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In the absence of quantum repeaters, quantum communication proved to be nearly impossible across
optical fibers longer than ≳20 km due to the drop of transmissivity below the critical threshold of 1=2.
However, if the signals fed into the fiber are separated by a sufficiently short time interval, memory effects
must be taken into account. In this Letter, we show that by properly accounting for these effects it is
possible to devise schemes that enable unassisted quantum communication across arbitrarily long optical
fibers at a fixed positive qubit transmission rate. We also demonstrate how to achieve entanglement-assisted
communication over arbitrarily long distances at a rate of the same order of the maximum achievable in the
unassisted noiseless case.
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Introduction.—Reliably transmitting qubits across long
optical fibers is crucial for establishing a global quantum
internet [1,2], an architecture that would allow uncondi-
tionally secure communication, entanglement distribution
over long distances, quantum sensing improvements (e.g.,
in telescope observations [3] and clock synchronization
[4]), distributed quantum computing [5], and private remote
access to quantum computers [6]. The main technological
hurdle in establishing a global quantum internet is the fact
that the transmissivity of an optical fiber decreases rapidly
—typically, exponentially—with its length. This is gen-
erally a serious problem, because the (unassisted) quantum
capacity of an optical fiber—i.e., its ability to reliably
transmit quantum messages—drops to zero if the overall
transmissivity of the communication line falls below the
critical value of 1=2. A similar effect applies also to the
two-way-assisted quantum capacity of these models—i.e.,
their ability to reliably transmit quantum information with
the help of free classical communication—which is known
to vanish for sufficiently low transmissivities [7]. Typical
optical fibers employed nowadays attenuate the signal by
0.2 dB=km, the absolute record being 0.14 dB=km [8,9];
this means that in absence of quantum repeaters [10–12] the
quantum capacity vanishes for fibers longer than 15 km or
at most 21.5 km.
Here, we present a conceptually simple scheme that

overcomes this problem and, in principle, enables quantum
communication at a constant rate over arbitrarily long
distances, i.e., for arbitrarily low nonzero values of the
transmissivity. We further prove that this same scheme can
be combined with entanglement assistance to neutralize the
effect of noise in classical communication altogether. We
achieve these results by studying information transmission
preceded by a trigger pulse: if the time interval between

trigger pulse and signal is sufficiently short, then the
memoryless assumption commonly invoked in the quantum
capacity analysis of these models breaks down, and one can
effectively alter the environment before the actual trans-
mission begins [13,14]. Since memory effects have been
experimentally observed in optical fibers [15,16], the above
scheme may offer a concrete route to enable quantum
communication over long distances.
At the quantum level, an optical fiber is typically

described by a memoryless thermal attenuator Φλ;τν, i.e.,
a bosonic quantum channel [17] that mixes the input signal
with a thermal environment τν through a beam splitter (BS)
of transmissivity λ ∈ ½0; 1�. Our findings build on those of
[18], where the phenomenon of “die-hard quantum com-
munication” (D-HQCOM) was uncovered. Such an effect
consists of the observation that, if we replace the thermal
state τν of the environment with a suitable state σ ¼ σðλÞ
(possibly dependent upon the transmissivity of the model),
the quantum capacity of the modified attenuator channel
Φλ;σðλÞ stays above a fixed positive constant c > 0. The
reason why this result cannot be applied directly to improve
the quantum communication capabilities of long optical
fibers is that neither the sender (Alice) nor the receiver
(Bob) can realistically have access to the initial state of the
environment. Prior to the present work, D-HQCOM thus
seemed mostly a mathematical oddity. Overturning this
view, our main conceptual contribution is to recognize that
it can instead be turned into a potentially viable technology
by exploiting memory effects, paving new avenues to
quantum communication beyond current limitations.
Notation.—The set of quantum states on a Hilbert space

H is denoted by SðHÞ. Given ρ1; ρ2 ∈ SðHÞ, the trace
norm of their difference is denoted as kρ1 − ρ2k1. The
information-carrying signal we consider is a single mode of
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electromagnetic radiation with definite frequency and polari-
zation. This system, associated with the Hilbert spaceHS ≔
L2ðRÞ, is described as a quantum harmonic oscillator. A BS
of transmissivity λ ∈ ½0; 1� acting on two single-mode
systems S1 and S2 is defined as the unitary transformation
US1S2

