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Chapter 1

Introduction

Complex financial, economical and social systems are characterized by fascinating
structures and non trivial behaviours that emerge from the interactions of their el-
ementary, often simple parts (Bar-Yam, 2002; Mitchell, 2006). The description of
elementary components of complex systems and their relations by means of simple
abstractions has very old roots and permeates scientific investigations across various
fields (Newman, 2011). Two of the most diffused descriptions of complex systems
are formally very simple and, in their most basic version, both rely on sets of binary
variables that describe the state of the system at hand.

The first description that we mention consists in describing systems of interact-
ing elements as graphs. Describing a complex system as a graph, in its simplest
form, amounts to associate a binary variable, called link, to the presence or absence
of a relation between two entities. Every entity in this setting is referred to as a node.
When used to describe real world systems, graphs are also called networks (Newman,
2010) and in this thesis we use the two names interchangeably. Nodes and links are
the only components of a binary network, where the only information of interest is
whether a relation between two nodes is present or not. When a binary network is
complemented with information on the intensity of the pairwise relations, we say
that a weight is associated to a link, which is usually in the form of a positive con-
tinuous variable. In this cases we speak of weighted networks.

A second framework uses a similar description for a complex system as that of
the famous Ising model (Ising, 1925), and its dynamical version the Kinetic Ising
Model (KIM) (Derrida, Gardner, and Zippelius, 1987; Crisanti and Sompolinsky,
1988). This approach consists in associating one binary variable to each element
of the system, known as spin, then collectively describing the joint probability mass
function exactly as is done in the physics literature. The latter is extremely well
known in physics, where it has been studied for decades and declined in multiple
versions, for example to explore the emergence of collective phenomena in physi-
cal systems. The crucial difference with the applications to complex systems is the
meaning associated to each spin and their states. This approach has found various
applications in the realm of complexity science as a mean of exploring and under-
standing spin like data-sets (Nguyen, Zecchina, and Berg, 2017).

Our main focus in this thesis is on the network description of complex systems.
The main contributions regard the proposal and exploration of new statistical mod-
els to describe static and temporal networks. Nevertheless, we also consider statis-
tical models for spin like descriptions in a dynamical context, and discuss their re-
lations with temporal networks. We provide novel contributions in various streams
of literature. We start with the problem of reconstructing systemic risk, arising from
possible fire sales spillovers, from partial information on the networks structure.
In doing so we take the most diffused approach in the literature of systemic risk
reconstruction, and model each snapshot of a temporal network as an individual
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static network. In the subsequent chapters we change approach and to take into
account explicitly the longitudinal dimension of temporal networks in our mod-
elling approach. Instead of resorting to the sequential application of models for
static networks we focus on a dynamical description of a binary temporal networks.
Specifically in our second original contribution, we propose an extension of a large
and well known family of statistical models for networks, known as Exponential
Random Graph Models (ERGM), to a version with time varying parameters, well
suited for the description of temporal networks. In this contribution, and also in the
following two, we leverage a recently proposed framework to define time varying
parameters models often called Score Driven models. After the score driven gener-
alization of ERGMs, we define a new model for weighted temporal networks, that
is able to describe weighted networks with abundance of missing links, and to ac-
count for the influence of regressors on both the probability of observing a link and
the expected weight of present links. In the last contribution included in this thesis,
we extend the Kinetic Ising Model to a version with time varying parameters and
discuss its application as a statistical model for temporal networks.

In summary, this work contains a total of nine Chapters, this Introduction, three
Chapters of literature review, four Chapters presenting original contributions, and
a final Chapter of conclusions. In the following we first give an introduction of the
main topic of this thesis, i.e. static and temporal networks and statistical models
used to describe them. Finally, we briefly summarize the contents presented in each
of the following ones.

Although the interest in graphs and graph descriptions of complex problems is
quite old (Zermelo, 1929; Erdős and Rényi, 1959; Erdős and Rényi, 1961), in the last
two decades we have witnessed an explosion of interest in graphs as simple abstrac-
tions to model pairwise relations in complex systems (Barabási, 2002; Cohen and
Havlin, 2010). This explosion of interest has been fuelled by the increasing availabil-
ity of unstructured dyadic data1 in the form of graphs. On pair with data availability
came the realization that real world networks are very often not compatible with the
hypothesis of random link formations between each possible pairs of links. This hy-
pothesis has been formalized in the seminal work of Paul Erdős and Alfréd Rényi in
Erdős and Rényi, 1959, where they derived the statistical properties of what was the
benchmark statistical model for network data for some time, the Random Graph. The
basic assumption of the random graph model is that each link is an independent bi-
nary random variable and they all have equal probability of being 1 or 0 depending
on the presence or absence of link, respectively. A first example of a real world net-
work feature that is not compatible with a Random Graph description is the shape
of the distribution of the number of connections per node. While from the random
graph assumption it follows a Poisson distribution of the number of connections
per node, many real world networks are found to be better described by power law
distributions and they are often indicated as scale free networks (Song, Havlin, and
Makse, 2005; Albert and Barabási, 2002). Another peculiar feature of real world net-
works is the low number of connections that in average separate two nodes. This
turns out to be much lower than what is consistent with a random graph descrip-
tion, and it is called the small world property of networks. Interestingly this was
first noticed in the context of social networks by the psychologist Stanley Milgram
(Milgram, 1967; Travers and Milgram, 2011), that empirically estimated the average

1Data that does not come in the standard tabular form, i.e. as a list of rows describing entities
and their features, but describes the presence or absence of relations between all the possible pairs of
entities called nodes.
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distance between two actors to be about 6 steps 2, an empirical result that is often
referred to as the six degrees of separations "law" also in non technical literature. Those
examples of differences between random graphs and observed networks, and many
others that we do not mention here, motivated multiple contributions proposing
statistical models, or network formation mechanisms, better suited to describe the
observed features (Holland and Leinhardt, 1981a; Albert and Barabási, 2002; Watts
and Strogatz, 1998; Dorogovtsev, Mendes, and Samukhin, 2003; Park and Newman,
2004a; Caldarelli, 2007). A crucially important family of statistical models for net-
works is that of ERGMs. That is the family of statistical models over all possible
binary networks, with a given number of nodes, whose probability mass function
(PMF) belongs to the exponential family, and the sufficient statistics are referred to
as network functions3. ERGMs have been widely applied and are probably the best
known family of statistical models for binary networks4.

The number of systems that can be described as networks is enormous and an
exhaustive list is impossible here. For example, networks permeate our day to day
lives, obvious examples being social networks followed by transportation, electric,
internet networks. Networks are also ubiquitous in the financial sector, where stan-
dard credit relations between pairs of financial entities, e.g. banks, are the standard
example of pairwise relations that can be described as financial networks. This and
other kinds of financial inter-linkages are considered of paramount importance for fi-
nancial stability and the mitigation of systemic risk and have attracted an enormous
amount of attention in the literature (see Allen and Gale, 2000; Haldane et al., 2009;
Gai and Kapadia, 2010; Haldane and May, 2011; Gai, Haldane, and Kapadia, 2011;
Mistrulli, 2011; Corsi, Marmi, and Lillo, 2016; Greenwood, Landier, and Thesmar,
2015, among many contributions). Aside direct credit relations, there are several
other channels through which financial distress may propagate from one institution
to another and, eventually, affect a vast portion of the global economy. One example,
that we focus on in this thesis, is that of fire sales spillovers due to assets’ illiquid-
ity and common portfolio holdings. In short, the risk of fire sales spillovers arises
since shared investments create a significant overlap of portfolios between couples
of financial institutions. Such (indirect) financial interconnectedness is an important
source of contagion, since partial liquidation of assets by a single market player is ex-
pected to affect all other market participants that share with it a large fraction of their
own investments (see Corsi, Marmi, and Lillo, 2016; Huang, Vodenska, Havlin, and
Stanley, 2013; Caccioli, Shrestha, Moore, and Farmer, 2014; Lillo and Pirino, 2015).
Fire sales move prices due to the finite liquidity of assets and to market impact. In a
perfectly liquid market there will be no fire sale contagion at all (see Adrian and Shin,
2008, for a review on the role of liquidity in financial contagion). Finally, leverage
amplifies such feedbacks. In fact, as described in detail by Adrian and Shin, 2010;
Adrian and Shin, 2014, levered institutions continuously rebalance their positions
inflating positive and, most importantly, negative assets’ price variations. Financial
networks are considered so important that large efforts have been conducted at the

2The experimental set up based on the U.S. postal service, and kind requests to random citizens to
forward mails to all their acquaintances, is a remarkable example of the issue of sampling real world
networks and gives an idea of how technological progress is largely the main reason for the increased
availability of network data.

3As we discuss diffusely in the following, a network is typically associated to a matrix known as
adjacency matrix, as follows. The nodes are labelled, with indices running from 1 to N, and a link is
identified by the pair of nodes it connects (i, j). To each G, we can assign one adjacency matrix A such
that Aij = 1 if link (i, j) is present in E and Aij = 0 otherwise.

4As it turns out, the seminal random graph model of Erdős and Rényi, 1959 is the simplest example
of this family.
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highest regulatory levels to collect large amount of data on various types of financial
networks (Giannone, Lenza, Pill, and Reichlin, 2012; Mancini, Ranaldo, and Wram-
pelmeyer, 2016; Fache Rousová, Jukonis, Letizia, Gravanis, et al., 2020; Lenoci and
Letizia, 2021; Ehrmann and Schure, 2020). Interestingly, in the financial context, the
possibility to associate a weight to a financial link is probably more important than
in many other fields. For example, the difference between a credit worth 1 million
and one worth 100 millions should be taken into account in the description of credit
networks, especially from the point of view of the propagation of financial distress
in case of counter-party default. For this reason many contributions in the literature
of financial networks focused on network models that are able to describe also link
weights, and to reconstruct them from partial information whenever the full net-
work structure is not available (Mistrulli, 2011; Cimini et al., 2014; Anand, Craig,
and Von Peter, 2015; Anand et al., 2017).

Clearly many complex systems that are described as networks are not static. As
intuitive examples we can think for example at the internet, where billions of pack-
ages are routed everyday following multiple paths, or air transportation networks
where links can describe routes between two airports and their weights the traffic
associated with them, over a certain time period. The behaviour of networks and
the relations between their parts are often inherently dynamical and their descrip-
tion requires more than a static network. This is becoming more and more evident
as the diffused collection of network data is allowing to explore also the longitudinal
dimension of pairwise relations that change, i.e. the temporal evolution of networks.
As more and more data-sets describing networks evolving in time become available,
the network description needs to be extended to account also for the time dimension
(Holme and Saramäki, 2012). Temporal network data can be described in more than
one way, depending on the sampling frequency and the scope of the analysis. In
this thesis we consider one of the most popular descriptions for temporal networks
that defines them as sequences of time stamped networks evolving in discrete time.
Alongside with the representation of temporal network data, also the need to ap-
propriately model them has motivated multiple efforts in the recent literature, and
a number of models have been proposed to model binary temporal networks (Han-
neke, Fu, Xing, et al., 2010; Krivitsky and Handcock, 2014). Many models for binary
temporal networks are related to the ERGM framework. The most well known tem-
poral extension of ERGM is probably the one known as Temporal Exponential Ran-
dom Graph Model (TERGM) (Robins and Pattison, 2001; Hanneke, Fu, Xing, et al.,
2010; Cranmer and Desmarais, 2011). A TERGM can be loosely introduced as an
ERGM where the network statistics that define the PMF are allowed to be functions
of the current network state of a temporal network, but also of the network at K
previous time steps. Where K is an integer number. More precisely, the PMF for the
observation at time t in a temporal network, depends on statistics that are functions
of the networks that go from time t− K to time t.

The literature on models for temporal weighted networks instead is still quite
scarce. This is most certainly due to the additional model complexity required to
properly describe the weights. Moreover, most real world networks are found to
have an abundance of zero entries that, in the weighted case, require some care
in modelling the probability for a link to be present and the distributions of link
weights.

In the following we give a brief overview of the contents of each of the following
chapters.
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Chapter 2 In this Chapter we set the notation used throughout this thesis to in-
dicate static binary and weighted networks and review the literature on statistical
models to describe them. In reviewing statistical models for static binary networks
we give a detailed introduction of the ERGM family. As mentioned, ERGMs are
statistical models for binary networks having an exponential PMF. An ERGM spec-
ification is defined by the set of network functions, i.e. functions that associate one
scalar number to a network. We discuss inference methods for ERGMs and give a
detailed description of two particular specifications. The emphasis on this model
class is motivated by the relevance that they have in the literature and by the fact
that in Chapter 6 we extend the whole ERGMs family to a temporal version that
accommodates time varying parameters.

