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Evolutionary graph theory (EGT) investigates the Moran birth–
death process constrained by graphs. Its two principal goals are
to find the fixation probability and time for some initial
population of mutants on the graph. The fixation probability of
graphs has received considerable attention. Less is known
about the distribution of fixation time. We derive clean, exact
expressions for the full conditional characteristic functions
(CCFs) of a close proxy to fixation and extinction times. That
proxy is the number of times that the mutant population size
changes before fixation or extinction. We derive these CCFs
from a product martingale that we identify for an evolutionary
graph with any number of partitions. The existence of that
martingale only requires that the connections between those
partitions are of a certain type. Our results are the first
expressions for the CCFs of any proxy to fixation time on a
graph with any number of partitions. The parameter
dependence of our CCFs is explicit, so we can explore how
they depend on graph structure. Martingales are a powerful
approach to study principal problems of EGT. Their
applicability is invariant to the number of partitions in a graph,
so we can study entire families of graphs simultaneously.
1. Introduction
Evolutionary graph theory (EGT) studies how spatial constraints
affect evolutionary processes, e.g. the Moran birth–death process
[1,2]. The original Moran process models two species called
‘mutants’ and ‘residents’ that reproduce and die over time until
either species goes extinct [3]. The difference between the
species is that mutants are chosen to reproduce with a different
probability relative to residents, i.e. mutants have a ‘fitness’. On
a time step, we choose one individual to reproduce and replace
another individual we choose uniformly at random. The
offspring of any individual can replace any other, so there are
no spatial constraints on the process. EGT extends the Moran
process by running it on a graph, where nodes are individuals
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and connections constrain which individuals may be replaced by another’s offspring [4–8]. Two principal
goals of EGT are to find the probability that mutants drive the residents to extinction (i.e. the ‘fixation
probability’), and the distribution of the time it took (i.e. the ‘fixation time’) [9–11]. We can study how
space constrains evolutionary processes by finding the relationship between these quantities and
graph structure.

The fixation probability is well known for the Moran process on various graphs [4,6–8,12–20]. Finding
those graphs’ distributions of fixation and extinction time is a much harder problem [11,21–25]. We can
simplify that problem by imposing some limit, e.g. large population size or weak selection, or by
restricting focus to the distributions’ means [9,22,24,25]. But general, exact and tractable expressions
for those distributions have not been reported for the original Moran process [10,11], let alone for its
extension on graphs.

Martingales offer a different approach to this difficult problem [6,11,26–28]. A martingale is a
conservation statement for certain quantities in a stochastic process. From that conservation statement,
we can extract statistics about those quantities upon fixation or extinction. For example, Wald found a
martingale for the sum of independent and identically distributed (i.i.d.) random variables and the
number of observations in that sum [29–32]. From that martingale, he found the probability that the
sum will hit one stopping barrier before another (i.e. the fixation and extinction probabilities). He also
found the conditional characteristic functions (CCFs) of the number of observations required to hit
one stopping barrier before another (i.e. the fixation and extinction times). Wald’s key assumption is
that the random variables comprising the sum are i.i.d.

The original Moran process is very similar to Wald’s problem [11]. Say Wald’s sum is the mutant
population size of the Moran process at some time. Then the random variables comprising that sum
are the changes in the mutant population size over previous time steps. The number of observations
in the sum is the current time of the process. Let Wald’s stopping barriers represent extinction (the
sum hits 0) and fixation (the sum hits the total population size). We want to find the probability that
the sum hits one barrier before the other, and how many observations are needed to do so.

Unfortunately, we cannot directly apply Wald’s analysis to the Moran process because his key
assumption is not met. The changes in mutant population size over time steps are not independent of
each other (i.e. the transition probabilities are not i.i.d.). But if we eliminate time steps where a
mutant offspring replaces a mutant or a resident offspring replaces a resident, then Wald’s key
assumption is met [11,30]. So we can apply Wald’s analysis to the Moran process if we discard time
steps where the mutant population size does not change. Therefore we can find elegant expressions
for the exact CCFs of the number of mutant population size changes before extinction or fixation, i.e.
the CCFs of the number of ‘active steps’ [23,33]. The fixation and extinction time distributions remain
open problems, but martingales yield clean, elegant and exact expressions for a close proxy to them.

We want to find conditions under which this martingale analysis can be extended to consider the
Moran process on graphs. One condition is that the graph must have connections of a certain type.
We can connect individuals on graphs with a variety of connection types. Undirected connections
allow both mutant and resident offspring to travel in either direction along a graph edge [13,34–36].
Directed connections constrain both species’ offspring to travel in one identical direction along a
graph edge [37,38]. Street connections constrain both species’ offspring to travel in opposite directions
along a graph edge [26]. We call them ‘streets’ because, like traffic, offspring travels along a graph
edge in opposing directions depending on the species of its parent.

For example, a graph’s partitions might represent colonies of sponges on the seabed that emit larval
offspring [39]. If those partitions are connected by streets, then mutant larvae swim away from their
parent in one direction and resident larvae swim away in the other direction. Perhaps the mutation
causes the larval cilia to beat in reverse with respect to the residents [40]. So street connections impose
an extra phenotypical discrepancy between mutants and residents in addition to fitness. That extra
discrepancy impacts fixation probabilities and times, and that impact depends on the structure of the
graph [26].

We will extend Wald’s martingale methodology to analyse the Moran process on graphs with any
number of partitions. We will consider a k-partite street graph as a k-dimensional random walk
between two stopping barriers representing fixation and extinction. We will identify a k-dimensional
product martingale similar in form to Wald’s one-dimensional version. We will then obtain the
fixation probability and the full CCFs of ‘active steps’ from that martingale [23]. Our results are the
first general expressions for the full CCFs of any proxy to fixation time on a graph with more than
two partitions [41]. We only require the elimination of time steps where the mutant population size
does not change, and that the graph’s partitions are connected by streets. The parameter dependence



A = 5

B = 3C = 2

St–1 = [1, 0, 0]

Xt = [0, 1, 0]

ST = [5, 3, 2]

ST = [0, 0, 0]

Figure 1. Schematic of the Moran process on a tripartite street graph and corresponding notation. The left graph is a tripartite street
graph where individuals (blue and red circles) are divided into three partitions with sizes A = 5, B = 3 and C = 2. Street connections
constrain mutants (red circles) to reproduce in one direction around the graph and residents (blue circles) in the other (red and blue
arrows). In this example, mutants reproduce clockwise and residents counter-clockwise. St−1 represents the number of mutants in
each partition on time step t− 1, and Xt is the change in the mutant population size on time step t. On this example time step, the
mutant in partition A replaces a resident in B (enlarged individuals and arrow), so the mutant population in partition B increases by
1. We repeat the Moran process, sequentially selecting individuals to reproduce and die, until all individuals are mutants (upper-
right graph) or residents (lower-right graph). The two graphs on the right represent the two possible absorbing states of ST,
a = [5, 3, 2] and b = [0, 0, 0].
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of our CCFs is explicit, so it is easy to explore how they depend on graph structure. Our results highlight
that martingales scale naturally with dimensionality. So we can consider a street graph with any number
of partitions and the application of martingale analysis does not increase in difficulty. Since martingales
can circumvent the curse of dimensionality, they can tractably analyse entire families of graphs
simultaneously. This property makes martingales particularly powerful tools to study key problems of
EGT.
2. Results
2.1. Problem statement and notation
For an overview of the Moran birth–death process, see [2,5]. To review an application of Wald’s
martingale to the Moran process, see [11]. To review an application of martingales for fixation time
CCFs on bipartite graphs, see [41].

