within each age strata as in the OC cases who died. 

Survival times were also simulated to have a distribution as similar as possible as the 

distribution of survival times in the OC cases who died. Preliminary investigations were 

conducted to identify the shape of the distribution in the OC cases who died. Two measures 

of a distribution’s shape are skewness and kurtosis; the third and fourth standardized 

moments of the random variable. The skewness and kurtosis of the observed distribution of 

survival times were compared against a range of standard distributions (normal, uniform, 

exponential, logistic, beta, lognormal and gamma) using the skewness-kurtosis plot generated 

by the descdist() command in the fitdistrplus library in R. The beta distribution was 

the best fit but is rarely used in survival analysis. None of the other distributions appeared 

satisfactory, perhaps because the removal of the censored observations produced artificial 

changes to the distribution. The Weibull distribution was used as it is more commonly used in 

survival analysis. The fitdist() command was used to identify the shape and scale 

parameters of the Weibull model which fitted the observed data most closely then modified 
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these to better align the quartiles of the model with the quartiles in the observed OC survival 

times and to avoid generating any unreasonably long survival times.  

Weibull survival times with specific hazard ratios were simulated using the formula 

from Table II in Bender et al (2005). For each data set 14 sets of survival times were 

generated corresponding to hazard ratios of 2.0, 1.5, 1.25, 1.0, 0.8, 0.67 and 0.50 first in the 

absence of association between age and survival time and then the in the presence of age-

confounding.  

 

#################################################################### 
# Start with the 100 copies of the SEER OC data set which already  # 
# contain the imputed health behaviours on each data record.       # 
#################################################################### 
 
load(".../sample_5yearlag_inc2015.RData") 
 
#################################################################### 
# The simulations are only be performed for smoking status.        # 
#################################################################### 
 
samples <- samples[complete.cases(samples$smoker1),] 
... 
 
#################################################################### 
# The simulations are only performed for uncensored OC cases.      # 
#################################################################### 
 
samples <- samples[samples$status1==1,] 
 
#################################################################### 
# Record the key characteristics of the OC data set:               # 
#   the sample size, the misclassification rate (estimated by      # 
#   the agreement between the two imputed value of smoking status),# 
#   the proportion within each age group, the proportion of smokers# 
#   in each of age group and ....                                  # 
#################################################################### 
 
samp_len <- dim(samples)[1]/100  
agree_sm <- prop.table(table(samples$smoker1,samples$smoker2),1) 
p_age_sm <- prop.table(table(samples$agegrp)) 
p_sm <- prop.table(table(samples$smoker1,samples$agegrp)) 
p_sm2 <- as.vector(p_sm) 
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#################################################################### 
# ... the misclassification rate within each of age strata.        #                                          
#################################################################### 
 
samp_age8 <-samples[samples$agegrp==8,] 
agree_sm_age8 <- prop.table(table(samp_age8$smoker1, 
                            samp_age8$smoker2),1) 
samp_age9 <-samples[samples$agegrp==9,] 
agree_sm_age9 <- prop.table(table(samp_age9$smoker1, 
                            samp_age9$smoker2),1) 
... 
 
 
 
#################################################################### 
# Create 100 simulated data sets, initially just containing the    # 
# data set number, left censoring of survival (all 0), age group,  # 
# 'true' smoking status (smoker1) and 'imputed' smoking status     # 
# (smoker2).                                                       # 
#################################################################### 
 
## Create a data frame to contain the data sets. 
 
set.seed(99) 
loop<-0; time0<-0; agegrp<-0; smoker1<-3; smoker2<-3;  
sims100_sm <-data.frame(cbind(loop,time0,agegrp,smoker1,smoker2))  
 
## start the loop 
 
for(j in 1:100) { 
 
## create the required number of data records and record the data 
## set number and 0 left censoring on each data line. 
 
  sim_sm<-data.frame(rep(1,samp_len)) 
  sim_sm$loop=j 
  sim_sm$time0 <- rep(0,samp_len) 
 
## Within each age group allocate true smoking status(smoker1) in 
## the same proportions as in the OC data set and then randomly 
## sample imputed smoking status (smoker2) to have the same level 
## of misclassification with true smoking status as in the OC data 
## set.  
 
