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Developing a natural language processing approach for analyzing student ideas in calculus-based
introductory physics

Jon M. Geiger and Lisa M. Goodhew
Department of Physics, Seattle Pacific University, 3307 3rd Ave W, Seattle WA, 98119

Tor Ole B. Odden
Department of Physics, Center for Computing in Science Education, University of Oslo, 0316 Oslo, Norway

Research characterizing common student ideas about particular physics topics has made a significant impact
on university-level physics teaching by providing knowledge that supports instructors to target their instruction
and by informing curriculum development. This work utilizes a Natural Language Processing algorithm (Latent
Dirichlet Allocation, or LDA) to categorize student ideas, with the goal of significantly expediting the process of
categorizing student ideas. We preliminarily test the LDA approach by applying the algorithm to a collection of
introductory physics student responses to a conceptual question about circuits, specifically attending to whether
it is useful for characterizing conceptual resources, or student ideas that may be fruitful for science learning. We
find that for a large enough collection of student responses (N ≈ 500), LDA can be useful for characterizing
student resources for conceptual physics questions. We discuss some considerations that researchers may take
into account as they interpret the results of the LDA algorithm for characterizing student’s physics ideas.



I. INTRODUCTION

Over the last few decades, Artificial Intelligence (AI) has
been increasingly useful in day-to-day life. From recommen-
dation algorithms on popular streaming streaming services
and e-commerce platforms [1] to the programming backing
self-driving cars [2], the application of AI is vast and ever-
growing in the twenty-first century. Natural Language Pro-
cessing (NLP) is a branch of AI which has been defined as: “a
theoretically motivated range of computational techniques for
analyzing and representing naturally occurring texts at one or
more levels of linguistic analysis for the purpose of achieving
human-like language processing for a range of tasks or ap-
plications” [3]. With advancements in computational power,
NLP has been utilized to analyze enormous amounts of infor-
mation in a short amount of time.

One application of NLP is known as Topic Modeling [4],
which is used to extract themes or “topics” from large bodies
of work. Latent Dirichlet Allocation (LDA) is a popular topic
modeling algorithm which takes in a set of documents (called
a “corpus” in the language of LDA) and produces clusters of
words (“topics”) which are commonly used together within
those documents. From this output, researchers can then as-
cribe meaning to each of the topics produced by the algo-
rithm. In the past few years, there have been several stud-
ies exploring the utility of NLP in Physics Education [5, 6];
more particularly, LDA has been utilized to characterize top-
ics in Physics Education Research (PER) over the last couple
decades as a tool for new PER researchers [7, 8]. As LDA is
not limited to PER, we also see examples of its use in other
fields such as software and banking [9, 10].

A common research focus in PER is the extensive inves-
tigation of common, topic-specific knowledge that students
bring to the classroom. This kind of research has impor-
tant impacts on physics instruction, particularly at the uni-
versity level: it informs the development of research-based
instructional materials (e.g. Tutorials in Introductory Physics,
Maryland Open-Source Tutorials, ACORN Physics Tutorials
[11, 12]) and it contributes instructors’ knowledge of student
ideas, an important part of the knowledge that instructors use
to teach [13]. In physics, research identifying students’ com-
mon physics ideas has investigated students’ common, incor-
rect ideas (misconceptions, alternative conceptions, or dif-
ficulties [14, 15]) and, less extensively, students’ common,
potentially-fruitful ideas (p-prims, facets, or conceptual re-
sources [16–19]). Resources are activated in context-sensitive
ways (attentive to the particular question at hand, the social
context, etc); because of this, research to identify common
resources attends to variations in the student population and
the question asked to elicit them to a greater level of detail
than difficulties research does. This makes the work of appro-
priately characterizing resources very time-intensive, which
may limit the impact of resources research.

The time-intensity of characterizing student ideas moti-
vates the work presented here, which aims to support re-
searchers in characterizing students’ conceptual resources by

investigating the extent to which LDA can be used to iden-
tify common, potentially-fruitful student ideas. We propose
a method by which we can automate part of the process of
characterizing student ideas by applying LDA to a corpus of
student responses to a particular conceptual physics question.
By inspecting the different words within a topic, then looking
at documents which most reflect that topic, we can under-
stand the distinctions between ideas in the corpus. This paper
builds on previous research by using this approach to analyze
students’ responses to physics questions, which often include
a mixture of technical and informal language.

The questions which guides our research are: to what ex-
tent can LDA be used to characterize patterns in student
thinking? Can we produce a useful, time-saving method
for researchers which yields “instructionally-useful” student
ideas for conceptual resources research?

II. METHODS

A. Student Task

In order to analyze patterns in student thinking, many re-
sponses to the same question were needed so that clusters of
ideas can be analyzed. For the primary analysis, we looked at
a circuits question which primarily elicits an explanation of
student reasoning rather than simply asking for a correct an-
swer. In many cases, these questions give the students a sce-
nario and explains what happens, then ask the student why
that outcome makes sense to them. We also performed this
same analysis on two questions relating to heat and tempera-
ture, as well as one question on propagation of waves. These
will be included as case studies in the Results section.

B. Data Cleaning

We used data gathered from several universities across the
United States by members of the Conceptual Resources team.
Student responses were either recorded on paper, scanned,
then transcribed into CSV files, or gathered digitally. For our
data set on responses to our Temperature question, we were
able to combine together responses to the same question from
multiple universities in order to increase the sample size and
algorithm stability, described in the next section.

We loaded the responses into Python for cleaning. The fol-
lowing steps were used in order to prepare the data for mod-
eling:

1. Removed punctuation (quotes, commas, periods, and
parentheses).

2. Removed stopwords (commonly used words such as
“a,” “the,” and “is”).

3. Lemmatized words down to their roots (“increased” and
“increases” would become “increase”).

4. Created bigrams, (pairs of words such as “poten-
tial_difference” or “ohm_law”). This is necessary in



order to distinguish between concepts such as “poten-
tial difference” and “potential energy,” which have dis-
tinct meanings in physics, even though they both con-
tain the word “potential.”