Figure 1 illustrates the Moran birth–death process on a tripartite street graph [26]. A population of
individuals is divided into three partitions of sizes A, B and C, e.g. A = 5, B = 3 and C = 2 in figure 1.
All individuals are either mutants (red circles) or residents (blue circles). There are two differences
between the two species. First, mutants are chosen to reproduce on a time step with a different
probability relative to the residents. This difference is quantified by a ‘fitness parameter’ r that is
intended to model selective advantages or disadvantages [2]. Second, mutant and resident offspring
reproduce in different directions around the graph. In figure 1, mutant offspring go clockwise around
the graph (red arrows), and resident offspring go counter-clockwise around it (blue arrows).

The mutant population on an evolutionary graph with some integer number of partitions k can be
considered as a k-dimensional random walk, where the mutant population size in each partition
corresponds to one dimension of the random walk. To index the partitions, we define an alphabet
a, b, . . ., v with the same number of letters k as there are partitions in the graph. Say the capitalized
letters of that alphabet A, B, . . . , V represent the number of individuals in each partition. For
example, in figure 1, k = 3 partitions in the graph, ω = c (the last letter of our indexing alphabet), and
V ¼ C ¼ 2 individuals are in that partition.

We use bold letters to denote vectors. Let St−1 = [Sa,t−1, Sb,t−1, …, Sω,t−1] be a vector whose elements
represent the mutant population size in each partition on time step t− 1. For example, St−1 = [1, 0, 0] for
the left graph in figure 1. Let Xt = [Xa,t, Xb,t, …, Xω,t] be the change of the mutant population size on time
step t. Figure 1 illustrates one example time step where a mutant from partition A reproduces, and its
offspring replaces a resident in B (enlarged circles and arrow, figure 1). The current state of the
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mutant population size is the sum of its changes over previous time steps, plus its initial state. We write
ST ¼PT

j¼1 Xj þ S0, where S0 = [Sa,0, Sb,0, …, Sω,0] is the initial mutant population size. We continue
making observations of Xt and cumulatively summing them until all individuals are mutants (top
right graph, figure 1) or residents (bottom right graph). The process terminates at one of these two
absorbing states at some random time T.

EGT generally has two main goals. First, we want to find the ‘fixation probability’, i.e. the probability
that the initial mutant population S0 eventually dominants the residents. Let a ¼ ½A, B, . . ., V� (fixation)
and b = [0, 0, …, 0] (extinction) represent the two possible absorbing states of the evolutionary graph. We
denote the fixation probability as PrðST ¼ aÞ ; a and the extinction probability as PrðST ¼ bÞ ¼ 1� a.
Second, we want to find the (conditional) distributions of time steps T required for the graph to
achieve those absorbing states, PrðTjST ¼ aÞ1t¼0 and PrðTjST ¼ bÞ1t¼0.

Those conditional time distributions are very difficult to calculate, even for the simpler fully
connected Moran process [9–11]. Instead, we consider the number of times that the mutant population
size changes before mutants fix or go extinct CT. That is, CT represents the number of ‘active steps’ in
the process [23]. Let Yt denote whether or not the mutant population size changes on time step t:

Yt ¼ 1 if Xt = ½0, 0, . . . , 0�; Yt ¼ 0 if Xt ¼ ½0, 0, . . . , 0�:
Initializing C0 = 0, we can write CT ¼PT

j¼1 Yj. Note that CT depends on T, so we interpret ‘active steps’ as
a proxy to fixation or extinction time [11].

We will identify product martingales that yield α and the full CCFs of CT for k-partite street graphs.
0011
2.2. Extracting absorption probabilities and conditional characteristic functions from a
multidimensional martingale

Assume we have a product martingale of the form [29–32]:

E gCt
Yv
i¼a

fiðgÞSi,t
����St�1, Ct�1

" #
¼ gCt�1

Yv
i¼a

fiðgÞSi,t�1 , ð2:1Þ

where g is a free complex variable, and all fi(g) are functions of g that are independent of St−1. The index i of
the product runs over our whole alphabet a to ω, so there is one function fi(g) for each partition of the
street graph. For example, the tripartite street graph will have three state-independent functions fa(g),
fb(g) and fc(g). i also indexes the elements of St, i.e. the ith element of St is the mutant population size
of the ith partition.

The terms Ct and Si,t in equation (2.1) are sums. The exponential of a sum can be expressed as a
product, so we can write:

E gCt
Yv
i¼a

fiðgÞSi,t
����St�1, Ct�1

" #
¼ E gCt�1gYt

Yv
i¼a

fiðgÞXi,t
Yv
i¼a

fiðgÞSi,t�1

����St�1, Ct�1

" #

¼ gCt�1
Yv
i¼a

fiðgÞSi,t�1E gYt
Yv
i¼a

fiðgÞXi,t

����St�1, Ct�1

" #
:

If we can show that the last conditional expectation equals 1, then equation (2.1) is true. We say that g and
all fi(g) satisfying equation (2.1) define a product martingale.

We can calculate the fixation probability and CCFs of CT from equation (2.1) [30]. Taking the
expectation of both sides of equation (2.1):

E gCt
Yv
i¼a

fiðgÞSi,t
" #

¼ E gCt�1
Yv
i¼a

fiðgÞSi,t�1

" #
:

So by induction:

E gCt
Yv
i¼a

fiðgÞSi,t
" #

¼ E gC0
Yv
i¼a

fiðgÞSi,0
" #

¼
Yv
i¼a

fiðgÞSi,0 ,

where the last equality assumes that S0 is known (non-random) and initializes C0 = 0. Doob’s optional
stopping theorem states that a randomly stopped martingale is still a martingale [42,43]. So we can



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:220011
5

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 J

an
ua

ry
 2

02
3 
insert a random variable T for t:

E gCT
Yv
i¼a

fiðgÞSi,T
" #

¼
Yv
i¼a

fiðgÞSi,0 :

Split this expectation conditional on extinction or fixation:

E gCT
Yv
i¼a

fiðgÞSi,T
����ST ¼ a

" #
aþ E gCT

Yv
i¼a

fiðgÞSi,T
����ST ¼ b

" #
ð1� aÞ ¼

Yv
i¼a

fiðgÞSi,0 :

Insert the extinction and fixation boundaries a and b:

Yv
i¼a

fiðgÞai
 !

E gCT

����ST ¼ a
� �

aþ E gCT

����ST ¼ b
� �

ð1� aÞ ¼
Yv
i¼a

fiðgÞSi,0 , ð2:2Þ

where ai denotes the ith element of a ¼ ½A, B, . . . , V�.
We find the fixation probability and CCFs from equation (2.2) by inserting certain values of the free

variable g into it [11]. To find the fixation probability α, insert g = 1:

Yv
i¼a

fið1Þai
 !

aþ ð1� aÞ ¼
Yv
i¼a

fið1ÞSi,0 ;

and solve for α:

a ¼
Qv

i¼a fið1ÞSi,0 � 1Qv
i¼a fið1Þai � 1

:

For the CCFs, insert g ¼ et into equation (2.2), where τ is a purely imaginary free variable:

Yv
i¼a

fiðetÞai
 !

E etCT

����ST ¼ a
� �

aþ E etCT

����ST ¼ b
� �

ð1� aÞ ¼
Yv
i¼a

fiðetÞSi,0 :

We identify the conditional expectations as the CCFs of CT, cCT jaðtÞ and cCT jbðtÞ:
Yv
i¼a

fiðetÞai
 !

cCT jaðtÞaþ cCT jbðtÞð1� aÞ ¼
Yv
i¼a

fiðetÞSi,0 :

Assume that every fi is convex such that each has two valid complex values in the neighbourhood about
τ = 0 [30]. Call those values f1,i and f2,i. Inserting each of those values into equation (2.2) separately, we
obtain a system of two equations:Qv

i¼a f1,iðetÞai
� �

cCT jaðtÞaþ cCT jbðtÞð1� aÞ ¼Qv
i¼a f1,iðetÞSi,0

and
Qv

i¼a f2,iðetÞai
� �

cCT jaðtÞaþ cCT jbðtÞð1� aÞ ¼Qv
i¼a f2,iðetÞSi,0 :

)
ð2:3Þ

With two equations, we can solve for both cCT jaðtÞ and cCT jbðtÞ.
To apply this analysis, we need to meet one key condition:

E gYt
Yv
i¼a

fiðgÞXi,t

����St�1, Ct�1

" #
¼ 1, ð2:4Þ

for some convex, state-independent functions fi(g). We now show that the Moran process on a k-partite
street graph can meet this condition.
2.3. A three-dimensional martingale for the tripartite street graph
For simplicity, we will derive α, cCT jaðtÞ and cCT jbðtÞ for a tripartite street graph, e.g. the graph illustrated
in figure 1. Later we will generalize the approach for street graphs with any number of partitions.