In the final part of the chapter we review the Maximum Entropy (ME) approach
to define models for binary and weighted networks. Similarly to the ERGM family,
the maximum entropy approach starts from a set of network statistics. In the context
of ME the statistics are introduced as constraints on the probability distribution. In
fact, given a set of network statistics and one numerical value for each of them,
the so called grand canonical maximum entropy ensemble is defined by the PMF
that maximizes the entropy under the constraints that the expected value of the set
of network statistics is equal to the mentioned numerical values. This approach is
widely used in network reconstruction from partial information, and is an important
ingredient of the original contribution that we present in Chapter 3.

Chapter 3 In this Chapter we discuss a novel contribution on reconstruction of
systemic risk, generated by the risk of fire sales spillovers, from partial information.
Our efforts are motivated by the importance of monitoring and assessing systemic
risk in financial markets. That often requires data that are unavailable or available
at a very low frequency. For this reason, systemic risk assessment with partial infor-
mation is potentially very useful for regulators and other stakeholders. We propose
to apply the maximum entropy approach to the inference of the network of portfo-
lio weights in order to estimate metrics of systemic risk due to fire sales spillovers.
Specifically, we show how indirect vulnerability, systemicness (as defined by Green-
wood, Landier, and Thesmar, 2015) and the aggregate systemic risk of US commer-
cial banks can be estimated when only a partial information (the size of each bank
and the capitalization of each asset) is available. Differently from the interbank stud-
ies (as in Mistrulli, 2011; Mastromatteo, Zarinelli, and Marsili, 2012; Anand, Craig,
and Von Peter, 2015) we deal with bipartite networks, i.e. networks whose nodes
can be divided into two sharply distinguished sets that, in our case, are commer-
cial banks and asset classes. More specifically, we analyze the quarterly networks of
US commercial banks’ exposures in the period 2001-2013 using the Federal Financial
Institutions Examination Council (FFIEC) through the Call Report files. We compute,
for each quarter, systemicness and vulnerability of each bank and the aggregate vul-
nerability of the system. We compare them with the values inferred assuming the
balance sheet compositions of the banks were not known.

The contribution of this chapter is divided into two main parts. First, following a
practice that is largely diffused among researchers of both academic institutions and
central banks (see, among others, Sheldon and Maurer, 1998; Upper and Worms,
2004; Wells, 2004; Mistrulli, 2011; Sachs, 2014), we reconstruct the matrix of portfolio
holdings as such that minimizes the cross entropy (or Kullback-Leibler divergence)
from a initial guess. Despite this approach has often been referred to as maximum
entropy, or matrix balancing, in order to avoid confusions with different methods
discussed in the following, we refer to it as Cross-Entropy method. We show that
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this approach does a very good job in our case, providing unbiased estimates of the
systemic risk metrics defined by Greenwood, Landier, and Thesmar, 2015. Besides,
we show that the reconstructed matrix corresponds to that implied by the Capital
Asset Pricing Model, hence it possesses a clear economic meaning.

Second, we compare Cross-Entropy with a different approach to entropy maxi-
mization, which allows to define a probability mass function for graphs (ensemble)
by maximizing entropy under suitable constraints where some average quantities
are set equal to the ones observed in data. Despite the economic intuition of this
approach is less sharp than the previous one, the method is widespread in the lit-
erature and allows performing scenario generation. We propose a new ensemble,
termed MECAPM, which (i) satisfies a set of economically motivated constraints,
(ii) behaves in average as the cross entropy method proposed before, and (iii) al-
lows for scenario generation, potentially useful for supervisory authorities to test if
a specific institution has increased its systemicness with respect to the past.

Chapter 4 In this Chapter we give an overview of the literature on models for
temporal networks. We start with a discussion of models for sequences of binary
temporal networks, with particular attention to temporal extensions of the ERGMs
class. As mentioned above, probably the most famous extension of ERGMs to the
temporal case are the so called Temporal Exponential Random Graphs. This ap-
proach builds on ERGMs, but allows the network statistics defining the probability
at time t to depend on current and previous networks up to time t− K. This K-step
Markov assumption is a defining feature of the TERGMs. For example, considering
only lag 1 dependencies, a TERGM is defined as a sequence of ERGMs, one for each
time step, where the PMF for the network at time t can depend on a set of functions
of the current network realization and that at the previous time t− 1. The introduc-
tion of TERGMs in this Chapter is relevant for our discussion in Chapter 8, where
we show how they are related with the Kinetic Ising Model, and to the extensions of
KIM that we propose therein.

We then discuss examples from a second class of extensions of ERGMs, those that
allow ERGMs parameters to evolve in time. We mention two main contributions.
The first one being that of Mazzarisi, Barucca, Lillo, and Tantari, 2020, where the
authors consider a fitness model with time varying fitness. They allow each fitness to
follow an autoregressive process of order one. Moreover, they combine this random
evolution of the fitness with a probabilistic description of a link copying mechanism
that captures the possibility of a link to remain exactly the same between two time
steps. The second work that we review is the VCERGM of Lee, Li, and Wilson, 2020
that propose what in econometrics jargon can be seen as a smoother for the time
varying coefficients of ERGMs. They assume the parameters to be smoothly time
varying and decompose their time varying paths in terms of a set of splines basis
functions. Finally, they use all the observations from a temporal network to estimate
the coefficients of the splines decomposition.

In the last part of the Chapter we review the much smaller literature on mod-
els for temporal weighted networks, mainly presenting the proposal of Giraitis,
Kapetanios, Wetherilt, and Žikeš, 2016 to use a Tobit model for weighted temporal
networks.

Chapter 5 In this Chapter we review score driven econometric models, also known
as Dynamic Conditional Score (DCSs) (Harvey, 2013a) or Generalized Auto-regressive
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Score models (GAS) (Creal, Koopman, and Lucas, 2013). We start by briefly dis-
cussing time varying parameter models in general. Then we give the formal def-
inition of score driven models and discuss their application as misspecified filters
with one explicit example. We discuss a theoretical motivation for using the score in
the update rule for the parameters. Finally, we conclude discussing how to quantify
uncertainty and test for temporal heterogeneity in the score driven framework.

In extreme syntheses, the framework of score driven models can be described as
an econometric approach to introduce time-variation on the parameters of a static
model. Indeed, a score driven model is defined starting from a probability distri-
bution that, in its static version depends on a set of parameters. The idea is then to
promote the static parameters to be time varying by means of an update rule. In this
rule a central role is played by the derivative of the log-likelihood, the score, with
respect to the parameter that is to be considered time varying. The score driven up-
date rule is defined by an auto-regressive component and a driving term defined by
the score and a scaling matrix. Such a choice for the update rule has been found to
be optimal from an information theoretical point of view (Blasques, Koopman, and
Lucas, 2015), and allows for an easy to apply Lagrange multiplier test for temporal
heterogeneity of the parameters (Engle and Russell, 1998; Calvori, Creal, Koopman,
and Lucas, 2017).

Interestingly many well known econometric models belong to the score driven
class. Probably the most famous example is the Normal specification of the General-
ized Auto-regressive Conditional Heteroscedasticity (GARCH) model of Bollerslev,
1986a. Indeed, as we discuss in this Chapter, we can obtain the GARCH update
equation for the time varying volatility by starting from a Gaussian distribution and
promoting its variance to be time varying following the score driven recipe. Just as
the GARCH model, any score driven model can be seen both as a data generating
process (DGP) and as a misspecified filter for a generic dynamical evolution of the
latent parameters. One of their convenient features is that, when used as filters, they
are extremely easy to estimate as the likelihood of a sequence of observations can be
usually written in closed form.

Chapter 6 In this Chapter we present a novel approach to modeling time-varying
networks. We focus on sets of links among nodes evolving in discrete time, and
consider a temporal network as a sequence of networks. The original contribution
presented in this chapter stems from a combination of ERGMs with score driven
models. Our main contribution is an extension of the ERGMs where each parameter
is allowed to evolve in time, according to the auto-regressive updating rule driven by
the score of the ERGM distribution. We refer to this class as Score-Driven Exponential
Random Graph Models (SD-ERGMs). This approach results in a framework for the
description of time-varying networks, more than in a single model, in very much
the same way as ERGM is considered a modeling framework for static networks.
Our method, is able to capture time varying network dependencies and allows for a
test discriminating between static or time-varying parameters.

In SD-ERGM, the PMF at each time t is that of an ERGM where the vector of
parameters associated with the sufficient statistics is allowed to evolve in time ac-
cording to the score driven update rule. It follows that a generic SD-ERGM can be
used to generate synthetic sequences of graphs, i.e. it can be considered as DGP.
Alternatively it can be interpreted as an effective filter of latent time-varying pa-
rameters, regardless of what the true DGP might be. With this spirit, in our work
we run extensive numerical experiments for three SD-ERGM specifications showing
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that SD-ERGM consistently outperforms ERGM in filtering the patterns of simulated
time varying ERGM parameters.

Often in ERGMs the PMF depends on a normalization function of the parameters
that cannot be computed in closed form. When this is the case, we propose to use the
pseudo-likelihood (Strauss and Ikeda, 1990) to compute the score and estimate the
static parameters. In this way, our approach can describe the dynamic dependence
of the PMF from virtually all the network statistics usually considered in ERGM
applications.

One of the ERGM specifications that we discuss in detail is the well known fitness
model (Caldarelli, Capocci, De Los Rios, and Muñoz, 2002; Garlaschelli and Loffredo,
2008), also known as beta model or configuration model. That is an ERGM designed to
capture the heterogeneity in the number of connections for each node. For the di-
rected network case that we consider, connections have a direction and the fitness
model is defined by counting the number of incoming and outgoing connections for
each node. This results in a model with two parameters per each node, the in fit-
ness and the out fitness, that capture the tendency of each node to form incoming
and outgoing connections. In order to support the proposed modeling framework,
we run extensive numerical experiments for three SD-ERGM specifications, show-
ing that SD-ERGM is extremely effective in filtering the patterns of simulated time
varying ERGM parameters. We consider a first application to data from the elec-
tronic Market of Interbank Deposit (e-MID), a market where banks can extend loans
to one another for a specified term and/or collateral. Our dataset contains the list
of all credit transactions in each day from June 6, 2009 to February 27, 2015. In
our analysis, we investigate the interbank network of overnight loans, aggregated
weekly, and following the literature we disregard the size of the exposures, i.e. the
weights of the links. This results in a set of T = 298 weekly aggregated networks of
132 nodes. By means of a forecasting exercise we show that our score driven fitness
model preforms best in both one step and multi steps ahead link prediction, with
respect to two considered alternatives. Moreover, our approach allows us to pre-
dict links from partial information. In fact, knowing only the current sequences of
in and out degrees we can predict the future probabilities of existence for each link.
Finally, we presented a second empirical application to the co-voting relations be-
tween members of US the congress. For each one of 74 congresses formed between
1867 and 2015, we define a network of co-voting relations, where a link between
two senators indicates that they voted in agreement on over 75% of the votes. For
this empirical application, we considered an ERGM with two statistics: one mea-
suring total connectivity and one measuring transitivity. We then show that the test
for temporal heterogeneity, based on SD-ERGM, allows us assess what parameters
are to be described as time varying, and the temporal evolution significantly differs
from assuming static parameters.

Chapter 7 In this Chapter, we propose a novel time varying parameter model for
sparse weighted temporal networks as a combination of the fitness model, appro-
priately extended to handle also the weights, and the score driven framework.

While the vast majority of the literature on models for time varying networks fo-
cuses on binary graphs, i.e. graphs that are defined solely by a set of nodes and a set
of links between pairs of nodes, often we can associate a weight to each link. In such
cases the data is better described by a weighted, or valued, network. One important
well known fact is that real world valued networks are very often found to be sparse,
i.e. their adjacency matrices have an abundance of zero entries. That is the case,
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for example, of interbank networks (Anand et al., 2017), a class of weighted tem-
poral networks of paramount importance (Allen and Babus, 2011), that are known
to be extremely relevant to financial stability (Haldane and May, 2011), and have
motivated the application and development of a number of statistical models for
networks (Bargigli et al., 2015b; Mazzarisi, Barucca, Lillo, and Tantari, 2017).

Our main contribution is a model for sparse weighted dynamical networks, that
also accommodates for the dependency of the network dynamics on external vari-
ables, and its application to weighted temporal network data, describing overnight
exposures in the European interbank market. Our work contributes to the extremely
scarce literature on dynamical models for sparse weighted networks by extending
the very well known fitness model for static binary networks. We consider a zero
augmented generalized linear model to handle the weights and a state of the art
econometric approach to describe time varying parameters. This results in a flexible
model that allows us to decouple the probability of a link to exist from its expected
weight, and to explore the influence of external regressors on the network’s dynam-
ics. We then exploit such flexibility to investigate how the relevance of EONIA rates
on the e-Mid interbank market changed over time.

