
Citation: Salehan, A.; Javadi, B.

Collaborative Gold Mining

Algorithm: An Optimization

Algorithm Based on the Natural Gold

Mining Process. Electronics 2022, 11,

3824. https://doi.org/10.3390/

electronics11223824

Academic Editor: Juan-Carlos Cano

Received: 15 October 2022

Accepted: 17 November 2022

Published: 21 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Collaborative Gold Mining Algorithm: An Optimization
Algorithm Based on the Natural Gold Mining Process
Alireza Salehan 1,* and Bahman Javadi 2

1 Department of Computer Engineering, University of Torbat Heydarieh, Torbat Heydarieh 9516168595, Iran
2 School of Computer, Data and Mathematical Sciences, Western Sydney University,

Penrith, NSW 2751, Australia
* Correspondence: salehan@torbath.ac.ir

Abstract: In optimization algorithms, there are some challenges, including lack of optimal solution,
slow convergence, lack of scalability, partial search space, and high computational demand. Inspired
by the process of gold exploration and exploitation, we propose a new meta-heuristic and stochastic
optimization algorithm called collaborative gold mining (CGM). The proposed algorithm has several
iterations; in each of these, the center of mass of points with the highest amount of gold is calculated
for each miner (agent), with this process continuing until the point with the highest amount of gold or
when the optimal solution is found. In an n-dimensional geographic space, the CGM algorithm can
locate the best position with the highest amount of gold in the entire search space by collaborating
with several gold miners. The proposed CGM algorithm was applied to solve several continuous
mathematical functions and several practical problems, namely, the optimal placement of resources,
the traveling salesman problem, and bag-of-tasks scheduling. In order to evaluate its efficiency,
the CGM results were compared with the outputs of some famous optimization algorithms, such
as the genetic algorithm, simulated annealing, particle swarm optimization, and invasive weed
optimization. In addition to determining the optimal solutions for all the evaluated problems, the
experimental results show that the CGM mechanism has an acceptable performance in terms of
optimal solution, convergence, scalability, search space, and computational demand for solving
continuous and discrete problems.

Keywords: collaborative gold mining; optimization algorithms; continuous mathematical functions;
optimal placement of resources; traveling salesman problem (TSP); bag-of-tasks scheduling (BoT)

1. Introduction

Several optimization algorithms have been proposed to find (near-) optimal solutions
to complex problems in different areas of science and technology. As many of these algo-
rithms are inspired by processes in nature or biological behaviors, they simplify the complex
operation of problems and provide viable solutions. The success of such algorithms has led
to the introduction of a lot of nature-inspired and bio-inspired optimization methods [1,2].

There are different types of problems that can be solved with optimization algorithms:
discrete, continuous, combinatorial, and multi-objective problems [3,4]. In all of the pro-
posed optimization methods, the behavior of a procedure in nature and biology, or even
human social behavior, is examined and mapped to the algorithm steps. Due to their excel-
lent efficiency, these optimization methods may be applied to many real-world problems in
different contexts. They are able to solve problems dealing with computer networks [5],
power systems [6], telecommunications [7], intrusion detection [8], data mining [9], face
recognition [10], clustering [11], transportation [12], and robotics [13].

While there are many optimization algorithms, there are still some challenges that keep
researchers motivated to introduce new optimization algorithms. Some of these challenges
includes lack of optimal solution (some methods cannot find an optimal or suboptimal

Electronics 2022, 11, 3824. https://doi.org/10.3390/electronics11223824 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11223824
https://doi.org/10.3390/electronics11223824
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0139-5051
https://orcid.org/0000-0003-2351-9801
https://doi.org/10.3390/electronics11223824
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11223824?type=check_update&version=2

Electronics 2022, 11, 3824 2 of 29

solution to a problem), slow convergence (in some methods, obtaining the optimal solution
requires a large number of iterations), lack of scalability (some methods cannot work
properly for large dimensional problems), partial search space (some methods do not
consider the entire search space to find the global optimal solution; instead, they are only
able to find the local optimal solution), and high computational demand required (some
methods require a lot of computing resources to determine the optimal solution). These
challenges make the optimization algorithm not applicable in real-world environments and
on low-power devices.

With a focus on gold exploration and exploitation processes, this paper introduces
collaborative gold mining (CGM), a new optimization algorithm. With the participation of a
number of gold miners (optimization problem agents), the proposed algorithm can discover
the position with the highest amount of gold (optimal solution) in an entire search area of
an n-dimensional geographical space. The CGM algorithm includes several iterations, and
in each iteration, the center of mass of points with the highest amount of gold is calculated
for the miners (exploration process); each of these repeats this process based on the new
position so as to extract more gold (exploitation process). This process continues until the
location with the highest amount of gold, the optimal solution, is determined. The CGM
mechanism can be applied to both minimizing and maximizing problems.

After the theoretical expansion of the proposed mechanism, we show its applicabil-
ity and efficiency for discrete and continuous problems. This is achieved with a set of
benchmark functions. Then, the outputs are compared with other famous optimization
mechanisms. These comparisons indicate that the proposed mechanism is efficient and
scalable and that it can even outperform other existing algorithms for the sample problems.

Some important significances of the proposed CGM mechanism are the following:

• In addition to determining the optimal solution, the CGM mechanism can provide
better efficiency in terms of convergence, scalability, and search space.

• The CGM mechanism can determine the appropriate solution with the least number
of members of the population.

• For most problems, this method converges to a quasi-optimal or optimal solution in
the same initial iterations.

• The CGM mechanism is also able to solve problems on different scales.
• This method does not limit the search space during iterations and tries to find the

optimal solution in the whole search space during all iterations.

The rest of the paper is organized as follows: Section 2 presents the review of a related
survey in the field of optimization algorithms inspired by human social behavior and
lifestyle. Section 3 reports the investigation and mathematical formulation of the mecha-
nism of collaborative gold mining based on the concept of the center of mass. This section
also presents details on the CGM mechanism and its algorithm pseudocode. Section 4
presents the evaluation of the performance of the proposed optimization algorithm with
the implementing of several discrete and continuous practical problems. These problems
include a series of continuous mathematical functions as well as practical problems address-
ing the optimal placement of resources, the traveling salesman problem, and bag-of-tasks
scheduling. The evaluated criteria include optimal solution, convergence, scalability, search
space, and computational demand. Finally, Sections 5 and 6 present discussions and
conclusions, respectively.

2. Related Work

Currently, several optimization algorithms have been proposed that have drawn upon
different sources of inspiration [1]. Despite their diversity in properties and characteristics,
the basis of most optimization algorithms inspired by nature or biology is found in one
of five classic and famous algorithms, namely, ant colony optimization [14], artificial bee
colony [15], particle swarm optimization [16], genetic algorithm [17], and differential
evolution algorithm [18]. Most proposed algorithms assume some of the properties and
characteristics of these five basic algorithms. Due to the large number of optimization

Electronics 2022, 11, 3824 3 of 29

algorithms, it is beyond the scope of this paper to discuss all of them; more information
can be found in other studies [1,2,19–21].

In addition to nature-inspired and bio-inspired mechanisms, there are some opti-
mization methods that operate based on human social behavior and lifestyle. The most
important and well-known of these are the imperialist competitive algorithm [22], the brain
storm optimization algorithm [23], the anarchic society optimization algorithm [24], the
ideology algorithm [25], the pop music algorithm [26], soccer game optimization [27], the
golden ball algorithm [28], and FIFA world cup competitions [29].

In the imperialist competitive algorithm [22], countries, as a population of the op-
timization problem, are divided into colonies and imperialists and are initially located
within a number of empires. Then, among these empires, an imperialist power struggle
begins. The power of each empire is calculated based on the power of the imperialist plus a
percentage of the average of its colonies’ power. In addition, countries are able to switch
and join other empires. During this competition, weak empires fall and powerful empires
overcome the colonies of weak empires. This competition continues until just one empire
and its colonies stay as the strongest entity. The last standing empire is the solution to the
optimization problem. In contrast, the brain storm optimization algorithm [23] is inspired
by the process of human brainstorming. This inspiration derives from the fact that some
problems in the real world cannot be overcome by one person and humans must work
together to solve them. In this algorithm, individuals are considered as the population of
the optimization problem and based on convergent and divergent operations, they present
the perspective of the problem and are grouped in the search space in order to produce the
best solution during iterations.

The anarchic society optimization method [24] is inspired by the social grouping of
human beings. In this method, those having fickle, unstable, adventurous, and irrational
behavior are considered as members of one social group. To improve their situation, these
people should exhibit anarchic behavior. As the level of difference among the members’
situations grows, the level of anarchic behavior among individuals intensifies. These
anarchic behaviors are repeated until the whole problem space is explored; finally, an
optimal solution is found. The ideology algorithm [25], in comparison, is based on the
utilitarian and competitive behavior of individuals who are members of different political
parties. By following the ideology of their local leader and forming a close relationship
with the leader, political party members can improve their ranking. Since the behavior of
other political party leaders can be examined and compared with that of their own, there
is an incentive to change parties. Furthermore, each of the local party leaders compare
themselves to each other in vying to become the global leader. In this competitive ranking-
based algorithm, each individual is identified as a problem solution and the global leader
is defined as the optimal problem solution.

The pop music algorithm [26] can solve various combinatorial optimization problems
by analyzing concepts used in heuristic methods. The main idea of this method is to
locally optimize the subdivisions of a solution until the optimal solution of the problem is
reached. The soccer game optimization mechanism [27] is a population-based collaborative
optimization method inspired by the concepts of football. This mechanism is based on
football players’ actions on the field: move off, as the exploration process, and move
forward, as the exploitation process. In this mechanism, the position of each player is
considered as one of the initial solutions to the optimization problem, and the performance
of each player, as an objective function, is evaluated based on this position. Among all the
members of the team, the player with the best position is known as the owner of the ball or
the dribbler. The dribbler tries to move forward, pass the ball to other players, all the while
being followed by the other players. The dribbler’s “move forward” action continues until
he reaches the point of his own maximum efficiency (optimal solution) and, as a result, also
that of the whole team’s (in other words, the opponent’s goal).

The golden ball algorithm [28] first considers a population of players and coaches and
then divides them into different teams. Each team has power based on the performance of

Electronics 2022, 11, 3824 4 of 29

its members, with this power acting as the objective function of the optimization problem.
Each season, these teams compete independently, holding competitions and performing
training exercises. At the end of each season, the transfer phase begins, during which
players and coaches switch among teams. The process of repeating seasons and competing
continues until team members become reluctant to transfer. At this time, the team with the
most power is the ultimate solution to the optimization problem. Finally, [29] introduced
an optimization technique that finds the optimal solution based on the FIFA World Cup
games. In this technique, each of the teams represents a country, as the initial solution to the
problem, and competes with its neighbors. The top two teams on each continent progress
to the World Cup. The selected teams then compete in the final games to determine which
is the best team in the world as the optimal solution to the optimization problem.

While there are a lot of optimization mechanisms, there are still a number of challenges
including lack of optimal solution, slow convergence, lack of scalability, partial search
space, and high computational demand. The existence of these challenges leads to the
impossibility of using optimization algorithms in some real applications on low-power
devices and equipment. One of these applications includes recommending useful services
or devices in a smart environment for an IoT platform [30,31]. In the present paper,
we propose a new optimization method to address some of these challenges based on
collaborative gold mining.

3. Materials and Methods

We consider a number of gold miners who collaboratively search for gold in a specific
geographic area. The search operation consists of exploration and exploitation stages,
with the miners aiming to find the location with the highest amount of gold in the whole
geographical area. Collaborative mining means that a miner, after finding a new location
with gold, provides that position’s information to other miners if it holds more gold than
previously discovered positions. In this way, miners can follow a better path of discovery
that leads to a location with the highest amount of gold. In this mechanism, the geographic
search area is assumed to be an n-dimensional area, in which each miner is able to alter any
of the dimensions when moving from the current position to a new position.

In order to cover the whole area, the miners are randomly scattered throughout the
geographical area, where the mining operation is not limited to a specific part of the
geographic space. Once the miners are dispersed, the collaborative mining operation
begins. In the first search, the miners share information about the amount of gold found,
which identifies the positions where more gold was discovered. Out of all the results
obtained from the first search, the top three positions reporting the highest amount of gold
are called the first-best, second-best, and third-best positions. As their name suggests, these
three positions represent the coordinates of the first, second, and third points, respectively,
which have the highest amounts of gold among all the other positions.

Based on the miners’ current position and the values of the three best positions, the
center of mass is calculated for each miner, where these new values indicate which positions
should be explored and exploited next. Since it may not be possible to explore the given
positions (for example, due to the inability to dig or inaccessibility of the new position), the
miner is able to explore near or around that position instead of that exact point. Figure 1
illustrates how to determine the next position based on the miner’s current position values
and the three best positions.

After the identification of new mining positions using the center of mass, the second
stage is to explore and exploit gold at these positions and to determine the amount of gold
discovered there. Then, based on the results obtained from this stage, the values of the
first-best, second-best, and third-best positions are updated to determine the next positions
to mine. This process will continue as long as the miners are willing to collaborate; finally,
the first-best position, indicating the location with the most gold, will be revealed.