To condense our notation, let Ft�1 represent the total fitness of the tripartite street graph on time
step t− 1:

Ft�1 ¼ rSa,t�1 þ A� Sa,t�1 þ rSb,t�1 þ B� Sb,t�1 þ rSc,t�1 þ C� Sc,t�1:
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We also use compact notation for the graph’s transition probabilities:

pXa" ¼ PrðXt ¼ ½1, 0, 0�, Yt ¼ 1jSt�1Þ, pXa# ¼ PrðXt ¼ ½�1, 0, 0�, Yt ¼ 1jSt�1Þ;
pXb" ¼ PrðXt ¼ ½0, 1, 0�, Yt ¼ 1jSt�1Þ, pXb# ¼ PrðXt ¼ ½0, � 1, 0�, Yt ¼ 1jSt�1Þ;
pXc" ¼ PrðXt ¼ ½0, 0, 1�, Yt ¼ 1jSt�1Þ, pXc# ¼ PrðXt ¼ ½0, 0, � 1�, Yt ¼ 1jSt�1Þ;
pX0 ¼ PrðXt ¼ ½0, 0, 0�, Yt ¼ 0jSt�1Þ:

These transition probabilities are independent of Ct−1. For the tripartite street graph in figure 1, they are:

pXa" ¼
rSc,t�1

Ft�1

A� Sa,t�1

A
, pXa# ¼

B� Sb,t�1

Ft�1

Sa,t�1

A
;

pXb" ¼
rSa,t�1

Ft�1

B� Sb,t�1

B
, pXb# ¼

C� Sc,t�1

Ft�1

Sb,t�1

B
;

pXc" ¼
rSb,t�1

Ft�1

C� Sc,t�1

C
, pXc# ¼

A� Sa,t�1

Ft�1

Sc,t�1

C
;

and pX0 ¼ 1� pXa" � pXb" � pXc" � pXa# � pXb# � pXc#:

Our goal is to find state-independent functions fa(g), fb(g) and fc(g) that make equation (2.4) true.
The expectation in equation (2.4) is:

E gYt
Yc
i¼a

fiðgÞXi,t

����St�1, Ct�1

" #
¼ pXa"gfaðgÞ þ pXa#gfaðgÞ�1 þ pXb"gfbðgÞ

þ pXb#gfbðgÞ�1 þ pXc"gfcðgÞ þ pXc#gfcðgÞ�1 þ pX0 ¼ 1:

Next, we insert pX0 and rearrange:

pXa"gfaðgÞ þ pXa#gfaðgÞ�1 þ pXb"gfbðgÞ þ pXb#gfbðgÞ�1 þ pXc"gfcðgÞ þ pXc#gfcðgÞ�1

¼ pXa" þ pXa# þ pXb" þ pXb# þ pXc" þ pXc#:
ð2:5Þ

Equation (2.5) is true when the following three equations are true:

pXa"gfaðgÞ þ pXc#gfcðgÞ�1 ¼ pXa" þ pXc#;

pXb"gfbðgÞ þ pXa#gfaðgÞ�1 ¼ pXb" þ pXa#

and pXc"gfcðgÞ þ pXb#gfbðgÞ�1 ¼ pXc" þ pXb#:

When we split equation (2.5) like this, we can cancel all state dependence in the transition probabilities:

r
A
gfaðgÞ þ 1

C
gfcðgÞ�1 ¼ r

A
þ 1
C
;

r
B
gfbðgÞ þ 1

A
gfaðgÞ�1 ¼ r

B
þ 1
A

and
r
C
gfcðgÞ þ 1

B
gfbðgÞ�1 ¼ r

C
þ 1
B
:

With three equations, we can solve for three state-independent unknowns fa(g), fb(g) and fc(g) as
functions of g. These three equations are non-degenerate hyperbolas. So we can find two complex
solutions ( f1,a, f1,b, f1,c) and ( f2,a, f2,b, f2,c), both functions of g, that satisfy this system of three equations.
Obtaining those solutions requires laborious algebraic manipulation, and their expressions are
prohibitively long to state here. We obtained them with the Python package sympy, and our
implementation of it may be accessed online at https://github.com/travismonk/kpartite. Since these
functions’ expressions are particularly long, sympy requires around 20 seconds to obtain them for the
tripartite graph on a standard MacBook Pro laptop. As we increase the number of partitions, sympy
requires significantly more time to solve systems with more equations. However, given parameter
values of r and partition sizes, a numerical solver can solve for these functions much more quickly for
a specific graph.

Figure 2 plots both complex solutions of fa(g) (left column), fb(g) (middle column) and fc(g) (right
column) as functions of τ, where g ¼ et. The solid traces plot one solution, and the dashed traces plot
the other. The real (red traces) and imaginary (black traces) parts of each solution are plotted

https://github.com/travismonk/kpartite
https://github.com/travismonk/kpartite
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0
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0
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real, 1

imag, 1

real, 2
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Figure 2. We find two complex solutions to three state-independent functions such that equation (2.4) is true for tripartite street
graphs. Therefore, we can find α, cCT jaðtÞ and cCT jbðtÞ immediately. Each panel plots two complex solutions (dashed and solid
traces, respectively). Real (red) and imaginary (black) parts of those complex solutions are plotted separately. Each column shows
those two solutions for each respective function (column titles). We repeated our analysis for two values of r (top and bottom rows).
We plot these solutions with respect to τ, where g ¼ et. Note that the real and imaginary parts are even and odd, respectively.
Each solution crosses g = 1 (or τ = 0) twice. One crossing is trivial at (1, 0i) ( pink and grey dots), and the other is non-trivial (red,
black dots). We use the non-trivial crossing to obtain the fixation probability. In all plots, A = 5, B = 3 and C = 2.
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separately. We plot them for r = 1.5 (top row) and r = 0.5 (bottom row). In all plots, we set A = 5, B = 3 and
C = 2 like the illustration in figure 1. Given these two solutions, we have found a suitable martingale to
immediately extract α, cCT jaðtÞ and cCT jbðtÞ.

To obtain the fixation probability α, we insert g = 1 (or, equivalently, τ = 0) into equation (2.2). Figure 2
shows that each function has two valid values at τ = 0. The imaginary parts of those values are always
zero (black and grey dots). The real part of one of those values is one (pink dots). This value reflects
that equation (2.4) has a trivial solution fa = fb = fc = g = 1 that we discard. The real part of the other
value is non-trivial (red dots, figure 2). Inserting g = 1 into our system of three hyperbolas and
solving, we find that those non-trivial values have compact expressions:

fað1Þ ¼ Aþ Br2 þ Cr
Ar3 þ Br2 þ Cr

; fbð1Þ ¼ Arþ Bþ Cr2

Arþ Br3 þ Cr2
and fcð1Þ ¼ Ar2 þ Brþ C

Ar2 þ Brþ Cr3
:

The fixation probability is then:

a ¼ fað1ÞSa,0 fbð1ÞSb,0 fcð1ÞSc,0 � 1

fað1ÞAfbð1ÞBfcð1ÞC � 1
, ð2:6Þ

which verifies previous results [26]. This expression for the fixation probability is undefined when r = 1
(i.e. neutral selection), but we can take its limit as r→ 1:

lim
r!1

a ¼ ASa,0 þ BSb,0 þ CSc,0
A2 þ B2 þ C2 :