  temp <- sample(1:20, samp_len, replace=TRUE, prob=p_sm2) 
    for(i in 1:samp_len) { 
      if(temp[i]==1) { 
        sim_sm$agegrp[i]<-8; sim_sm$smoker1[i]<-0; 
        sim_sm$smoker2[i]<-sample(0:1, 1, replace=TRUE, 
                           prob=agree_sm_age8[1,]) 
      } 
      else if(temp[i]==2) { 
        sim_sm$agegrp[i]<-8; sim_sm$smoker1[i]<-1; 
        sim_sm$smoker2[i]<-sample(0:1, 1, replace=TRUE, 
                           prob=agree_sm_age8[2,]) 
      } 
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      else if(temp[i]==3) { 
       sim_sm$agegrp[i]<-9; sim_sm$smoker1[i]<-0; 
       sim_sm$smoker2[i]<-sample(0:1, 1, replace=TRUE, 
                          prob=agree_sm_age9[1,]) 
      } 
      else if(temp[i]==4) { 
       sim_sm$agegrp[i]<-9; sim_sm$smoker1[i]<-1; 
       sim_sm$smoker2[i]<-sample(0:1, 1, replace=TRUE, 
                          prob=agree_sm_age9[2,]) 
      } 
      ... 
    } 
 
## Remove the initial dummy column and add the newly simulated data  
## set to the main data frame. 
 
sim_sm<- sim_sm[,-1] 
sims100_sm <- rbind(sims100_sm,sim_sm) 
} 
 
## Remove the initial dummy line and save the initial 100 simulation  
## data sets 
 
sims100_sm <- sims100_sm[-1,] 
save(sims100_sm,file=".../sims100_5yearlag.RData") 
 
 
#################################################################### 
# Explore the shape of the distribution of survival times of OC    # 
# cases who died.                                                  #  
#################################################################### 
 
 
library(fitdistrplus) 
 
## Excluded censored data 
 
samp_died <- sample[sample$status1==1,] 
 
## As some distributions do not allow 0 survival time,  
## 0 months survived was recoded to 0.5 months. 
  
samp_died$survmonth <- samp_died$survmonth+0.5 
descdist(samp_died$survmonth, discrete=FALSE) 
fit_died_W<-fitdist(samp_died$survmonth,"weibull", method="mle") 
 
# This analysis suggests the closest Weibull is shape=0.85, 
# scale=12.3 
... 
# But the shape=0.85, scale=10.5 seemed to align better  
# with the quartiles of the survival times of the observed OC cases  
# who died. 
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#################################################################### 
# Using the method from Bender et al, simulate survival times      # 
# which produce HRs of 2.0,1.5,1.25,1.0, 0.8,0.67,0.5 both for     # 
# when age is not associated with survival and when is associated. #  
#################################################################### 
 
# Define the constants: 
# - the shape (v_d) and scale (l_d) parameters of the Weibull  
#   distribution (note Bender et al and fitdisc() command use  
#   different representations of the scale parameter) 
# - the coefficient of age when fitted as a predictor of survival in 
#   the OC cases who died 
 
v_d <- 0.85; l_d <- (10.5)**(-1/v_d)  
beta_age <- 0.040 
... 
 
## ... and add them to the simulations data frame 
 
sims_sm_len <- dim(sims100_sm)[1] 
sims100_sm$v <- rep(v_d,sims_sm_len) 
sims100_sm$l <- rep(l_d,sims_sm_len) 
 
## Apply Bender et al’s formula to simulate survival times 
## when age is associated with survival 
 
sim_work <- sims100_sm 
 
sim_len <- dim(sim_work)[1] 
sim_work$top <- log(runif(sim_len,0,1)) 
sim_work$beta_age <- rep(beta_age,sim_len) 
 
 
beta_sm_hr2<-log(2); beta_sm_hr15<-log(1.5);  
... 
sim_work$beta_sm_hr2 <- rep(beta_sm_hr2,sim_len)  
sim_work$beta_sm_hr15 <- rep(beta_sm_hr15,sim_len)  
... 
 
 
sim_work$sm_time2 <- (-sim_work$top/(sim_work$l* 
                      exp(sim_work$agegrp*sim_work$beta_age+ 
                      sim_work$smoker1*sim_work$beta_sm_hr2)))** 
                      (1/sim_work$v) 
sim_work$sm_time15 <- (-sim_work$top/(sim_work$l* 
                      exp(sim_work$agegrp*sim_work$beta_age+ 
                      sim_work$smoker1*sim_work$beta_sm_hr15)))** 
                      (1/sim_work$v) 
... 
 
 
## ... and when age is not associated with survival time.  
 
sim_work$sm_time2na <-(-sim_work$top/(sim_work$l* 
                      exp(sim_work$smoker1*sim_work$beta_sm_hr2)))** 
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                      (1/sim_work$v) 
sim_work$sm_time15na<-(-sim_work$top/(sim_work$l* 
                     exp(sim_work$smoker1*sim_work$beta_sm_hr15)))** 
                     (1/sim_work$v) 
... 
 
################################################################## 
# Save the simulated data.                                       # 
################################################################## 
 
sim_work <- sim_work[,-c(6:16)] 
sim_work$status <- 1 
 
save(sim_work,file=”.../sims100_w_time_5yearlag.RData") 
 
################################################################## 

 

Prof David Zucker, Hebrew University, Jerusalem, Israel kindly provided his 

computer code for running the corrected scores method for misclassification correction in 

Cox regression. This code was written in Fortran 77. The program was edited to become a 

subroutine which could be compiled as a shared object (DLL), and then called it from within 

R software using the dyn.load() foreign function interface. 