Electronics 2022, 11, 3824 5 of 29

Electronics 2022, 11, x FOR PEER REVIEW 5 of 32

After the identification of new mining positions using the center of mass, the second
stage is to explore and exploit gold at these positions and to determine the amount of gold
discovered there. Then, based on the results obtained from this stage, the values of the
first-best, second-best, and third-best positions are updated to determine the next posi-
tions to mine. This process will continue as long as the miners are willing to collaborate;
finally, the first-best position, indicating the location with the most gold, will be revealed.

Figure 1. Determination of the next position based on the values of a miner’s current position and
the three best positions.

3.1. Center of Mass
In mechanics, the center of mass or balance point is a unique point, at which the sum

of the weighted relative position vectors of distributed masses is zero. In other words, if
several particles with specific masses are distributed in space, the center of mass of these
particles indicates their balance point. At the center-of-mass point, the sum of the torques
in a clockwise direction equals the sum of the torques in a counterclockwise direction
around this point [32].

Let us consider 𝑛𝑛 particles, 𝑃𝑃𝑖𝑖 (𝑖𝑖 = 1,2, … ,𝑛𝑛), in a three-dimensional space whose
mass is 𝑚𝑚𝑖𝑖 and that the position vector of each is 𝑟𝑟𝚤𝚤��⃗ . The center of mass of these 𝑛𝑛 parti-
cles, which is obtained from the following equation, is point 𝑟𝑟𝐶𝐶𝐶𝐶������⃗ .

𝑟𝑟𝐶𝐶𝐶𝐶������⃗ =
𝑚𝑚1𝑟𝑟1���⃗ + 𝑚𝑚2𝑟𝑟2���⃗ + ⋯+ 𝑚𝑚𝑛𝑛𝑟𝑟𝑛𝑛���⃗
𝑚𝑚1 + 𝑚𝑚2 + ⋯+ 𝑚𝑚𝑛𝑛

=
∑ 𝑚𝑚𝑖𝑖𝑟𝑟𝚤𝚤��⃗𝑛𝑛
𝑖𝑖=1

𝑀𝑀
 (1)

In Equation (1), 𝑀𝑀 is the final mass of all particles. In this three-dimensional space,
because the position vector of each particle has three values (𝑥𝑥, 𝑦𝑦, and 𝑧𝑧), the center of
mass of each dimension can be calculated separately. For this purpose, Equation (2) is
used as follows:

𝑥𝑥𝐶𝐶𝐶𝐶 =
1
𝑀𝑀
�𝑚𝑚𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑦𝑦𝐶𝐶𝐶𝐶 =
1
𝑀𝑀
�𝑚𝑚𝑖𝑖𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑧𝑧𝐶𝐶𝐶𝐶 =
1
𝑀𝑀
�𝑚𝑚𝑖𝑖𝑧𝑧𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(2)

In other words, to calculate the center of mass of several points in a space with the
desired number of dimensions (even more than three dimensions), Equation (2) is suffi-
cient. Figure 2 illustrates the center of mass (CM) for four hypothetical points with

Figure 1. Determination of the next position based on the values of a miner’s current position and
the three best positions.

3.1. Center of Mass

In mechanics, the center of mass or balance point is a unique point, at which the sum
of the weighted relative position vectors of distributed masses is zero. In other words, if
several particles with specific masses are distributed in space, the center of mass of these
particles indicates their balance point. At the center-of-mass point, the sum of the torques in
a clockwise direction equals the sum of the torques in a counterclockwise direction around
this point [32].

Let us consider n particles, Pi (i = 1, 2, . . . , n), in a three-dimensional space whose
mass is mi and that the position vector of each is

→
ri . The center of mass of these n particles,

which is obtained from the following equation, is point
→

rCM.

→
rCM =

m1
→
r1 + m2

→
r2 + · · ·+ mn

→
rn

m1 + m2 + · · ·+ mn
=

∑n
i=1 mi

→
ri

M
(1)

In Equation (1), M is the final mass of all particles. In this three-dimensional space,
because the position vector of each particle has three values (x, y, and z), the center of
mass of each dimension can be calculated separately. For this purpose, Equation (2) is used
as follows:

xCM = 1
M

n
∑

i=1
mixi

yCM = 1
M

n
∑

i=1
miyi

zCM = 1
M

n
∑

i=1
mizi

(2)

In other words, to calculate the center of mass of several points in a space with the
desired number of dimensions (even more than three dimensions), Equation (2) is sufficient.
Figure 2 illustrates the center of mass (CM) for four hypothetical points with different
masses in a two-dimensional space. In this figure, Equation (2) calculates the center-of-
mass value for each dimension. In addition to the applications of the center of mass in
physical and mechanical sciences, this concept offers many applications in other fields,
such as the manufacturing of medical equipment, the design of sports equipment, and
improvements in daily life [32,33].

Electronics 2022, 11, 3824 6 of 29

Electronics 2022, 11, x FOR PEER REVIEW 6 of 32

different masses in a two-dimensional space. In this figure, Equation (2) calculates the
center-of-mass value for each dimension. In addition to the applications of the center of
mass in physical and mechanical sciences, this concept offers many applications in other
fields, such as the manufacturing of medical equipment, the design of sports equipment,
and improvements in daily life [32,33].

Figure 2. Center of mass of four points with different masses in a two-dimensional (2D) space.

3.2. Collaborative Gold Mining Optimization Mechanism
The collaborative gold mining (CGM) optimization mechanism is able to solve both

maximization and minimization problems. The goal in maximization problems can be
finding the position with the highest amount of extracted gold; in minimization problems,
the goal may be locating the position with the lowest level of impurity in the extracted
gold. In the CGM mechanism, a population of gold miners is initialized as optimization
agents at random positions across the intended geographic area. This search area is as-
sumed to be an n-dimensional area; therefore, the number of optimization problem vari-
ables are 𝑛𝑛, each of which can be set in a specific range. After these variables are set for
each gold miner as the problem population, the optimization objective function is calcu-
lated for each one in order to determine the values of the three best positions. In the CGM
mechanism, the number of population members is constant in all iterations.

Depending on the results of the objective function, the first three best values are se-
lected as the values of the first-best, second-best, and third-best positions. According to
the type of problem (maximization or minimization), the values of these three positions
indicate the three points with the highest amount of gold or the lowest level of impurity,
respectively. The values of these three positions are updated during the iterations of the
algorithm; finally, after all the iterations are performed, the first-best position with the
most gold (In maximization problems) or the lowest level of impurity (in minimization
problems) in the whole search space is considered as the solution to the optimization prob-
lem.

After initializing the population and determining the values of the three best posi-
tions, the iterations of the algorithm are performed. The algorithm can include 𝑚𝑚 itera-
tions, in which the new position of each gold miner is first determined (exploration pro-
cess). To obtain this new position, the center of mass is calculated for the miner’s current
position and the three best positions, with the result summed with a random value. This
random value is considered because the miner may not mine the exact point determined
by the center of mass (for reasons such as the inability to dig or inaccessibility of the new
location). The random value is calculated differently in continuous and discrete problems,
as discussed in the next section. After determining the new positions for all miners, the

Figure 2. Center of mass of four points with different masses in a two-dimensional (2D) space.

3.2. Collaborative Gold Mining Optimization Mechanism

The collaborative gold mining (CGM) optimization mechanism is able to solve both
maximization and minimization problems. The goal in maximization problems can be
finding the position with the highest amount of extracted gold; in minimization problems,
the goal may be locating the position with the lowest level of impurity in the extracted gold.
In the CGM mechanism, a population of gold miners is initialized as optimization agents
at random positions across the intended geographic area. This search area is assumed to be
an n-dimensional area; therefore, the number of optimization problem variables are n, each
of which can be set in a specific range. After these variables are set for each gold miner
as the problem population, the optimization objective function is calculated for each one
in order to determine the values of the three best positions. In the CGM mechanism, the
number of population members is constant in all iterations.

Depending on the results of the objective function, the first three best values are
selected as the values of the first-best, second-best, and third-best positions. According to
the type of problem (maximization or minimization), the values of these three positions
indicate the three points with the highest amount of gold or the lowest level of impurity,
respectively. The values of these three positions are updated during the iterations of the
algorithm; finally, after all the iterations are performed, the first-best position with the most
gold (In maximization problems) or the lowest level of impurity (in minimization problems)
in the whole search space is considered as the solution to the optimization problem.

After initializing the population and determining the values of the three best positions,
the iterations of the algorithm are performed. The algorithm can include m iterations, in
which the new position of each gold miner is first determined (exploration process). To
obtain this new position, the center of mass is calculated for the miner’s current position and
the three best positions, with the result summed with a random value. This random value
is considered because the miner may not mine the exact point determined by the center of
mass (for reasons such as the inability to dig or inaccessibility of the new location). The
random value is calculated differently in continuous and discrete problems, as discussed in
the next section. After determining the new positions for all miners, the amount of gold
obtained from the new points is calculated (exploitation process). If necessary, the values
of the three best positions are updated so that the location of the points with the highest
amount of gold or the lowest level of impurity is maintained in the three best variables.

It should be noted that, in each iteration of the algorithm and for each miner, the
n variables of the problem are updated to finally determine the new position of each
miner, which is achieved by calculating the objective function for these n updated variables.
Equation (3) demonstrates the calculation of a gold miner’s new position based on the

Electronics 2022, 11, 3824 7 of 29

center-of-mass concept (Equations (1) and (2)) and using the values of the current position
and the three best positions.

newPosi
j =

currentPosi
j × f ∗i + αj × f ∗α + β j × f ∗β + γj × f ∗γ

f ∗i + f ∗α + f ∗β + f ∗γ
+ ϕ (3)

In Equation (3), the value of i represents the i-th miner and the value of j indicates the
variable j of the i-th miner, so that 1 ≤ j ≤ n. Moreover, newPos and currentPos indicate
the new and current positions of the variable j of the i-th miner, respectively. f ∗ is the
optimization objective function, and α, β, and γ are the values of the first-best, second-best,
and third-best positions, respectively. Index j in each of the values of α, β, and γ represents
variable j of these three positions. In addition, ϕ is a random number, as explained in
Section 3.3. Note that, for θ ∈ {i, α, β, γ}, function f ∗θ calculates the optimization objective
for the miner or for one of the three best positions based on the values of all variables.

The other iterations are performed similarly to the first iteration, where each miner’s
new position is first found and then, if necessary, the values of the three variables, first-best,
second-best, and third-best, are updated. As mentioned above, after all iterations are
completed, the first-best position is the optimal solution for the optimization problem. This
final first-best position shows the location of the point with the highest amount of gold or
the lowest level of impurity among all the points mined (according to Equation (3), at the
end of the iterations, α represents the values of the variables in the optimal position, and f ∗α
is the solution to the optimization problem).

3.3. Determination of Random Value ϕ

Equation (3) calculates the new position of each gold miner according to the current
position of the miner and the three best positions. Equation (3) is the sum of the center of
mass and random number ϕ. This random number is considered because the miner may
not be able to mine the exact point obtained from the center-of-mass equation. Determining
random number ϕ is performed differently in continuous and discrete problems.

In continuous problems, the variables can be defined in the specified range and can
change continuously to any desired extent. However, in the most discrete problems,
variables can only be a permutation of the permissive integer values and so only these
acceptable values can be switched among the variables. In other words, unlike continuous
problems, the value of a variable in most discrete problems cannot be changed arbitrarily,
and only different permutations of the permissive integer values can be assigned to the
problem variables.

If the problem is continuous, the permissive range for moving the miner in each
dimension of the space must be chosen between the minimum and maximum values of the
three best positions in that dimension. Suppose that the miner intends to find his movement
value in the j-th dimension. Assuming that CMj is the center of mass and that values αj, β j,
and γj are the values of the three best points in the j-th dimension, the range for moving
the miner is

(
min

(
αj, β j, γj

)
− CMj, max

(
αj, β j, γj

)
− CMj

)
, and a random number with

a normal distribution in this range can be considered as the acceptable threshold value,
ϕ (miner movement value). The reason for selecting this range is because the center of
mass is among the best points; therefore, mining for gold outside the intersection of these
three points cannot provide a better result for the miner, at least in the current iteration.
The two points, min

(
αj, β j, γj

)
− CMj and max

(
αj, β j, γj

)
− CMj, are not considered in the

above range because the new position must be different from the three best points in the
j-th dimension.

If the problem is discrete, however, ϕ can be a random number selected from the
selectable and allowable integer values. Let us suppose that the problem has n variables, so
that the values of vi (i = 1, 2, . . . , n) can be assigned to each of these variables. Considering
the permissive values of vi, ϕ can be a random number from these n values. Since it may
not be possible to assign duplicate values to variables in some problems (such as task

Electronics 2022, 11, 3824 8 of 29

scheduling and traveling salesman problems), the initialization of variables in these types
of problems is a permutation of vi values. In this case, random number ϕ can be selected
from any of these n values, provided that the new position obtained from Equation (3) is
not a duplicate. In the event of duplication, the procedure for resetting ϕ from the values
of vi continues until the result of Equation (3) generates a new position that has not been
previously selected by the gold miner for the intended variable.

3.4. The Proposed CGM Algorithm

Algorithm 1 describes the CGM optimization for both maximization and minimization
problems, including continuous and discrete types. Table 1 presents some important
variables and parameters utilized in the CGM mechanism. This table shows the concept
inspired by the collaborative gold mining process and the description of the parameters in
the optimization problem space.

Table 1. Important variables and parameters used in the CGM algorithm.