5. Filtered out the most and least common words (based
on user-defined thresholds). This process is explained
below.

6. Created a bag-of-words for the LDA function [20].
The most and least common words were filtered out based

on criteria chosen by the researchers. Filtering out the most
common words involves choosing a threshold of a percent-
age of all documents in which a certain word occurs. For
example, in a circuits question, the word “current” may ap-
pear in 70% of all responses, so we may choose to eliminate
all words which appear in more than 50% of all documents.
Words found in a majority of documents likely occur in the
problem statement itself, and these words may therefore be
unhelpful in characterizing distinct student ideas. In the al-
gorithm, this is our “no above” threshold. Filtering out the
least common words involves choosing a minimum number
of documents in which a word can occur. Words that appear
in one or two documents may include fanciful words used by
only one student, or misspellings of words (“increaes” rather
than “increase”). More common misspellings or typos (such
as “becuase”) tend to appear in more than just one document.
Because of this, and due to the corpus sizes used (N < 500),
we generally chose to exclude words that are only found in
two or three documents. In the algorithm, this is our “no be-
low” threshold.

C. LDA Modeling

Latent Dirichlet Allocation (LDA) is a Natural Language
Processing algorithm used for topic modeling [4]. In brief,
the algorithm works by taking in a corpus (or collection) of
documents, noticing groups of words that commonly occur
within certain documents, and picking out those groups of
words, labeling them as “topics.” Then, each document is
assigned a set of weights according to how relevant to each
topic that document appears to be. More technically, LDA
iteratively “learns” topics by creating and adjusting a proba-
bilistic model for how words are distributed in topics, as well
as how topics are distributed among documents.

The LDA modeling process relies on a few key assump-
tions. Firstly, LDA assumes that the order in which words oc-
cur in a document doesn’t matter, nor does the part of speech
or anything else about the word. Second, we assume that
each document is comprised of a percentage mixture of all
of the topics. That is, for a three-topic model, a given docu-
ment could be comprised of 70% Topic 1, 20% Topic 2, and
10% Topic 3. For a seven-topic model, a document could be
comprised of 99% Topic 1, with 1% split among the other six
topics. This is important for interpreting the results of our
model.

There are, in essence, two hyperparameters in the algo-

rithm (α and β) which can be controlled by the modeler. The
first parameter, α, ranges from zero to infinity and controls
the mixture of topics within a document. A low value of
α (less than one) makes the algorithm assign topics to doc-
uments fairly exclusively, such that each document is com-
prised of a small number of topics. A high value of α creates
a more heterogeneous mixture, where topic weights within a
document can be closer in magnitude than they would be with
a high α. The second parameter, β, is similar to α and ranges
from zero to infinity, and it controls the mixture of words
within a topic. A low value of β makes the algorithm as-
sign words to topics fairly exclusively (similar to α), whereas
a higher value of β allows a given word to be assigned to top-
ics more equally. For our models, the values of α and β were
chosen automatically by Gensim [21], which we used to im-
plement the LDA algorithm. While the particular details of
the mathematics are beyond the scope of this paper, more in-
depth descriptions of the mathematics and intuition of LDA
can be found in Blei et al. [22] and Odden et al. [7].

In the context of our research, the corpus of documents
was the collection of all student responses for a single ques-
tion, and a document was a single student response within that
corpus. The research we conduct looks at the extent to which
a topic can represent a student idea. In this setting of the
framework, any given student response would be comprised
of a distribution of student ideas, with the heterogeneity of the
topic-document distribution controlled by the hyperparameter
α. The student ideas might be fairly distinct, implying that a
low value of β may be useful. For each of the examples,
we built models with a varying range of topics from three to
seven, computing coherence values for each model. The co-
herence is a measure of “the tendency of the top words in the
topic to co-occur”[7], where higher coherence values (closer
to one) describe more distinct topic distributions. In select-
ing which topic number to use, we generally chose the topic
number which yielded the highest coherence value, though
this was not always the case. This was done heuristically,
requiring input from the researchers on which topics looked
to be the most distinct or aligned with pre-conceived mental
models.

Because LDA relies on an initial randomization, it is im-
portant to note that between random seeds, there is some run-
to-run variation in the different topics which the model con-
verges on. The topics presented in this paper were chosen
from just one particular run of the model; results varied when
a random seed for the algorithm was not specified.

D. Representative Responses

We chose to display the most representative student re-
sponse for each modeled topic in order to give a more con-
crete idea of what each topic actually represents. Without
displaying the student responses, there would be no method
by which we could convert from a topic (a weighted group
of words) to an actual student idea. Due to the assumption



of LDA modeling that each document is written on one or
more topics, contingent upon the success of our model, this
translates to “each student response is comprised of one or
more student ideas.” Because each response has a set of val-
ues associated with it representing the amount that each topic
is present in that document, we sorted all of the documents by
a given topic, allowing us to see the most prevalent responses
in that topic.

Finally, we performed a secondary qualitative data analy-
sis on the results of the LDA analysis to determine the degree
to which topics resembled student ideas. This involved look-
ing at the topmost words in a topic, extracting phrases in the
student responses which contained these top words, synthe-
sizing those phrases into coherent ideas, and matching those
ideas up with existing mental models or student ideas. This
qualitative step is crucial to the process of categorizing pat-
terns in student ideas, as the researcher must use their exist-
ing physics knowledge in order to assign actual meaning to
the model’s topics. Examples of this will be shown in each of
the case studies.

III. RESULTS

As stated above, we used data from four different ques-
tions: one from circuits, two from heat & temperature, and
one on propagation of waves. In this section, we present
the question asked of the students, the parameters used in
the modeling process, the topics characterized by the model,
and some parts of some representative responses from each
topic. These representative topics are then used to formulate
the student ideas as outlined in the prior section, with a brief
discussion on the final topics.

Case Study: Circuits

Students were tasked with answering the following ques-
tion (see Figure 1), with N = 483 responses:

FIG. 1. Compare Bulbs in Series, Revised

Comparing the brightness of the bulbs in Cir-
cuits 1 and 2, we observe that the bulb in Circuit
1 is brighter. Using Ohm’s Law, V = IR, we
know that current and voltage are directly pro-
portional when resistance is the same. Why do
you think more voltage leads to more current?
What mental models are you using to make sense
of this?

For our circuits case study, we chose the following model
parameters:

• k = 5 topics.
• “No above” = 50%. Words like “current” and “voltage”

appeared in more than 50% of all responses, and would
not be useful in characterizing student ideas.

• “No below” = 3. Setting this threshold any higher
would have excluded important words potentially sig-
nificant for student ideas, such as “gravitational.”