To find the CCFs of CT, we rearrange equations (2.3):

cCT jaðtÞ ¼
Qc

i¼a f1,i
Si,0 �Qc

i¼a f2,i
Si,0

a
Qc

i¼a f1,i
ai �Qc

i¼a f2,i
ai

� � and cCT jbðtÞ ¼
Qc

i¼a f1,i
ai f2,iSi,0 �

Qc
i¼a f2,i

ai f1,iSi,0

ð1� aÞ Qc
i¼a f1,i

ai �Qc
i¼a f2,i

ai
� � , ð2:7Þ

and insert our two complex solutions (figure 2) into equations (2.7).
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Figure 3. cCT jaðtÞ and cCT jbðtÞ are somewhat insensitive to changes in r for the tripartite street graph in figure 1. Each panel
plots the full, exact CCFs of CT (solid traces) conditional on extinction (left column) or fixation (right column) and compares them
with simulations (dashed traces). Real ( pink or red) and imaginary (grey or black) parts of the CCFs are plotted separately. We also
compare the theoretical fixation probability with the percentage of successful fixations (α, right panels). We performed these
comparisons for two values of r (top and bottom rows). Theory and simulation match very closely because our analysis is
exact. The black line and red parabola illustrate how to visualize the first two (conditional) moments of CT. The black and red
numbers in each panel report the slope of the line and the concavity of the parabola, respectively (i.e. the values of those
first two moments). We see that increasing r drastically increases the fixation probability for the graph in figure 1. The CCFs
are somewhat affected, but not as drastically. In all plots, a = [5, 3, 2], S0 = [1, 0, 0] and mutants reproduce clockwise.
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In the special case A = B = C (i.e. the street graph is isothermal), those complex solutions simplify to:

f1,a ¼ f1,b ¼ f1,c ¼
ðrþ 1Þ e�t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ 1Þ2 e�2t � 4r

q
2r

; f1

and

f2,a ¼ f2,b ¼ f2,c ¼
ðrþ 1Þ e�t �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ 1Þ2 e�2t � 4r

q
2r

; f2:

The functions f1,i become equivalent, as do f2,i for i∈ [a, b, c]. Therefore our three-dimensional product
martingale reduces to a single dimension. Moreover, f1 and f2 are equivalent to functions that we
previously derived for the fully connected (i.e. one dimensional) Moran process (cf. eqn (2.7) in [11]).
When the tripartite street graph is isothermal, cCT jaðtÞ and cCT jbðtÞ are equivalent to those of the
Moran process.

2.4. Parameter dependence of cCT jaðtÞ and cCT jbðtÞ
The parameter dependence of our expressions for cCT jaðtÞ and cCT jbðtÞ is explicit. Therefore, we can
explore how the CCFs vary over parameter space by simply evaluating them with different parameter
values.

2.4.1. cCT jaðtÞ and cCT jbðtÞ are relatively insensitive to selection
Figure 3 plots cCT jbðtÞ (left column) and cCT jaðtÞ (right column) for the tripartite street graph shown in
figure 1. We plot the CCFs for two values of r (top and bottom rows), with initial mutant population
size S0 = [1, 0, 0] and partition sizes a = [5, 3, 2]. The real (pink) and imaginary (grey) parts of the
CCFs are plotted separately. Note that the real parts of the CCFs are even and pass through 1 at τ = 0,
and their imaginary parts are odd and pass through 0 at τ = 0.

Figure 3 also compares cCT jbðtÞ and cCT jaðtÞ (solid traces) with simulation results from 200 000 trials
of the Moran process on the same tripartite street graph (dashed traces). On each trial, we counted the
number of mutant population size changes before absorption, and stored that count conditional on
fixation or extinction. Then we applied the Fourier transform to our stored data to compare it to our
theoretical CCFs. Again, we plot the real and imaginary parts of our simulation results separately
(dashed red and black traces, figure 3). We also compared our expression for α with the percentage of
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Figure 4. The probability distribution of CT conditional on fixation concentrates in smaller values as r increases. We find the
probability distribution of CT|ST = a by taking the inverse Fourier transform of its CCF. We plot that conditional distribution for
eight values of r (legend). Two of those distributions (blue and green traces) are compared with simulation data (blue and
green histograms), as we did in figure 3. Our theoretical distributions and simulation histograms match very closely because
our analysis is exact. As r increases, the mutant population size becomes more likely to require fewer changes before fixing.
Therefore, the mean and variance of CT|ST = a decrease, as indicated in figure 3 (black and red numbers, right panels,
figure 3). In all plots, a = [5, 3, 2], S0 = [1, 0, 0] and mutants reproduce clockwise.
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simulations where the mutants fixed (upper-left numbers, right panels). Our simulation code is available
online at https://github.com/travismonk/kpartite. Simulation results match our theory extremely
closely because our analysis is exact, and we ran sufficiently many simulations to converge to that
solution.

Figure 3 shows that the CCFs are relatively insensitive to changes in r (cf. top and bottom rows).
The main difference between the top and bottom rows is that the CCFs are slightly more compacted
about τ = 0. The first two moments of CT clarify this observation. We find the conditional kth
moments of CT by evaluating derivatives of the CCFs:

E Ck
T

����ST ¼ a
� �

¼ i�k dk

dtk
cCT jaðtÞ

����
t¼0

and E Ck
T

����ST ¼ b
� �

¼ i�k dk

dtk
cCT jbðtÞ

����
t¼0

:

For example, the conditional means of CT are the slope of the tangent of the CCFs’ imaginary parts at τ =
0. Figure 3 plots those tangents (thin solid black lines) and reports their slopes (upper-right black
numbers in all panels). The conditional second moments of CT are the concavity of the parabolas
fitted to the CCFs’ real parts at τ = 0. Figure 3 also plots those parabolas (thin solid red traces) and
reports their concavities (upper-right red numbers in all panels). Figure 3 suggests that, as r increases
beyond weak selection, the CCFs dilate about τ = 0. In particular, the conditional first and second
moments of CT decrease. This result suggests that strong selection decreases the number of mutant
population size changes before fixation or extinction.

While strong selection expedites fixation and extinction, CT|a and CT|b are not particularly sensitive
to changes in r. Figure 3 shows that increasing r from 0.9 to 1.5 leads to marginal decreases in the first two
conditional moments of CT. Higher-order conditional moments of CT appear to be relatively unaffected as
well. But the fixation probability α sextuples for these two values of r. This result shows that different
statistical quantities can have different sensitivities to changes in r for street graphs. Since r strongly
impacts α but weakly impacts CT|a and CT|b, street graphs strongly amplify the rate of evolution [44].

Figure 4 plots the probability distribution PrðCT jST ¼ aÞ1t¼0 of the tripartite graph in figure 1 for
various values of r (legend). We find the probability distribution of a random variable from its
characteristic function via the inverse Fourier transform:

PrðCT jST ¼ aÞ1t¼0 ¼
1
2p

ð
e�tCTcCT jaðtÞdt:

So figure 4 shows the same results as the right column of figure 3, but as conditional probability
distributions instead of CCFs. For example, our simulated CCFs in figure 3 (dashed traces, right
column) are represented as histograms in figure 4 (blue and green bars). Those histograms match the
probability distributions corresponding to r = 0.9 and r = 1.5 (blue and green traces, figure 4). Figure 4
shows that as r increases, the distribution of CT|ST = a loses mass at larger values and concentrates
in smaller values. Therefore, its first and second moments decrease as r increases, as suggested by
figure 3 (red and black numbers, right column, figure 3).

https://github.com/travismonk/kpartite
https://github.com/travismonk/kpartite
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Figure 5. cCT jbðtÞ is very sensitive to the directionality of street connections, but cCT jaðtÞ is not. Layout is directly analogous to
figure 3. Each panel compares our analytical CCFs for a tripartite graph where mutants reproduce clockwise (thick traces) or counter-
clockwise (thin traces) around the graph. The directionality of street connections can strongly bias CT|b, particularly its higher-order
moments (left column). That bias is stronger when selection is strong (cf. top-left and bottom-left panels). Increasing selection
marginally expedites fixation (cf. x-axes, top-right and bottom-right panels) as it did in figure 3. But the moments of CT|a
seem unaffected by connection directionality, regardless of selection. In all plots, a = [5, 3, 1] and S0 = [1, 0, 0].
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2.4.2. cCT jbðtÞ is sensitive to directionality of connections, and cCT jaðtÞ is not
We can easily extend our analysis to obtain cCT jaðtÞ and cCT jbðtÞ for the tripartite street graph where
mutants reproduce counter-clockwise and residents clockwise around the graph. A sympy
implementation of that analysis is available online at https://github.com/travismonk/kpartite.