We start from the well known fitness model for binary networks and extend it to
handle sparse weighted temporal networks, and their dependency on external co-
variates. Alongside the binary fitness parameters, we associate to each node i two
new parameters that we name weighted fitness. They describe the propensity of a
node to have more or less heavy weights in incoming and outgoing links respec-
tively, and use them to model the weighted adjacency matrix using a zero aug-
mented distribution. We then extend this model to the dynamical context by allow-
ing the fitness, both binary and weighted, and the regression parameters to change
over time, following the Score Driven approach. We run extensive numerical simu-
lations to make sure that this update rule defines an effective way to filter the time
varying parameters, also when their temporal evolution is governed by a different
DGP. Moreover, we show that the introduction of score driven fitness attenuates
estimation errors in cases where some external variables that are relevant for the
network dynamics are not available. As an empirical application, we run an exer-
cise in weights forecasting on a portion of the European interbank market, e-Mid.
Moreover, we exploit the flexibility of our model to explore the relation between the
dynamics of e-Mid and the EONIA rate and to investigate persistence of the weights.

Chapter 8 In this Chapter, we tackle the problem of effectively treating time-varying
interactions in Kinetic Ising Models by means of two score driven extensions of the
standard KIM (Crisanti and Sompolinsky, 1988). We also discuss the application of
KIM and its score driven extensions to model temporal networks.

It is often the case that a system adapts in response to its own behavior or to exter-
nal inputs. For modeling, this frequently implies the necessity to use computation-
ally costly statistical learning methods or demanding restrictions on sample selec-
tion. We introduce an optimal observation-driven framework to treat time-varying
interactions within the paradigm of popular complex systems models. Indeed, a
common issue when analyzing real-world complex systems is that the interactions
between the elements often change over time: this makes it difficult to find optimal
models that describe this evolution and that can be estimated from data, particu-
larly when the driving mechanisms are not known. As mentioned, a well known
approach to model interactions in complex systems that evolve in time is the KIM.
The KIM is a minimalistic pairwise constant interactions model which has found ap-
plications in multiple scientific disciplines. It describes the time evolution of a set of
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N binary variables, typically called “spins”, which can influence each other through
a time lagged interaction. We focus on its applications to time series analysis and ex-
tend it to allow the presence of time-varying parameters with score-driven dynam-
ics. Keeping arbitrary choices of dynamics to a minimum and seeking information
theoretical optimality, the Score-Driven methodology lets us significantly increase
the knowledge that can be extracted from data using the simple KIM. In particular,
we first identify a parameter whose value at a given time can be directly associ-
ated with the local predictability of the dynamics. Then we introduce a method to
dynamically filter value of such parameter from the data, without the need of speci-
fying parametrically its dynamics. Finally, we extend our framework to disentangle
different sources (e.g. endogenous vs exogenous) of predictability in real time. Ad-
ditionally, we discuss the possibility to use KIM and our score driven extensions
to model temporal networks. In doing so we highlight an interesting relation be-
tween KIM and the TERGMs family. To prove the flexibility and various potential
applications of our methodology, we apply our models to several complex systems
including financial markets, temporal (social) networks, and neuronal populations.
Our results show that the Score-Driven KIM produces insightful descriptions of the
systems, allowing to predict forecasting accuracy in real time as well as to separate
different components of the dynamics. This provides a significant methodological
improvement for data analysis in a wide range of disciplines.
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Chapter 2

Models for Static Networks

Synopsis of the Chapter In this chapter we set the notation used throughout this
thesis to indicate static binary and weighted networks and introduce statistical mod-
els to describe them. We review the main statistical models for static networks avail-
able in the literature starting with the family of Exponential Random Graphs Models
(ERGMs). We discuss inference methods for ERGMs and give a detailed description
of two particular specifications. The emphasis on this model class is motivated by
the relevance that they have in the literature and by the fact that in Chapter 6 we
extend to a temporal version that accommodates time varying parameters. We then
present the latent parameters modelling framework, and finally introduce the Max-
imum Entropy approach to define models for binary and weighted networks. This
approach is widely used in network reconstruction from partial information, as we
discuss in the original contributions presented in Chapter 3.

2.1 Definitions

A network, or graph1, is a useful abstraction for a system composed by a number
of single elements that have some pairwise relation among them. The simplified
description of social, economic, biological, transportation systems, in terms of nodes
and links attracted and still attracts an enormous amount of attention, in a number
of different streams of literature (Albert and Barabási, 2002; Bullmore and Sporns,
2009; Newman, 2010; Jackson, 2010; Easley, Kleinberg, et al., 2010; Allen and Babus,
2011).

Formally, a graph G is a pair (V, E) where V is a set of N nodes and E is a set of
node pairs named links, or edges. The nodes are labelled, with indices running from
1 to N, and a link is identified by the pair of nodes it connects (i, j). To each G, we
can assign one adjacency matrix A such that Aij = 1 if link (i, j) is present in E and
Aij = 0 otherwise. If the links have a direction, i.e. link (i, j) describes different infor-
mation than (j, i), than we speak of a directed graph. Otherwise the graph is said to be
undirected and the adjacency matrix is symmetrical, i.e. Aij = Aji ∀i, j = 1, . . . , N.
While the majority of the literature focuses on binary graphs, i.e. graphs that are de-
fined solely by a set of nodes and a set of links between pairs of nodes, often more
information is available to describe pairwise relations, and in many cases we can
associate a weight to each link. When this is the case, we speak of weighted networks,
to distinguish them from binary networks, where the only information available is
whether a link is present or not. Weights are typically positive, discrete or contin-
uous, numbers and can be associated, for example to the strength of the relation
described by each link. In these cases the data is better described by a weighted, or
valued, network, that can be associated with a positive, real valued matrix Y such

1The two names are used interchangeably in this work.
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that Yij ∈ R+ ∀i = 1, . . . , N, j = 1, . . . , N. Where Yij is the value of the link between
node i and node j, and Yij = 0 if the link is not present.

It is well known that real world networks, both weighted and binary, are often
found to be sparse. Technically a network is said to be sparse if the number of links
is of the order of the number of nodes N, but more loosely a sparse network is one
where majority of the possible links are not present. This fact is especially impor-
tant for weighted networks as it often requires a separated description for a link’s
presence and it’s expected weight.

Since in this thesis we consider both weighted and binary networks, whenever
we state something that holds true both for binary and weighted networks we use
the Y notation to indicate the adjacency matrix, and leave the A notation for cases
where the network considered is restricted to be binary. Given a weighted network,
described by Y we can always neglect the weights and consider only the presence
or absence of a link. In terms of the matrix description, this amounts to considering
the binary adjacency matrix A, with elements Aij = Θ

(
Yij
)
, where the function Θ is

known as Heaviside or indicator function and is defined to be zero when its argument
is less or equal then zero and one otherwise,

Θ (y) =
{

0 i f y ≤ 0,
1 i f y > 0.

(2.1)

Given a network representation of data describing pairwise relations, we can
analyze it with the tools of probability and statistics. That typically entails the def-
inition of a network model, that are the main focus of this chapter. Our main ref-
erence for the formal definition of a network model is the the book by Kolaczyk,
2009b. A network model is defined by an ensemble G (of possible graphs) and a fam-
ily Probϑ (G) of probability distribution indexed by some parameters

{ Probϑ (G) , G ∈ G : ϑ ∈ Ξ } ,

where G is a countable set whose element G are graphs and Probϑ (G) is a probability
density function on G, that is a function

Probϑ : G → [0, 1]

such that ∑G∈G Probϑ (G) = 1. Such a probability is allowed to depend on a vector of
real parameters ϑ ∈ Ξ, where Ξ is a convex subset of RC, with C the total number of
parameters (or the dimension) of the model. For an arbitrary, vector valued, network
statistic q : G → RM, where M is the number of elements of q, defined on the set G,
the expected value of q on the ensemble G is defined as

EG [q] = ∑
G∈G

q (G) Probϑ (G) . (2.2)

A model can be defined by explicitly giving the ensemble, the probability density
function along with the space Ξ of the parameters, or by inducing Probϑ through the
recurrent application of some generative mechanism or rule, either starting from an
empty graph or by applying a randomization procedure to a reference graph.

Since there is a one to one correspondence between a graph and the appropriate
version of the adjacency matrix Y↔ G, network models are usually defined through
Y, and network statistics are simply functions of the adjacency matrix h (G) = h (Y).
This means that the probability distribution can be written as a function of the matrix
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associated with a graph

Probϑ (G) = Probϑ (Y) , for Y↔ G.

Statistical models play a central role in the study of real world network data
and have been applied in many different contexts. For example, network models
are used to compare and test different possible generative mechanisms (Albert and
Barabási, 2002; Watts and Strogatz, 1998). They can be exploited to estimate the rele-
vance of a network feature in explaining observed network data (Garlaschelli, Hol-
lander, and Roccaverde, 2016). Additionally, link probabilities and expected values,
obtained from network models, are used to predict the possibility of link to be ob-
served in the future (Martínez, Berzal, and Cubero, 2016; Wang, Xu, Wu, and Zhou,
2015), or to be present in a partially observed network (Anand et al., 2017). Last
but not least, network models can be used as null models to find unlikely patterns
that might reveal meaningful information about the underlying system (Serrano,
Boguñá, and Vespignani, 2009; Tumminello et al., 2011).

2.2 Exponential Random Graphs

In general, for a binary network, if the distribution belongs to the exponential family,
then the model is named Exponential Random Graph Model (ERGM). In this section
we review ERGMs in some details and discuss two examples that are relevant for the
original contributions presented in Chapters 6 and 7.

To introduce ERGMs, let us mention the first and probably most famous example
of this class: the Erdös-Rényi random graph model of Erdős and Rényi, 1959. In this
model, fixed the number of nodes N, each of the possible N (N − 1) /2 links 2 is
present with constant probability p, equal for all links. The probability to observe
the adjacency matrix A is

P (A) = ∏
i<j

pAij (1− p)(1−Aij) . (2.3)

In the context of exponential distributions, it is possible to consider more general
structures for the probability of a link to be present, and even depart from the as-
sumption that each link is independent from the others.

Examples of more general ERGMs have been first proposed by Holland and
Leinhardt, 1981a, under the name of log-linear, or p?, models. Specifically, they
named p1 the model defined by

log P (A) = ∑
ij

[
Aij Ajiρij + Ajiφij

]
− log (K (ρ, φ)), (2.4)

where ρ and φ are two matrices of parameters, and K (ρ, φ) is a normalization fac-
tor3, that ensures that the probabilities defined over all the possible adjacency ma-
trices sum to one. This model can be estimated in parsimonious specifications, e.g.
φij = φi + φj, known as sender plus receiver effect, and ρij = ρ that describes the
tendency to reciprocate links. Additionally, p1 models can be enriched with de-
pendencies on node attributes (Fienberg and Wasserman, 1981) or predetermined

2In this thesis, we do not consider links that start and end at the same node, so named self-loops.
However, including them in would be trivial.

3Also known as partition function in the statistical physics literature.
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(exogenous or endogenous) covariates Xij (Wasserman and Pattison, 1996). The re-
quirement of independence among dyads has been relaxed since Frank and Strauss,
1986 in order to take into account neighborhood effects, such as the tendency to
form 2 stars, quantified by the function q2-stars = ∑ijk Aik Ajk or triangles qtriangles =

∑ijk Aik Akj Aji. These functions are examples of network statistics, i.e. functions of
the adjacency matrix, that play a central role in ERGMs.

ERGMs can be seen as an application of the family of discrete exponential distri-
butions (Barndorff-Nielsen, 2014) to the description of graphs. The sufficient statis-
tics, known as network statistics, are functions of the adjacency matrix qs (A) for
q = 1, . . . , Q and the PMF is defined by

P (A|θ) = e∑s θsqs(A)

K (θ)
. (2.5)

where θ ∈ RQ is the vector of parameters whose component θs is associated with
the network statistic qs (A), and the normalization K is defined by

K (θ) = ∑
{A}

eθsqs(A).

The normalizing factor K (θ) is often not available as a closed-form function of the
parameters θ. Each matrix element is a binary random variable, and its probability
depends only on the value of the network statistics appearing in (2.5).