λ ≔ exp ½arccos ffiffiffi
λ

p ða†1a2 − a1a
†
2Þ�, where a1 and a2

are the annihilation operators on S1 and S2, respectively.
Let HE ≔ L2ðRÞ denote a single-mode system, dubbed
“environment,” and let b denote its annihilation operator.
Fixed λ ∈ ½0; 1� and σ ∈ SðHEÞ, a general attenuator
Φλ;σ∶SðHSÞ ↦ SðHSÞ is a quantum channel defined by
Φλ;σðρÞ ≔ TrE½USE

λ ρ ⊗ σðUSE
λ Þ†�. Φλ;σ is completely noisy

for λ ¼ 0, in the sense that Φ0;σðρÞ ¼ σ for all ρ; on the
contrary, it is noiseless, i.e., it coincides with the identity
channel Id, for λ ¼ 1. As mentioned in the Introduction, a
thermal attenuator Φλ;τν is a special case of general
attenuator obtained by identifying σ with a thermal state
τν ≔ 1

νþ1

P∞
n¼0 ð ν

νþ1
Þnjnihnj, with jni being the nth Fock

state of the model.
The energy-constrained (EC) classical capacity CðΦ; NÞ

[respectively, quantum capacity QðΦ; NÞ] of a quantum
channelΦ is the maximum rate of bits (respectively, qubits)
that can be reliably transmitted through Φ, assuming that
Alice has access to a limited amount (N) of input energy to
build her coding signals. In addition, if an unlimited
amount of preshared entanglement can be exploited by
Alice and Bob, the corresponding maximum achievable bit
(respectively, qubit) transmission rate is called the EC
entanglement-assisted (EA) classical (respectively, quan-
tum) capacity CEAðΦ; NÞ [respectively, QEAðΦ; NÞ] [19–
24]—the two quantities being related by the identity
CEAðΦ; NÞ ¼ 2QEAðΦ; NÞ thanks to quantum teleportation
]25 ] and superdense coding [26]. The EC EA classical

capacity can be expressed as [20,24,27]

CEAðΦ; NÞ ¼ max
ρ∈SðHSÞ∶ Tr½ρa†a�≤N

½SðρÞ þ IcohðΦ; ρÞ�; ð1Þ

where SðρÞ≔−Tr½ρlog2ρ�, IcohðΦ;ρÞ≔S½ΦðρÞ�−S½Φ⊗
IdPðjψihψ jÞ�, with jψi ∈ HS ⊗ HP being a purification
of ρ [17,28,29], HP being the purifier Hilbert space, and
IdP being the identity superoperator onHP. In addition, the
EC quantum capacity can be written as [17,21,30–32]:

QðΦ; NÞ ¼ lim
n→∞

1

n
Q1ðΦ⊗n; nNÞ ≥ Q1ðΦ; NÞ;

Q1ðΦ⊗n; NÞ ≔ max
ρ∈SðH⊗n

S Þ∶ Tr½ρ
P

n
i¼1

a†i ai�≤N
IcohðΦ⊗n; ρÞ:

The quantities CEAðΦλ;τν ; NÞ [33–35], CðΦλ;τν ; NÞ [36],
and QðΦλ;j0ih0j; NÞ [7,21,33,37–39] have been determined
exactly. For ν > 0, sharp bounds on QðΦλ;τν ; NÞ are known
if λ > 1=2þ ν

2ðνþ1Þ [33,39–44], while it is known that

QðΦλ;τν ; NÞ ¼ 0 otherwise [41].

Environment control and EA imply noise neutra-
lization.—In [18] it was shown that, even for arbitrarily
low values of the transmissivity λ > 0, suitable choices of
the environmental state make the quantum capacity of the
corresponding general attenuator bounded away from zero.
Specifically:
Theorem 1 [18].—For all λ ∈ ð0; 1� there exists σðλÞ

such that

QðΦλ;σðλÞÞ ≥ QðΦλ;σðλÞ; 1=2Þ > η; ð2Þ

where η > 0 is a universal constant. More specifically, for
ε ≥ 0 sufficiently small and for all λ ∈ ð0; 1=2 − εÞ it holds
that QðΦλ;jnλihnλjÞ≥QðΦλ;jnλihnλj;1=2Þ>cðεÞ, where cðεÞ ≥
0 is a constant with respect to λ and nλ ∈ N satisfies
1=λ − 1 ≤ nλ ≤ 1=λ. Moreover, it holds that cð0Þ ¼ 0, and
cðε̄Þ ≥ 5.133 × 10−6 for an appropriate ε̄ such that 0 <
ε̄ ≪ 1=6 (see the Supplemental Material of [18]).
Here, we provide an extension of this result for the EC