The topics produced by the model are shown in Table I.
This five-topic model yielded a coherence score of 0.4625,

which was the highest among the 3-10 topic models. Table
II shows some phrases from the most representative student
responses for each topic.

From the selected phrases of student responses in Table II,
we can begin to code some distinct student ideas for each
topic, as previously described in the Methods:

1. Current flows through circuits like water through a river
or pipe.

2. Voltage “pulls” electrons; more V means more I .



TABLE I. Top words in topics with weights, Circuits
Topic Words in Topic (with weights)
1 water (.090), large (.053), flow (.053), think (.044),

energy (.042), pressure(.040), like (.028), great
(.026), push (.023), electron (.023)

2 electron (.074), force (.057), great (.044), high
(.041), big (.038), mean (.033), faster (.031),
potential (.027), push (.023), think (.022)

3 increase (.053), high (.052), charge (.050), electron
(.039), great (.033), battery (.031), lead (.029), flow
(.027), mean (.027), potential_difference (.026)

4 battery (.081), circuit (.069), power (.069), bulb
(.048), increase (.043), brighter (.036), think (.029),
push (.028), lead (.024), double (.022)

5 increase (.163), resistance (.083), circuit (.048),
constant (.041), equation (.027), mean (.024), bulb
(.024), ir (.024), ohm_law (.022), change (.022)

TABLE II. Selected phrases from top responses, Circuits
Topic Representative Student Responses
1 “water flows through a river like current flows

through circuits”
“if there is more potential (or, less accurately,
pressure) ... more electrons will flow”

2 “the more potential ... means the more force there is
pulling [the electron] to where it wants to be”
“more voltage ... results in a harder pull, and
therefore the electrons speed up more ... faster
electrons will result in a higher current”

3 “if the voltage of the battery increases ... the
potential difference ... increases ... the battery
must push more charge through it to maintain the
voltage”
“a greater magnitude electric field ... increases the
amount of charge that passes through a ... circuit ...
increasing the current”

4 “second battery ... doubles the voltage ...
increasing the current increases the power”
“a brighter bulb represents more power and
therefore more current”

5 “rearranging the equation V = IR ... in terms of the
equation ... a change in one value affects the other
... if R is constant, I must increase.”

3. Voltage “pushes” electrons; voltage is potential differ-
ence, causing a greater electric field.

4. Batteries increase the power in a circuit. More power
means brighter.

5. Voltage is proportional to current. With resistance held
constant, increasing the voltage increases the current.

For this particular set of responses on circuits, it appears
that LDA worked fairly well in categorizing distinct student
ideas about circuits. Topic 1 was the most distinct and sta-

ble topic, in that each run of the algorithm produced some
topic related to the flow of water. Though there do appear to
be some similarities between Topic 2 and Topic 3, we noted
that in the top three most representative responses from each
topic, students who wrote on Topic 2 exclusively referred to
voltage/potential as a “pull,” whereas students who wrote on
Topic 3 exclusively referred to voltage/potential as a ”push.”
Topic 4 refers to the idea that “batteries provide power,” relat-
ing the conventional notion of power (i.e. a “power outage”)
to the circuits definition (P = IV = I2R). Lastly, Topic
5 refers directly to Ohm’s Law, in which students will use
the equation itself as a mental model for why increasing the
voltage should increase the current.

Case Study: Temperature

The student task was to answer the following question
(N = 248 responses):

Imagine you have two room-temperature blocks
made of the same metal, but one has more mass
than the other. You drop the blocks into equal
volumes of 5-degrees-C water, count to five, and
then dump them out onto a table. You measure
the temperature of both blocks, and the less mas-
sive one is colder than the more massive one.
That’s because the mass of an object matters for
how much its temperature changes.

What we want to know is why that makes sense or
doesn’t make sense to you: Why is it that a less
massive block changes its temperature more than
a more massive block made of the same material
and at the same starting temperature?

For our temperature case study, we used the following
model parameters:

• k = 5 topics.
• “No above” = 50%. Words like “block,” “tempera-

ture,”, and “change” appeared in more than 50% of all
responses, and would not be useful in characterizing
student ideas.

• “No below” = 2. Setting this threshold any higher
would have excluded important words potentially sig-
nificant for student ideas, such as “inertia” and “thin-
ner.”

The topics produced by the model are shown in Table III.
The coherence score of this particular set of topics was

0.2805. Though this value is significantly lower than the
coherence score from the Circuits case study, there was sig-
nificant run-to-run variation in the coherence scores for this
model. We also noted that changing the “no below” thresh-
old drastically changed the coherence scores. Including more
words seemed to drive the coherence scores downwards,
though further study is required to fully understand this ef-
fect. Table IV includes representative responses from these
topics.



TABLE III. Top words in topics with weights, Temperature
Topic Words in Topic (with weights)
1 particle (.156), energy (.116), average (.049),

molecule (.043), mass (.030), massive (.029), great
(.027), kinetic (.025), need (.023), make_sense
(.022)

2 mass (.175), object (.112), small (.053), heat (.053),
material (.044), make_sense (.033), large (.024),
need (.018), mean (.017), cool (.017)

3 massive (.206), water (.040), heat (.040), faster
(.039), material (.039), cool (.026), absorb (.025),
drop (.024), small (.024), make_sense (.021)

4 volume (0.085), massive (0.059), surface_area
(0.051), small (0.051), take (0.048), time (0.041),
large (0.041), heat (0.038), cool (0.036), water
(0.034)

5 energy (0.167), massive (0.096), thermal (0.054),
mass (0.047), atom (0.034), require (0.032), material
(0.027), take (0.021), large (0.020), specific_heat
(0.020)

1. Temperature is related to the energy of particles in an
object.

2. Heat transfer is related to mass (Q = mc∆T ).
3. “Massive-ness” of the object determines the rate at

which the object heats up.
4. Heat enters through the surface of an object. Surface

area and volume contribute to heat transfer rate.
5. Heat is thermal energy. More massive objects can dis-

tribute thermal energy over more material.
Despite the relatively low coherence score of the model, it

appears that LDA was able to pick out some relatively distinct
topics. Topic 1 appears to be distinctively about the energy of
the particles in each of the blocks. The idea of energy comes
about as well in Topic 5, but the difference is that Topic 5
discusses thermal energy in relation to heat, whereas Topic 1
relates the amount of energy an object has to the amount of
particles it has. Topic 2 is an interesting result: by looking
at the words in the topic, there is very little indication that
this topic would reference the equation Q = mc∆T . These
responses included this equation written in a variety of dif-
ferent ways, including “Q=mcdeltaT,” “Q=mc /\T,” and
“Delta Q = m c delta T.” Because of this, the LDA
model didn’t pick up on the equations themselves (See Ta-
ble I word “ir”), but rather students’ semantic explanations of
these equations.