The literature on ERGMs is extremely vast and still growing (see Schweinberger,
Krivitsky, Butts, and Stewart, 2020, for a recent literature review). Without being
exhaustive, in the following, we introduce two specific examples of ERGMs. They
describe distinct features of the network and require different approaches to the pa-
rameter inference. The first statistic we will consider is meant to capture the hetero-
geneity in the number of connections that each link can have. It allows for straight-
forward maximum likelihood estimation. The second one describes transitivity in
the formation of links, i.e. the tendency of connected nodes to have common neigh-
bors. For this case, inference is instead complicated by the fact that the normalizing
factor in (2.5) as a function of the parameters is not available in closed-form. The
choice of these examples is instrumental to the main focus of this work, i.e. the time-
varying parameter extension of the general ERGM in (2.5). In fact, they allow us
to discuss different estimation techniques that will be crucial for our methodology:
Maximum Likelihood Estimation (MLE) for node specific parameters and approxi-
mate pseudo-likelihood inference.

2.2.1 The Fitness / Beta / Configuration Model

The first example we consider is quite simple but, at the same time, largely employed
in different streams of literature (Zermelo, 1929; Bradley and Terry, 1952; Holland
and Leinhardt, 1981a; Caldarelli, Capocci, De Los Rios, and Muñoz, 2002; Park and
Newman, 2004b; Garlaschelli and Loffredo, 2008; Chatterjee, Diaconis, Sly, et al.,
2011). The range of applications for this model is so broad that researchers were
often not aware of previous works using exactly the same model. For this reason
it can be found under at least three different names: beta model, fitness model, and
configuration model. They all refer to a probability distribution that can be rewritten
as an ERGM where each node i has two parameters:

−→
θ i, that captures the propensity

of node i to form outgoing connections, and
←−
θ i those incoming. It is standard to
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indicate the number of connections a node has as its degree. For the directed network
case considered here, we have – for node i – out-degree

−→
D i and in-degree

←−
D i defined

as −→
D i = ∑

j
Aij ,

←−
D i = ∑

j
Aji .

With these definitions, and since it is possible to compute the normalization factor
K
(←−

θ ,
−→
θ
)

, the log-PMF for the whole matrix in terms of the degrees, reads

log P (A) =
N

∑
i=1

(←−
θ i
←−
D i +

−→
θ i
−→
D i

)
−∑

ij
log
(

1 + e
←−
θ i+
−→
θ j
)

, (2.6)

and the probability for link (i, j) to be observed is

P
(

Aij = 1|←−θ i,
−→
θ j

)
=

1

1 + e−
(←−

θ i+
−→
θ j

) .

This formulation is often used when the heterogeneity in the degrees is expected
to play a prominent role in explaining the presence or absence of links. It is worth to
notice that the static version of the fitness model, in the directed case, is not identified.
If we add any constant to each

←−
θ i and subtract it from each

−→
θ i, the PMF remains

unchanged. To fix it, one needs to introduce an identification restriction. This is
essential, to compare the parameter values estimated for different observations of
the same network.

Interestingly, the MLE can be performed using a fixed point algorithm, described
for example in Yan, Leng, Zhu, et al., 2016, that reaches the optimal solution in a fast
way. Moreover, we point out the existence of interesting results on the asymptotic
behavior of the maximum likelihood estimates for

(←−
θ ,
−→
θ
)

when the number of
nodes increases. Indeed, consistency results have been proved in Chatterjee, Dia-
conis, Sly, et al., 2011 for the undirected case and in Yan, Leng, Zhu, et al., 2016
for the directed case (see also Graham, 2017; Yan, Jiang, Fienberg, and Leng, 2018;
Jochmans, 2018, for discussions of the statistical properties of the beta model). A
necessary condition for these results to hold is that the network density remains
constant as N increases. An alternative, and often more realistic, possibility is that
the average degree remains constant when N increases, implying that the density
decreases as4 1/N. Networks belonging to this density regime are named sparse.
Notably, no consistency results are known for large N in the sparse regime.

2.2.2 Curved Exponential Random Graphs

Our second example is going to motivate the discussion of the next section on how to
deal with cases when the normalization function K (θ) is not available as a closed-
form function of the parameters θ. It is well known that, when network statistics
involve products of matrix elements5, this is often the case. This lack of analytical
tractability has been arguably the main obstacle in estimation and understanding of
the properties of ERGMs. Moreover, it is nowadays well known that, when dealing
with ERGMs, the use of network statistics involving products of matrix elements,

4For a network with N nodes, the number of possible links is of order N2. Instead, when all nodes
have a fixed average degree d, the number of present link is dN, and the density is of order 1/N.

5Examples of such statistics are the count of 2 stars present in the network, or the number of trian-
gles (Wasserman and Pattison, 1996).
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such as the number of triangles, requires some care, in order to avoid statistical is-
sues (as discussed for example in Handcock, 2003a; Handcock, 2003b). The main is-
sue, with consequences on estimation, simulation, and interpretability of ERGMs, is
known as degeneracy. An ERGM is degenerate if it concentrates a large portion of its
probability on a small set of configurations, typically the uninteresting graphs that
are completely connected or void of links. When this phenomenon occurs, estimat-
ing the model becomes very hard, and often the estimated model does not provide
a meaningful description of real networks. Indeed, a great effort has been dedi-
cated to investigating this problem, and characterizing degeneracy (see for example
Schweinberger, 2011, and references therein). Interestingly, a subset of the possible
ERGM specifications have been found to be able to describe properties of the whole
network without being subject to the degeneracy issue. They are known as curved ex-
ponential random graphs and are defined as standard exponential random graphs with
the additional constraint that the parameters are required to live in a certain region
of the parameter space (Snijders, Pattison, Robins, and Handcock, 2006; Robins et al.,
2007; Hunter and Handcock, 2006). In practice that amounts to consider a weighted
sum of simple network statistics as a single network statistic, depending on a small
number of parameters, instead of considering one parameter for each element of the
sum. One example of this kind of statistics is the Geometrically Weighted Edgewise
Shared Partners (GWESP). This function has recently been applied extensively to de-
scribe transitivity in social networks (see Hunter and Handcock, 2006). It captures
the tendency of nodes to form triangles, without the degeneracy issues that emerge
when the direct triangle count is used as a statistic in ERGM. To get an intuition
of the formula defining GWESP, let us consider two nodes, that are connected by
an edge, and count the number of nodes to which they are both connected, i.e. the
number of neighbors that they share. Let us indicate with ESPk (A) the number of
edgewise shared partners, i.e. connected node pairs 6 that share exactly k neighbors
in the network described by A. Then GWESP is defined as

GWESP (A, λ) = eλ
n−2

∑
k=1

[
1−

(
1− e−λ

)k
]

ESPk (A) .

In the following, we will stick to the usual approach in the literature treating the
parameter λ as fixed and known, i.e. λ = 0.5.

2.2.3 Inference

To conclude this partial overview of ERGMs, we discuss parameter inference when
the likelihood is not available in closed-form. The two standard approaches to
ERGM inference consist in maximizing alternative functions that are known to share
the same optimum as the exact likelihood. The first possibility (described, for exam-
ple, in Snijders, 2002) is to maximize an objective function obtained from a suffi-
ciently large sample drawn from the PMF with an arbitrary (but close enough to
the true one) parameter. As a consequence of the non independence of the links in
the general ERGM, sampling from (2.5) necessary relies on Markov Chain Monte
Carlo (MCMC) approaches (see Hunter et al., 2008, for a description of a popu-
lar software that implements it). The computational burden of MCMC-based esti-
mation can be prohibitive for large enough graphs. For this reason, a second ap-
proximate inference procedure, known as Maximum Pseudo-Likelihood Estimation
(MPLE), first proposed for ERGMs in the seminal work of Strauss and Ikeda, 1990,

6Edgewise precisely means that we count partners only if shared by nodes that are connected.
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is often used in empirical applications. MPLE is based on the optimization of the
pseudo-likelihood function, that is in turn defined from link specific variables (one
for each element of the adjacency matrix) named change statistics. Given an ERGM,
the change statistic for the link between node j and i, associated with network statis-
tic qs is δs

ij = qs
(

Aij
+
)
− qs

(
Aij
−), where Aij

+ is a matrix such that Aij
+ = 1 and it

is equal to A in all other elements. Similarly, Aij
− has A−ij = 0 and it is equal to A in

all other entries. Given these definitions, the pseudo-likelihood reads

PL (A) = ∏
ij

π
Aij
ij

(
1− πij

)(1−Aij) (2.7)

where πij =
(

1 + e−∑s θsδs
ij
)−1

. The maximum pseudo-likelihood estimates corre-
spond to the parameter values θ that maximize the pseudo-likelihood. On one hand,
obtaining the pesudo-likelihood estimates is extremely faster than the MLE based
on MCMC, and easy to implement, since the pseudo-likelihood in (2.7) is equal to
the likelihood of a logistic regression, and it can be easily maximized with standard
software for logistic regressions. On the other hand, the analogy with logistic regres-
sion is typically pushed too far. It has become widespread malpractice to associate
to MPLEs the confidence intervals obtained from the maximum-likelihood theory
for logistic regressions, that are known to be theoretically unjustified, as already
noted in Strauss and Ikeda, 1990 and Handcock, 2003b, and thoroughly discussed in
Varin, Reid, and Firth, 2011. It is nowadays common knowledge that such a naive
approach to MPLE inference results in a systematic underestimation of confidence
intervals’ width (see, for example, Van Duijn, Gile, and Handcock, 2009; Desmarais
and Cranmer, 2012; Schmid and Desmarais, 2017). More principled methods to es-
timate uncertainties of MPLEs, based on non-parametric and parametric bootstrap,
have been proposed in Desmarais and Cranmer, 2012 and Schmid and Desmarais,
2017, respectively. These contributions clearly showed that the computational con-
venience of MPLE for ERGMs can indeed be reconciled with a reliable estimation of
statistical uncertainties.

2.3 Latent Space Models

Another class of models for binary and weighted networks, that has received much
attention in the literature, is that of Latent Space Models (Hoff, Raftery, and Hand-
cock, 2002). Although, in the binary case, they formally belong to the class of ERGMs,
latent space models have been used also for weighted networks and are typically
discussed separately from ERGMs. In the following, for ease of exposition, we re-
view the main examples of the latent variables family of models, only for binary
networks. Such models associate to each node a position in a K dimensional latent
space. Then for each pair of nodes they compute a measure of distance, or similar-
ity, between the respective latent variables and assign higher probabilities to links
between nodes that are closer or more similar. This geometry-based assumption, al-
lows the latent space models to provide the useful visualization and interpretation
of network or data, and for thus have been used widely in the literature.

The general definition of a latent space model associates to each node i a latent
variable zi ∈ RK and assumes that the probability of observing a given value for
each link is independent from that of the values of other links, conditionally on the
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latent variables. Hence, the probability mass function takes the following form

P (A|z, X, θ) = ∏
ij

P
(

Aij|zi, zj, Xij, θ
)

,

where X observed link-specific covariates and θ denotes the corresponding set of
regression parameters. There are mainly two families of latent space models, that
differ on how the latent variables enter the probability mass function, the distance
model and the projection model. They can be applied to both directed and un-
directed networks, with different interpretations of the parameters. For ease of dis-
cussion, we introduce here only their version for directed networks. In the distance
model the probability of link (i, j) depends on the Euclidean distance between vec-
tors zi and zj. For example, in the binary network it takes the following form

log P
(

Aij|zi, zj, Xij, θ
)
= θ0 + θ1Xij −

∥∥zi − zj
∥∥ .

Hence, for a given value of the external covariates and the respective parameters, the
probability of node to exist tends to be low for nodes that are further apart. While in
the projection model the probability of link (i, j) depends on the angle between the
two latent parameters’ vectors:

log P
(

Aij|zi, zj, Xij, θ
)
= θ0 + θ1Xij −

z′izj∥∥zj
∥∥ .

Thus, in the projection version of the model the probability of observing link (i, j)
increases if the two vectors point in the same direction. Both versions of the la-
tent space model can be easily applied to weighted networks by simply relating the
above definitions to expected link weights by means of appropriate link functions.
Moreover, various extensions of the original latent space models of Hoff, Raftery,
and Handcock, 2002, for example to model explicitly nodes’ clusters, have been con-
sidered in the literature as reviewed for example in Kim, Lee, Xue, Niu, et al., 2018.

2.4 Maximum Entropy Models

The ERGM framework is intrinsically linked to the very well known principle of maxi-
mum entropy (Shannon, 1948) and its applications to statistical physics (Jaynes, 1957).
Indeed, an ERGM with sufficient statistics q (θ) naturally arises when looking for
the probability distribution, over the set of all possible binary networks, which max-
imizes the entropy under a linear equality constraint on the statistics q (θ) (Park and
Newman, 2004b; Garlaschelli and Loffredo, 2008).