Name Concept Inspired by the
Collaborative Gold Mining Process

Description in the
Proposed

CGM Algorithm

Iters Number of recurrences of the mining process Number of iterations
nPop Number of collaborative gold miners Number of populations (solutions) in all iterations
pop Gold miners in all recurrences The set of solutions in all iterations
nVar Number of positions Variables of the optimization problem
LB Lower bound of positions Minimum value of each variable
UB Upper bound of positions Maximum value of each variable

α
Location of first-best position with the highest amount of gold

(or the lowest level of impurity) extracted The first-best solution in all iterations

β
Location of second-best position with the highest amount of

gold (or the lowest level of impurity) extracted after the
first-best location

The second-best solution in all iterations

γ
Location of third-best position with the highest amount of

gold (or the lowest level of impurity) extracted after the
second-best location

The third-best solution in all iterations

CGM
Amount of extracted gold (or extracted impurities), shown

using f ∗ in Equation (3) Objective function

ϕ Random amount of movement for each miner Acceptable threshold for determination of the
new position

The inputs of this algorithm are the values of nPop, nVar, Iters, LB, and UB, and the
only objective output of the algorithm is the optimal solution, which is returned by variable
α. This variable includes the location and objective function of the point with the highest
amount of gold extracted (for maximization problems) or the lowest level of impurity
extracted (for minimization problems) as the solution to the optimization problem during
all the iterations. Lines 1 to 22 initialize the members of the problem population and the
values of the three best positions. In the first three lines of the algorithm, the initial values
of the three variables, α, β, and γ, as the three best positions, are considered NULL. Since
each member of the population, along with the three best positions, contains two fields,
Pos (position vector) and Obj (value of the objective function), placing NULL in the three
best positions means that at the beginning of the algorithm, the value of the Pos field is 0
and the value of the Obj field is assumed to be −∞ (for maximization problems) or +∞
(for minimization problems).

If the problem is continuous, for each member of the population in lines 5 to 7, nVar
random numbers are generated in the range of [LB, UB] and stored as the initial locations of
the gold miners in the pop array. However, if the problem is discrete, a random permutation
of the problem variables is recorded in lines 8 to 10 as the initial location for each member of
the population. In line 11, the value of the objective function is calculated for each member

Electronics 2022, 11, 3824 9 of 29

of the pop population, and this value is compared with the values of the three best positions
in lines 12 to 21 to update the value of these three positions, if necessary. Since Algorithm 1
is written for both maximization and minimization problems, operator ≷ can include two
values, > and <, for maximization and minimization problems, respectively.

In lines 23 to 55, the iterations of the CGM algorithm are performed, where lines 26 to
42 describe the exploration process and lines 43 to 53 explain the exploitation process of the
CGM mechanism. In each iteration and for each member of the population, all problem
variables are first updated. In line 26, the center-of-mass value for variable j of the i-th
member of the population is calculated, and the result is placed in CM. If the problem is
continuous, the two variables, A and B, are set in lines 28 and 29 based on the value of CM,
as well as the minimum and maximum values for each of the three best positions for the
given variable, and in line 30, a random number with the normal distribution in the range
between A and B is calculated as the value, ϕ. However, if the problem is discrete, in line 33,
a random integer in the range of [0,nVar] is calculated and assigned to ϕ.

In line 35 of the algorithm, the new value of the variable is calculated based on
Equation (3); then, lines 36 to 41 examine if the value is within the range. Since the new
value for discrete problems must be in the range of nVar values, this value is first converted
to an integer value in line 40 and then mapped to the range using the modulo operator
(mod). After all the variables of each member of the pop population are updated, the value
of the objective function is calculated in line 43. In this line, the CGM function computes the
objective value of the problem. This value is then compared with the values of the three
best positions in lines 44 to 53 so that the value of these three positions is replaced with the
value of the objective function obtained for the population member, if necessary. Finally,
the output of the algorithm is the first-best position that is returned as the optimization
problem’s optimal solution.

Algorithm 1 The proposed CGM optimization algorithm

Inputs: The values of nPop, nVar, Iters, LB, and UB

// Initialization of population and three best locations
1 α = NULL;
2 β = NULL;
3 γ = NULL;

// Population, α, β, and γ include two fields: Pos (positions) //
and Obj (objective), in which:
// *.Pos = 0 and *.Obj = −∞ (for maximization problems) or
// +∞ (for minimization problems);

4 for (i = 1; i ≤ nPop; i ++)
5 if (Problem type = = Continues)
6 popi.Pos = LB ≤ nVar numbers of random values ≤ UB;
7 endif
8 if (Problem type = = Discrete)
9 popi.Pos = Random_Permutation (nVar);
10 endif
11 popi.Obj = CGM (popi.Pos);
12 if (popi.Obj ≷ α.Obj)
13 γ← β ;
14 β← α ;
15 α← popi ;
16 elseif (popi.Obj ≷ β.Obj)
17 γ← β ;
18 β← popi ;
19 elseif (popi.Obj ≷ γ.Obj)
20 γ← popi ;

Electronics 2022, 11, 3824 10 of 29

Algorithm 1 Cont.

21 endif
22 endfor_i

// Iterations of collaborative gold mining process
23 for (iter = 1; iter ≤ Iters; iter ++)
24 for (i = 1; i ≤ nPop; i ++)
25 for (j = 1; j ≤ nVar; j ++)

// Exploration process
26 CM = popi .Posj×popi .Obj+α.Posj×α.Obj+β.Posj×β.Obj+γ.Posj×γ.Obj

popi .Obj+α.Obj+β.Obj+γ.Obj ;
27 if (Problem type = = Continues)
28 A = MIN (α.Posj, β.Posj, γ.Posj)- CM;
29 B = MAX (α.Posj, β.Posj, γ.Posj)- CM ;
30 ϕ = Normal_Random(A,B);
31 endif
32 if (Problem type = = Discrete)
33 ϕ = Integer_Random(0,nVar);
34 endif
35 newPos = CM + ϕ ; // Equation (3)
36 if (Problem type = = Continues)
37 popi.Posj = LB ≤ newPos ≤ UB ; // Checking inside of range
38 endif
39 if (Problem type = = Discrete)
40 popi.Posj = [newPos] mod nVar; // Checking inside of range
41 endif
42 endfor_j

// Exploitation process
43 popi.Obj = CGM (popi.Pos);
44 if (popi.Obj ≷ α.Obj)
45 γ← β ;
46 β← α ;
47 α← popi ;
48 elseif (popi.Obj ≷ β.Obj)
49 γ← β ;
50 β← popi ;
51 elseif (popi.Obj ≷ γ.Obj)
52 γ← popi ;
53 endif
54 endfor_i
55 endfor_iter

Objective output: The optimal solution α

Note: Operator ≷ is replaced by > for maximization problems and < for minimization problems.

4. Results

To evaluate the proposed CGM algorithm, we employed several continuous mathe-
matical functions and several discrete and continuous practical examples. These functions
and examples are NP-hard, and finding their optimal solutions is very costly. Some famous
optimization algorithms, including the genetic algorithm (GA) [34], simulated annealing
(SA) [35,36], particle swarm optimization (PSO) [37], and invasive weed optimization
(IWO) [38], were used as the benchmark for performance evaluation. All codes were im-
plemented with the C# programming language in the Visual Studio.NET 2019 framework.
Moreover, all scenarios were performed on a machine with Windows 10 Pro that has an Intel
2.30 GHz Core i5-2410M CPU, 6.00 GB of RAM, and a 1 TB HDD. In Section 4.1, continuous
mathematical functions and continuous/discrete application examples are introduced, and
in Sections 4.2–4.5, the metrics for optimal solution value, convergence, scalability, search
space, and computational demand are used to evaluate all the optimization techniques.

Electronics 2022, 11, 3824 11 of 29

4.1. The Definition of Applied Continuous and Discrete Problems
4.1.1. Continuous Mathematical Functions

There are different mathematical functions utilized to evaluate optimization mecha-
nisms. Table 2 lists nine mathematical functions selected for evaluating the CGM mech-
anism [39]. These continuous functions are the most common functions used for the
evaluation of the optimization mechanisms. Moreover, due to the specific input range and
the best solution value, these continuous functions make it easy to evaluate the proposed
optimization algorithm. In addition to the function name, Table 2 presents other character-
istics, including the number of dimensions, the mathematical definition, input range, best
solution value, and the three-dimensional (3D) view of the function graph.

Table 2. List of selected continuous mathematical functions for evaluating the CGM algorithm.

Function
Name

Number of
Dimensions Mathematical Definition Input Range Best Solution

Value
3D View of

Function Graph

Sphere n f(x) =
n
∑

i=1
x2

i
[−5.12, 5.12] 0.0

Electronics 2022, 11, x FOR PEER REVIEW 12 of 33

46 𝜷 ← 𝜶 ;
47 𝜶 ← 𝒑𝒐𝒑𝒊 ;
48 elseif (𝒑𝒐𝒑𝒊.Obj ≷ 𝜷.Obj)
49 𝜸 ← 𝜷 ;
50 𝜷 ← 𝒑𝒐𝒑𝒊 ;
51 elseif (𝒑𝒐𝒑𝒊.Obj ≷ 𝜸.Obj)
52 𝜸 ← 𝒑𝒐𝒑𝒊 ;
53 endif
54 endfor_i
55 endfor_iter
Objective output: The optimal solution 𝜶

Note: Operator ≷ is replaced by > for maximization problems and < for minimization
problems.

4. Results
To evaluate the proposed CGM algorithm, we employed several continuous

mathematical functions and several discrete and continuous practical examples. These
functions and examples are NP-hard, and finding their optimal solutions is very costly.
Some famous optimization algorithms, including the genetic algorithm (GA) [34],
simulated annealing (SA) [35,36], particle swarm optimization (PSO) [37], and invasive
weed optimization (IWO) [38], were used as the benchmark for performance evaluation.
All codes were implemented with the C# programming language in the Visual Studio
.NET 2019 framework. Moreover, all scenarios were performed on a machine with
Windows 10 Pro that has an Intel 2.30 GHz Core i5-2410M CPU, 6.00 GB of RAM, and a 1
TB HDD. In Section 4.1, continuous mathematical functions and continuous/discrete
application examples are introduced, and in Sections 4.2 to 4.5, the metrics for optimal
solution value, convergence, scalability, search space, and computational demand are
used to evaluate all the optimization techniques.

4.1. The Definition of Applied Continuous and Discrete Problems
4.1.1. Continuous Mathematical Functions

There are different mathematical functions utilized to evaluate optimization
mechanisms. Table 2 lists nine mathematical functions selected for evaluating the CGM
mechanism [39]. These continuous functions are the most common functions used for the
evaluation of the optimization mechanisms. Moreover, due to the specific input range and
the best solution value, these continuous functions make it easy to evaluate the proposed
optimization algorithm. In addition to the function name, Table 2 presents other
characteristics, including the number of dimensions, the mathematical definition, input
range, best solution value, and the three-dimensional (3D) view of the function graph.

Table 2. List of selected continuous mathematical functions for evaluating the CGM algorithm.

Function
Name

Number of
Dimensions

Mathematical Definition
Input
Range

Best
Solution

Value

3D View of
Function Graph

Sphere n f(x) = xi
2

n

i 1

 [−5.12, 5.12] 0.0

Commented [M1]:

Griewank n f(x) =
n
∑

i=1

x2
i

4000 −
n
∏
i=1

cos
(

xi√
i

)
+ 1 [−600, 600] 0.0

Electronics 2022, 11, x FOR PEER REVIEW 13 of 33

Griewank n f(x) = xi
2

4000

n

i 1

− cos (xi√i
)n

i 1

+ 1 [−600, 600] 0.0

ZeroSum n f(x) = ⎩⎪⎨
⎪⎧ 0 if xi

n

i 1
= 0

1 + 10000 xi

n

i 1
 otherwise

 [−10, 10] 0.0

Rastrigin n f(x) = 10n + [xi
2 − 10cos (2πxi)]n

i 1

 [−5.12, 5.12] 0.0

Qing n f(x) = (xi
2 − i)2

n

i 1

 [−500, 500] 0.0

Zacharov n f(x) = xi
2

n

i 1

+ 1
2

ixi

n

i 1

2 + 1
2

ixi

n

i 1

4

 [−5, 10] 0.0

Plateau n f(x) = 30 + ⌊xi⌋n

i 1

 [−5.12, 5.12] 0.0

Easom 2 f(x) = − cos(x1) cos (x2)e (x1 π)2 (x2 π)2 [−100, 100] −1.0

Matyas 2 f(x) = 0.26(x1
2 + x2

2) − 0.48x1x2 [−10, 10] 0.0

ZeroSum n f(x) =
{

0 if ∑n
i=1 xi = 0

1 +
√

10000|∑n
i=1 xi| otherwise

[−10, 10] 0.0

Electronics 2022, 11, x FOR PEER REVIEW 13 of 33

Griewank n f(x) = xi
2

4000

n

i 1

− cos (xi√i
)n

i 1

+ 1 [−600, 600] 0.0

ZeroSum n f(x) = ⎩⎪⎨
⎪⎧ 0 if xi

n

i 1
= 0

1 + 10000 xi

n

i 1
 otherwise

 [−10, 10] 0.0

Rastrigin n f(x) = 10n + [xi
2 − 10cos (2πxi)]n

i 1

 [−5.12, 5.12] 0.0

Qing n f(x) = (xi
2 − i)2

n

i 1

 [−500, 500] 0.0

Zacharov n f(x) = xi
2

n

i 1

+ 1
2

ixi

n

i 1

2 + 1
2

ixi

n

i 1

4

 [−5, 10] 0.0

Plateau n f(x) = 30 + ⌊xi⌋n

i 1

 [−5.12, 5.12] 0.0

Easom 2 f(x) = − cos(x1) cos (x2)e (x1 π)2 (x2 π)2 [−100, 100] −1.0

Matyas 2 f(x) = 0.26(x1
2 + x2

2) − 0.48x1x2 [−10, 10] 0.0

Rastrigin n f(x) = 10n +
n
∑

i=1

[
x2

i − 10 cos(2πxi)
] [−5.12, 5.12] 0.0

Electronics 2022, 11, x FOR PEER REVIEW 13 of 33

Griewank n f(x) = xi
2

4000

n

i 1

− cos (xi√i
)n

i 1

+ 1 [−600, 600] 0.0

ZeroSum n f(x) = ⎩⎪⎨
⎪⎧ 0 if xi

n

i 1
= 0

1 + 10000 xi

n

i 1
 otherwise

 [−10, 10] 0.0

Rastrigin n f(x) = 10n + [xi
2 − 10cos (2πxi)]n

i 1

 [−5.12, 5.12] 0.0

Qing n f(x) = (xi
2 − i)2

n

i 1

 [−500, 500] 0.0

Zacharov n f(x) = xi
2

n

i 1

+ 1
2

ixi

n

i 1

2 + 1
2

ixi

n

i 1

4

 [−5, 10] 0.0

Plateau n f(x) = 30 + ⌊xi⌋n

i 1

 [−5.12, 5.12] 0.0

Easom 2 f(x) = − cos(x1) cos (x2)e (x1 π)2 (x2 π)2 [−100, 100] −1.0

Matyas 2 f(x) = 0.26(x1
2 + x2

2) − 0.48x1x2 [−10, 10] 0.0

Qing n f(x) =
n
∑

i=1
(x2

i − i)2 [−500, 500] 0.0

Electronics 2022, 11, x FOR PEER REVIEW 13 of 33

Griewank n f(x) = xi
2

4000

n

i 1

− cos (xi√i
)n

i 1

+ 1 [−600, 600] 0.0

ZeroSum n f(x) = ⎩⎪⎨
⎪⎧ 0 if xi

n

i 1
= 0

1 + 10000 xi

n

i 1
 otherwise

 [−10, 10] 0.0

Rastrigin n f(x) = 10n + [xi
2 − 10cos (2πxi)]n

i 1

 [−5.12, 5.12] 0.0

Qing n f(x) = (xi
2 − i)2

n

i 1

 [−500, 500] 0.0

Zacharov n f(x) = xi
2

n

i 1

+ 1
2

ixi

n

i 1

2 + 1
2

ixi

n

i 1

4

 [−5, 10] 0.0

Plateau n f(x) = 30 + ⌊xi⌋n

i 1

 [−5.12, 5.12] 0.0

Easom 2 f(x) = − cos(x1) cos (x2)e (x1 π)2 (x2 π)2 [−100, 100] −1.0

Matyas 2 f(x) = 0.26(x1
2 + x2

2) − 0.48x1x2 [−10, 10] 0.0

Zacharov n f(x) =
n
∑

i=1
x2

i +

(
1
2

n
∑

i=1
ixi

)2
+

(
1
2

n
∑

i=1
ixi

)4
[−5, 10] 0.0

Electronics 2022, 11, x FOR PEER REVIEW 13 of 33

Griewank n f(x) = xi
2

4000

n

i 1

− cos (xi√i
)n

i 1

+ 1 [−600, 600] 0.0

ZeroSum n f(x) = ⎩⎪⎨
⎪⎧ 0 if xi

n

i 1
= 0

1 + 10000 xi

n

i 1
 otherwise

 [−10, 10] 0.0

Rastrigin n f(x) = 10n + [xi
2 − 10cos (2πxi)]n

i 1

 [−5.12, 5.12] 0.0

Qing n f(x) = (xi
2 − i)2

n

i 1

 [−500, 500] 0.0

Zacharov n f(x) = xi
2

n

i 1

+ 1
2

ixi

n

i 1

2 + 1
2

ixi

n

i 1

4

 [−5, 10] 0.0

Plateau n f(x) = 30 + ⌊xi⌋n

i 1

 [−5.12, 5.12] 0.0

Easom 2 f(x) = − cos(x1) cos (x2)e (x1 π)2 (x2 π)2 [−100, 100] −1.0

Matyas 2 f(x) = 0.26(x1
2 + x2

2) − 0.48x1x2 [−10, 10] 0.0

Plateau n f(x) = 30 +
n
∑

i=1
|xi| [−5.12, 5.12] 0.0

Electronics 2022, 11, x FOR PEER REVIEW 13 of 33

Griewank n f(x) = xi
2

4000

n

i 1

− cos (xi√i
)n

i 1

+ 1 [−600, 600] 0.0

ZeroSum n f(x) = ⎩⎪⎨
⎪⎧ 0 if xi

n

i 1
= 0

1 + 10000 xi

n

i 1
 otherwise

 [−10, 10] 0.0

Rastrigin n f(x) = 10n + [xi
2 − 10cos (2πxi)]n

i 1

 [−5.12, 5.12] 0.0

Qing n f(x) = (xi
2 − i)2

n

i 1

 [−500, 500] 0.0

Zacharov n f(x) = xi
2

n

i 1

+ 1
2

ixi

n

i 1

2 + 1
2

ixi

n

i 1

4

 [−5, 10] 0.0

Plateau n f(x) = 30 + ⌊xi⌋n

i 1

 [−5.12, 5.12] 0.0

Easom 2 f(x) = − cos(x1) cos (x2)e (x1 π)2 (x2 π)2 [−100, 100] −1.0

Matyas 2 f(x) = 0.26(x1
2 + x2

2) − 0.48x1x2 [−10, 10] 0.0

Easom 2 f(x) = − cos(x1) cos(x2)e−(x1−π)2−(x2−π)2
[−100, 100] −1.0

Electronics 2022, 11, x FOR PEER REVIEW 13 of 33

Griewank n f(x) = xi
2

4000

n

i 1

− cos (xi√i
)n

i 1

+ 1 [−600, 600] 0.0

ZeroSum n f(x) = ⎩⎪⎨
⎪⎧ 0 if xi

n

i 1
= 0

1 + 10000 xi

n

i 1
 otherwise

 [−10, 10] 0.0

Rastrigin n f(x) = 10n + [xi
2 − 10cos (2πxi)]n

i 1

 [−5.12, 5.12] 0.0

Qing n f(x) = (xi
2 − i)2

n

i 1

 [−500, 500] 0.0

Zacharov n f(x) = xi
2

n

i 1

+ 1
2

ixi

n

i 1

2 + 1
2

ixi

n

i 1

4

 [−5, 10] 0.0

Plateau n f(x) = 30 + ⌊xi⌋n

i 1

 [−5.12, 5.12] 0.0

Easom 2 f(x) = − cos(x1) cos (x2)e (x1 π)2 (x2 π)2 [−100, 100] −1.0

Matyas 2 f(x) = 0.26(x1
2 + x2

2) − 0.48x1x2 [−10, 10] 0.0

Matyas 2 f(x) = 0.26
(
x2

1 + x2
2
)
− 0.48x1x2 [−10, 10] 0.0

Electronics 2022, 11, x FOR PEER REVIEW 13 of 33

Griewank n f(x) = xi
2

4000

n

i 1

− cos (xi√i
)n

i 1

+ 1 [−600, 600] 0.0

ZeroSum n f(x) = ⎩⎪⎨
⎪⎧ 0 if xi

n

i 1
= 0

1 + 10000 xi

n

i 1
 otherwise

 [−10, 10] 0.0

Rastrigin n f(x) = 10n + [xi
2 − 10cos (2πxi)]n

i 1

 [−5.12, 5.12] 0.0

Qing n f(x) = (xi
2 − i)2

n

i 1

 [−500, 500] 0.0

Zacharov n f(x) = xi
2

n

i 1

+ 1
2

ixi

n

i 1

2 + 1
2

ixi

n

i 1

4

 [−5, 10] 0.0

Plateau n f(x) = 30 + ⌊xi⌋n

i 1

 [−5.12, 5.12] 0.0

Easom 2 f(x) = − cos(x1) cos (x2)e (x1 π)2 (x2 π)2 [−100, 100] −1.0

Matyas 2 f(x) = 0.26(x1
2 + x2

2) − 0.48x1x2 [−10, 10] 0.0

Electronics 2022, 11, 3824 12 of 29

4.1.2. Optimal Placement of Resources

The optimal placement of resources is a continuous problem with several real appli-
cations [40]. With the assumption that several devices are deployed in the surrounding
environment, this problem aims to find the best location for connecting these devices so that
the distance of the resource to all devices is the shortest. A shorter distance can decrease the
cost of connecting the resource to all devices. In addition, it can increase the availability of
the resource. In addition to the criterion of distance, there may be other important criteria
depending on the type of application.

In this problem based on some geographical limitations, the unique shortest path
cannot be used to calculate the distance, and the Manhattan distance is utilized [41]. The
resource and devices are able to be located in an n-dimensional geographical space, which
is also a continuous problem due to the continuity of geographical coordinates. When the
number of devices or the size of the geographical space are increased, it is difficult and
time-consuming to find a suitable location for a resource. As a result, this problem is an
NP-hard problem. Equation (4) provides the objective function for this problem [39].

min Distance =
m
∑

j=1

n
∑

i=1

∣∣Ri − Dji
∣∣

s.t.:

∀k, j = 1, 2, . . . , m (k 6= j) :
n
∑

i=1

∣∣Dki − Dji
∣∣ 6= 0

(4)

In an n-dimensional space, let us assume that there is a resource that should be
connected to an m number of devices. The location of this resource should be determined
as a place, in which the resource is at the shortest distance from all devices. In this equation,
i represents each of the dimensions in the coordinate axes (i ∈ {1, 2, . . . , n}), and j is the
device number (j ∈ {1, 2, . . . , m}). The variables, Ri and Dji, are the coordinates of the
i-th dimension of the resource and the i-th dimension of device j, respectively. Moreover,∣∣Ri − Dji

∣∣ refers to the absolute distance of the i-th dimension of the resource and the i-th
dimension of device j, relative to each other. The only limitation of Equation (4) specifies
that independent devices are deployed in separate locations, and this independence of
deployment may be applied in only one dimension [39]. To solve this problem using the
CGM mechanism, each resource placement was considered as a point featuring gold whose
location was the geographical coordinates of the resource. The goal was to find the location
with the minimum level of impurity in the extracted gold.

4.1.3. Traveling Salesman Problem

The traveling salesman problem (TSP) is a discrete problem that has been solved by
many optimization mechanisms and has different applications in various industries [42].
In this problem, a traveling salesman starts his marketing campaign from one city and
returns to the origin after meeting his customers in n other cities. In this problem, each
city is visited only once, but the travel of the salesman from one city to another incurs
an expense. The goal is to find a route in which all cities are traversed only once, thus
producing the lowest cost for the salesman. The number of possible solutions for this
problem is a permutation of n, because it is assumed that there is a unique path between
each two cities. The aim is to find the route with the lowest travel cost between these n!
possible modes. When the number of cities rises, the number of possible solutions increases.
Based on this increase in the problem space, it can be said that TSP is NP-hard. Equation (5)
indicates the objective function for this problem [39].

Electronics 2022, 11, 3824 13 of 29

min Traveling Cost =
n
∑

i=1

n
∑

j=1
Cij × Xij

s.t.:

Xij =

{
1
0

i f salesman moves f rom Cityi to Cityj

Otherwise
n
∑

i=1
Xij = 1

n
∑

j=1
Xij = 1

(5)

Let us assume that there are n cities for the salesman to visit. In Equation (5), the i
and j indices (i, j ∈ {1, 2, . . . , n}) are the numbers representing the starting and destination
cities, respectively, and variable Cij is the cost of the salesman’s traveling from city i to city
j. The first constraint shows that if the salesman moves from city i to city j along a route,
the Xij flag is equal to 1 and otherwise 0. In order to prevent the creation of sub-tours,
the last two limitations of Equation (5) also state that each city can only be used once as a
source and once as a destination along the optimal route [39]. To solve this problem using
the CGM mechanism, each tour of the cities traveled by the salesman was considered as a
position having gold, whose location coordinates were the cost of travel between pairs of
cities. In other words, each of the coordinates of a location discovered to have gold, which
acted as one of the variables of the optimization problem, indicated the cost of traveling
between two cities. The goal was to find the location with the lowest level of impurity in
the extracted gold.