One issue we noticed immediately is that in Topic 3, there
is one word which is weighted five times more than the
second-most prevalent word. The word “massive” appeared
in many student responses because it was a word contained
within the prompt, and the algorithm seemed to settle that
this topic was people who referred to the blocks as being ei-
ther more or less “massive” than the other. This word also
appears in the top ten words of every topic but Topic 2, which

TABLE IV. Selected phrases from top responses, Temperature
Topic Representative Student Responses
1 “temperature is a measurement of the average

energy of particles in an object”
“energy per particle or per mass would be less in
the more massive block ... you will have to change
the energy of more particles”

2 “I know the equation Q = mc∆T ... it would take
longer to heat up something with a bigger mass than
something with a smaller mass”
“the only difference between them is their mass ...
Q = mc∆T ”
“In the equation Q = mc∆T , when mass is doubled
then heat is doubled”

3 “the less massive block initially carries less heat
than the more massive block does before going into
the water”
“a less massive block ... has less substance ... [and]
it can change quicker than the more massive block”

4 “heat will enter through the surface of the block ...
volume increases faster than surface area when
increasing the size of the block”
“the surface area to volume ratio of a smaller
block is higher than that of a larger block, so it
absorbs/releases more heat”

5 “it takes a certain amount of energy to change a
given mass of a material by some temperature”
“a less massive block has fewer units of matter for
which thermal energy can be distributed”
“the amount of energy that a material can store as
temperature, otherwise known as specific heat, is a
measure of the thermal energy stored per unit
mass”

implies that perhaps this word should have been excluded in
the data cleaning step. Topic 4 is specifically about the sur-
face of the block and how it relates to the rate at which heat is
transferred into the block. Many student responses included
direct reference to the “surface area to volume ratio,” or the
“volume increasing faster than the area” or the “square cube
law,” implying something deeply geometrical about this stu-
dent idea.

Case Study: Heat

The student task was to answer the following question
(N = 191 responses):

You may have heard that “heat” or “thermal en-
ergy” transfers from hot to cold objects, and not
the other way around. Why is this the case? How
do you make sense of this phenomenon?

For our heat case study, we used the following model pa-



TABLE V. Top words in topics with weights, Heat
Topic Words in Topic (with weights)
1 thing (.101), hotter (.045), temperature (.036), colder

(.030), cool (.025), sense (.024), particle (.023), tend
(.022), kinetic (.019), equilibrium (.019)

2 high (.078), particle (.068), low (.065), spread
(.040), move (.037), entropy (.035), movement
(.033), state (.030), concentration (.021), lack (.016)

3 entropy (.045), molecule (.036), lack (.034),
equilibrium (.025), atom (.023), hotter (.022), want
(.021), way (.020), gain (.019), reach (.018)

4 equilibrium (.068), go (.033), colder (.030), reach
(.030), make_sense (.030), entropy (.029), way
(.028), state (.025), thermodynamics (.023), law
(.023)

rameters:

• k = 4 topics.
• “No above” = 30%. Words like “energy,” “cold,”, “ob-

ject,” and “hot” appeared in more than 30% of all re-
sponses, and would not be useful in characterizing stu-
dent ideas.

• “No below” = 2. This was enough to remove typos
and misspellings, but setting this threshold any higher
would have excluded words which carry meaning such
as “conserve” and “external.”

The topics produced by the model are shown in Table V.

The coherence score of this particular set of topics was
0.5041. Table VI includes representative responses from
these topics.

From the phrases picked out from the representative stu-
dent responses, we code our student ideas as follows:

1. Thermal energy tends to spread out/equilibrate, causing
hot objects to cool.

2. Energy moves toward basic states, or diffuses like par-
ticles.

3. Hot states are unstable. Energy “wants” to distribute
evenly.

4. Systems tend toward equilibrium.

Unlike the questions on temperature and circuits, these top-
ics seemed to blend into each other to a large extent. A large
overarching theme in all of these topics is that energy wants
to “equilibrate,” which is seen in every topic in some way or
another. This could be attributed to the relatively low sample
size, or perhaps to many students simply thinking about en-
ergy going from hot to cold in terms of equilibrium. It does
appear that the algorithm picked out responses which referred
specifically to “basic states” in reference to entropy, as well
as hot states being “unstable” and the system “wanting” to go
toward equilibrium.

TABLE VI. Selected phrases from top responses, Heat
Topic Representative Student Responses
1 “heat/thermal energy is a measure of the kinetic

energy of each particle in a material, and things get
hotter as they gain more energy”
“things tend to fall into equilibrium”

2 “it’s the same as diffusion: particles will move from
areas of high concentration to low concentration
... entropy tending to want a higher number of
basic states”
“a system tends to move toward having the most
basic states, or the greatest entropy”
“this fulfills the law of entropy ... heat will spread
in a way that creates the greatest number of basic
states”

3 “all things want to be at lower energy level because
that is more stable”
“being hot is unstable, so the object ‘wants’ to
remove its heat to become more stable”

4 “the system always tends toward the equilibrium
state, the stable state”
“the heat therefore goes to where it can most even
out”
“energy would travel to an area where there is less
energy, for equal distribution of energy”

Case Study: Waves

The student task was to answer the following question
(N = 318 responses):

Consider the following two scenarios: In sce-
nario 1, your Teaching Assistant (TA) creates a
pulse by flicking the end of a spring ... In sce-
nario 2, your TA pulls the spring so that it is more
taut (i.e., increases the tension in the spring) and
then creates a pulse by flicking the end of the
spring in the same way. The pulse in scenario 2
travels down the spring faster (i.e., has a larger
speed) than the pulse in scenario 1.

Why would it make sense for a pulse to move
faster on a higher-tension spring? (We’re try-
ing to understand your intuition, not not whether
or not you can remember particular equations.
In other words, we want to know how you make
sense of this phenomenon.)