The data file for the corrected scores subroutine needed to be called ‘input.dat’ and 

needed to contain one line of data per OC case consisting of: 

- censoring status (0=censored, 1=uncensored) 

- time at entry (all 0 in the current data set, diagnosis is time 0) 

- survival time (in months in the current case) 

- behaviour (1=present, 2=absent) 

- optional covariates (include age group here if age-adjusting) 

The instruction file for the corrected scores subroutine needed to be called ‘cntlr.crd’ 

and needed to contain 
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- line 1: sample size, number of categories in the behaviour variable, number 

of predictors with misclassification, number of predictors without 

misclassification, size of the misclassification matrix, some flags to control output 

- lines 2 & 3: values of the misclassified variable (1 and 2 in the current case; 

representing behaviour present and behaviour absent) 

- lines 4 & 5: the misclassification matrix 𝐀𝐀 

- lines 6 to 9: the matrix of partial derivatives of the misclassification matrix with 

respect to its parameters �̇�𝐀 (1 -1 ; 0 0; 0 0; -1 1 in the current case. See Zucker & 

Spiegelman (2008) page 1919.) 

- line 10 to 11: the covariance matrix 𝚪𝚪 of the misclassification parameters (a 2x2 

diagonal matrix in the current case. See Zucker & Spiegelman (2008) page 1919.) 

The results of the corrected score sub-routine are written to a file called ‘ercox.out’. 

The following R code is an example of a call to the corrected score program. 

#################################################################### 
# Read in the OC cases 100 data sets with imputed behaviours.      # 
# In this example the analysis of smoking status is presented.     # 
#################################################################### 
 
load(".../working_5yearlag_inc2015.RData") 
 
dat <- samples[complete.cases(samples$smoker1),c(1,8,4,5,6)] 
 
################################################################## 
# Add time at entry – 0 for all cases                            # 
################################################################## 
 
dat$time0 <- rep(0,dim(dat)[1]) 

 
################################################################## 
# For each of the 100 data sets ...                              # 
################################################################## 

 
 

for(i in 1:100) { 
  sampi <- dat[dat$loop==i,c(1,6,2,3,4)] 
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################################################################## 
# Calculate the agreement statistics between the two             # 
# imputed values of smoking status (the omegas in                # 
# Zucker & Spiegelman)                                           # 
################################################################## 
 
  tab <-table(sampi$smoker1,sampi$smoker2) 

 
  n <- sum(tab) 
  om1 <- tab[1,1]/(tab[1,1]+tab[1,2]) 
  om2 <- tab[2,2]/(tab[2,1]+tab[2,2])  
  
 
################################################################## 
# Calculate the covariance matrix (capital Gamma in              # 
# Zucker & Spiegelman)                                           # 
################################################################## 
  
  th1 <- (tab[1,1]+tab[1,2])/n  
  th2 <- (tab[2,1]+tab[2,2])/n  
  biggam1 <- (om1*(1-om1)/th1)/(n/100) 
  biggam2 <- (om2*(1-om2)/th2)/(n/100) 
 
################################################################## 
# Write the command file cntlr.crd                               # 
################################################################## 
 
  n_sampi <- dim(sampi)[1] 

   
  l1_sm <- c(n_sampi,2, 1, 0, 2, 0, 0) 
  l2 <- 1 
  l3 <- 2 
  l4_sm <- c(om1, 1-om1)   # correcting for misclassification 
  l5_sm <- c(1-om2, om2)   # correcting for misclassification 
  l6 <- c(1,-1) 
  l7 <- c(0,0) 
  l8 <- c(0,0) 
  l9 <- c(-1,1) 
  l10_sm <- c(biggam1,0) 
  l11_sm <- c(0,biggam2) 

   
  write(l1_sm,file=".../cntlr.crd",ncolumns=7,sep=" ",append=FALSE) 
  write(l2,file=".../cntlr.crd",append=TRUE) 
  write(l3,file=".../cntlr.crd",append=TRUE) 
  write(l4_sm,file=".../cntlr.crd",append=TRUE) 
  write(l5_sm,file=".../cntlr.crd",append=TRUE) 
  write(l6,file=".../cntlr.crd",append=TRUE) 
  write(l7,file=".../cntlr.crd",append=TRUE) 
  write(l8,file=".../cntlr.crd",append=TRUE) 
  write(l9,file=".../cntlr.crd",append=TRUE) 
  write(l10_sm,file=".../cntlr.crd",append=TRUE) 
  write(l11_sm,file=".../cntlr.crd",append=TRUE) 