4.1.4. Bag-of-Tasks Scheduling

Bag-of-tasks (BoT) scheduling is an important discrete problem in the field of high-
performance computing that aims to reduce makespan and, consequently, increase system
utilization when scheduling tasks [43]. In this problem, there are a number of tasks that
should be scheduled and executed on several different physical or virtual machines. With
the increases in the size and number of tasks, finding an appropriate scheduling plan is
difficult and time-consuming; as a result, this problem is NP-hard. In high-performance
computing and other computing systems (such as cloud computing, grid computing,
and edge computing), there are some physical or virtual machines that differ in their
configuration, such as processing power, memory capacity, and storage space. Furthermore,
tasks have different processing, memory, and storage requirements. These differences cause
a variation in the cost of task execution. The goal here is to find the best assignment of tasks
to machines for the least makespan. Equation (6) shows the objective function for the BoT
scheduling problem [39].

min Makespan =
n
∑

i=1

m
∑

j=1
Cij × Xij

s.t.:

Xij =

{
1
0

i f Taski is executed on VMj

Otherwise
m
∑

j=1
Xij = 1

(6)

Let us assume that there are n tasks that should be scheduled on m machines. In
Equation (6), index i signifies the number of tasks (i ∈ {1, 2, . . . , n}), and index j represents
the number of machines (j ∈ {1, 2, . . . , m}). The variable, Cij, stands for the cost of executing
task i on virtual machine j. The first constraint of this equation indicates that, if task i is

Electronics 2022, 11, 3824 14 of 29

executed on machine j, then flag Xij is equal to 1 and otherwise 0. The last limitation of
Equation (6) also indicates that, during the scheduling and execution of tasks, each task
can only be executed on one machine [39]. To solve the BoT scheduling problem with the
CGM mechanism, each sequence of scheduling was considered as a discovered position
having gold, whose location coordinates were the cost of performing tasks on machines.
The goal was to find the location with the minimum level of impurity in the extracted gold.

4.2. The Optimal Solution

There are two important parameters (number of population and number of iterations)
that, if changed separately, can affect the output of all optimization methods. In order to
determine the effect of each of these two parameters on the performance of methods, many
experiments were performed. These experiments could determine the superiority of each
method when increasing the number of population (with constant iteration) and when
increasing the number of iterations (with fixed population).

4.2.1. Continuous Mathematical Functions

The optimal solution value criterion was used to benchmark the mathematical func-
tions. For evaluating continuous mathematical functions, desired values were considered
for some parameters of all optimization algorithms. These parameters were the number of
populations, number of variables, number of iterations, and number of experiments, and
the values of 100, 50, 200, and 20 were considered for them, respectively.

We performed all experiments 20 times to ensure that the presented results had low
statistical variance. Table 3 shows the best results for the optimal solution. These results
showed the ability of the proposed method to find a suitable and acceptable solution for
all of the mathematical functions presented in Table 2. This table indicates that the CGM
algorithm was able to find the optimal solution in most cases and to discover suboptimal
results for the other ones.

Table 3. The best results of different optimization algorithms for mathematical functions.

Function
Name

f
(
x*) Number of

Variables

Best Results

GA SA PSO IWO CGM

Sphere 0.0 50 0.208 8.446 × 101 0.067 8.938 × 1001 0

Griewank 0.0 50 4.851 2.543 × 102 1.195 3.715 × 102 0

ZeroSum 0.0 50 1.088 1.314 1.012 1.015 1.767

Rastrigin 0.0 50 54.27 5.187 × 103 1.784 × 102 5.723 × 102 0

Qing 0.0 50 1.601 × 107 2.937 × 1011 1.351 × 106 5.372 × 1011 2.847 × 104

Zacharov 0.0 50 7.781 × 101 8.391 × 102 3.514 × 102 2.069 × 105 6.511 × 102

Plateau 0.0 50 −1.52 × 102 −6.20 × 101 −2.48 × 102 −2.70 × 101 −1.16 × 102

Easom −1.0 2 −1.0 −0.08 −1.0 −1.8 × 10−131 −0.372

Matyas 0.0 2 0 0 0 0 0

Note: f (x∗) refers to the best value of the functions’ solutions.

4.2.2. Optimal Placement of Resources

Figure 3 depicts the results of experiments to determine the placement-of-resources
problem’s optimal solution using the CGM mechanism and other algorithms. For the
implementation of this problem, the positions of the devices were considered randomly
in the range of [−10, +10] in a ten-dimensional space. Although this ten-dimensional
space is unrealistic, this hypothesis was formulated to increase the number of variables
and, consequently, the problem complexity. In all experiments, the number of devices, the
members of the population, and the number of iterations were different. The comparison
criterion was the sum of the minimum distances between the devices and the resource in

Electronics 2022, 11, 3824 15 of 29

each of the ten dimensions based on Equation (4). As seen in the figure, when compared
with other algorithms, the CGM mechanism could determine the optimal solution with the
least values.

Electronics 2022, 11, x FOR PEER REVIEW 16 of 32

determined by the other methods. The CGM method was able to improve the distance by
an average of 0.004% compared with the best solutions and by an average of 8.29% com-
pared with the worst solutions of other methods. To have a better estimation, several runs
of all optimization algorithms were performed on a single configuration to determine the
standard deviation, the average, and the minimum values among all algorithms. In all
runs, the number of devices, the members of the population, and the number of iterations
were similar and were 10,000, 50, and 100, respectively. Table 4 indicates the results of
these runs for the optimal-placement-of-resources problem.

Figure 3. Evaluation results of the optimal-placement-of-resources problem.

Table 4. Results of several runs of all optimization algorithms on a single configuration for the op-
timal-placement-of-resources problem in a ten-dimensional space.

Method Run No. 1
Run No.

2
Run No.

3
Run No.

4
Run No.

5
Run No.

6
Run No.

7
Run No.

8
Average

Value
Standard
Deviation

Min
Value

GA 549,710.81
549,791.0

6
549,774.8

0
549,761.4

3
549,643.6

3
549,685.9

3
549,597.3

4
549,784.5

8
549,718.70 67.13 549,597.34

SA 572,477.72
572,483.1

1
572,433.1

5
572,442.5

6
559,723.0

1
576,627.3

6
574,729.4

1
581,216.4

1
572,766.59 5,708.25 559,723.01

PSO 549,512.29
549,535.1

5
549,535.5

5
549,523.1

4
549,527.8

9
549,512.2

9
549,529.6

4
549,526.7

4
549,525.33 8.46 549,512.29

IWO 574,240.02
637,875.9

0
613,579.9

6
631,532.4

2
639,198.8

9
609,705.8

2
635,726.5

4
626,909.0

0
621,096.07 20,456.51 574,240.02

CGM 549,530.68
549,534.8

7
549,521.6

0
549,512.2

9
549,512.2

8
549,530.9

3
549,527.6

0
549,531.0

6
549,525.16 8.24 549,512.28

4.2.3. Traveling Salesman Problem
We considered three types of datasets for implementing the traveling salesman prob-

lem on different algorithms. In the first dataset, different numbers of cities were generated
with random distances between 0.1 and 10. The second dataset used the ATT48 dataset to
produce distances between 48 central cities in various US states [44]. Designed to be

Figure 3. Evaluation results of the optimal-placement-of-resources problem.

In all experiments performed, the distance obtained between the resource and the
devices as the optimal solution by the CGM method was shorter than the solutions deter-
mined by the other methods. The CGM method was able to improve the distance by an
average of 0.004% compared with the best solutions and by an average of 8.29% compared
with the worst solutions of other methods. To have a better estimation, several runs of
all optimization algorithms were performed on a single configuration to determine the
standard deviation, the average, and the minimum values among all algorithms. In all
runs, the number of devices, the members of the population, and the number of iterations
were similar and were 10,000, 50, and 100, respectively. Table 4 indicates the results of these
runs for the optimal-placement-of-resources problem.

Table 4. Results of several runs of all optimization algorithms on a single configuration for the
optimal-placement-of-resources problem in a ten-dimensional space.

Method Run
No. 1

Run
No. 2

Run
No. 3

Run
No. 4

Run
No. 5

Run
No. 6

Run
No. 7

Run
No. 8

Average
Value

Standard
Deviation

Min
Value

GA 549,710.81 549,791.06 549,774.80 549,761.43 549,643.63 549,685.93 549,597.34 549,784.58 549,718.70 67.13 549,597.34
SA 572,477.72 572,483.11 572,433.15 572,442.56 559,723.01 576,627.36 574,729.41 581,216.41 572,766.59 5708.25 559,723.01

PSO 549,512.29 549,535.15 549,535.55 549,523.14 549,527.89 549,512.29 549,529.64 549,526.74 549,525.33 8.46 549,512.29
IWO 574,240.02 637,875.90 613,579.96 631,532.42 639,198.89 609,705.82 635,726.54 626,909.00 621,096.07 20,456.51 574,240.02
CGM 549,530.68 549,534.87 549,521.60 549,512.29 549,512.28 549,530.93 549,527.60 549,531.06 549,525.16 8.24 549,512.28

4.2.3. Traveling Salesman Problem

We considered three types of datasets for implementing the traveling salesman prob-
lem on different algorithms. In the first dataset, different numbers of cities were generated
with random distances between 0.1 and 10. The second dataset used the ATT48 dataset
to produce distances between 48 central cities in various US states [44]. Designed to be
specific to the evaluation of the algorithms developed for the traveling salesman problem,

Electronics 2022, 11, 3824 16 of 29

the ATT48 dataset had a minimum tour length of 33,523. However, the third dataset em-
ployed the data presented in [45], which pertain to 15 cities. The minimum tour length
of this dataset was 248.03. The criterion for comparison was the minimum cost of travel
based on Equation (5). In all experiments, the members of the population and the number
of iterations were selected differently. After the determination of the optimal solution to
this problem using the CGM mechanism and other algorithms, Figures 4–6 present the
experimental results for the three mentioned datasets, respectively.

Electronics 2022, 11, x FOR PEER REVIEW 17 of 32

specific to the evaluation of the algorithms developed for the traveling salesman problem,
the ATT48 dataset had a minimum tour length of 33,523. However, the third dataset em-
ployed the data presented in [45], which pertain to 15 cities. The minimum tour length of
this dataset was 248.03. The criterion for comparison was the minimum cost of travel
based on Equation 5. In all experiments, the members of the population and the number
of iterations were selected differently. After the determination of the optimal solution to
this problem using the CGM mechanism and other algorithms, Figures 4 to 6 present the
experimental results for the three mentioned datasets, respectively.

As the results show, in all experiments and for all three figures, the optimal solution
in the CGM method was lower than the solutions determined by the other methods. As
shown in Figure 4, the CGM method was able to improve the traveling cost by an average
of 2.82% compared with the best solutions and by an average of 8.85% compared with the
worst solutions of other methods. Figure 5 also shows that the CGM method was able to
improve the traveling cost by an average of 1.75% and 18.05% compared with the best and
worst solutions of other methods, respectively. Finally, Figure 6 indicates that the CGM
mechanism was able to improve the traveling cost by an average of 5.71% compared with
the best solutions and by an average of 21.42% compared with the worst solutions of other
methods.

Figure 4. Evaluation results of the traveling salesman problem (random dataset). Figure 4. Evaluation results of the traveling salesman problem (random dataset).

Figure 5. Evaluation results of the traveling salesman problem (ATT48 dataset).

Electronics 2022, 11, 3824 17 of 29

Electronics 2022, 11, x FOR PEER REVIEW 18 of 32

Figure 5. Evaluation results of the traveling salesman problem (ATT48 dataset).

Figure 6. Evaluation results of the traveling salesman problem (dataset presented in [43]).

Figure 7 depicts the route between cities after the execution of the CGM mechanism
in the developed simulator for the ATT48 dataset (iterations 1 and 300). In this figure, the
vertices show the location of the cities, and the edges represent the route between the two
selected cities. To have a better estimation, several runs of all optimization algorithms
were performed on a single configuration for the traveling salesman problem to determine
the standard deviation, the average, and the minimum values among all algorithms. In all
runs, the number of cities was 1000 with random distances between 0.1 and 10, and the
members of the population and the number of iterations were similar and were 150 and
250, respectively. Table 5 indicates the results of these runs.

Figure 6. Evaluation results of the traveling salesman problem (dataset presented in [43]).

As the results show, in all experiments and for all three figures, the optimal solution
in the CGM method was lower than the solutions determined by the other methods. As
shown in Figure 4, the CGM method was able to improve the traveling cost by an average
of 2.82% compared with the best solutions and by an average of 8.85% compared with the
worst solutions of other methods. Figure 5 also shows that the CGM method was able
to improve the traveling cost by an average of 1.75% and 18.05% compared with the best
and worst solutions of other methods, respectively. Finally, Figure 6 indicates that the
CGM mechanism was able to improve the traveling cost by an average of 5.71% compared
with the best solutions and by an average of 21.42% compared with the worst solutions of
other methods.

Figure 7 depicts the route between cities after the execution of the CGM mechanism
in the developed simulator for the ATT48 dataset (iterations 1 and 300). In this figure, the
vertices show the location of the cities, and the edges represent the route between the two
selected cities. To have a better estimation, several runs of all optimization algorithms were
performed on a single configuration for the traveling salesman problem to determine the
standard deviation, the average, and the minimum values among all algorithms. In all
runs, the number of cities was 1000 with random distances between 0.1 and 10, and the
members of the population and the number of iterations were similar and were 150 and
250, respectively. Table 5 indicates the results of these runs.

Electronics 2022, 11, 3824 18 of 29Electronics 2022, 11, x FOR PEER REVIEW 19 of 32

Figure 7. Route between cities after the execution of the CGM mechanism for ATT48 dataset: (a)
iteration No. 1 and (b) iteration No. 300.

Table 5. Results of several runs of all optimization algorithms on a single configuration for the trav-
eling salesman problem.

Method Run No. 1
Run No.