Figure 5 plots cCT jaðtÞ (left column) and cCT jbðtÞ (right column) for two different values of r (top and
bottom rows). Again, the real (red or pink traces) and imaginary (black or grey traces) parts of the CCFs
are plotted separately. Each panel of figure 5 compares the CCFs when mutants reproduce clockwise
around the graph and residents counter-clockwise (thick traces) or vice versa (thin traces). Our
partition sizes were a = [5, 3, 1] and our starting state was S0 = [1, 0, 0].

The right column of figure 5 shows that cCT jaðtÞ is insensitive to the directionality of mutant and
resident reproduction around the graph. The right column also reaffirms our results from figure 3
because large increases in r do not qualitatively change the CCFs, but dilate them from τ = 0
(cf. x-axes, right column). Conversely, the left column of figure 5 shows that cCT jbðtÞ is very sensitive
to the directionality of mutant and resident reproduction. In particular, both left panels show that the
cCT jbðtÞ noticeably differ from each other far away from τ = 0. This divergence indicates that higher-
order moments of CT|ST = b can strongly depend on the directionality of the street graph’s connections.

To explain this observation, consider a tripartite street graph with a= [5, 3, 1], S0= [1, 0, 0] and let
residents reproduce counter-clockwise around the graph. The mutants will go extinct after one population
size change if any of the three residents in partition B replace the lonely mutant in partition A. Next
consider the same graph, but let the residents reproduce clockwise around the graph. Now the mutants
will go extinct after one population size change if the single resident in partition C replaces the lonely
mutant in partition A. The probability of the former graph going extinct after a single population size
change is thrice that of the latter graph. This bias towards quick extinctions in one graph and delayed
extinctions in the other can significantly impact higher-order moments of CT|b, at least when S0 is small.

Comparing the top and bottom rows of figure 5, we see that this bias is amplifiedwhen selection is strong.
The discrepancy between the directionality of the connections also biases toward quicker invasions in one
graph with respect to the other. While we see that the cCT jaðtÞ in each of the right panels in figure 5 slightly
differ from each other, that discrepancy appears minimal. In both right panels, the traces almost overlap.
2.4.3. Asymmetric partition sizes delay fixation, but extinction is more complicated

Figure 6 plots three CCFs of cCT jbðtÞ (figure 6a) and cCT jaðtÞ (figure 6b). Again, the real (pink or red) and
imaginary (grey or black) parts of the CCFs are plotted separately. Each CCF corresponds to one

https://github.com/travismonk/kpartite
https://github.com/travismonk/kpartite
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Figure 6. Distributing individuals asymmetrically between three partitions impacts cCT jbðtÞ and cCT jaðtÞ. Each panel compares
the extinction (a) and fixation (b) CCFs of CT for three tripartite graphs with 12 total individuals (legend). One graph is isothermal
(dashed traces), one is somewhat asymmetric (solid thin traces) and one has almost all individuals in one partition (solid thick
traces). Real ( pink or red) and imaginary (grey or black) parts of the CCFs are plotted separately. Asymmetric partition sizes
condense both CCFs about τ = 0, particularly for CT|a. Therefore, asymmetric partition sizes increase the conditional moments
of CT, at least when r = 2, S0 = [0, 1, 0], and mutants reproduce clockwise.
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tripartite street graph where mutants reproduce clockwise and residents counter-clockwise around the
graph. For each graph, we set r = 2 and S0 = [0, 1, 0], but each graph has different partition sizes
(figure 6, legend). Specifically, we fixed the total population size to 12, but we varied how many of
those individuals were located in each partition.

Figure 6 shows that asymmetric partition sizes delay fixation and extinction for these parameter
values. We see that the graph with the most asymmetric partition sizes (i.e. a = [10, 1, 1]) has the
largest first and second moments in both panels. Conversely, the isothermal graph (i.e. a = [4, 4, 4])
has the smallest first and second moments for each CCF. We can explain this observation. When
a = [10, 1, 1], S0 = [0, 1, 0] and residents reproduce counter-clockwise, CT|b = 1 when the resident in
partition C reproduces. But when a = [4, 4, 4], CT|b = 1 when any of the four residents in partition C
reproduce. Since such quick extinctions are more likely for the isothermal graph, we expect the
moments of cCT jbðtÞ to be smaller than for graphs with asymmetric partition sizes.

We also expect asymmetric partition sizes to delay fixation. When the invasion fixes, the mutant in
partition B must replace the resident in partition C on the first population size change, i.e.
X1jðY1 ¼ 1Þ ¼ ½0, 0, 1�. Then we have two possibilities for the second population size change: either
X2|(Y2 = 1) = [1, 0, 0] or [0, 0,− 1]. When partition A has a large number of residents, it is more likely
that one of them is chosen to replace the mutant in partition C than the other way around. In this
more likely scenario, the mutant population size has changed twice, and it has returned to where it
started. This argument suggests that when partition sizes are asymmetric, most mutant population
size changes in successful fixations will be the few individuals in partition C flipping between mutant
and resident. But when the graph is isothermal, the possibility that X2|(Y2 = 1) = [1, 0, 0] is more
likely than it was when partition sizes were asymmetric. Therefore, the invasion more easily spreads
between partitions and achieves fixation in fewer population size changes. These observations are
consistent with previous simulation results showing that the fixation time T increases with the
asymmetry of partition sizes [25].

Figure 7 is directly analogous to figure 6, except now we move the initial mutant to partition C, i.e.
S0 = [0, 0, 1]. Note that the CCFs for the isothermal graph (dashed traces) are the same as they were in
figure 6. The symmetry of the isothermal graph implies that both its CCFs remain invariant to which
partition the initial mutant occupies. However, note that the other two extinction CCFs (thick and thin
solid traces, left panel) are dilated about τ = 0 with respect to those in figure 6. This dilation implies
that the moments of CT|b decrease when partition sizes are asymmetric and we move the initial
mutant from partition B to partition C. When the initial mutant occupies partition B, CT|b = 1 only if
the resident in C is chosen to reproduce. When we place it in partition C, CT|b = 1 when any resident
in A is chosen to reproduce. So when the initial mutant occupies partition C instead of partition B, a
quick extinction is more likely.

ComparingcCT jaðtÞ (figure 7b)with those of figure 6,we see that the fixationCCF is relatively unaffected
by changing the partition of the initial mutant. Again we observe that, as partition sizes become
asymmetric, cCT jaðtÞ condenses about τ = 0. Therefore, the moments of CT|a increase when partition
sizes are asymmetric, as we observed in figure 6. We also notice that the solid traces in figure 7 are very
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Figure 7. Changing the initial mutant’s location impacts the effect of asymmetric partition sizes on cCT jaðtÞ. Layout is directly
analogous to figure 6. The only difference is that S0 = [0, 0, 1]. Comparing the right panels of figures 6 and 7, we see that the
moments of CT|a are hardly affected by which partition an initial mutant occupies. Comparing their left panels, we see that the
moments of CT|b are more affected by both partition size asymmetry and S0. The probability of observing a quick extinction depends
on how many residents are eligible to replace the initial mutant. That number of residents in turn depends on both the asymmetry
of partition sizes and the partition occupied by the initial mutant. In these plots, r = 2 and mutants reproduce clockwise.
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similar to those in figure 6. If partition sizes are asymmetric, S0 = [0, 0, 1], and the process fixes, then that first
mutant in partitionCwill reproduce around the graph until one of its descendants occupies partition B. The
processwill closely resemble our previous starting state S0 = [0, 1, 0] from figure 6 after a fewpopulation size
changes at the beginning of the invasion. Sowewould expect the fixation CCFs for the two starting states to
be almost identical, excluding the first few ‘active steps’.