In this section we review the Maximum Entropy (ME) approach to define net-
work models, that will be relevant for the original contribution presented in Chapter
3. Since the maximum entropy principle allows for the definition of a more general
set of network models, not restricted to binary networks, here we review it as a mean
to define statistical models for weighted networks, thus including binary networks
as a subset. Hence in this section we denote the adjacency matrix as Y and the maxi-
mum entropy methodology that we review can and has been applied to both binary
and weighted networks (Park and Newman, 2004b; Garlaschelli and Loffredo, 2009).

In what follows we indicate with S (P) [Y] the Shannon’s entropy function

S (P [Y]) = − ∑
Y∈Y

P [Y] log (P [Y]) , (2.8)
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and with φi (Y), i = 1, ..., I, a set of functions of the adjacency matrix, that describe
the information that we want to use to define the maximum entropy model. To
different sets of functions correspond different maximum entropy models. In its
most general formulation, the ME principle postulates to obtain the probability mass
function P as that which maximizes (2.8), subject to the normalization constraint

∑
Y∈Y

P [Y] = 1,

and, to further additional constraints on the values of φi (Y), i = 1, ..., I .
There are two ways of imposing the constraints. In the first one, termed mi-

crocanonical ensemble, constraints are imposed exactly, i.e. only the graphs fulfilling
all the constraints have non zero probability. In the second one, termed canonical
ensemble, all the graphs have non zero probability and the constraints are satisfied
on average over the distribution. There are advantages and disadvantages in both
approaches. The microcanonical ensemble can be more realistic in some applica-
tions. On the contrary, in the canonical ensemble also graphs where these values
are very different from the real data might have non zero probability. Applica-
tions of the maximum entropy principle typically consider the canonical ensemble
(see Bargigli and Gallegati, 2011; Squartini, Fagiolo, and Garlaschelli, 2011; Fagiolo,
Squartini, and Garlaschelli, 2013; Mastrandrea, Squartini, Fagiolo, and Garlaschelli,
2014; Saracco, Di Clemente, Gabrielli, and Squartini, 2015; Almog, Squartini, and
Garlaschelli, 2017, for example) for at least two reasons. First, solving the problem
in the microcanonical ensemble is typically extremely hard or it requires extensive
numerical simulations, randomizing the network by allowing moves that preserve
all the constraints. On the contrary, canonical ensemble can often be obtained much
more directly, as testified by their widespread use in Statistical Mechanics (Huang,
2008). Moreover when other constraints are added to the optimization problem,
microcanonical ME becomes intractable, thus limiting their practical use when reg-
ulators want to add additional knowledge on the system. Second, the flexibility of
canonical ME allows exploring the relative role of information set and constraints in
network reconstruction.

In the canonical ensemble, the probability distribution is defined such that those
functions are required to have fixed expected values φ?

i . Examples of φi (Y) are φnk =
Ynk and φn = ∑k Ynk or φk = ∑n Ynk. The ME approach consists in defining the
probability mass function which solves the constrained optimization problem

max
P(Y)

S (P [Y])

s.t. ∑
Y∈Y

P (Y) = 1,

EY [φi] = φ?
i , i = 1, ..., I.

(2.9)

If each matrix element can take only a finite set of values, i.e. the space Y is finite, the
optimization problem is easily solved, at least formally, using Lagrange multipliers.
The Lagrangian associated to the problem is written as

L = S (P [Y]) + α

(
1− ∑

Y∈Y
P (Y)

)
+

I

∑
i=1

ϑi

(
φ?

i − ∑
Y∈Y

P (Y) φi (Y)

)
,
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where α and ϑi are Lagrange multipliers. Taking the first derivative w.r.t. P (x) ≡
P (Y = x), where x indicates an element of Y , we get7

∂L
∂P (x)

= − log(P (x))− 1− α−
I

∑
i=1

ϑi φi = 0,

whose solution is

Pϑ (Y) =
e−∑I

i=1 ϑiφi(Y)

Kϑ
, (2.10)

where ϑ indicates the set of all Lagrange multipliers, and Kϑ is a normalizing factor
given by

Kϑ = ∑
Y∈Y

e−∑I
i=1 ϑiφi(Y). (2.11)

Interestingly, in the case of binary networks, the ME PMF obtained above corre-
sponds to the ERGM specification having as sufficient statistics the functions φi (Y),
i = 1, ..., I used in defining the ME model. Given a set of constraints φ?

i the corre-
sponding Lagrange multipliers ϑ? are obtained as the (unique8) solution to

∑
Y∈Y

Pϑ? (Y) φi (Y) = φ?
i , i = 1, ..., I.

The latter parameters are determined, either analytically or numerically, from the
information codified in the values φ?

i . In the following, when not strictly required,
we will omit the dependency of P on ϑ, to ease the notation.

Let us consider models that allow Ynk to assume any positive integer values,
in which case the Lagrange multipliers derivation of the probability mass function
is only heuristic. Nevertheless, it is well known (see for example Campbell, 1970;
Barndorff-Nielsen, 2014) that, even in the infinite case, the maximum entropy prob-
ability mass function is the one in (2.10) . In fact, it can be easily shown that every
other probability mass function, satisfying the constraints in (2.9), has lower entropy
than the one obtained with Lagrange multipliers.

2.4.1 Maximum Entropy Model Fixing Strengths

An interesting application of the maximum entropy principle to undirected weighted
networks, considered in Park and Newman, 2004b and Garlaschelli, Hollander, and
Roccaverde, 2016, is the one where the constrained network functions are the strengths
of all nodes, φn = ∑k Ynk, in a setting where links’ weights can take only positive in-
teger values.

Assigning one Lagrange multiplier λn to each φn, we can go on with the compu-
tation by explicitly carrying out the sum in the definition of the partition function,

7We stress that we are considering the derivative w.r.t. the probability of each of the (finite) possible
realizations of Y ∈ Y .

8The uniqueness of the solution is well-known in maximum entropy literature.
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as follows

Kϑ = ∑
Y∈Y

N

∏
n=1

N

∏
k=1

e−Ynk (λn +λk)

= a
∞

∑
Y1,1=0

· · ·
∞

∑
Y1,N=0

· · ·
∞

∑
Yn,1=0

· · ·
∞

∑
Yn,N=0

N

∏
n=1

N

∏
k=1

e−Yn,N (λn +λk)

=
N

∏
n=1

N

∏
k=1

∞

∑
Yn,k=0

e−Yn,k (λn +λk)

=
N

∏
n=1

N

∏
k=1

1
1− e−(λn +λk)

=
N

∏
n=1

N

∏
k=1

1
1− ϕn ϕk

,

where ϕn = e−λn , hence

P (Y) =
∏N

n=1 ∏K
k=1 e−Ynk (λn +λk)

∏N
n=1 ∏K

k=1
1

1−ϕn ϕk

=
N

∏
n=1

N

∏
k=1

(ϕn ϕk)
Ynk (1− ϕn ϕk) , (2.12)

The value of the Lagrange multipliers are determined by imposing that the expected
values of ∑k Ynk on the ensemble Y are equal to φ?

n. Note that Kϑ is such that

EY [φn] = −
∂ log (Kϑ)

∂λn
.

Hence we can compute EY [φn] as a function of the Lagrange multipliers, that is

EY [φn] =
∂

∂λn

N

∑
n=1

K

∑
k=1

log
(

1− e−(λn +λk)
)

=
K

∑
k=1

e−(λn+λk)

1− e−(λn +λk)
. (2.13)

Therefore the Lagrange multipliers are determined by numerically solving the non-
linear system of equations

K

∑
k=1

ϕn ϕk

1− ϕn ϕk
= φ?

n, n = 1, ..., n. (2.14)

It is important to notice that the expected matrix that follows from such a maximum
entropy description

EY [Ynk] =
ϕn ϕk

1− ϕn ϕk
(2.15)

always describes a fully connected network9. This is common in maximum entropy
models that use only the strengths as constraints. In Chapter 3 we discuss maximum
entropy ensembles that use both strengths and degrees as constraints. Moreover
in Chapter 7 we propose an original model for temporal weighted networks that
separately models the probability of a link to be observed from its weight.

9Unless, of course, a node k is such that φk = 0, in which case it could be omitted to begin with.
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Chapter 3

Reconstruction of Systemic Risk
due to Fire Sales Spillover

Synopsis of the Chapter. Monitoring and assessing systemic risk in financial mar-
kets is of great importance but it often requires data that are unavailable or available
at a very low frequency. For this reason, systemic risk assessment with partial infor-
mation is potentially very useful for regulators and other stakeholders. In this Chap-
ter we consider systemic risk due to fire sales spillovers and portfolio rebalancing by
using the risk metrics defined by Greenwood, Landier, and Thesmar, 2015. By using
a method based on the constrained minimization of the Cross Entropy, we show that
it is possible to assess aggregated and single bank’s systemicness and vulnerability,
using only the information on the size of each bank and the capitalization of each
investment asset. We also compare our approach with an alternative widespread
application of the Maximum Entropy principle allowing to derive graph probability
distributions and generating scenarios and we use it to propose a statistical test for
a change in banks’ vulnerability to systemic events.

Almost all the contents of this chapter previously appeared in Di Gangi, Lillo, and Pirino,
2018.
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3.1 Introduction

After the recent troubled years for the global economy, in which two severe crises
(the 2007 crisis of financial markets and the 2010 sovereign debt crisis) have put
the whole economic system in dramatic distress, vulnerability of banks to systemic
events is now the main focus of a growing number of investigations of the academic
community. Simultaneously, many research efforts are devoted to understand the
role of banks or, broadly speaking, of financial institutions in the creation and in
the spreading of systemic risk. Given the prominent importance of the topic and its
multifaceted nature, the literature on evaluation and anticipation of systemic events
is huge (see Demirgüç-Kunt and Detragiache, 1998; Kaminsky and Reinhart, 1999;
Harrington, 2009; Scheffer et al., 2009; Barrell, Davis, Karim, and Liadze, 2010; Dut-
tagupta and Cashin, 2011; Kritzman, Li, Page, and Rigobon, 2011; Allen, Bali, and
Tang, 2012; Arnold, Borio, Ellis, and Moshirian, 2012; Bisias, Flood, Lo, and Valava-
nis, 2012; Scheffer et al., 2012; Merton et al., 2013; Oet, Bianco, Gramlich, and Ong,
2013, among many contributions).

Several are the channels through which financial distress may propagate from
one institution to another and, eventually, affect a vast portion of the global econ-
omy. Fire sales spillovers due to assets’ illiquidity and common portfolio holdings
are definitely one of the main drivers of systemic risk. Shared investments create
a significant overlap of portfolios between couples of financial institutions. Such
(indirect) financial interconnectedness is an important source of contagion, since
partial liquidation of assets by a single market player is expected to affect all other
market participants that share with it a large fraction of their own investments (see
Corsi, Marmi, and Lillo, 2016; Huang, Vodenska, Havlin, and Stanley, 2013; Caccioli,
Shrestha, Moore, and Farmer, 2014; Lillo and Pirino, 2015). Fire sales move prices
due to the finite liquidity of assets and to market impact. In a perfectly liquid mar-
ket there will be no fire sale contagion at all (see Adrian and Shin, 2008, for a review
on the role of liquidity in financial contagion). Finally, leverage amplifies such feed-
backs. In fact, as described in detail by Adrian and Shin, 2010; Adrian and Shin,
2014, levered institutions continuously rebalance their positions inflating positive
and, most importantly, negative assets’ price variations.

Assessing and monitoring systemic risk due to fire sales spillover is therefore of
paramount importance for regulators, policy makers, and other participants to the
financial markets. Greenwood, Landier, and Thesmar, 2015 introduced recently a
stylized model of fire sales, where illiquidity, target leverage, and portfolio overlap
are the constituent bricks. They used the model to propose two systemic risk metrics:
systemicness and vulnerability of a bank. Given a market shock, the first is the
total percentage loss induced on the system by the distress of the bank, whereas the
second is the total percentage loss experienced by the bank when the whole system
is in distress. In order to compute these quantities, a full knowledge of the portfolio
composition of all banks is needed, because the systemicness and vulnerability of a
bank depends on the portfolio and leverage of the other banks.