2
Run No.

3
Run No.

4
Run No.

5
Run No.

6
Run No.

7
Run No.

8
Average

Value
Standard
Deviation

Min
Value

GA 4,712.09 4,687.92 4,741.16 4,727.21 4,721.43 4,656.99 4,738.43 4,696.38 4,710.20 26.68 4,656.99
SA 4,712.01 4,744.90 4,713.08 4,733.56 4,673.23 4,720.70 4,721.07 4,688.33 4,713.36 21.66 4,673.23

PSO 4,750.67 4,710.09 4,720.07 4,734.73 4,703.22 4,751.52 4,749.81 4,705.28 4,728.17 19.69 4,703.22
IWO 4,858.97 4,840.58 4,848.44 4,902.71 4,800.24 4,887.21 4,869.01 4,850.01 4,857.14 29.08 4,800.24
CGM 4,704.46 4,681.68 4,713.34 4,687.17 4,690.89 4,656.66 4,701.17 4,656.29 4,686.46 19.70 4,656.29

4.2.4. Bag-of-Tasks Scheduling
To implement the BoT scheduling problem, the number of tasks, the number of vir-

tual machines, the number of population members, and the number of iterations were
different; furthermore, the number of instructions for each task and the processing power
of each virtual machine were randomly selected. The comparison criterion was the mini-
mum makespan based on Equation 6. Figure 8 presents the results of experiments for de-
termining the optimal solution of this problem using the CGM mechanism and other al-
gorithms. As the results show, in all experiments performed, the makespan determined
by the CGM method was shorter than the makespan obtained by the other methods. The
CGM method was able to improve the makespan by an average of 1.17% compared with
the best solutions and by an average of 12.43% compared with the worst solutions of other
methods.

Figure 9 also depicts how tasks were assigned to virtual machines after running the
CGM method in the developed simulator. In this figure, the horizontal axis represents the
task number, and the vertical axis shows the virtual machine number. Each of the points
indicates the assignment of a task to a VM.

Figure 7. Route between cities after the execution of the CGM mechanism for ATT48 dataset:
(a) iteration No. 1 and (b) iteration No. 300.

Table 5. Results of several runs of all optimization algorithms on a single configuration for the
traveling salesman problem.

Method Run
No. 1

Run
No. 2

Run
No. 3

Run
No. 4

Run
No. 5

Run
No. 6

Run
No. 7

Run
No. 8

Average
Value

Standard
Deviation

Min
Value

GA 4712.09 4687.92 4741.16 4727.21 4721.43 4656.99 4738.43 4696.38 4710.20 26.68 4656.99
SA 4712.01 4744.90 4713.08 4733.56 4673.23 4720.70 4721.07 4688.33 4713.36 21.66 4673.23

PSO 4750.67 4710.09 4720.07 4734.73 4703.22 4751.52 4749.81 4705.28 4728.17 19.69 4703.22
IWO 4858.97 4840.58 4848.44 4902.71 4800.24 4887.21 4869.01 4850.01 4857.14 29.08 4800.24
CGM 4704.46 4681.68 4713.34 4687.17 4690.89 4656.66 4701.17 4656.29 4686.46 19.70 4656.29

4.2.4. Bag-of-Tasks Scheduling

To implement the BoT scheduling problem, the number of tasks, the number of virtual
machines, the number of population members, and the number of iterations were different;
furthermore, the number of instructions for each task and the processing power of each
virtual machine were randomly selected. The comparison criterion was the minimum
makespan based on Equation (6). Figure 8 presents the results of experiments for determin-
ing the optimal solution of this problem using the CGM mechanism and other algorithms.
As the results show, in all experiments performed, the makespan determined by the CGM
method was shorter than the makespan obtained by the other methods. The CGM method
was able to improve the makespan by an average of 1.17% compared with the best solutions
and by an average of 12.43% compared with the worst solutions of other methods.

Figure 9 also depicts how tasks were assigned to virtual machines after running the
CGM method in the developed simulator. In this figure, the horizontal axis represents the
task number, and the vertical axis shows the virtual machine number. Each of the points
indicates the assignment of a task to a VM.

To have a better estimation, several runs of all optimization algorithms were per-
formed on a single configuration of the BoT scheduling problem to determine the standard
deviation, the average, and the minimum values among all algorithms. In all runs, the
number of tasks, the number of virtual machines, the members of the population, and the
number of iterations were similar and were 10,000, 200, 80, and 100, respectively. Table 6
indicates the results of these runs for the BoT scheduling problem.

Electronics 2022, 11, 3824 19 of 29Electronics 2022, 11, x FOR PEER REVIEW 20 of 32

Figure 8. Evaluation results of the BoT scheduling problem.

Figure 9. Assignment of tasks to virtual machines after executing the CGM method on the devel-
oped simulator (for experiment 4).

To have a better estimation, several runs of all optimization algorithms were per-
formed on a single configuration of the BoT scheduling problem to determine the stand-
ard deviation, the average, and the minimum values among all algorithms. In all runs, the
number of tasks, the number of virtual machines, the members of the population, and the
number of iterations were similar and were 10000, 200, 80, and 100, respectively. Table 6
indicates the results of these runs for the BoT scheduling problem.

Table 6. Results of several runs of all optimization algorithms on a single configuration for the BoT
scheduling problem.

Method Run No. 1
Run No.

2
Run No.

3
Run No.

4
Run No.

5
Run No.

6
Run No.

7
Run No.

8
Average

Value
Standard
Deviation

Min
Value

GA 233.195 226.14 227.44 238.01 230.35 231.97 236.77 237.70 232.62 4.28 226.14
SA 229.523 233.63 229.76 236.34 228.44 239.50 241.29 227.18 233.73 5.02 227.18

Figure 8. Evaluation results of the BoT scheduling problem.

Electronics 2022, 11, x FOR PEER REVIEW 20 of 32

Figure 8. Evaluation results of the BoT scheduling problem.

Figure 9. Assignment of tasks to virtual machines after executing the CGM method on the devel-
oped simulator (for experiment 4).

To have a better estimation, several runs of all optimization algorithms were per-
formed on a single configuration of the BoT scheduling problem to determine the stand-
ard deviation, the average, and the minimum values among all algorithms. In all runs, the
number of tasks, the number of virtual machines, the members of the population, and the
number of iterations were similar and were 10000, 200, 80, and 100, respectively. Table 6
indicates the results of these runs for the BoT scheduling problem.

Table 6. Results of several runs of all optimization algorithms on a single configuration for the BoT
scheduling problem.

Method Run No. 1
Run No.

2
Run No.

3
Run No.

4
Run No.

5
Run No.

6
Run No.

7
Run No.

8
Average

Value
Standard
Deviation

Min
Value

GA 233.195 226.14 227.44 238.01 230.35 231.97 236.77 237.70 232.62 4.28 226.14
SA 229.523 233.63 229.76 236.34 228.44 239.50 241.29 227.18 233.73 5.02 227.18

Figure 9. Assignment of tasks to virtual machines after executing the CGM method on the developed
simulator (for experiment 4).

Table 6. Results of several runs of all optimization algorithms on a single configuration for the BoT
scheduling problem.

Method Run
No. 1

Run
No. 2

Run
No. 3

Run
No. 4

Run
No. 5

Run
No. 6

Run
No. 7

Run
No. 8

Average
Value

Standard
Deviation

Min
Value

GA 233.195 226.14 227.44 238.01 230.35 231.97 236.77 237.70 232.62 4.28 226.14
SA 229.523 233.63 229.76 236.34 228.44 239.50 241.29 227.18 233.73 5.02 227.18

PSO 230.911 240.17 231.55 238.14 233.56 228.27 232.60 240.02 234.90 4.22 228.27
IWO 259.89 279.42 267.81 278.21 258.65 276.45 271.80 280.47 273.26 8.28 258.65
CGM 229.153 233.16 226.46 235.74 225.58 221.25 228.28 236.48 229.56 4.94 221.25

Electronics 2022, 11, 3824 20 of 29

All the results in Sections 4.2.1–4.2.4 indicate the capability of the CGM mechanism
in determining the best optimal solutions for some mathematical functions and practical
problems (including continuous and discrete) compared with other algorithms. Hence,
the CGM mechanism can be applied to applications in different fields and provides bet-
ter optimization results. In the following, we review other performance metrics for the
proposed method.

4.3. Convergence

One of the criteria for evaluating optimization algorithms is convergence. When the
number of population members, the number of iterations, and the size of the problem are
considered constant, the algorithm that can converge to the best possible solution in the
least number of iterations is known as a fast convergence algorithm. For both continuous
and discrete problems, and even with a small population, the CGM mechanism has quasi-
optimal solutions from the very first iterations and quickly converges to the optimal
solution. In other words, the optimal solution can be reached with a small population and
the least possible number of iterations. As a result, this method can be used in devices with
limited computational, storage, and energy resources that need to determine the result
in the shortest possible time. Figures 10–12 show the convergence speed of the CGM in
comparison with other optimization algorithms in different problems. In these figures, the
number of members of the population was 20, and the number of iterations was 50.

The results presented in Figure 10 for the optimal-placement-of-resources problem
show that the CGM method was able to converge to the minimum distance by the 13th
iteration. Among other benchmark algorithms, the PSO algorithm could converge to
the same result by the 27th iteration, and the others could not achieve this value until
the end of 50 iterations. The results presented in Figure 11 for the traveling salesman
problem indicate that the CGM mechanism could converge to the minimum traveling cost
by the 24th iteration. However, other benchmark algorithms could not converge to this
value until the end of 50 iterations. In addition, the results presented in Figure 12 for the
BoT scheduling problem also demonstrate that the CGM method could converge to the
minimum makespan by the 39th iteration. However, other benchmark algorithms could
not achieve this solution until the end of all iterations. The same result was obtained in
cases with a larger number of members.

Electronics 2022, 11, x FOR PEER REVIEW 22 of 32

Figure 10. Investigation of convergence in different algorithms for the optimal-placement-of-re-
sources problem (the number of devices was 5000 in a 10-dimensional space).

Figure 11. Investigation of convergence in different algorithms for the traveling salesman problem
(the number of cities was 500).

Figure 10. Investigation of convergence in different algorithms for the optimal-placement-of-
resources problem (the number of devices was 5000 in a 10-dimensional space).

Electronics 2022, 11, 3824 21 of 29

Electronics 2022, 11, x FOR PEER REVIEW 22 of 32

Figure 10. Investigation of convergence in different algorithms for the optimal-placement-of-re-
sources problem (the number of devices was 5000 in a 10-dimensional space).

Figure 11. Investigation of convergence in different algorithms for the traveling salesman problem
(the number of cities was 500).
Figure 11. Investigation of convergence in different algorithms for the traveling salesman problem
(the number of cities was 500).

Electronics 2022, 11, x FOR PEER REVIEW 23 of 32

Figure 12. Investigation of convergence in different algorithms for the BoT scheduling problem (the
number of tasks was 5000, and the number of computational resources was 200).

4.4. Scalability
Assuming that the number of population members and the number of iterations of

the algorithm are kept constant, if the size of the problem increases, the CGM mechanism
has acceptable scalability compared with other algorithms. In order to evaluate the scala-
bility of the proposed method in terms of the optimal solution value, several experiments
were performed with a wide range of different problem sizes. The results of these experi-
ments can be seen in Figures 13–15. In all three figures, the number of members of the
population was 20, and the number of iterations was 100.

Figure 13 shows that on average, in all experiments, and for different problem sizes,
the CGM method was able to improve the distance by 0.03% compared with the best so-
lutions and by 13.44% compared with the worst solutions of other methods. Figure 14 also
shows that on average, in all experiments, and for different problem sizes, the CGM
method was able to improve the travel cost by 1.08% compared with the best solutions
and by 4.94% compared with the worst solutions of other methods. Figure 15 also shows
that on average, in all experiments, and for different problem sizes, the CGM method was
able to improve the distance by 2.61% compared with the best solutions and by 16% com-
pared with the worst solutions of other methods. As a result, it can be said that the CGM
method has better scalability.

Figure 12. Investigation of convergence in different algorithms for the BoT scheduling problem (the
number of tasks was 5000, and the number of computational resources was 200).

4.4. Scalability

Assuming that the number of population members and the number of iterations of the
algorithm are kept constant, if the size of the problem increases, the CGM mechanism has
acceptable scalability compared with other algorithms. In order to evaluate the scalability
of the proposed method in terms of the optimal solution value, several experiments were
performed with a wide range of different problem sizes. The results of these experiments
can be seen in Figures 13–15. In all three figures, the number of members of the population
was 20, and the number of iterations was 100.

Figure 13 shows that on average, in all experiments, and for different problem sizes,
the CGM method was able to improve the distance by 0.03% compared with the best

Electronics 2022, 11, 3824 22 of 29

solutions and by 13.44% compared with the worst solutions of other methods. Figure 14
also shows that on average, in all experiments, and for different problem sizes, the CGM
method was able to improve the travel cost by 1.08% compared with the best solutions and
by 4.94% compared with the worst solutions of other methods. Figure 15 also shows that
on average, in all experiments, and for different problem sizes, the CGM method was able
to improve the distance by 2.61% compared with the best solutions and by 16% compared
with the worst solutions of other methods. As a result, it can be said that the CGM method
has better scalability.

Electronics 2022, 11, x FOR PEER REVIEW 24 of 32

Figure 13. Scalability of the CGM mechanism for the optimal-placement-of-resources problem com-
pared with other algorithms.