2.4.4. cCT jaðtÞ is more sensitive to graph dimensionality than cCT jbðtÞ
Next, we extend our results from a tripartite street graph to a street graph with five partitions (so k = 5
instead of 3, and ω = e instead of c). In doing so it should be obvious how martingale methodology
applies to street graphs with any number of partitions.

For a street graph with five partitions, our key condition to apply martingale analysis is:

E gYt
Ye
i¼a

fiðgÞXi,t

����St�1, Ct�1

" #
¼ 1,

where we define five state-independent functions fi(g), i∈ [a, e], one for each graph partition. Writing the
expectation:

Xe
i¼a

pXi"gfiðgÞ þ
Xe
i¼a

pXi#g fiðgÞ�1 þ 1�
Xe
i¼a

pXi" �
Xe
i¼a

pXi# ¼ 1,

where pXi" and pXi# are the transition probabilities of the graph. We wrote pX0 as 1 minus two sums so we
can rearrange our key condition:

Xe
i¼a

pXi"gfiðgÞ þ
Xe
i¼a

pXi#g fiðgÞ�1 ¼
Xe
i¼a

pXi" þ
Xe
i¼a

pXi#: ð2:8Þ

Next, we want to cancel state dependence from the 10 transition probabilities. Note that the state
dependence of mutants reproducing into one partition matches the state dependence of residents
reproducing in the opposite direction. For example, consider a street graph where mutants reproduce
clockwise around the graph. Two transition probabilities are:

pXb" ¼
rSa,t�1

Ft�1

B� Sb,t�1

B
and pXa# ¼

B� Sb,t�1

Ft�1

Sa,t�1

A
:

The state dependence in both transition probabilities is Sa,t−1(B− Sb,t−1). Every transition probability can
be paired with another that has identical state dependence. Equation (2.8) has 10 transition probabilities,
and we can eliminate all state dependence by splitting it into five equations, each containing one such
pair. For example, one of those five equations would be:

pXb"gfbðgÞ þ pXa#g faðgÞ�1 ¼ pXb" þ pXa#

and we can cancel Sa,t−1(B− Sb,t−1) in the transition probabilities.
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Figure 8. Increasing the number of partitions delays fixation more than extinction. Each panel compares the extinction (a) and
fixation (b) CCFs of CT for a street graph with three (thick solid traces) or five (thin solid traces) partitions. For the tripartite
graph, a = [24, 12, 12], and for the five-partition graph, a = [24, 6, 6, 6, 6], so both graphs have the same total number of
individuals. Increasing the number of partitions delays extinction when fewer residents can replace an initial mutant on the
first population size change (a). However, the extinction CCF seems relatively unaffected by the extra partitions. The fixation
CCF (b) is more noticeably affected by adding extra partitions. By spreading half the total population among twice as many
partitions, we increase the asymmetry in partition sizes. So we expect the five-partition graph to achieve fixation after more
mutant population size changes, as observed in figures 6 and 7. In these plots, r = 2, S0 = [1, 0, 0] or [1, 0, 0, 0, 0] and
mutants reproduced clockwise.
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Splitting equation (2.8) into five equations and cancelling state dependence results in five state-
independent equations with five unknowns fi(g), i∈ [a, e] to find. All five equations are non-degenerate
hyperbolas, so we can find two complex solutions that solve the whole system. Unfortunately,
obtaining analytical expressions for those solutions is algebraically tedious and their forms are not
compact. We used sympy to find fi(g), i∈ [a, e] for a street graph with five partitions (visit https://
github.com/travismonk/kpartite). Given those two complex solutions, we can immediately calculate
α, cCT jaðtÞ and cCT jbðtÞ.

Martingale methodology is quickly generalized to any number of partitions in a street graph. Given k
partitions, there are 2k transition probabilities. Each transition probability can be paired with another that
has the same state dependence. When we evaluate equation (2.4), we can split it into a system of k
equations such that state dependence cancels in all of them. Each state-independent equation will be a
non-degenerate hyperbola. So we can find two complex solutions that satisfy the system and directly
obtain α, cCT jaðtÞ and cCT jbðtÞ.

Figure 8 compares cCT jbðtÞ (figure 8a) and cCT jaðtÞ (figure 8b) for street graphs with three (thick traces)
or five (thin traces) partitions. Again the real (pink or red) and imaginary (grey or black) parts of the
CCFs are plotted separately. Both street graphs have 48 total individuals with partition sizes a = [24,
12, 12] or [24, 6, 6, 6, 6]. In both graphs, mutants reproduced clockwise, we set r = 2, and our starting
state was one mutant in partition A.

Figure 8a shows that the general form of cCT jbðtÞ is relatively insensitive to the number of partitions in
the street graph. When selection is strong, we expect the moments of CT|b to be small (recall figure 3,
upper-left panel), regardless of the graph’s dimensionality. Closer inspection about τ = 0 shows that
the first two moments of CT|b for the five-partition graph are higher than those of the tripartite
graph. For the five-partition graph, the initial mutant in partition A is half as likely to die upon the
first population size change, because it has half as many residents able to replace it. So we expect the
first two moments of CT|b for the five-partition graph to be larger, as shown in figure 8a.

Figure 8b shows that adding additional partitions condenses cCT jaðtÞ about the origin. Therefore,
adding more partitions increases the moments of CT|a. We expect this result because the partition
sizes are more asymmetric in the five-partition graph than they are in the tripartite graph. Figures 6b
and 7b show that asymmetric partition sizes delay fixation. Figure 8 is consistent with those results.

2.5. Extension to more general street graphs
Our martingale methodology can be applied to street graphs beyond the cyclically connected examples
we have considered so far.

Figure 9a illustrates an example of a street graph whose partitions are not cyclically connected, but is
still amenable to our analysis. This example resembles a megastar graph [5,37], but with street

https://github.com/travismonk/kpartite
https://github.com/travismonk/kpartite
https://github.com/travismonk/kpartite
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Figure 9. Our martingale analysis generalizes to consider a megastar street graph, where each leaf is a k-partite street graph. It is
particularly easy to extend our analysis when the megastar’s leaves are identical. (a) An example megastar street graph with three
identical leaves. The leaves overlap at one central partition. Mutant offspring travel away from that central partition and toward the
ends of the leaves, and resident offspring travel in the other direction. (b) We compare our theoretical CCF of CT conditional on
extinction (solid pink and grey traces) with simulation results over 100 000 trials (dashed red and black traces). (c) We show
an analogous comparison for the CCF of CT conditional on fixation. In these plots, r = 1.2, and the partition sizes and S0 are
illustrated in (a).
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connections instead of directed connections [26]. Each ‘leaf’ of the megastar is identical to the tripartite
street graph introduced in figure 1. Mutant offspring travel towards the tips of the leaves, and then back
to the centre partition (red arrows). Resident offspring travel in the opposite direction (blue arrows). We
create an alphabet to index the partitions as shown in figure 9.