   
################################################################## 
# Write the data file input.dat                                  # 
################################################################## 
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  sampi <- sampi[,-5] 
  sampi$smoker1 <- recode(sampi$smoker1,"1=2;0=1"); 
  write.table(sampi,".../input.dat", append=FALSE, sep=" ", 

              dec=".", row.names=FALSE, col.names=FALSE) 
   
 

 
################################################################## 
# Run the corrected score subroutine (here called wking.dll)     # 
################################################################## 

   
  dyn.load(".../wking.dll") 
  is.loaded("wking") 
  .Fortran("wking") 
  dyn.unload(".../wking.dll") 
  is.loaded("wking") 

   
} 

 
 
################################################################## 
# Read the fitted coefficients from the corrected score          # 
# misclassification corrected Cox regression from the file       # 
# ercox.out.                                                     # 
################################################################## 
 
sm_res <- read.table(".../ercox.out") 
 
################################################################## 
# Convert the coefficient of smoking status into a hazard ratio  #                                                      
# and present the results as the median HR and empirical 95%     # 
# confidence interval. 
################################################################## 
 
sm_res$HR <- exp(temp$V2) 
... 
quantile(sm_res$HR,c(0.50,0.025,0.975)) 
 
################################################################## 

 

The following R code demonstrates the code used to create lattice plots: in this case 

Figure 6.11. 

################################################################### 
# Read the results for plotting from the Excel file where they    # 
# were stored and ...                                             # 
################################################################### 
 
library(lattice) 
library(readxl) 
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agestrata <- read_excel(".../sim5y_age_strata.xlsx", sheet="Sheet1") 
 
## add labels and ... 
 
agestrata$HR_f <- factor(agestrata$HR,levels=c(2,1.5,1.25,1,0.8, 
                         0.67,0.5), 
                         labels=c("HR=2.00", HR=1.50","HR=1.25", 
                         "HR=1.00", "HR=0.80","HR=0.67","HR=0.50")) 
agestrata$method_f <- factor(agestrata$method,levels=c(1,2,3,4,5), 
                             labels=c("Direct","Direct nx10","I2C2", 
                             "I2C2 nx10", "I2C2 nx20")) 
 
## select the categories to display. 
 
ages1 <- agestrata[agestrata$method<=2,] 
ages1 <- ages1[ages1$agegrp!=45,] 
 
ages2 <- agestrata[agestrata$method==1 | agestrata$method==3,] 
ages2 <- ages2[ages2$agegrp!=45,] 
ages2 <- droplevels(ages2) 
 
 
## Where more than 5 data sets returned extreme results exclude 
## the results. 
 
n<-dim(ages2)[1] 
for(i in 1:n) { 
   if(ages2$errors[i]>5) { 
      ages2$median[i]<-NA;ages2$lcl[i]<-NA;ages2$ucl[i]<-NA 
      } 
    } 
 
################################################################### 
# Formatting commands within each pane.                           # 
################################################################### 
 
 
my.panel<-function(x, y, subscripts, col, pch, group.number, ...) { 
## state the locations for the confidence intervals 
        low95 <- log2(ages2$lcl)[subscripts] 
        up95 <- log2(ages2$ucl)[subscripts] 
        myjitter <- c(-0.5,0.5) 
## draw 95% confidence interval 
        panel.arrows(x+myjitter[group.number], low95, 
                     x+myjitter[group.number], up95, angle=90, 
                     code=3, length=.05, col=col) 
## connect means with line segments 
        panel.xyplot(x+myjitter[group.number], y, col='white',  
                     pch=16) 
        panel.xyplot(x+myjitter[group.number], y, col=col,  
                     pch=pch, ...) 
## add grid lines 
       panel.abline(h=0, col='lightgrey', lty=1) 
       } 
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################################################################### 
# Define the plot variables and overall formatting.               # 
################################################################### 
 
xyplot(median~agegrp | HR_f, groups=method_f, data=ages2,  
       xlab ='Age Group', ylab='Estimated Hazard Ratio (95% CI)', 
       col=c(1,1), pch=c(16,15), ly=ages2$lcl, uy=ages2$ucl, 
       layout=c(2,4), as.table=TRUE, ylim=c(0.2,3.0), 
       type="o", lty=3, 
       scales=list(y=list(log=2,alternating=1,at=c(0.5,0.67,0.8,1.0, 
                          1.25,1.5,2)), 
                   x=list(alternating=3,at=c(37,42,47,52,57,62,67, 
                          72, 77,85), rot=45, 
                          labels=c("35-39y","40-44y","45-49y", 
                             "50-54y","55-59y","60-64y","65-69", 
                             "70-74y","75-79y","80+y"))), 
       panel.groups=my.panel, panel="panel.superpose", 
       par.settings = list(strip.background=list(col="white"))) 
 
################################################################### 
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