Greenwood, Landier, and Thesmar, 2015 applied their method to the European
Banking Authority (EBA) data that resulted from the July 2011 European stress tests.
These data provide detailed balance sheets for the 90 largest banks in the European
Union. Duarte and Eisenbach, 2013 exploited a publicly available dataset of bal-
ance sheets of US bank holding companies to apply the framework of Greenwood,
Landier, and Thesmar, 2015. They derive a measure of aggregate vulnerability that
[...] reaches a peak in the fall of 2008 but shows a notable increase starting in 2005, ahead of
many other systemic risk indicators.
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In general, however, the detailed information set required to compute such sys-
temic risk indicators might not be available. For example European stress test data
are sporadic. Moreover the sampling frequency of balance sheet data is rarely higher
than quarterly. Thus an important question is whether it is possible to estimate sys-
temic risk due to fire sales spillovers in absence of data on portfolio composition of
financial intermediaries.

Two possible approaches have been proposed in the literature. The first one (see,
among others, Adrian and Brunnermeier, 2011; Acharya, Engle, and Richardson,
2012; Banulescu and Dumitrescu, 2015; Corsi, Lillo, Pirino, and Trapin, 2018) is
purely econometric and it is typically based on publicly available data on price of
assets and market equity value of publicly quoted financial institutions. Generically
the method consists in estimating conditional variables, such as conditional Value-
at-Risk or conditional Expected Shortfall. The econometric approach circumvents
the unavailability of data on portfolio holdings, but pays this advantage with the
introduction of a strong stationarity assumption: estimates based on the past in-
formation are assumed to be always good predictors of the future behavior of the
system. Nevertheless, due to the nature of a global financial crisis, it is in the very
moment of the onset of a period of distress that the stationarity assumption may fail
to work properly. Moreover it is often restricted to publicly quoted institutions for
which equity value are available at daily frequency.

A second possible approach1, followed in the present chapter, consists in infer-
ring the matrix of portfolio holdings using only a reduced, but easily available, in-
formation set, and/or deriving a probability distribution for the portfolio weights
according to some criterion. This is typically achieved summoning the maximum
entropy principle which postulates that (Anand et al., 2013) [...] subject to known con-
straints [...] the probability distribution that best represents our current knowledge and that
is least biased is the one with maximal entropy. The approach of Maximum Entropy, can
be applied in at least two different ways that we distinguish clearly in the following,
and is not new in systemic risk studies (Mistrulli, 2011; Anand et al., 2013; Musmeci
et al., 2013; Squartini, Lelyveld, and Garlaschelli, 2013; Bargigli et al., 2015a). It is
widely used for inferring the structure of the interbank network when only data of
total interbank lending and borrowing for each bank (plus possibly other informa-
tion) are available (for a comparison of different methods, see Anand et al., 2017;
Gandy and Veraart, 2016).

The seminal contribution by Mistrulli, 2011, comparing the empirical Italian in-
terbank network with that reconstructed via a Maximum Entropy optimization pro-
cedure, has shown that the latter is fully connected while the former is very sparse
(see also Mastromatteo, Zarinelli, and Marsili, 2012) and,as a consequence of this
misestimation, the reconstructed network underestimates the risk contagion2. Re-
cently a comparison of network reconstructions techniques has been carried out also
for bipartite networks (Ramadiah, Caccioli, and Fricke, 2020).

1There are, of course, many different approach to assess systemic risk in financial networks. For
example, Amini, Cont, and Minca, 2013 propose a rigorous asymptotic theory that allows to predict
the spread of distress in interbank networks.

2A complementary method is proposed by Anand, Craig, and Von Peter, 2015. Here the authors
reconstruct the network of bilateral exposures for the German banking system via the matrix that,
preserving some constraints, has the minimum density. Nevertheless, if cross entropy method un-
derestimates systemic risk by overestimating the network density, Anand, Craig, and Von Peter, 2015
show that, for a similar reason, minimum density returns positively biased estimates. Hence, the two
approaches can be used jointly together to create a corridor in which the true systemic risk should lay.
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A part from network reconstruction, the use of entropic methods is widespread
in economic sciences. For example, it is widely used in econometrics for the estima-
tion of probability densities, as it is witnessed by a vast stream of contributions in
this direction (see, among others, the contributions by Zellner and Highfield, 1988;
Ryu, 1993; Wu, 2003; Kouskoulas, Pierce, and Ulaby, 2004; Park and Bera, 2009; Usta
and Kantar, 2011; Chen, 2015). An interesting point of coomparison for our work
is the use of entropy in the theory of portfolio choice3. When investors are uncer-
tain about the probability structure of reality and, being averse to ambiguity, use
the relative entropy as a way of penalizing (see, among the most notable contribu-
tions in this field, the works by Hansen and Sargent, 2001; Maccheroni, Marinacci,
and Rustichini, 2006; Bera and Park, 2008; Zhou, Liu, and Qiu, 2008; Gilboa and
Marinacci, 2016; Zhou, Cai, and Tong, 2013). In this respect it is important to clarify
that we implicitly adopt the maximum entropy principle from the point of view of
a regulator (or a social planner) who, irrespectively of the decisional process which
is behind the creation of the network, is solely interested in having an unbiased esti-
mate of systemic risk. Hence, our perspective could be thought as orthogonal to that
adopted by the ambiguity aversion literature, in the sense that our declination of the
maximum entropy principle is purely inferential and it is not meant to mimic, in any
way, the banks’ decisional processes that have created the network and, accordingly,
the prevailing level of systemic risk.

In this chapter we propose to apply maximum entropy approach to the inference
of the network of portfolio weights in order to estimate metrics of systemic risk due
to fire sales spillovers. Specifically, we show how indirect vulnerability, systemicness
(as defined by Greenwood, Landier, and Thesmar, 2015) and the aggregate systemic
risk of US commercial banks can be estimated when only a partial information (the
size of each bank and the capitalization of each asset) is available. Differently from
the interbank studies (as in Mistrulli, 2011; Mastromatteo, Zarinelli, and Marsili,
2012; Anand, Craig, and Von Peter, 2015) we deal with bipartite networks, namely
graphs4 whose nodes can be divided into two sharply distinguished sets that, in our
case, are commercial banks and asset classes. More specifically, we analyze the quar-
terly networks of US commercial banks’ exposures in the period 2001-2013 using
the Federal Financial Institutions Examination Council (FFIEC) through the Call Report
files5. We compute, for each quarter, systemicness and vulnerability of each bank
and the aggregate vulnerability of the system. We compare them with the values
inferred assuming the balance sheet compositions of the banks were not known. In
this sense our contribution is similar to Mistrulli, 2011, but applied to systemic risk
due to fire sale spillover rather than to cascades in the interbank network. Differently
from the interbank case, we find that newly introduced maximum entropy methods
are very accurate in assessing systemic risk due to fire sales spillover when partial
information is available.

The contribution of this chapter is divided into two main parts. First, following a
practice that is largely diffused among researchers of both academic institutions and
central banks (see, among others, Sheldon and Maurer, 1998; Upper and Worms,
2004; Wells, 2004; Mistrulli, 2011; Sachs, 2014), we reconstruct the matrix of portfolio
holdings as such that minimizes the cross entropy (or Kullback-Leibler divergence)
from a initial guess. Despite this approach has often been referred to as maximum

3We thank an anonymous referee for this suggestion.
4Throughout all the manuscript we use the terms “network” and “graph” interchangeably.
5Hence our dataset is quite similar to that adopted by Duarte and Eisenbach, 2013, but it profits

from a larger sample of banks, since commercial banks are fairly more numerous than bank holding
companies. All data are available at: https://cdr.ffiec.gov/public/

https://cdr.ffiec.gov/public/
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entropy, or matrix balancing, in order to avoid confusions with different methods
discussed in the following, we refer to it as Cross-Entropy method. We show that
this approach does a very good job in our case, providing unbiased estimates of the
systemic risk metrics defined by Greenwood, Landier, and Thesmar, 2015. Besides,
we show that the reconstructed matrix corresponds to that implied by the Capital
Asset Pricing Model, hence it possesses a clear economic meaning.

Second, we compare Cross-Entropy with a different approach to entropy maxi-
mization, which allows to define a probability mass function for graphs (ensemble)
by maximizing entropy under suitable constraints where some average quantities
are set equal to the ones observed in data. Despite the economic intuition of this
approach is less sharp than the previous one, the method is widespread in the lit-
erature and allows performing scenario generation. We propose a new ensemble,
termed MECAPM, which (i) satisfies a set of economically motivated constraints,
(ii) behaves in average as the cross entropy method proposed before, and (iii) al-
lows for scenario generation, potentially useful for supervisory authorities to test if
a specific institution has increased its systemicness with respect to the past.

We structure our chapter as follows. Section 3.2 introduces some nomenclature
and briefly describes the risk metrics of Greenwood, Landier, and Thesmar, 2015.
The dataset of US commercial banks provided by the FFIEC is discussed in Section
3.3. In Section 3.4 we present the cross entropy method and show its performances
for the estimation of systemic risk. In Section 3.5 we compare the cross entropy
method with the maximum entropy alternative which derives a probability distri-
bution of graphs. This is useful, among other things, to introduce a statistical test
for surveillance activities by central banks and other regulatory institutions. Finally
Section 3.6 summarizes the main contributions of the chapter. Appendices provide
additional information on the construction of the dataset of bank portfolio holdings
and all the analytical computations omitted in the main text.

3.2 Systemic risk metrics: Vulnerability and Systemicness

In this chapter we use some metrics of systemic risk due to fire sales, which have
been recently introduced by Greenwood, Landier, and Thesmar, 2015. They con-
sider a system composed by N banks and K asset classes. Portfolio holdings are
described by the N × K matrix Y, whose element Ynk is the dollar-amount of k-type
assets detained by bank n. The corresponding matrix of portfolio weights is thus

Wnk (Y) =
Ynk

∑K
k′=1 Ynk′

.

In what follows, we introduce a discretization of the elements of Y’s, in such a
way that the matrix Y belongs to the space NN×K of N × K integer valued matrices.
In the empirical application we will use the resolution of the dataset which is 103$.

The total asset size, or bank dimension, Dn of the n-th bank and the total capital-
ization6 Ck of the k-th asset class are easily computed as, respectively, the total row
and column sums of the matrix Ynk, in formula

Dn (Y) =
K

∑
k=1

Ynk, Ck (Y) =
N

∑
n=1

Ynk, (3.1)

6More precisely, the quantity Ck is the total amount of asset’s k capitalization due to the banking
sector. To simplify the notation we will call it capitalization.
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where we have explicitly expressed the dependence of Dn and Ck from Y.
The rectangular matrix Y can be naturally associated to a bipartite network, i.e.

a graph whose vertices can be divided into two disjoint sets such that every edge
connects a vertex in one set to one in the other set, the two sets being the banks and
the asset classes. In the network jargon, Dn (Y) and Ck (Y) are called the strength
sequences.

A relevant information concerning the balance sheet of each bank n is the total
equity En, from which one can compute the leverage as Tn = Dn−En

En
(as in Green-

wood, Landier, and Thesmar, 2015). Finally, each asset class is characterized by an
illiquidity parameter `k, with k = 1, ..., K, defined as the return per dollar of net
purchase of asset k7.

This setting is used in Greenwood, Landier, and Thesmar, 2015 to define three
metrics of systemic risk, capturing the effect of fire sales in response to a shock
on the price of the assets. This is described by the K dimensional vector −ε =
(−ε1, ...,−εK), whose components are the assets’ shocks. They define:

• Aggregate vulnerability AV as [...] the percentage of aggregate bank equity that
would be wiped out by bank deleveraging if there was a shock [...] to asset returns.

• Bank systemicness Sn as the contribution of bank n to aggregate vulnerability.

• Bank’s indirect vulnerability IVn as [...] the impact of the shock on its equity
through the deleveraging of other banks.

By assuming that banks follow the practice of leverage targeting and that, in
response to a negative asset shock, they sell assets proportionally to their pre-shock
portfolio holdings, Greenwood, Landier, and Thesmar, 2015 show that Sn can be
decomposed as

Sn = Γn
Dn

E
Tn rn, (3.2)

where E is the total equity, E = ∑N
n=1 En, rn is the n-th element of the vector r = W ε,

i.e. the portfolio return of bank n due to the shock ε, and

Γn =
K

∑
k=1

(
N

∑
m=1

Dm Wm,k

)
`k Wnk.

The aggregate vulnerability is computed simply as

AV =
N

∑
n=1

Sn. (3.3)

Finally, the indirect vulnerability of a bank is

IVn = (1 + Tn)
K

∑
k=1

`k Wnk

N

∑
n′=1

Wn′,k Dn′ Bn′ rn′ . (3.4)

In what follows we often assume, as in Duarte and Eisenbach, 2013, that εk = 1%
for all k = 1, ..., K, which in turns implies that rn = 1% in equations (3.2) and (3.4).