For our waves case study, we used the following model
parameters:

• k = 8 topics.
• “No above” = 20%. Words like “energy,” “cold,”, “ob-

ject,” and “hot” appeared in more than 30% of all re-
sponses, and would not be useful in characterizing stu-
dent ideas.



TABLE VII. Top words in topics with weights, Waves
Topic Words in Topic (with weights)
1 frequency (.127), change (.123), wavelength (.066),

property (.062), material (.044), pitch (.034), end
(.033), guitar (.027), depends (.027), large (.025)

2 length (.060), equation (.053), sqrt (.051), mass
(.047), density (.043), root (.038), mu (.038),
decrease (.032), unit (.029), square (.027)

3 move (.056), pull (.053), cause (.041), amplitude
(.033), tighter (.031), flick (.029), small (.027),
medium (.027), scenario (.027), molecule (.023)

4 energy (.099), large (.081), amplitude (.080), pull
(.033), taut (.032), molecule (.030), transfer (.026),
sense (.026), medium (.022), scenario (.020)

5 rope (.091), point (.047), slack (.045), time (.044),
distance (.038), low (.029), pull (.027), take (.025),
tight (.024), scenario (.023)

6 particle (.211), pull (.094), time (.062), shorter
(.051), mean (.047), motion (.037), energy (.032),
period (.027), position (.025), great (.022)

7 equilibrium (.073), restore_force (.056), cause
(.040), medium (.032), position (.031), quicker
(.030), return (.030), quickly (.029), move (.028),
want (.028)

8 medium (.106), great (.093), scenario (.033), act
(.026), second (.025), like (.023), move (.022), result
(.022), pull (.021), displace (.019)

• “No below” = 3. This was enough to remove typos
and misspellings, but setting this threshold any higher
would have excluded words which carry meaning such
as “kinetic” and “horizontal.”

Before discussing the topics, something was notable about
this set of data in particular. As we ran different models, we
noticed that there were repeated responses being output by
the model, and that one topic was just one response, repeated
over and over. We looked back at our original data, and no-
ticed that our original data set had multiple entries of the same
response. In particular, there were two responses which were
repeated by between five and fifteen students. One of the re-
peated responses was repeated between students almost ver-
batim, and the other was notable because they referred to the
spring/string as a “wire,” which is something no other stu-
dents did. Because of this, we removed all of these simi-
lar responses from the data set, leaving one of each behind.
The rationale for this decision is that several students likely
copied off of one person’s response, and so it’s very likely
the case that these repeated responses only represent one stu-
dent’s idea.

After the further ad-hoc data cleaning, the number of re-
sponses went from Npre = 318 to Npost = 279. The topics
produced by the model are shown in Table VII.

The coherence score of this particular set of topics was
0.3966. This was the highest coherence score among the 3-

TABLE VIII. Selected phrases from top responses, Waves
Topic Representative Student Responses
1 “I know strings with higher tension have a higher

pitch because I play the guitar. Pitch is determined
by frequency”
“the length of the string is ... increased when tension
is applied ... the wavelength would also increase”

2 “the speed equals the square root of tension/mu ...
when the tension increases the rope gains a little bit
of length”
“when the spring is pulled and ... stretched out, it
not only has a higher tension but also a smaller mass
per unit length”

3 “the tense rope pulls forces in the horizontal
direction, making the wave move faster [in] that
direction, rather than making the amplitude higher”
“the pulse would move faster because it was pulled
tighter”

4 “energy is transferred quicker through a tighter
medium ... on a spring with a larger tension, more
energy is transferred horizontally rather than
vertically as amplitude”

5 “when the string is tight, it creates a straight line”
“when you pull something tighter you are taking
the slack out of it ... you make it easier to
manipulate the actual string”
“more tension means each small unit of the spring
can communicate the movement to the next small
unit of spring quicker”

6 “we are pulling the particles away from each other
and this will increase the ability of a particle to pull
its neighbor particle”
“with greater forces between the particles, the
shorter the time for the particle to complete its
motion”

7 “if the tension is higher, the string will have a higher
restoring force, causing the individual pieces of the
rope to ‘want’ to return to the equilibrium point
faster”
“higher tension ... larger restoring forces ... larger
acceleration for the string to return to its
equilibrium position”

8 “wave moving through the string on a molecular
level, the molecules of the medium become
displaced as it passes through”
“a greater pulling force causes greater tension
between the differential elements of the spring”

10 topic models by a significant margin. Table VIII includes
representative responses from these topics.

Due to the large number of topics, we label these topics
as student ideas devoid of a concerted effort to ensure dis-
tinctness of each topic. After coding the responses, we assess
which topics blend into one another.



1. Tension (e.g. in a guitar string) changes the fre-
quency/pitch, which is related to pulse speed.

2. Pulling on the spring changes the length, tension, and
mass density. Changing T and µ affects pulse speed.

3. Pulling the string horizontally affects how quickly a
pulse propagates.

4. Energy is transferred quicker through a tighter medium.
5. A tight string responds quicker to disturbances.
6. A spring can be modeled as a series of connected par-

ticles.
7. Tension affects the restorative force on a part of the

spring. Higher restorative force means the spring will
equilibrate faster.

8. Pulling creates a tension between small parts of the
spring.

Most of these topics represent fairly distinct student ideas
about how wave propagation is related to the tension in the
spring. Topic 1 clearly outlines the relationship between
pulse propagation and frequency/pitch, as in a guitar. Topic
2 seems to convey the idea that by pulling on the spring, the
length of the spring changes, thus changing the mass den-
sity of the spring. According to students whose responses fell
within this topic, pulling on one end of the spring increases
the overall length, which decreases the mass per unit length,
affecting the speed of the pulse due to it being a “lighter”
medium. Topic 4 was very clearly about energy and its trans-
fers through a tight medium, though responses related to this
idea also appeared in Topic 5. Topics 6 and 7 also appear
to be fairly distinct, with Topic 6 relating to the model of a
spring as a series of small particles attached to one another,
and Topic 7 relating tension to the restorative force which a
small piece of the spring experiences.

While we couldn’t decipher a coherent, distinct student
idea from Topic 3, the responses which fell under this topic
seemed to relate some sort of horizontal force to the spring
being pulled tighter. Similarly, Topic 5 was somehow related
to the spring/rope being slack, but responses under this topic
were generally hard to decipher and it was difficult to pull
out any student ideas. The idea that pulling a string taut cre-
ates a “straight line” lends itself to a similar notion as we got
from topic 4, that something is “transferred quicker” through
a tighter medium than through a slack one. Additionally, we
can see a relationship between Topic 6 and Topic 8 in the
sense that students model a spring as a series of very small
particles which interact with one another. Topic 8 in partic-
ular seemed to be fairly incoherent by looking at the differ-
ent student responses; in the top four student responses, the
word “medium” only occurred in one response, and the word
“great” only occurred in one (different) response.