Figure 14. Scalability of the CGM mechanism for the traveling salesman problem compared with
other algorithms.

Figure 13. Scalability of the CGM mechanism for the optimal-placement-of-resources problem
compared with other algorithms.

Electronics 2022, 11, x FOR PEER REVIEW 24 of 32

Figure 13. Scalability of the CGM mechanism for the optimal-placement-of-resources problem com-
pared with other algorithms.

Figure 14. Scalability of the CGM mechanism for the traveling salesman problem compared with
other algorithms.
Figure 14. Scalability of the CGM mechanism for the traveling salesman problem compared with
other algorithms.

Electronics 2022, 11, 3824 23 of 29Electronics 2022, 11, x FOR PEER REVIEW 25 of 32

Figure 15. Scalability of the CGM mechanism for the BoT scheduling problem compared with other
algorithms.

4.5. Search Space
In the CGM mechanism, although the best values are always determined during the

iterations of the algorithm, and based on these best values, the three positions of first-best,
second-best, and third-best are updated, miners always try to explore and extract the en-
tire search space and avoid the optimal solution (first-best position). As a result, unlike
most existing optimization methods in which agents move toward the optimal solution
during iterations, the CGM mechanism always examines the entire search space to find
better solutions. Figures 16–18 show the results of the search space for different optimiza-
tion problems. As shown in these three figures, the number of members of the population
was 5, and the number of iterations was 50. This advantage is due to the use of random
variable 𝜑𝜑. Therefore, according to the contents of Section 3.3, in continuous problems,
the exploration process is performed in the range of the values of the best positions; there-
fore, the next points with gold are close to the best points (as shown in Figure 16, after
iteration 21, with which the best solution is found, miners try to explore around this point
to find more gold). On the other hand, because of the possibility of selecting 𝜑𝜑 in the
entire search space, the process of exploration in discrete problems covers the entire search
space. This can be seen in Figures 17 and 18, where after finding the best solution, miners
try to find more gold in the entire search space.

Figure 15. Scalability of the CGM mechanism for the BoT scheduling problem compared with other
algorithms.

4.5. Search Space

In the CGM mechanism, although the best values are always determined during the
iterations of the algorithm, and based on these best values, the three positions of first-best,
second-best, and third-best are updated, miners always try to explore and extract the entire
search space and avoid the optimal solution (first-best position). As a result, unlike most
existing optimization methods in which agents move toward the optimal solution during
iterations, the CGM mechanism always examines the entire search space to find better
solutions. Figures 16–18 show the results of the search space for different optimization
problems. As shown in these three figures, the number of members of the population was 5,
and the number of iterations was 50. This advantage is due to the use of random variable ϕ.
Therefore, according to the contents of Section 3.3, in continuous problems, the exploration
process is performed in the range of the values of the best positions; therefore, the next
points with gold are close to the best points (as shown in Figure 16, after iteration 21, with
which the best solution is found, miners try to explore around this point to find more gold).
On the other hand, because of the possibility of selecting ϕ in the entire search space, the
process of exploration in discrete problems covers the entire search space. This can be seen
in Figures 17 and 18, where after finding the best solution, miners try to find more gold in
the entire search space.

4.6. Computational Demand

Another criterion that can affect the performance of an optimization algorithm is
execution time. Generally, the execution time is calculated from the moment the algorithm
starts until the end of all iterations. The CGM mechanism is able to find the optimal solution
for mathematical functions and continuous practical problems in the shortest possible time.
Figures 19–21 illustrate this metric for the optimal-placement-of-resources problem, the
traveling salesman problem, and the BoT scheduling problem, respectively. As can be seen
in these figures, the computational demand of the CGM method for continuous practical
problems is acceptable compared with other methods.

For discrete practical problems, the execution time required by the CGM mechanism
is almost the same as the execution time required by other methods. This computational
demand depends on the type of discrete problem. Only in discrete problems where
duplicate values are not attributable to variables (such as the traveling salesman problem,

Electronics 2022, 11, 3824 24 of 29

where it is not possible to re-select a city), when the number of variables, the number of
population members, and the number of iterations of the algorithm increase simultaneously,
the required execution time also increases. As a result, the efficiency of the algorithm is
reduced from the computational perspective, and it might not be possible to use this
algorithm in the real-time applications of discrete problems.

Electronics 2022, 11, x FOR PEER REVIEW 26 of 32

Figure 16. Collaboration of miners to determine the appropriate solution for the optimal-placement-
of-resources problem around locations with the possibility of finding the optimal solution (the num-
ber of devices was 5000 in a 10-dimensional space).

Figure 17. Collaboration of miners to determine the appropriate solution for the traveling salesman
problem in the entire search space (the number of cities was 500).

Figure 16. Collaboration of miners to determine the appropriate solution for the optimal-placement-
of-resources problem around locations with the possibility of finding the optimal solution (the number
of devices was 5000 in a 10-dimensional space).

Electronics 2022, 11, x FOR PEER REVIEW 26 of 32

Figure 16. Collaboration of miners to determine the appropriate solution for the optimal-placement-
of-resources problem around locations with the possibility of finding the optimal solution (the num-
ber of devices was 5000 in a 10-dimensional space).

Figure 17. Collaboration of miners to determine the appropriate solution for the traveling salesman
problem in the entire search space (the number of cities was 500).
Figure 17. Collaboration of miners to determine the appropriate solution for the traveling salesman
problem in the entire search space (the number of cities was 500).

Electronics 2022, 11, 3824 25 of 29Electronics 2022, 11, x FOR PEER REVIEW 27 of 32

Figure 18. Collaboration of miners to determine the appropriate solution for the BoT scheduling
problem in the entire search space (the number of tasks was 5000, and the number of computational
resources was 200).

4.6. Computational Demand
Another criterion that can affect the performance of an optimization algorithm is ex-

ecution time. Generally, the execution time is calculated from the moment the algorithm
starts until the end of all iterations. The CGM mechanism is able to find the optimal solu-
tion for mathematical functions and continuous practical problems in the shortest possible
time. Figures 19–21 illustrate this metric for the optimal-placement-of-resources problem,
the traveling salesman problem, and the BoT scheduling problem, respectively. As can be
seen in these figures, the computational demand of the CGM method for continuous prac-
tical problems is acceptable compared with other methods.

For discrete practical problems, the execution time required by the CGM mechanism
is almost the same as the execution time required by other methods. This computational
demand depends on the type of discrete problem. Only in discrete problems where du-
plicate values are not attributable to variables (such as the traveling salesman problem,
where it is not possible to re-select a city), when the number of variables, the number of
population members, and the number of iterations of the algorithm increase simultane-
ously, the required execution time also increases. As a result, the efficiency of the algo-
rithm is reduced from the computational perspective, and it might not be possible to use
this algorithm in the real-time applications of discrete problems.

Figure 18. Collaboration of miners to determine the appropriate solution for the BoT scheduling
problem in the entire search space (the number of tasks was 5000, and the number of computational
resources was 200).

Electronics 2022, 11, x FOR PEER REVIEW 28 of 32

Figure 19. Evaluation results of execution time (CPU time) criterion for the optimal-placement-of-
resources problem with large parameters (in milliseconds)

Figure 20. Evaluation results of execution time (CPU time) criterion for the traveling salesman prob-
lem with large parameters (in milliseconds)

Figure 19. Evaluation results of execution time (CPU time) criterion for the optimal-placement-of-
resources problem with large parameters (in milliseconds).

Electronics 2022, 11, 3824 26 of 29

Electronics 2022, 11, x FOR PEER REVIEW 28 of 32

Figure 19. Evaluation results of execution time (CPU time) criterion for the optimal-placement-of-
resources problem with large parameters (in milliseconds)

Figure 20. Evaluation results of execution time (CPU time) criterion for the traveling salesman prob-
lem with large parameters (in milliseconds)

Figure 20. Evaluation results of execution time (CPU time) criterion for the traveling salesman
problem with large parameters (in milliseconds).

Electronics 2022, 11, x FOR PEER REVIEW 29 of 32

Figure 21. Evaluation results of execution time (CPU time) criterion for the BoT scheduling problem
with large parameters (in milliseconds)

5. Discussion
In practical terms, there are no optimization algorithms that can solve all the prob-

lems with the best possible solution [46]. In terms of well-known criteria, such as optimal
solution, convergence, scalability, search space, and computational demand, the CGM
mechanism has promising performance for both continuous and discrete evaluated prob-
lems, and its results are comparable to those of other well-known methods.

The CGM algorithm was developed in such a way that depending on the type of
problem (continuous or discrete), it has a well-defined behavior and does not need con-
verting continuous problems to discrete problems (and vice versa) or converting data. The
transparent operation of this algorithm is such that it can be easily used to develop and
solve a continuous or discrete optimization problem. Moreover, the experimental results
indicate that the proposed method has a comparable, and in some cases better, perfor-
mance in solving all continuous and discrete problems. Unlike most existing optimization
mechanisms, in which algorithm settings must be obtained by trial-and-error and changes
are based on problem type, the CGM mechanism does not require a continuous change of
parameters, and as shown in all evaluations, the optimization problem can be solved with
the same default values considered for the base algorithm. The CGM mechanism can solve
minimization and maximization problems without many changes.

In this algorithm, since the positions of the miners are considered as initial solutions
to the problem, their positions should be randomly dispersed to cover the geographical
area and not limit the search operation to a specific part of the geographic space. In the
beginning, if the miners are located near each other in one part of the geographical area,
the CGM algorithm is only able to find the local optimal solution where the miners are
and not the global optimal solution, which is the main target of the problem. Therefore,
the location of the initial population should be placed throughout the whole space of the
problem as a fine-tuning precondition for the correct execution of the CGM mechanism.

6. Conclusions
Inspired by the process of gold exploration and exploitation, this paper simulates the

behavior of gold miners and introduces a new natural optimization method called collab-
orative gold mining (CGM). Compared with some famous optimization methods, such as

Figure 21. Evaluation results of execution time (CPU time) criterion for the BoT scheduling problem
with large parameters (in milliseconds).

5. Discussion

In practical terms, there are no optimization algorithms that can solve all the prob-
lems with the best possible solution [46]. In terms of well-known criteria, such as optimal
solution, convergence, scalability, search space, and computational demand, the CGM mech-

Electronics 2022, 11, 3824 27 of 29

anism has promising performance for both continuous and discrete evaluated problems,
and its results are comparable to those of other well-known methods.

The CGM algorithm was developed in such a way that depending on the type of
problem (continuous or discrete), it has a well-defined behavior and does not need con-
verting continuous problems to discrete problems (and vice versa) or converting data. The
transparent operation of this algorithm is such that it can be easily used to develop and
solve a continuous or discrete optimization problem. Moreover, the experimental results
indicate that the proposed method has a comparable, and in some cases better, perfor-
mance in solving all continuous and discrete problems. Unlike most existing optimization
mechanisms, in which algorithm settings must be obtained by trial-and-error and changes
are based on problem type, the CGM mechanism does not require a continuous change of
parameters, and as shown in all evaluations, the optimization problem can be solved with
the same default values considered for the base algorithm. The CGM mechanism can solve
minimization and maximization problems without many changes.

In this algorithm, since the positions of the miners are considered as initial solutions
to the problem, their positions should be randomly dispersed to cover the geographical
area and not limit the search operation to a specific part of the geographic space. In the
beginning, if the miners are located near each other in one part of the geographical area,
the CGM algorithm is only able to find the local optimal solution where the miners are
and not the global optimal solution, which is the main target of the problem. Therefore,
the location of the initial population should be placed throughout the whole space of the
problem as a fine-tuning precondition for the correct execution of the CGM mechanism.

6. Conclusions

Inspired by the process of gold exploration and exploitation, this paper simulates
the behavior of gold miners and introduces a new natural optimization method called
collaborative gold mining (CGM). Compared with some famous optimization methods,
such as GA, SA, PSO, and IWO, the results of the evaluations show that the proposed
mechanism, while finding the optimal solution, has a good performance in terms of some
other criteria, such as convergence, scalability, search space, and computational demand.
The fewer the number of iterations required to determine the quasi-optimal or optimal
solution to an optimization algorithm is, the shorter the response time is. Consequently, the
CGM algorithm can be employed to solve real problems in different application domains,
especially on devices with limited resources. To evaluate the efficiency of the proposed
CGM mechanism, several mathematical functions and three application examples, includ-
ing the optimal placement of resources, traveling salesman problem, and bag-of-tasks
scheduling, were selected and examined.

Future work will focus more on utilizing the CGM algorithm in other applications,
especially real-time applications, and evaluating its performance against other mechanisms.
Another avenue to explore is modifying the CGM algorithm so that it can solve combinato-
rial optimization problems. The initialization of the three best variables has a great impact
on the output of the proposed algorithm. So, another research direction is to examine how
to choose the initial position for the three best variables exactly, in such a way that the
maximum amount of profit is obtained for the gold miner.