EA capacities. We start by observing that, for all N > 0,
λ ∈ ½0; 1�, and n ∈ N, by choosing τN as an ansatz for ρ in
(1), one obtains

CEAðΦλ;jnihnj; NÞ ≥ CðId; NÞ þ IcohðΦλ;jnihnj; τNÞ; ð3Þ

where we used SðτNÞ ¼ CðId; NÞ [45]. The quantity
IcohðΦλ;jnihnj; τNÞ is calculated in Lemma S9 in the
Supplemental Material [46] and expressed in a simple
form by exploiting the “master equation trick” introduced
in [47]. By plotting it (see, for example, Fig. 1), one can
notice that the lower end point of the λ range for which
IcohðΦλ;jnihnj; τNÞ > 0 seems to converge to zero as n grows.
This leads to:
Conjecture 2.—For all N > 0, λ ∈ ð0; 1=2Þ, if n ∈ N is

sufficiently large, then IcohðΦλ;jnihnj; τNÞ > 0.
Our investigation (Sec. III [47], Lemma 3, and Fig. 1)

presents overwhelming numerical evidence that Conjecture

FIG. 1. The quantity IcohðΦλ;jnihnj; τNÞ plotted with respect to λ
for N ¼ 0.5 and for several values of n from 10 to 100. In the
inset we plot the function HðqðN; cðNÞÞÞ −HðpðN; cðNÞÞÞ (see
Lemma 3) with respect to N for several choices of cðNÞ of the
form cðNÞ ¼ N þ α.
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2 is true. Notice that if such statement is valid then (3) will
imply that, irrespective of how small λ is, by choosing n
sufficiently large one can make CEAðΦλ;jnihnj; NÞ larger
than or equal to the classical capacity of the noiseless
channel CðId; NÞ [and, equivalently, QEAðΦλ;jnihnj; NÞ >
QðId; NÞ=2]. While we are not able to prove Conjecture 2
in full generality, in what follows we shall see that it holds
at least in the most significant regime where λ → 0þ. For
this purpose, we introduce the following (see the
Supplemental Material [46]):
Lemma 3.—For all N; c > 0 it holds that

lim inf
n→∞

IcohðΦc
n;jnihnj; τNÞ ≥ HðqðN; cÞÞ −HðpðN; cÞÞ;

where fqkðN; cÞgk∈Z and fpkðN; cÞgk∈Z are two proba-
bility distributions defined as

qkðN; cÞ ≔ e−cð2Nþ1Þ
�

N
N þ 1

�
k=2

Ijkjð2c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þ 1Þ

p
Þ;

pkðN; cÞ ≔
� e−c=ðNþ1ÞNk

ðNþ1Þkþ1 Lk

�
− c

NðNþ1Þ
�

if k ≥ 0;

0 otherwise;

with Ikð·Þ and Lkð·Þ being the kth Bessel function of the
first kind and the kth Laguerre polynomial, respectively.
Hð·Þ denotes the Shannon entropy.
If we could find a value of c that makes the quantity

HðqðN; cÞÞ −HðpðN; cÞÞ positive, then Conjecture 2
would be proved for λ → 0þ. Let us choose, for example,
cðNÞ ≔ N þ α, with α > 0 fixed. The plot of the function
HðqðN;N þ αÞÞ −HðpðN;N þ αÞÞ, shown in the inset of
Fig. 1, demonstrates that such function is numerically
verified to be positive for all N. Consequently, thanks to
(3), we can conclude that

lim inf
n→∞

CEAðΦcðNÞ
n ;jnihnj; NÞ > CðId; NÞ: ð4Þ

This effectively proves Conjecture 2 in the regime where
λ → 0þ, establishing that environment control and entan-
glement assistance enable communication performance
comparable to that achievable in the case in which
λ ¼ 1. This phenomenon of noise neutralization can
be regarded as an EA version of the phenomenon of
D-HQCOM uncovered in [18]. Let us remark that the
possibility of extending the above analysis beyond the
infinitesimal values of λ to the finite case is prevented by
the (rather surprising) fact that typicallyCEAðΦλ;σ; NÞ is not
monotonically increasing in λ [47].
Control of the environment.—The D-HQCOM effect

(uncovered in [18]) and its EA version (uncovered in this
Letter) guarantee that very good communication perfor-
mances are possible even in the limit of vanishing trans-
missivities, under the assumption that the environment state
can be suitably chosen. Here we remove this assumption,
by providing a fully consistent protocol that exploits
memory effects in order to control the environment.