Prior research and analysis of this question has found three
common conceptual resources: “(i) properties of the medium
either impede or facilitate the motion of the pulse, (ii) the
speed or duration of transverse motion affects pulse speed,
and (iii) the speed of the pulse is affected by its kinetic en-
ergy” [19]. The student ideas which we have categorized
from this set of responses do not reveal the same broad cate-

gories of conceptual resources as in Goodhew et al., however
we do see similar themes in talking about tension affecting
the speed of propagation ((i) with Topics 1–3, 5), the model
of a spring as a series of particles ((ii) with Topics 6–8), and
energy ((iii) with Topic 4).

IV. CONCLUSION

The research questions guiding this investigation were: To
what extent can LDA be used to characterize patterns in stu-
dent thinking? and Can we produce a time-saving method us-
ing LDA that yields instructionally-relevant student ideas? In
this preliminary study, LDA was used to characterize distinct
student ideas about circuits, heat & temperature, and propa-
gation of waves. While the model on its own was able to pro-
duce relatively distinct topics with relevant physics words, we
found that researcher interpretation was necessary in translat-
ing the output of the model to disciplinarily meaningful con-
ceptual resources.

A primary goal of this analysis was to propose a method by
which investigations of common student ideas can be stream-
lined by means of automation, rather than to not to propose a
representative set of misconceptions or conceptual resources
about circuits. Our results suggest that LDA can be used
to support researchers in characterizing student ideas, but it
does not remove the need for researcher interpretation. To
support further development of a semi-automated method for
characterizing student ideas about physics topics, we have
discussed some ways in which researchers’ decisions about
the LDA model (e.g. choices about α and β parameters or
the number of topics) can affect the topics it yields. We
have also described the methodological steps taken to in-
terpret instructionally-relevant student ideas from algorithm-
generated topics. These choices about the model and the in-
terpretive steps that follow suggest a framework for how fu-
ture work can use LDA to characterize student ideas.

Limitations of this approach for categorizing student ideas
stem from the relatively small sample sizes, assumptions
and hyperparameters of the model, and the heterogeneity of
the texts. Typically, when LDA is performed, in order to
get any meaningful results, the corpus contains upwards of
N = 1000 documents, preferring a large amount of small
documents over a small amount of large documents [7]. With
N = 483 responses for our question on circuits, the run-to-
run topic variation was not incredibly high, though there were
some runs which were noticeably different than others. When
we ran this model on a question which had fewer responses
such as our heat question (N = 191), the run-to-run variation
in topics was much higher, with the topics less distinct and
tougher to interpret. Additionally, with regards to the case
study on waves, despite the 8-topic model scoring the high-
est coherence value out of any of the 3-10 topic models (by
a relatively wide margin of ≈ 0.1), prior research has cate-
gorized only three conceptual resources from this particular
question (as mentioned in the case study). Because of this,



much researcher discretion is required in choosing the opti-
mal number of topics to discover in any given question.

Perhaps a larger limitation, however, is the need for a sec-
ondary qualitative analysis in order to match model results
with theoretical constructs, such as resources. Researchers
should be aware that in order to get meaningful results, a
large amount of student responses should be collected. Be-
cause this use of LDA is driven by the desire for a time-saving
approach for researchers, a smaller sample size of responses
would be easier to hand-code, and interpreting model results
would be more tedious. For a larger sample, however, hand-
coding can take a huge amount of time, but interpreting model
results can be much easier.

There is no theoretically-based method choosing the “best”
hyperparameters α and β for the LDA algorithm [23]. Rather,
these hyperparameters should be chosen based on the re-
search goals and aims. In our model, we allowed these pa-
rameters to be estimated automatically, whereas there may be
some reason to believe that lower values of α and/or β might
be useful to highlight the distinctness of the various topics
produced by the model. Future work could include an ex-
ploration of how tuning the various model parameters affects
the coherence scores or the perceived usefulness of the model
output.

One key drawback to having no theoretically-based method
for tuning hyperparameters is visible in the representative stu-
dent responses. For each topic, when we selected the most
representative student responses for each topic, it was invari-
ably the case that a given response scored very highly in one
topic, with all other topic weights in that document being
close to zero. In reality, though, as we interpreted topics as
student ideas, we could clearly see that many responses were
comprised of multiple student ideas. This LDA modeling pro-
cess seems like a valid method for determining student ideas
which are likely to be common in a similar sample. It does
not, however, seem like a valid or useful method of determin-
ing what student responses correspond to what topics, nor for
determining what fraction of student responses are examples
of each idea or resource. This is arguably the most time con-
suming part of resources research, and further exploration of
LDA/NLP methods would be required to develop an effective
method for assisting in this part of the work.

As we mentioned in our discussion of data cleaning, be-
cause of the informal nature of student responses to con-
ceptual physics questions, there is significant variability be-
tween responses, in terms of diagrams used, spelling, and
length of response. The student responses used for this anal-
ysis were originally written on paper, by students sitting in a
classroom. Many students include diagrams or equations in
their responses. A researcher parsing through these responses
manually can interpret the meanings of these diagrams; how-
ever when the scanned documents are transcribed into CSV
files, those diagrams are lost, and the equations sometimes
lose their meaning. Additionally, both students or transcribers
can misspell words, which makes them lose their meaning in
the LDA model. Lastly, student homework responses vary

from just a few words in length to several sentences forming a
paragraph or two. Future work could include more data clean-
ing and pre-processing, including spell-checking and splitting
responses up into one-sentence chunks which act as docu-
ments; this may improve model stability.