7The assumption of linear price impact comes directly from the framework of Greenwood, Landier,
and Thesmar, 2015. Although a square-root law fits the data better, the linear assumption has been
widely adopted in the literature (see Gatheral, Schied, and Slynko, 2012; Cont and Wagalath, 2014; Lillo
and Pirino, 2015, among others) and has been empirically validated at daily frequency by Obizhaeva,
2008.
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Note however that if all the assets are shocked by the same amount, our results
do not depend on it, since the systemic risk measures will have only a different pre-
factor. In Section 3.4.1 we consider other shock scenarios to test the robustness of our
methods. Finally, we set the liquidity parameter at `k = 10−10 for all asset classes
except for cash, for which we put `k = 0 (as in Greenwood, Landier, and Thes-
mar, 2015; Duarte and Eisenbach, 2013). As a final comment it should be noted that
(Greenwood, Landier, and Thesmar, 2015) add two more constraints to the problem.
First, when direct losses of a bank exceed its equity, the bank liquidates all the assets.
Second, leverage is capped to the value 30. In our empirical investigation we have
followed (Duarte and Eisenbach, 2013) who do not add these constraints. We have
however compared the aggregate vulnerability of the US banking system (see next
Section for the data used) under the two model specifications. We have found that
the difference is less than 1% with the exception of few quarters around the end of
2009 when it reaches 10%.

It is important to stress that the Greenwood, Landier, and Thesmar, 2015 method
to estimate systemic risk metrics is essentially static. As it is standard in stress test-
ing, a given scenario of price changes at a given time is considered and then, given
the balance sheet and portfolio composition of banks at that time, the consequences
of deleveraging and fire sales are computed. Thus no past information (even when
available) on balance sheets or prices is ever used in the methodology. This is of
course a limitation since the decision on how to deleverage in a certain quarter de-
pends in reality also on past market price behavior as well as on deleveraging in the
last quarters. Such an extension, although interesting, is beyond the scope of Green-
wood, Landier, and Thesmar, 2015 model as well as of the vast majority of stress test
methods. It would require to choose scenarios containing the price changes at more
than one quarter as well as being able to disentangle the price changes due to fun-
damental reasons from those due to past deleveraging. The definition of a dynamic
stress test is clearly beyond the scope of our work and we will stick to the standard
static stress test approach. As in Duarte and Eisenbach, 2013, in the empirical appli-
cation below we will consider a stress test for each available quarter, discarding all
the information coming from past quarters. Thus even if apparently we are treating
a time series of portfolios of length T, as a matter of fact we are repeating T times
the (static) stress test.

In the next section we present the dataset that we use in our analysis to mea-
sure systemic risk, as captured by the metrics of Greenwood, Landier, and Thesmar,
2015, in the US banking sector. Such a dataset allows us to have quarterly esti-
mates of systemicness, aggregate, and indirect vulnerability and to compare these
estimates with those inferred from the Cross-Entropy approach and the Maximum
Entropy principle. Since we have to deal with both real and reconstructed (or sam-
pled form a statistical ensemble) networks, from now on we follow the convention
to add a superscript x? to any variable x whenever it is referred to a real (observed)
network, while the variable x is represented without the superscript ? every time it
is referred to a reconstructed network (e.g. one sampled from a statistical ensemble
as described in Section 3.5).

3.3 Data

All regulated financial institutions in the United States are required to file periodic
financial information with their incumbent regulators. The Federal Financial Insti-
tutions Examination Council, is the regulatory institution responsible to collect and
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FIGURE 3.1: We report in the left panel the percentage of total as-
sets detained by top 10, top 100, top 1000 and the remaining banks
in shaded areas of different colors. A vast portion of total assets is
controlled by the top 10 banks. In the right panel we report, for each
quarters, the contribution of the top seven asset classes (in terms of
capitalization) to the total capitalization. A large percentage to total
asset capitalization is due to Loan Secured by Real Estates in Domes-

tic Offices.

maintain the data used in our analysis. The financial institutions subject of our inves-
tigation are Commercial Banks and Savings and Loans Associations. The FFIEC defines
officially a commercial bank as8: “[...] a financial institution that is owned by stock-
holders, operates for a profit, and engages in various lending activities”. FFIEC requires
commercial banks to file the quarterly Consolidated Report of Condition and Income,
generally referred to as Call Report. Each bank is required to fill a form with detailed
information on its financial status, in particular on its balance sheet. The specific
reporting requirements depend upon the size of the bank and whether or not it has
any foreign office. The form FFIEC031 is used for banks with both domestic (U.S.)
and foreign (non-U.S.) offices while form FFIEC041 is designed for banks with do-
mestic (U.S.) offices only. A Saving and Loan Association is a financial institution that
accepts deposits primarily from individuals and channels its funds primarily into
residential mortgage loans. From the first quarter of 2012, all Savings and Loan As-
sociations are required to file the same reports, thus they are included in the dataset
since then.

The data provided by the Call reports are publicly available9 since 1986, although
the form changed considerably throughout the years, showing an increasing level of
details requested. To have a good compromise between the fine structure of data and
a reasonably populated statistics we considered the time period going from March
2001 to September 2013, for a total of 55 quarters. The number of financial institu-
tions present in the data is pretty stable during quarters, starting from approximately
9, 000 entities in the first quarter and ending in roughly 6, 500 in the last one. The
asset categories have been created as coherent sums of codes. We describe the proce-
dure adopted to form asset classes in Appendix 3.7.1 along with some data statistics.
In particular, we aggregate data in a set of 20 asset classes following the rationale of
Duarte and Eisenbach, 2013, that is each of the 20 asset classes is composed in such

8See http://www.ffiec.gov/nicSearch/FAQ/Glossary.html.
9See https://www.chicagofed.org/banking/financial-institution-reports/

commercial-bank-data.

http://www.ffiec.gov/nicSearch/FAQ/Glossary.html
https://www.chicagofed.org/banking/financial-institution-reports/commercial-bank-data
https://www.chicagofed.org/banking/financial-institution-reports/commercial-bank-data
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FIGURE 3.2: Mean cosine (or L2) similarity of pairs of portfolios of US
commercial banks.

a way that, in case of a fire sale of assets belonging to a specific class, the price im-
pact would be restricted mainly to the assets in the same class. In other words, it is
reasonable to assume that the co-illiquidity (or cross impact) of two different asset
classes is negligible. The twenty macro asset classes used to build the network are
described in Table 3.2 of Appendix 3.7.1, which also documents in detail how they
have been formed. In the left panel of Figure 3.1 we show how the total asset value is
concentrated on the top tiered banks. The right panel of Figure 3.1 shows the relative
importance of the top seven assets classes (in terms of total capitalization), revealing
that a large portion of the total capitalization is due to Loan secured by real estates in
domestic offices.

To test the role of portfolio similarity in systemic risk, we report in Figure 3.2 the
time series of the mean similarity between all the pairs of banks’ portfolios. Similar-
ity is measured with the cosine (or L2) norm i.e. the cosine of the angle formed by
the two vectors {Y∗nk}k=1,..,K and {Y∗m,k}k=1,..,K representing the portfolios of bank n
and m, respectively. The plot shows clearly that similarity between portfolios has in-
creased significantly before the 2008 crisis, making the systemic risk higher. A pretty
similar pattern is shown by the aggregate vulnerability in Figure 3.6, we will turn
later on this point.

In conclusion, for each quarter we are able to construct a matrix Y? of bank hold-
ing whose element Ynk

? is the total dollars invested by the n-th bank in the k-th asset
class. It is important to note that the matrix Y? has around 50% of zero entries. Thus
the network is relatively dense, but far from being fully connected. Simply put, the
portfolio of the typical bank in the dataset does not contain investments in all the 20
assets classes.
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3.4 The Cross-Entropy Approach for Systemic Risk Assess-
ment

Cross-Entropy is a method10, largely adopted by scholars and researchers of cen-
tral banks, used to reconstruct a target matrix (as the interbank matrix) from partial
knowledge of its properties. The idea is to select an a priori guess for the matrix and
then to find its closest matrix subject to some constraints. In the simplest case, such
constraints are non negativity conditions of matrix elements and the total row and
column sums. Finally, as a measure of distance to be minimized between the guess
and the target matrix one uses the Kullback-Leibler divergence (also called relative
entropy).

For the specific case of the system of bank holdings for US commercial banks we
assume to have at our disposal, for each quarter, only the information on the total
asset size D?

n for the n-th bank and the total capitalization C?
k for the k-th asset class.

The Cross-Entropy approach derives the target matrix Y as that which solves the
optimization problem

min
Y

N

∑
n=1

K

∑
k=1

Ynk log
(

Ynk

Ỹnk

)
s.t.

N

∑
n=1

Ynk = D?
n, n = 1, ..., N,

K

∑
k=1

Ynk = C?
k , k = 1, ..., K,

Ynk ≥ 0,

(3.5)

where Ỹnk are the entries of a given guess matrix. Note that the cases analyzed in the
interbank lending literature (Mistrulli, 2011) typically have an additional constraint
that diagonal elements vanish, required to avoid a single institution to be simultane-
ously a borrower and lender to itself (see, for example, the Appendix B in Mistrulli,
2011). The matrix of portfolio holdings analyzed here does not require any of such
kind of restrictions.

We suggest to use the capital asset pricing model (CAPM) to form an economi-
cally motivated initial guess. In a standard CAPM, investors choose their portfolio
in such a way that each weight on a stock is the fraction of that stock’s market value
relative to the total market value of all stocks (Sharpe, 1964; Lintner, 1965; Mossin,
1966). Since D?

n is the total asset size of the n-th bank and since the total market value
of all stocks is given by L? = ∑K

k=1 C?
k , the portfolio weights expected by CAPM are

given by11

YCAPM
n,k =

C?
k

L∗
D?

n. (3.6)

Notice that this choice of the initial guess is the same used in Mistrulli, 2011 for
the interbank market, even if in that case the CAPM interpretation is less direct.

10The method is also known as matrix balancing, or maximum entropy matrix reconstruction. We
refer to it as Cross-Entropy in order to clearly distinguish it from a method deriving probability dis-
tributions over all possible matrices (graphs). The latter is introduced in Section 3.5 as a competing
approach for systemic risk reconstruction, and we refer to it as Canonical Maximum Entropy Ensem-
ble method.

11More precisely, we are deriving what can be addressed as a “banking-CAPM” since, as mentioned
before, C?

k represents the total amount of asset’s k capitalization due to the banking sector and not its
total market capitalization.
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Given that in (3.5) the condition on the diagonal elements is absent and since the
Kullback-Leibler divergence is always positive, the optimal solution of the Cross-
Entropy problem in (3.5) when Ỹnk = YCAPM

n,k is nothing but the YCAPM
n,k itself. To distin-

guish the estimator from the Capital Asset Pricing Model of (Sharpe, 1964) we will
call the former Cross Entropy CAPM (CECAPM) estimator. Note that thanks to the
bipartite nature of the network under study we do not have to resort to numerical
routines to solve problem (3.5). If other constraints are added to the problem (e.g.
that some banks cannot invest in some asset classes) one could numerically solve the
problem (3.5) with the additional constraints.

3.4.1 Assessing aggregate vulnerability

A
gg
re
ga
te

V
u
ln
er
a
b
il
it
y
(%

)

Q
1−

20
01

Q
3−

20
01

Q
1−

20
02

Q
3−

20
02

Q
1−

20
03

Q
3−

20
03

Q
1−

20
04

Q
3−

20
04

Q
1−

20
05

Q
3−

20
05

Q
1−

20
06

Q
3−

20
06

Q
1−

20
07

Q
3−

20
07

Q
1−

20
08

Q
3−

20
08

Q
1−

20
09

Q
3−

20
09

Q
1−

20
10

Q
3−

20
10

Q
1−

20
11

Q
3−

20
11

Q
1−

20
12

Q
3−

20
12

Q
1−

20
13

Q
3−

20
13

Q
1−

20
14

Q
3−

20
14

 

 

10

12

14

16

18

20

22
REAL
CECAPM

FIGURE 3.3: This figure reports as a black continuous line the ag-
gregated vulnerability, as defined by equation (3.3), computed on the
matrix Ynk

? of portfolio holdings as provided by the FFIEC dataset of
US commercial bank holdings, described in Section 3.3. The dashed
red line refers to the aggregate vulnerability reconstructed with CE-

CAPM.

We now empirically test the validity of the cross entropy approach in estimating
the aggregate vulnerability on our data.

Figure 3.3 compares the true value of the aggregated vulnerability, obtained by
using the real matrix of portfolio compositions, with the one obtained with the cross
entropy method. It is clear that CECAPM provides estimates of AVs in excellent
agreement with the real one, in spite of the fact that the true portfolio matrix is quite
different from that of CECAPM, because in the former roughly half of the matrix
elements are zero while the latter models have adjacency matrices with all non van-
ishing elements.