This megastar street graph has seven partitions and 14 transition probabilities:

pXa" ¼
X3
j¼1

rSc,j,t�1

Ft�1

A� Sa,t�1

A
; pXa# ¼

X3
j¼1

Bj � Sb,j,t�1

Ft�1

Sa,t�1

A
;

pXb;j" ¼
rSa,t�1

Ft�1

Bj � Sb,j,t�1

Bj
; pXb,j# ¼

Cj � Sc,j,t�1

Ft�1

Sb,j,t�1

Bj
;

pXc,j" ¼
rSb,j,t�1

Ft�1

Cj � Sc,j,t�1

Cj
; pXc,j# ¼

A� Sa,t�1

Ft�1

Sc,j,t�1

Cj
,

where j∈ [1, 2, 3] indexes the three leaves of the megastar.
Our key condition to apply martingale analysis is:

E gYt faðgÞXa,t
Y3
j¼1

fb,jðgÞXb,j,t fc,jðgÞXc,j,t

����St�1, Ct�1

2
4

3
5 ¼ 1,

where we define seven functions fa(g), fb,j(g) and fc,j(g) for j∈ [1, 2, 3], one function for each partition in
the megastar graph. Writing the expectation, inserting pX0, and splitting the expectation as before, this
condition is met when:

pXa"gfaðgÞ þ
X3
j¼1

pXc,j#gfc,jðgÞ�1 ¼ pXa" þ
X3
j¼1

pXc,j#;

X3
j¼1

pXb;j"gfb,jðgÞ þ pXa#gfaðgÞ�1 ¼
X3
j¼1

pXb;j" þ pXa#

and
X3
j¼1

pXc,j"gfc,jðgÞ þ
X3
j¼1

pXb,j#gfb,jðgÞ�1 ¼
X3
j¼1

pXc,j" þ
X3
j¼1

pXb,j#:

Since the leaves are symmetric, the partition sizes of the leaves Bj and Cj and the functions fb,j(g) and
fc,j(g) corresponding to them are independent of j. Inserting the transition probabilities and pulling
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constant terms out of the sums, we see that all state dependence cancels. For example, the first equation
above becomes:

r
A
gfaðgÞ

X3
j¼1

Sc,t�1ðA� Sa,t�1Þ
Ft�1

þ 1
C
gfcðgÞ�1

X3
j¼1

Sc,t�1ðA� Sa,t�1Þ
Ft�1

¼ r
A

X3
j¼1

Sc,t�1ðA� Sa,t�1Þ
Ft�1

þ 1
C

X3
j¼1

Sc,t�1ðA� Sa,t�1Þ
Ft�1

,

and we can cancel the sums with the state-dependent terms. After cancelling those terms, our key
condition is met when the following equations are true:

r
A
gfaðgÞ þ 1

C
gfcðgÞ�1 ¼ r

A
þ 1
C
;

r
B
gfbðgÞ þ 1

A
gfaðgÞ�1 ¼ r

B
þ 1
A

and
r
C
gfcðgÞ þ 1

B
gfbðgÞ�1 ¼ r

C
þ 1
B
:

We recognize these equations as identical to those we derived for the tripartite street graph in figure 1.
Therefore, the functions fa(g), fb(g) and fc(g) are given by figure 2. So to obtain the fixation probability and
CCFs of CT, we simply insert the absorbing states a = [A, 3B, 3C ] and b = [0, 0, 0] into equations (2.6)
and (2.7).

Figure 9b,c plots the CCFs of CT for the megastar graph in figure 9a. Again, we plot the real (solid
pink) and imaginary (solid grey) parts of the CCFs separately. We set r = 1.2 and S0 is indicated by
the red dots in figure 9a. We compared our theoretical CCFs with simulation results from 100 000
trials of the Moran process on the megastar graph (dashed red and black traces). Simulation results
match our theoretical CCFs very closely because our derivation is exact.

Our analysis quickly generalizes to megastar street graphs with any number of leaves m as long as the
leaves are identical. We find the functions fi(g), i∈ [a, b, …, ω] for a cyclical street graph with any number
of partitions, as we have already shown. Then we simply insert the absorbing states a ¼ ½A, mB, . . . , mV�
and b ¼ ½0, 0, . . ., 0� into our expressions for the fixation probability and CCFs of CT.
2.6. Approximating conditional characteristic functions of fixation time
Figure 10 compares the CCFs of CT (thick traces) with simulation results of the CCFs of fixation time T
(thin traces). Again, we plot the real (pink and red) and imaginary (grey and black) parts of the CCFs
separately. The top row contains the CCFs of the megastar graph in figure 9 and the bottom
row contains those of the tripartite street graph in figure 1. We used parameter values r = 1.2 and
S0 = [1, 0, 2] for the megastar graph (figure 9), and r = 1.5 and S0 = [1, 0, 0] for the tripartite street
graph. The left column plots the extinction CCFs and the right column plots the fixation CCFs. In all
panels, the CCFs of CT and T are plotted with respect to different scales of τ, i.e. different x-axes. The
CCFs of CT and T are plotted with respect to the τ axis at the bottom and top of each panel, respectively.

By comparing scaled versions of the CCFs, we are implicitly approximating that T|a∝CT|a and
T|b∝CT|b. When we scale the independent variable of a CCF, we scale its random variable:

cCT jbðkbtÞ ¼ ckbCT jbðtÞ � cTjbðtÞ and cCT jaðkatÞ ¼ ckaCT jaðtÞ � cTjaðtÞ,

where κb and κa are the scaling constants. Figure 10 illustrates the accuracy of this proportionality
approximation.

Intuitively, our approximations T|a≈ κa CT|a and T|b≈ κb CT|b are sensible. The time that the
Moran process spends before absorption is the number of times that the mutant population size
changes (i.e. CT), multiplied by the amount of time that it remains stuck in each state. But the
(geometrically distributed) amount of time that the process spends in each transient state is not
identical over all state space. In other words, the sojourn times [24,45] of the Moran process are not
constant over its transient states [11]. When the mutant population size is very large or very small, the
Moran process can remain in those states for a large number of time steps [10]. When the numbers of
mutants and residents are approximately equal, the Moran process changes states more frequently.
This disparity is largely offset by the number of times that the Moran process visits its transient states.
Transient states close to fixation or extinction barriers are rarely visited, while states far from those
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Figure 10. The CCFs of T are closely approximated by scaling the CCFs of CT under certain conditions. We compare the CCFs of T
(thin red and black traces) with those of CT (thick pink and grey traces) for the megastar street graph (top row) and tripartite street
graph (bottom row). The CCFs are plotted with respect to different scales of τ as indicated by the top (T) and bottom (CT) x-axes of
all panels. We obtained the CCFs of T by taking the Fourier transform of 100 000 (megastar) or 200 000 (tripartite) simulation results
of the Moran process on those graphs. For the megastar graph, we set r = 1.2 and S0 = [1, 0, 2]. For the tripartite graph, we set
r = 1.5 and S0 = [1, 0, 0]. When S0 is small, the CCF of T|a is closely approximated by scaling the CCF of CT|a with an appropriate
constant κa (right column). T|b is less accurately approximated by scaling CT|b (left column), particularly for higher-order moments.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:220011
16

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 J

an
ua

ry
 2

02
3 
barriers are visited frequently. If the time spent per visit in transient states was perfectly cancelled by the
number of visits to those states, then the CCFs of T would be much simpler to calculate.

While the CCFs of T for the Moran process remain an open problem [10,11], figure 10 shows that we
can accurately approximate them from the CCFs of CT under certain conditions. The right column of
figure 10 shows that the fixation CCF of T is very accurately approximated by scaling the fixation
CCF of CT with an appropriate scaling constant κa. We defined ka ¼ E½Tja�=E½CT ja� and calculated
E½Tja� from our simulation results. Our values for κa are reported in each panel. Since
E½Tja� ¼ kaE½CT ja� and figure 10 plots the CCFs at different relative scales, the slopes of the imaginary
parts of the fixation CCFs at τ = 0 are the same. Each panel also reports the scaled second moments
E½T2ja� and E½C2

T ja� and shows that their values are very similar. The strong overlap of the CCFs
indicates that properly scaled higher-order moments are similar in value as well. These results suggest
that the sojourn CCFs conditional on fixation do not appreciably vary over the transient states of the
Moran process on street graphs, at least when S0 is small. Therefore, our scaling approximation T|a≈
κa CT|a is accurate.