The code used for these analyses is available on GitHub as
Jupyter Notebooks [24]. In its current state, we hope that this
modeling process will be useful for the research done locally
at Seattle Pacific University in categorizing student ideas as
part of the Conceptual Resources Project.
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To introduce my project, let me begin with an anecdote.
You’re nine years old, sitting in the back seat of your parents’
car, driving through Salt Lake City on a road trip from Cali-
fornia to Michigan to visit grandparents. Among the various
toys and gizmos you’ve brought to keep yourself entertained
throughout the trip, you’ve taken special interest in a small,
polished rock you typically keep in the side pocket of your
cargo shorts. As you’re sitting in the back seat of the car,
you might toss this rock up, and catch it as it comes back
down. As you do this over and over, you start to get pretty
good at catching the rock as it falls back down; you start to
get a feel for it. You may even notice that if you’ve thrown
the rock upwards and your parents speed the car up or slow
down, you have a harder time catching it because it may seem
to “move forward” or “backward” during the toss. You don’t
think much of it at the time.

Fast-forward nine more years, and you’re a first-year col-
lege student taking an introductory physics course. You’re
studying kinematics—or, the study of the motion of objects—
and your professor poses the following question:

A ballistic cart is a smooth-rolling cart which
has a vertical ball-launcher and basket attached
to the top. The cart will roll along the track at a
constant velocity, and when a photogate is trig-
gered, the cart will shoot the ball up into the air.
Once the ball is shot up and comes back down,
will the ball land in front of, behind, or directly
inside of the basket?

Your intuition tells you that the ball will land inside of the
basket, but you can’t quite reconcile this claim with any rea-
soning other than, it just makes sense. You recall how you
used to toss rocks up in the car when you were a child, and
they would fall back into your hand. If the cart acts like a car,
the basket like your hand, and the ball like your small, pol-
ished rock, why wouldn’t it fall back into the basket? While
discussing the problem with your group mates, your profes-
sor sets up the experiment in the front of the classroom. They
gather everyone back together, and everyone anxiously awaits
to see what will happen to the ball. The experiment is per-
formed, and the ball lands back in the basket. People seem
generally unsurprised, and your professor heads to the white-
board and goes through the calculations necessary to show
that the ball should, in fact, fall back into the basket. But you

already knew this. You may have even gone through the cal-
culations yourself with your group, but you were more sure
of it than just that; you knew deep down that this was the
only logical outcome of the experiment, provided that the ex-
periment was set up properly and experimental error was ac-
counted for.

But that was the easy question. Your professor then asked,
“what would happen if the track were on an incline?”

Suddenly, the answer isn’t so clear. You have distinct mem-
ories of taking car trips, throwing small rocks and catching
them, but you can’t think of a time you tried this while going
down a hill allowing for free acceleration. You discuss with
your group, and they also can’t intuit quite what would hap-
pen. You mess around with the calculations a little bit, and
before you’re able to finish and come up with a prediction,
your professor sets up the experiment and everyone watches
with bated breath. The cart begins to roll, the photogate trig-
gers, the ball is launched. The ball comes back down, and
lands... directly in the basket. Some people are upset because
they predicted the opposite; others are happy because they
happened to guess correctly with a one-third chance. Once
you see this result, it seems obvious to the people around you.
Some people may say, “why wouldn’t this happen?” But this
result deeply bothers you, and you can’t quite figure out why.
You’re not bothered at the result of the experiment, but rather
at your inability to use quick intuition in the problem-solving
process. You were able to use your intuition to answer the
first question with a hundred and ten percent confidence; why
weren’t you able to have the same confidence in answering
the second question? You leave the class with your mind rac-
ing and your brow furrowed. Why did this bother you so
much?

Fast-forward to my senior year of college. I’ve been a
Physics Learning Assistant for three years now, helping stu-
dents understand how to connect their intuitions with physical
scenarios such as this one, all the while diving into the math-
ematics behind how we model these situations and how they
can be useful to us. What is most fascinating to me, however,
is not necessarily the physics itself, but how students per-
ceive physics in the context of their own personal experience.
Within the discipline of physics, learners gather knowledge



first and foremost through our experiences with the physical
world, and secondarily in the classroom where experiments
can award us a more diverse scope of how the world phys-
ically operates. These chunks of knowledge gained through
lived experience then translate to more concrete ideas through
the process of learning physics, allowing a student to make
meaning of the plethora of small experiences that have ac-
crued throughout their life.

A. Project Description

While I could have chosen to do an entire research project
on theories of learning and how they relate to the lived ex-
periences of physics learners, I decided to take a different,
perhaps more utility-focused approach. Let me frame this
project with even more context which comes directly from
this paper:

A primary research focus in Physics Education
is the investigation of common, topic-specific
knowledge that students bring to the classroom.
This kind of research has important impacts on
physics instruction, particularly at the university
level. It informs the development of research-
based instructional materials... and it contributes
instructors’ knowledge of student ideas, which is
an important part of the knowledge that instruc-
tors use to teach. Research identifying students’
common physics ideas has investigated common,
incorrect ideas, and, less extensively, students’
common, potentially-fruitful ideas, known as
“resources.”

In essence, students have great ideas coming into the class-
room, and Physics Education Researchers want to figure out
what those great ideas are, and how they can create in-
structional material—like worksheets, labs, and homework
assignments—that build upon those strengths, those seeds
of knowledge. This allows students to form cohesive men-
tal models, build stronger intuition, and construct a frame-
work for effectively solving problems as it relates to their
unique discipline. While this all sounds quite riveting, “the
work of appropriately characterizing resources is very time-
intensive, which can limit the extent and impact of this type
of research.”

To combat this time intensity, this project proposes a
method by which researchers can automate part of the process
of characterizing resources which students express when they
answer conceptual physics questions, using Artificial Intelli-
gence. To hearken back to the beginning, my project is titled
“Developing a natural language processing approach for ana-
lyzing student ideas in calculus-based introductory physics.”
To clear up some terminology before diving into the specifics
of my project, natural language processing (or, NLP) is a
branch of Artificial Intelligence which has been briefly de-
fined as a “ range of computational techniques for analyz-

ing and representing ... texts ... for the purpose of achieving
human-like language processing for a range of applications.”
In particular, this project utilizes a topic modeling algorithm
known as Latent Dirichlet Allocation (or, LDA for short) in
order to group various clusters of words commonly used to-
gether within student responses. Let’s now dive into the nitty-
gritty of the process of using LDA as a tool for interpreting
student responses to a conceptual question in physics.

The first step to our process was selecting a question to
use. We decided to first use student responses to a question
regarding DC circuits, with the following prompt:

Comparing the brightness of the bulbs in Circuits
1 and 2, we observe that the bulb in Circuit 1 is
brighter... Why do you think more voltage leads
to more current? What mental models are you
using to make sense of this?