Memory effects in quantum communication can be
described by the collisional model formulated in [14].
Translating it into the case we are analyzing here, it consists
of splitting the channel environment of the fiber in two
components: a local term E initialized into a thermal state
τν that couples directly with Alice’s signals via the BS
interaction USE

λ , and a remote term R, which instead only
interacts with E trying to reset its state to τν via a
thermalization process characterized by a timescale tE.
This process is described by a one-parameter family of
quantum channels fξδtgδt≥0 such that for any state σ of E it
holds that (a) ξδtðσÞ ¼ τν for δt ≥ tE and (b) ξδtðσÞ ≃ σ for
δt ≪ tE. We assume (a) since in this way if the time interval
δt between signals sent by Alice is such that δt ≥ tE the
above model reduces to the best studied model of bosonic
quantum communication across optical fibers, where the
attenuation noise that affects each signal is represented by
the same quantum channel, i.e., by the memoryless thermal
attenuator Φλ;τν. If the time interval between signals
satisfies δt ≪ tE, the thermalization induced by R can be
neglected and the dynamical evolution of E will be
dominated by its interactions with the transmitted signals:
in this regime, Alice has hence the possibility of exerting a
certain level of control on the transmission line. Building
upon this observation, we can hence introduce a protocol
that enables the communicating parties to effectively move
from the memoryless channel description Φλ;τν into a new
effective memoryless channel Φλ;σ (see Fig. 2):
Noise attenuation protocol: Step 1: Alice waits for a time

tE (so that the thermalization resets E into τν). Step 2: Alice
sends k suitable signals, dubbed “trigger signals,” that alter
E into the chosen state σ. Step 3: Alice sends an
information-carrying signal. Then, she goes back to
step 1, unless the communication is complete.
LetHSi denote the Hilbert space of the ith trigger signal.

Suppose that Alice sends k trigger signals S1; S2;…; Sk
separated by a time interval δt and initialized into the state

FIG. 2. Steps 2 and 3 of the noise attenuation protocol. At the
beginning of step 2, the environment is initialized in τν. By sending
the signals S1; S2;…; Sk, Alice aims to turn the environment into a
state σ, where the latter is such that Φλ;σ is less noisy than Φλ;τν .
Right after the environment has transformed into σ, step 3 starts
with Alice sending the information-carrying signal S.
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ρðkÞ. For simplicity, suppose that δt is also the time interval
between the kth trigger signal and the information-carrying
signal S of step 3. Then the state σ of E, which interacts
with S, can be expressed as

σ ¼ TrS1;…;Sk ½ξδt∘U SkE
λ …∘ξδt∘U S1E

λ ðρðkÞ ⊗ τνÞ�; ð5Þ

where U SiE
λ is a quantum channel defined by

U SiE
λ ð·Þ ¼ USiE

λ ð·ÞUSiE
λ

†.
From now on, suppose that δt ≪ tE so that we can use

the approximation ξδt ≃ Id. Hence, (5) reduces to

σ ¼ TrS1;…;Sk ½USkE
λ …US1E

λ ρðkÞ ⊗ τνðUSkE
λ …US1E

λ Þ†�: ð6Þ

The phenomena of D-HQCOM can be activated if E is
altered in a suitable Fock state jnihnj. Unfortunately, for all
n ∈ Nþ there does not exist ρðkÞ that alters E into jnihnj
([47], Theorem 13). However, there exists ρðkÞ that alters E
into a state that is as close (in trace distance) to jnihnj as
desired if k is large, as established by the following theorem
(see the Supplemental Material [46]).
Theorem 4.—Let ν ≥ 0, n ∈ N, and λ ∈ ð0; 1Þ. There

exists a suitable state of k trigger signals ρðkÞλ;n such that it can
alter E into a state σλ;ν;n;k, given by (6), which satis-
fies limk→∞kσλ;ν;n;k − jnihnjk1 ¼ 0.
Furthermore, let λ ∈ ð0; 1=2Þ and set n ¼ nλ ∈ N with