The left column of figure 10 shows that our scaling approximation T|b≈ κb CT|b is less accurate.
When S0 is small and mutants go extinct, the sojourn CCFs conditional on extinction vary
substantially over transient states of the (fully connected) Moran process [11]. Figure 10 suggests that
this result holds for the Moran process on street graphs. Comparing the top and bottom panels of the
left column, our scaling approximation becomes less accurate as S0 moves away from the extinction
barrier. For the megastar graph (top row, S0 = [1, 0, 2]), the scaled second moments have a 56%
difference, while for the tripartite graph (bottom row, S0 = [1, 0, 0]) they have a 28% difference. When
S0 is further from the extinction barrier, mutants are more likely to require more population size
changes before going extinct. Therefore, the Moran process is more likely to traverse more transient
states whose conditional sojourn times vary appreciably, so our scaling approximation loses accuracy.
3. Discussion
Martingales are a powerful tool that can address fundamental problems in EGT and other biologically
themed stochastic processes [6,11,26,27,41,46–49]. The mutant population on an evolutionary graph
may be considered as a multi-dimensional random walk between two absorbing barriers. We might
expect that analytic study of evolutionary graphs suffers from a curse of dimensionality. For example,
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we can construct a Markov matrix of transition probabilities and attempt to calculate fixation
probabilities and times from it [4,7,9,22,50–53]. But as we increase the number of partitions, we
increase the number of transition probabilities, and that matrix quickly becomes too complicated to
manipulate [38,53–56]. Another popular approach to investigating evolutionary graphs is by
exhaustive simulation [12,54,57,58]. But as the number of partitions increases, we increase the
dimensionality of parameter space. It is infeasible to explore how fixation probabilities and times
depend on graph parameters (i.e. partition sizes) when the number of partitions is large. We have
shown that, when they are applicable, martingales directly address this curse.

Martingales are conservation statements for absorbing random walks [11,29]. They show that the
expectation of some quantity is constant in time throughout a random walk, regardless of its history
or state. So if we know that expectation at the beginning of the random walk, then we know it at the
end. We can often extract global statistics of interest from that conservation statement [30–32], as we
illustrated here. Crucially, the existence of that conservation statement does not necessarily depend on
the dimensionality of the random walk [26]. We showed that a k-partite street graph yields a
k-dimensional product martingale, and from that martingale we can extract α, cCT jaðtÞ and cCT jbðtÞ.
For street graphs, martingales reduce the curse of dimensionality to the simpler task of finding two
complex solutions to a system of quartic equations. Once we have that conservation statement, we
immediately obtain elegant and exact expressions for global statistics of interest. There is no need to
construct and manipulate a matrix of transition probabilities to do so.

Martingale analysis is more amenable to some random variables than it is for others. For example, we
found a product martingale that yields the CCFs of CT, but we have not found one that yields the CCFs
of the fixation time T. To briefly explain why, say we want to find a product martingale of the form
(cf. equation (2.1)):

E gT
Yk
i¼a

fiðgÞSi,t
����St�1, T � 1

" #
¼ gT�1

Yk
i¼a

fiðgÞSi,t�1 :

This equation is true when:

E
Yk
i¼a

fiðgÞXi,t

����St�1, T � 1

" #
¼ 1

g
:

Writing the expectation:

Xk
i¼a

pXi"fiðgÞ þ
Xk
i¼a

pXi# fiðgÞ�1 þ 1�
Xk
i¼a

pXi" �
Xk
i¼a

pXi# ¼
1
g
:

We note that the number 1 on the left-hand side does not cancel with 1/g on the right-hand side. So it is
harder to cancel the state dependencies of the transition probabilities like we did before. If we cannot
cancel state dependencies, then we cannot find a conservation statement for the random walk and
extract global statistics from it. A martingale of T may still exist for street graphs, but it does not have
the same form as equation (2.1).

The EGT literature primarily studies the conditional distributions or moments of T [21,23,24,59,60].
We question whether T is an ideal quantity to represent the duration of the Moran process on a graph
[41]. The graph’s transition probabilities are unaffected if we eliminate time steps where the graph
does not change. So the underlying process is indifferent to whether we include those time steps or
not. In simulations, including those time steps can dramatically slow computation time, particularly
when the mutant population size is very large or very small [10,33]. Including those time steps also
impedes analytical study of the Moran process as we have shown. But if we insist on T as our
definition of the Moran process duration, we can often approximate its conditional distributions from
those of CT anyway [11].

Martingales are sensitive to certain changes in the graph and the birth–death process that runs on it
[61,62]. Here, we studied the original Moran process, where we select the reproducing individual before
the dying one on a time step, and only the reproducing phase is fitness-dependent [3]. But we can also
consider a ‘death–birth process’ where we choose an individual to die before choosing one to reproduce
on a time step [63–67]. If the probability of choosing the dying individual is fitness-dependent, and the
reproducing individual is chosen randomly, then martingale analysis remains applicable. But if the dying
individual is chosen uniformly at random, and the probability of reproducing is fitness-dependent, then
it is much more difficult to cancel the state dependencies in the transition probabilities. Our martingale
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analysis is applicable to both birth–death and death–birth processes, but only when the first phase of
their time steps is fitness-dependent.

Martingales are also sensitive to a graph’s connection type. For example, consider a k-partite graph
with directed connections instead of street connections. Directed connections constrain the offspring of
mutants and residents to travel in only one direction between partitions [37,38]. For street graphs, we
found a product martingale by observing that the state dependence of the probability that a mutant
reproduces in one direction equals that of a resident reproducing in the other direction. Directed
connections destroy that symmetry because mutants and residents can only reproduce in the same
direction. It is much harder to find a martingale for graphs with directed connections.

We might be able to apply martingale analysis to k-partite graphs with undirected connections
[13,34–36], where mutants and residents can reproduce in both directions. Such graphs have 2k
unique state dependence terms in their transition probabilities of the form Si,t−1(J− Sj,t−1). To cancel all
those state dependent terms, we need to split equation (2.4) into 2k separate equations. Then given 2k
state-independent equations, we need to solve for 2k functions fi(g) to find a product martingale. So
we can find a product martingale with the same form as equation (2.1) for a k-partite graph with
undirected connections, but its dimensionality will be 2k.

Those extra k dimensions complicate the extraction of global statistics from the martingale.
Each dimension of the martingale corresponds to one random variable in the random walk.
For example, in the k-partite street graph, each dimension of the martingale corresponds to the
mutant population size of one partition. Since we know the two absorbing barriers for all k random
variables (i.e. ST = a and ST = b), we can manipulate the martingale and extract global statistics as we
showed. For undirected k-partite graphs, our martingale has 2k dimensions. Half of those dimensions
can again correspond to the mutant population size in each partition. We know that the two
absorbing barriers for those k random variables are a and b. But we still need to find k more random
variables to correspond to the remaining k dimensions in the martingale. Furthermore, we need to
know the absorbing barriers of those random variables, given that the mutants fixed or went extinct.
If we can find k more random variables, then we can extend our analysis to consider undirected
k-partite graphs.

Martingales provide clean and exact expressions for statistics of interest in EGT. Their parameter
dependence is explicit, so we can easily explore the dependence of those statistics on parameter
values. Martingales do not require simplifying assumptions such as large population size [5,10] or
weak selection [38,56,68] to yield tractable results. The drawback of martingales is that seemingly
insignificant changes to a birth–death process can complicate their applicability. But when they are
applicable, martingales offer clear advantages over other approaches to studying evolutionary graphs,
e.g. simulation [12,54,57] and Markov chain [4,7,22,50–53] or state transition-based [4,7,38,50,51]
methodologies. So it seems worthwhile to continue expanding the classes of graphs and problems that
martingales can address so aesthetically.
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