One thing to immediately note is that there is no incorrect
answer to this question. This type of question is aimed at
eliciting explanations and rationalizations from students, with
the goal of understanding how they have constructed mean-
ing from the knowledge they have gained in or outside of the
classroom. We gathered 483 responses to this question in a
digital format, stored in a CSV file.

Our data cleaning process then worked as follows. From
the responses, we removed punctuation and stopwords, which
are commonly used words such as “a,” “the,” and “is.” We
then lemmatized each of the words used in the response,
which is the process of breaking down words to their roots, so
words like “increased” and “increasing” become “increase.”
We also created bigrams, which are pairs of words commonly
found together such as “potential difference” or “ohm’s law.”
We then filtered the most and least commonly used words
based on thresholds which included only words that would
be useful to us in our analyses. We then created a bag-of-
words out of our responses, which is a type of data structure
consisting of a document-word matrix in which word order is
ignored.

Once our data was cleaned and our words were properly
filtered, we could begin the process of constructing the LDA
model. In brief, the algorithm works by taking in a collection
of documents, noticing groups of words that commonly occur
together within certain documents, labeling these groups of
words as “topics.” These words are weighted by their preva-
lence in the topic, relating to how often those words co-occur
with other words in that topic. One key assumption of LDA
modeling is that each document (in our case, each student
response) is composed of a percentage mixture of all of the
topics.

The mathematics of LDA is founded upon the Dirichlet
Distribution, which can be thought of as a multivariate gen-
eralization of the Beta Distribution which constructs a high-
dimensional simplex, or generalized tetrahedron, to organize
the topic learning. I know, sounds fascinating. For the sake
of everyone’s sanity, I’ll refrain from talking about the math-
ematics any further. Let’s get into results. For this circuits



question, we chose to look at a five-topic model in an attempt
to characterize five distinct student ideas from the set of re-
sponses we gathered. Topic 1, “water, large, flow, think, en-
ergy, pressure, like, great, push, electron.” Topic 2, “electron,
force, great, high, big, mean, faster, potential, push, think,”
et cetera. To an outsider, these topics don’t appear to make
any sense whatsoever. And to a physics researcher, they also
don’t appear to make a whole lot of sense. In their current
form, these topics reveal only the key words used in responses
which these topics fell under, and if our modeling worked as
we hoped it would, each one of these topics output by the
model should correspond to one distinct student idea.

In the secondary, qualitative analysis, we looked at re-
sponses which scored highest in each of these topics in order
to see what the algorithm believes each topic should actually
represent. By looking through top student responses, we ex-
tracted key phrases which include topic words. These student
responses are critical to our ability to interpret what the model
spits out as topics. We noticed that topic one turns from a
jumbled mess of words into a few phrases which clearly high-
light a distinct student idea, that “water flows through a river
like current flows through circuits.” As physics researchers,
we synthesized these phrases together into coherent physics
ideas guided by our “professional vision” as physics instruc-
tors. This final interpretive step is crucial for assigning disci-
plinary meaning to the model’s topics.

By taking this qualitative intervention step of assigning ac-
tual meaning to the output of a model, we were able to con-
struct distinct, useful physics ideas from this set of responses
to a question on DC circuits. Topic 1 is one of the most pro-
lific mental models about the flow of current through a wire,
and is the reason why electrical current is called what it is.
Another notable student idea comes from Topic 4, which re-
lates the idea of conventional power, as in a power outage,
to the electrical description of power, which is current times
voltage. Adding a battery to a circuit would add power, which
makes the bulb brighter.

Those are the specifics of the process by which we mod-
eled topics as student ideas to semi-automate some of the re-
search process for identifying student ideas and conceptual
resources in physics. One great thing about writing a fully-
reproducible framework for an algorithm is that a researcher
should be able to input a new data set, tune some parameters,
choose a number of topics to characterize, apply physics in-
structor knowledge to representative responses, and get simi-
lar results with distinct student ideas. And that’s exactly what
we did. We were able to apply this algorithm to data from two
questions related to heat and temperature, and one question
related to the propagation of waves. We noticed that due to
the smaller size of those data sets, the topics weren’t quite as
distinct as those for the circuits question, but nonetheless the
model provided interesting information about the responses
to those three additional questions.

B. Knowledge Construction

I want to begin concluding this talk with a quote com-
monly attributed to George Box, that “essentially, all models
are wrong, but some are useful.” This is a common quip in
statistics, physics, and other disciplines which rely heavily on
the construction of models to interpret phenomena. What we
have done through this project is construct a model by which
we can tell a computer a specific set of instructions, give it
a set of documents, and it spits back out a jumbled mess of
words. A jumbled mess of words, fundamentally, is not a
distinct student idea or mental model. Constructing mean-
ing from knowledge in the sphere of Artificial Intelligence
requires the intervention of those who build and utilize the
algorithms, and without such interpretation, the models are
useless. Researcher interpretation of the jumbled messes of
words produced by the algorithm creates some sort of utility,
some bit of information which the researchers may not have
picked up on before. This is not to say that the algorithm
has constructed knowledge, and it is certainly not to say that
the algorithm has constructed meaning. The algorithm is a
human creation, and I choose to believe that true knowledge
construction and meaning making are fundamentally human
activities.

Thus the disciplinary knowledge construction related to
this project is twofold: that of students making sense of their
intuitions, and that of researchers interpreting machine output
for the purpose of streamlining a research process. Nine-year-
old me had no idea that by tossing stones up and catching
them on a road trip to Michigan, I was building a strong intu-
itive foundation by which I could later understand kinematics
at a deep, personal level. Likewise, when these students were
writing their responses to a circuits question, they were using
a myriad of ideas they had gained in and out of the classroom.
While an individual experience may be shared by many, the
collection of an individual’s experiences are unique. By en-
gaging with the world around us in our own distinct ways, we
continue to form our identities as unique knowledge construc-
tors, and by reflecting upon this engagement with the world,
we make meaning of the knowledge embedded within us to
form an essential component of humanity.

As I continue to walk through life, I aim to consider ev-
ery moment a moment of learning, of gaining knowledge in
some capacity, because I recognize that humans are uniquely
blessed with that ability. And as I reflect on my journey
through life gaining a physical intuition for the world around
me works, I continue to be open to things I may have never
noticed before. And I encourage everyone to do the same.
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