1=λ − 1 ≤ nλ ≤ 1=λ, then for k sufficiently large it holds
that QðΦλ;σλ;ν;nλ ;k

Þ > 0.
In addition, if Conjecture 2 holds, then for all N > 0,

λ ∈ ð0; 1=2Þ, and for n̄ ∈ N sufficiently large, it holds that

lim
k→∞

CEAðΦσλ;ν;n̄;k ; NÞ > CðId; NÞ;
lim
k→∞

QEAðΦλ;σλ;ν;n̄;k ; NÞ > QðId; NÞ=2;
lim
k→∞

QðΦλ;σλ;ν;n̄;k ; NÞ > 0: ð7Þ

Theorem 4 implies that the D-HQCOM effect can be
activated by applying the noise attenuation protocol with a
sufficiently large number k of trigger signals initialized in

the state ρðkÞλ;n: an explicit construction to produce such
pulses using Fock states and linear optics can be found in
[47]. Applying this protocol achieves a dramatic improve-
ment of the communication performance of an optical fiber.
Indeed, if an optical fiber with transmissivity 0 < λ ≪ 1=2
is used as usual—i.e., by sending signals separated by a
time interval δt≳ tE—then it is described by a thermal
attenuator that has zero quantum capacity and vanishing
(two-way or entanglement)-assisted capacities. A drawback
of this construction, however, is that, counting the trans-
mission of the trigger signals as channel uses, the rate it
achieves is equal toQðΦλ;σÞ=ðkþ 1Þ, which can be small if
the construction in Theorem 4 yields a large k. Fortunately,

for λ > 0 sufficiently small, just k ¼ 2 is enough to
guarantee nonzero quantum capacity [46].
Theorem 5.—Let ν ≥ 0. Suppose that Alice sends two

trigger signals in US1S2
1=ð1þλÞj0iS1 jnλiS2 , with nλ ∈ N such that

1=λ − 1 ≤ nλ ≤ 1=λ. Then, E is altered into a state σλ;ν such
that for λ > 0 sufficiently small it holds that QðΦλ;σλ;νÞ ≥
QðΦλ;σλ;ν ; 1=2Þ ≥ c, where c > 0 is a fixed positive
constant.
Theorem 5 shows that it is possible to reliably transmit

qubits at a fixed positive rate if λ > 0 is sufficiently low,
i.e., if the optical fiber is sufficiently long. Theorems 4
and 5 are valid not only if the equilibrium state of the
thermalization process is a thermal state τν, but also if it is
any state σ0 such that hðb†bÞ2iσ0 < ∞ [47].
The analysis presented in this section is based on the

expression of the state of E in (6), which is an approxi-
mation valid for δt ≪ tE. A similar analysis can also be
carried out using the exact expression in (5). The latter
reduces to (6) if ξδt ¼ Id. It turns out that, under suitable
continuity properties of ξδt, if ρðkÞ is such that the general
attenuator with environment state in (6) has strictly positive
quantum capacity, then ρðkÞ is such that the general
attenuator with environment state in (5) has strictly positive
quantum capacity for δt sufficiently short ([47], Theorem
19). In other words, any scheme for quantum communi-
cation that works with the approximation ξδt ¼ Id pre-
sented in this section will also work without such an
approximation for δt sufficiently short.
Conclusions.—This Letter shows how memory effects

can be engineered in order to improve the communication
performance of an optical fiber. This is done by exploiting
the noise attenuation protocol with trigger signals initial-
ized in a suitable state. This protocol allows arbitrarily long
optical fibers to reliably transmit (a) qubits at a fixed
positive rate and (b) bits and qubits at a rate of the same
order of the maximum achievable in the ideal case of
absence of noise, provided that preshared entanglement is
consumed. An interesting development of our analysis is to
take into account the decoherence process suffered by the
signals as they wait to be fed into the optical fiber,
due to imperfections in Alice’s quantum memory, e.g.,
by exploiting the recently proposed queuing framework
[48–50].
We encourage experimental research on memory effects

in optical fibers. For instance, one could test the model we
have presented and estimate the thermalization time tE.
Since the latter may be not much larger than the shortest
time interval between subsequent signals allowed by
present-day devices, an interesting development of this
work is to analyze the noise attenuation protocol without
our simplifying hypothesis δt ≪ tE.
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