Author Contributions: A.S. and B.J. have contributed to the study conception and design, and text
preparation, dataset collection, code implementation, and analysis were performed by all authors.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2022, 11, 3824 28 of 29

References
1. Molina, D.; Poyatos, J.; Del Ser, J.; García, S.; Hussain, A.; Herrera, F. Comprehensive taxonomies of nature-and bio-inspired

optimization: Inspiration versus algorithmic behavior, critical analysis recommendations. Cogn. Comput. 2020, 12, 897–939.
[CrossRef]

2. Ezugwu, A.E.; Shukla, A.K.; Nath, R.; Akinyelu, A.A.; Agushaka, J.O.; Chiroma, H.; Muhuri, P.K. Metaheuristics: A comprehen-
sive overview and classification along with bibliometric analysis. Artif. Intell. Rev. 2021, 54, 4237–4316. [CrossRef]

3. Zavala, G.R.; Nebro, A.J.; Luna, F.; Coello, C.A.C. A survey of multi-objective metaheuristics applied to structural optimization.
Struct. Multidiscip. Optim. 2014, 49, 537–558. [CrossRef]

4. Molina, D.; LaTorre, A.; Herrera, F. An insight into bio-inspired and evolutionary algorithms for global optimization: Review,
analysis, and lessons learnt over a decade of competitions. Cogn. Comput. 2018, 10, 517–544. [CrossRef]

5. Dressler, F.; Akan, O.B. A survey on bio-inspired networking. Comput. Netw. 2010, 54, 881–900. [CrossRef]
6. Del Valle, Y.; Venayagamoorthy, G.K.; Mohagheghi, S.; Hernandez, J.C.; Harley, R.G. Particle swarm optimization: Basic concepts,

variants and applications in power systems. IEEE Trans. Evol. Comput. 2008, 12, 171–195. [CrossRef]
7. Yang, X.S.; Chien, S.F.; Ting, T.O. Bio-inspired computation and optimization: An overview. In Bio-Inspired Computation in

Telecommunications, 1st ed.; Yang, X.S., Chien, S.F., Ting, T.O., Eds.; Morgan Kaufmann: Burlington, MA, USA, 2015; pp. 1–21.
[CrossRef]

8. Kolias, C.; Kambourakis, G.; Maragoudakis, M. Swarm intelligence in intrusion detection: A survey. Comput. Secur. 2011, 30,
625–642. [CrossRef]

9. Fong, S. Opportunities and challenges of integrating bio-inspired optimization and data mining algorithms. In Swarm Intelligence
and Bio-Inspired Computation: Theory and Applications; Yang, X.S., Cui, Z., Xiao, R., Gandomi, A.H., Karamanoglu, M., Eds.; Newnes:
London, UK, 2013; pp. 385–402. [CrossRef]

10. Alsalibi, B.; Venkat, I.; Subramanian, K.; Lutfi, S.L.; Wilde, P.D. The impact of bio-inspired approaches toward the advancement of
face recognition. ACM Comput. Surv. (CSUR) 2015, 48, 1–33. [CrossRef]

11. Jose-Garcia, A.; Gomez-Flores, W. Automatic clustering using nature-inspired metaheuristics: A survey. Appl. Soft. Comput. 2016,
41, 192–213. [CrossRef]

12. Del Ser, J.; Osaba, E.; Sanchez-Medina, J.J.; Fister, I. Bioinspired computational intelligence and transportation systems: A long
road ahead. IEEE Trans. Intell. Transp. Syst. 2019, 21, 466–495. [CrossRef]

13. Beni, G.; Wang, J. Swarm intelligence in cellular robotic systems. In Robots and Biological Systems: Towards New Bionics? Dario, P.,
Sandini, G., Aebischer, P., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 703–712. [CrossRef]

14. Dorigo, M.; Maniezzo, V.; Colorni, A. The Ant System: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man
Cybern. 1996, 26, 29–41. [CrossRef] [PubMed]

15. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC)
algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]

16. Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth International IEEE Symposium
on Micro Machine and Human Science (MHS’95), Nagoya, Japan, 4–6 October 1995. [CrossRef]

17. Man, K.F.; Tang, K.S.; Kwong, S. Genetic algorithms: Concepts and applications [in engineering design]. IEEE Trans. Ind. Electron.
1996, 43, 519–534. [CrossRef]

18. Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob.
Optim. 1997, 11, 341–359. [CrossRef]

19. Yang, X.S. Nature-inspired optimization algorithms: Challenges and open problems. J. Comput. Sci. 2020, 46, 101104–101118.
[CrossRef]

20. Dhal, K.G.; Das, A.; Ray, S.; Galvez, J.; Das, S. Nature-inspired optimization algorithms and their application in multi-thresholding
image segmentation. Arch. Comput. Methods Eng. 2020, 27, 855–888. [CrossRef]

21. Tzanetos, A.; Dounias, G. A Comprehensive Survey on the Applications of Swarm Intelligence and Bio-Inspired Evolutionary
Strategies. In Machine Learning Paradigms. Learning and Analytics in Intelligent Systems; Tsihrintzis, G., Jain, L., Eds.; Springer:
Cham, Switzerland, 2020; Volume 18, pp. 337–378. [CrossRef]

22. Atashpaz-Gargari, E.; Lucas, C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic
competition. In Proceedings of the IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 4661–4667.
[CrossRef]

23. Shi, Y. Brain Storm Optimization Algorithm. In Advances in Swarm Intelligence (ICSI 2011), Lecture Notes in Computer Science; Tan,
Y., Shi, Y., Chai, Y., Wang, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 303–309. [CrossRef]

24. Ahmadi-Javid, A. Anarchic Society Optimization: A human-inspired method. In Proceedings of the IEEE congress of Evolutionary
Computation, New Orleans, LA, USA, 5–8 June 2011; pp. 2586–2592. [CrossRef]

25. Huan, T.T.; Kulkarni, A.J.; Kanesan, J.; Huang, C.J.; Abraham, A. Ideology algorithm: A socio-inspired optimization methodology.
Neural Comput. Appl. 2017, 28, 845–876. [CrossRef]

26. Taillard, E.D.; Voss, S. POPMUSIC—Partial optimization metaheuristic under special intensification conditions. In Essays and
Surveys in Metaheuristics. Operations Research/Computer Science Interfaces Series; Springer: Boston, MA, USA, 2002; Volume 15,
pp. 613–629. [CrossRef]

27. Purnomo, H.D. Soccer game optimization: Fundamental concept. J. Sist. Komput. 2014, 4, 25–36.

http://doi.org/10.1007/s12559-020-09730-8
http://doi.org/10.1007/s10462-020-09952-0
http://doi.org/10.1007/s00158-013-0996-4
http://doi.org/10.1007/s12559-018-9554-0
http://doi.org/10.1016/j.comnet.2009.10.024
http://doi.org/10.1109/TEVC.2007.896686
http://doi.org/10.1016/B978-0-12-801538-4.00001-X
http://doi.org/10.1016/j.cose.2011.08.009
http://doi.org/10.1016/B978-0-12-405163-8.00018-1
http://doi.org/10.1145/2791121
http://doi.org/10.1016/j.asoc.2015.12.001
http://doi.org/10.1109/TITS.2019.2897377
http://doi.org/10.1007/978-3-642-58069-7_38
http://doi.org/10.1109/3477.484436
http://www.ncbi.nlm.nih.gov/pubmed/18263004
http://doi.org/10.1007/s10898-007-9149-x
http://doi.org/10.1109/MHS.1995.494215
http://doi.org/10.1109/41.538609
http://doi.org/10.1023/A:1008202821328
http://doi.org/10.1016/j.jocs.2020.101104
http://doi.org/10.1007/s11831-019-09334-y
http://doi.org/10.1007/978-3-030-49724-8_15
http://doi.org/10.1109/CEC.2007.4425083
http://doi.org/10.1007/978-3-642-21515-5_36
http://doi.org/10.1109/CEC.2011.5949940
http://doi.org/10.1007/s00521-016-2379-4
http://doi.org/10.1007/978-1-4615-1507-4_27

Electronics 2022, 11, 3824 29 of 29

28. Osaba, E.; Diaz, F.; Onieva, E. Golden ball: A novel meta-heuristic to solve combinatorial optimization problems based on soccer
concepts. Appl. Intell. 2014, 41, 145–166. [CrossRef]

29. Razmjooy, N.; Khalilpour, M.; Ramezani, M. A new meta-heuristic optimization algorithm inspired by FIFA world cup com-
petitions: Theory and its application in PID designing for AVR system. J. Control. Autom. Electr. Syst. 2016, 27, 419–440.
[CrossRef]

30. Forestiero, A. Heuristic recommendation technique in Internet of Things featuring swarm intelligence approach. Expert Syst.
Appl. 2022, 187, 115904. [CrossRef]

31. Abualigah, L.; Elaziz, M.A.; Khodadadi, N.; Forestiero, A.; Jia, H.; Gandomi, A.H. Aquila Optimizer Based PSO Swarm
Intelligence for IoT Task Scheduling Application in Cloud Computing. In Integrating Meta-Heuristics and Machine Learning for
Real-World Optimization Problems. Studies in Computational Intelligence; Houssein, E.H., Abd Elaziz, M., Oliva, D., Abualigah, L.,
Eds.; Springer: Cham, Switzerland, 2022; pp. 481–497. [CrossRef]

32. Serway, R.A.; Jewett, J.W. Physics for Scientists and Engineers, 6th ed.; Thomson-Brooks/Cole: Pacific Grove, CA, USA, 2004;
pp. 270–276.

33. Bai, L.; Breen, D. Calculating center of mass in an unbounded 2D environment. J. Graph. Tools 2008, 13, 53–60. [CrossRef]
34. Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80,

8091–8126. [CrossRef]
35. Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]

[PubMed]
36. Delahaye, D.; Chaimatanan, S.; Mongeau, M. Simulated annealing: From basics to applications. In Handbook of Metaheuristics;

Gendreau, M., Potvin, J.Y., Eds.; Springer: Cham, Switzerland, 2019; pp. 1–35. [CrossRef]
37. Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. Swarm Intell. 2007, 1, 33–57. [CrossRef]
38. Mehrabian, A.R.; Lucas, C. A novel numerical optimization algorithm inspired from weed colonization. Ecol. Inform. 2006, 1,

355–366. [CrossRef]
39. Salehan, A.; Deldari, A. Corona virus optimization (CVO): A novel optimization algorithm inspired from the Corona virus

pandemic. J. Supercomput. 2022, 78, 5712–5743. [CrossRef]
40. Auletta, V.; Parente, D.; Persiano, G. Dynamic and static algorithms for optimal placement of resources in a tree. Theor. Comput.

Sci. 1996, 165, 441–461. [CrossRef]
41. Craw, S. Manhattan Distance. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2011.

[CrossRef]
42. Bektas, T. The multiple traveling salesman problem: An overview of formulations and solution procedures. Omega 2006, 34,

209–219. [CrossRef]
43. Abdullahi, M.; Ngadi, M.A. Symbiotic organism search optimization-based task scheduling in cloud computing environment.

Future Gener. Comput. Syst. 2016, 56, 640–650. [CrossRef]
44. Reinelt, G. ATT48 from TSPLIB—A Traveling Salesman Problem Library. 1991. Available online: https://people.sc.fsu.edu/

~{}jburkardt/datasets/tsp/tsp.html (accessed on 26 July 2020).
45. Cheraghalipour, A.; Hajiaghaei-Keshteli, M.; Paydar, M.M. Tree Growth Algorithm (TGA): A novel approach for solving

optimization problems. Eng. Appl. Artif. Intell. 2018, 72, 393–414. [CrossRef]
46. Dehghani, M.; Hubalovsky, S.; Trojovsky, P. Cat and Mouse Based Optimizer: A New Nature-Inspired Optimization Algorithm.

Sensors 2021, 21, 5214–5243. [CrossRef] [PubMed]

http://doi.org/10.1007/s10489-013-0512-y
http://doi.org/10.1007/s40313-016-0242-6
http://doi.org/10.1016/j.eswa.2021.115904
http://doi.org/10.1007/978-3-030-99079-4_19
http://doi.org/10.1080/2151237X.2008.10129266
http://doi.org/10.1007/s11042-020-10139-6
http://doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://doi.org/10.1007/978-3-319-91086-4_1
http://doi.org/10.1007/s11721-007-0002-0
http://doi.org/10.1016/j.ecoinf.2006.07.003
http://doi.org/10.1007/s11227-021-04100-z
http://doi.org/10.1016/0304-3975(96)00089-8
http://doi.org/10.1007/978-0-387-30164-8_506
http://doi.org/10.1016/j.omega.2004.10.004
http://doi.org/10.1016/j.future.2015.08.006
https://people.sc.fsu.edu/~{}jburkardt/datasets/tsp/tsp.html
https://people.sc.fsu.edu/~{}jburkardt/datasets/tsp/tsp.html
http://doi.org/10.1016/j.engappai.2018.04.021
http://doi.org/10.3390/s21155214
http://www.ncbi.nlm.nih.gov/pubmed/34372450

	Introduction
	Related Work
	Materials and Methods
	Center of Mass
	Collaborative Gold Mining Optimization Mechanism
	Determination of Random Value
	The Proposed CGM Algorithm

	Results
	The Definition of Applied Continuous and Discrete Problems
	Continuous Mathematical Functions
	Optimal Placement of Resources
	Traveling Salesman Problem
	Bag-of-Tasks Scheduling

	The Optimal Solution
	Continuous Mathematical Functions
	Optimal Placement of Resources
	Traveling Salesman Problem
	Bag-of-Tasks Scheduling

	Convergence
	Scalability
	Search Space
	Computational Demand

	Discussion
	Conclusions
	References