An important implication of Figure 3.3 is that, at least for the dataset under anal-
ysis, it is not necessary to know the matrix Y? to assess the systemic risk as measured
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50 % shock on Real Estate loans
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FIGURE 3.4: Aggregate vulnerability under different shock scenar-
ios. Each panel reports the AV obtained from the full knowledge of
portfolios composition and those obtained using the CECAPM recon-

truction.

by the aggregate vulnerability. The knowledge of banks’ size and assets’ capitaliza-
tion is enough to infer the matrix YCAPM

n,k , which very well reproduces the aggregate
behavior (in terms of systemicness) of the system. This is different from the result
of Mistrulli, 2011 for the interbank network, since he finds that the Cross-Entropy
approach significantly underestimates systemic risk, while in our case the bias is
negligible.

Robustness to different shock scenarios

The estimation and reconstruction of AV has been performed by assuming a uniform
shock of 1% across all asset classes. However our results are robust also to other
shock scenarios. To show this, we have repeated the above analysis by considering
other cases, namely: (i) a 50 % shock on Real Estate loans (2 asset classes); (ii) a 10 %
shock on all loans (8 asset classes); (iii) a 50% shock on Mortgage Backed Securities
(1 asset class); and (iv) a 10% shock on U.S. treasury securities, U.S agency securities,
Securities issued by state and local governments (3 asset classes). The resulting ag-
gregate vulnerability with real data and estimated with CECAPM is shown in Figure
3.4. In all cases the CECAPM estimation tracks quite closely the AV obtained from
the full knowledge of portfolios composition. We therefore conclude that our result
is not due to the uniform shock assumption, but is more generically applicable.
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European Banking Authority Data

We now show that our results hold also for different banking systems. To this end we
investigate the public dataset made available12 by the European Banking Authority
(EBA), after the 2011 stress tests conducted on the largest 90 European banks at the
time. The data consists of the exposures of each bank toward a set of 42 asset classes,
as well as their book leverages. We defined the asset classes following precisely
Greenwood, Landier, and Thesmar, 2015 13. Moreover the initial shock is (following
Greenwood, Landier, and Thesmar, 2015) “a 50% write-off of all GIIPS debt”. As for
the U.S. commercial banks, we compared the AV obtained from the full network data
with that obtained using CECAPM. The relative percentage bias of AV estimated
using partial information is 3.7%. As a robustness check, we repeated the exercise
for two different shocks: a 10% write off of either all EU debt or all sovereign debt,
including non E.U. countries. The percentage bias of the CECAPM estimation is
3.6% in the former case and 5.1% in the latter. Clearly also for this dataset, CECAPM
gives a faithful estimation of AV, since the bias is around 3% − 5%, showing the
robustness of the method.

3.4.2 Assessing systemic risk for individual banks

We now test the performance of CECAPM in assessing systemic risk for individual
banks. In order to assess the performance of an estimator that produces estimates Ŝn

and ÎVn of, respectively, systemicness and indirect vulnerability of the n-th bank in
a given quarter we compute the relative error as

sn =
Ŝn − S?

n
S?

n
, vn =

ÎVn − IV?
n

IV?
n

. (3.7)

In each quarter we have from N = 6, 500 to N = 9, 000 values of relative errors
for each metric.

To visualize the result we plot the distribution of sn and vn across all banks
present at a given year.

Figure 3.5 shows the results for 4 different years, and in Appendix 3.7.3 we show
that the results obtained are stable across all the period considered. We observe that
the distributions of percentage bias in the reconstruction of S and IV are similar for
all the years considered. Their support is roughly comprised between −50% and
+60% and they are peaked around −25%, indicating that Cross Entropy tends to
underestimate single banks measures of systemic risk. In summary, the estimates
of systemicness and indirect vulnerably for each single bank as provided by the
CECAPM-implied matrix are satisfactorily accurate.

3.5 Comparison with the Max-Entropy ensembles

The Cross-Entropy approach described in the previous section assumes that the un-
known matrix elements are those with minimal distance (as proxied by the cross-
entropy function) from an a priori matrix. In this approach, the available economic

12http://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing/2011/
results

13The asset classes are: “sovereign debt of each of the 27 EU countries plus 10 others, commercial
real estate, mortgages, corporate loans, small and medium enterprise loans, and retail revolving credit
lines.”

http://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing/2011/results
http://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing/2011/results
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FIGURE 3.5: Distributions of the relative error of bank systemicness
(dashed lines) and indirect vulnerability (solid lines ) with respect to

real data as estimated by the CECAPM for 4 different quarters.

information, which, in the specific case described above, consists of the quantities
D?

n and C?
k , is used to construct the guess following an economic intuition.

A different rationale constitutes the foundation of the Maximum-Entropy (ME)
ensembles approach. This reconstruction method assumes, as standard in contexts
of partial information, that the undisclosed quantities (in our case, the banks’ port-
folio holdings Ynk) are random variables generated from an unknown statistical dis-
tribution. The ME approach amounts to take, among all the possible probability
distributions, the one which maximizes the informational content of the economic
constraints imposed during the maximization. This property follows directly from
the definition of information as stated in the seminal paper by Shannon, 1948.

We define14 a network statistical model as a set Y of graphs, called ensemble,
and a probability mass function Pϑ indexed by a vector of model parameters ϑ. In
formula it is expressed as the triplet

{Pϑ ,Y , ϑ ∈ Ξ } ,

where Ξ is a convex subset of RP, with P the total number of parameters of the
model. The set Y is a countable set whose elements are graphs. In what follows, we
will not distinguish between the graph and the associated matrix Y, i.e. the prob-
ability mass function is defined in the space of integer valued matrices. Moreover
the probability mass function Pϑ : Y → [0, 1] is such that ∑Y∈Y Pϑ (Y) = 1 and is
allowed to depend on a vector of real parameters ϑ ∈ Ξ. A model can be defined by
explicitly giving the ensemble, the probability mass function along with the space Ξ
of the parameters, or by deriving Pϑ [Y] through the recurrent application of some
generative mechanism or rule, either starting from an empty graph or by applying a
randomization procedure to a reference graph.

14In describing our ME approach, we largely follow the theoretical framework of Kolaczyk, 2009a.
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In its most general formulation, the ME principle postulates to obtain the proba-
bility mass function P as that which maximizes the Shannon’s entropy

S = − ∑
Y∈Y

P [Y] log (P [Y])

subject to the normalization constraint

∑
Y∈Y

P [Y] = 1,

and, possibly, to further additional constraints.
There are two ways of imposing the constraints. In the first one, termed mi-

crocanonical ensemble, constraints are imposed exactly, i.e. only the graphs fulfilling
all the constraints have non zero probability. In the second one, termed canonical
ensemble, all the graphs have non zero probability and the constraints are satisfied
on average over the distribution. There are advantages and disadvantages in both
approaches. The microcanonical ensemble is economically more grounded, for ex-
ample in the system under investigation here it implies that a given network real-
ization has non zero probability only if each bank (asset class) has the same asset
size (capitalization) as in real data. On the contrary, in the canonical ensemble also
graphs where these values are very different from the real data might have non zero
probability. Despite this undesirable property, we believe it is worth performing a
comparison of the Cross-Entropy approach with the canonical ME for the following
reasons:

1. Solving the problem in the microcanonical ensemble is typically extremely
hard or it requires extensive numerical simulations, randomizing the network
by allowing moves that preserve all the constraints. On the contrary, canon-
ical ensemble can often be obtained much more directly, as testified by their
widespread use in Statistical Mechanics (Huang, 2008). Moreover when other
constraints are added to the optimization problem, microcanonical ME (as well
as Cross-Entropy) becomes intractable, thus limiting their practical use when
regulators want to add additional knowledge on the system.

2. The flexibility of canonical ME allows exploring the relative role of informa-
tion set and constraints in network reconstruction. For example we will show
below that, using the same information sets (the strength sequences) but dif-
ferent constraints can lead to very different performance in the estimation of
systemic risk, indicating its main determinants.

3. The excellent performance of CECAPM for systemic risk assessment calls for
the construction of a network probability distribution which performs on av-
erage as CECAPM, but allows for scenario generation. The canonical ME en-
semble we will introduce below (MECAPM) does exactly this job.

4. Last but not least, the application of canonical ME network ensembles in Eco-
nomics and Finance is quite widespread, see, for example, Bargigli and Gal-
legati, 2011; Squartini, Fagiolo, and Garlaschelli, 2011; Fagiolo, Squartini, and
Garlaschelli, 2013; Mastrandrea, Squartini, Fagiolo, and Garlaschelli, 2014; Saracco,
Di Clemente, Gabrielli, and Squartini, 2015; Almog, Squartini, and Garlaschelli,
2017
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3.5.1 Maximum Entropy ensembles

We will consider three ME ensembles in this chapter15. First, we propose a new max
entropy ensemble which is based on the role of CAPM in the problem at hand. The
probability mass function P is the solution of the optimization problem

max
P

− ∑
Y∈Y

P [Y] log (P [Y])

s.t. ∑
Y∈Y

P [Y] = 1

EY [Ynk] = YCAPM
n,k , n = 1, ..., N, k = 1, ..., K.

(3.8)

We call this model Maximum Entropy Capital Asset Pricing Model (shortened
in MECAPM henceforth). In Appendix 3.7.2 we prove that the MECAPM has the
unique solution

P [Y] =
N

∏
n=1

K

∏
k=1

(
YCAPM

n,k

1 + YCAPM
n,k

)Ynk
1

1 + YCAPM
n,k

, (3.9)

hence each single matrix entry Ynk is geometrically distributed with mean YCAPM
n,k .

To understand the rationale behind this ensemble, we notice an interesting relation
between the CECAPM and MECAPM estimation of AV under a uniform shock of
asset returns. As shown in Appendix 3.7.4,

E [Sn (Y)] = Sn

(
YCAPM

)(
1 +

D∗n
L∗

+
∑K

k=2 Ck

∑K
k=2 C?2

k

)
, (3.10)

where E [Sn (Y)] is the expected systemicness of bank n under the MECAPM
ensemble and Sn

(
YCAPM) is the one according to the CECAPM. We notice that the

former is larger than the latter, but the correction is small if D∗n � L∗, since the
last term in parenthesis is generally small. This result can also be used to compute
systemicness and AV in the MECAPM ensemble without sampling but using the ex-
pression above. A similar result holds for indirect vulnerability (see Appendix 3.7.4
for details).

Since the other specifications of maximum entropy are quite popular in the litera-
ture of network reconstruction, for comparison purposes we take into considerations
two other ensembles, mainly inspired by the paper by Mastrandrea, Squartini, Fagi-
olo, and Garlaschelli, 2014 and Saracco, Di Clemente, Gabrielli, and Squartini, 2015.
Each of them is characterized by different constraints imposed on the maximization
of the Shannon’s entropy.

In the first ensemble, termed Bipartite Weighted Configuration Model (BIPWCM),
the constrained maximization is

max
P

− ∑
Y∈Y

P [Y] log (P [Y])

s.t. ∑
Y∈Y

P [Y] = 1

EY [Dn] = D?
n, n = 1, ..., N,

EY [Ck] = C?
k , k = 1, ..., K.

15All numerical routines, accompanied with an instruction manual, can be downloaded from http:
//mathfinance.sns.it/network_reconstruction/

http://mathfinance.sns.it/network_reconstruction/
http://mathfinance.sns.it/network_reconstruction/
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Appendix 3.7.2 reports the derivation and calibration of the ensemble. Note that
BIPWCM imposes weaker constraints with respect to MECAPM, while exploiting
the same information set, namely the strength sequences.

Finally, we consider another (richer) statistical ensemble whose probability mass
function, derived in Appendix 3.7.2, corresponds in our bipartite framework to the
enhanced configuration model of Mastrandrea, Squartini, Fagiolo, and Garlaschelli,
2014. This newly defined ensemble, that we address as Bipartite Enhanced Configu-
ration Model (BIPECM), is obtained via Maximum Entropy imposing both the mean
value of strengths (as in BIPWCM) and the mean value of degrees, that is the num-
ber of edges incident in each vertex. In other words, we reconstruct the matrix by
assuming the knowledge of the number of assets in which each bank invests as well
as the number of banks investing in each asset. Despite the fact that this information
is typically not known, we consider this ensemble to show that even with an infor-
mation set significantly larger than the one used in MECAPM it is very difficult to
outperform it. Mathematically, the BIPECM is obtained by solving the optimization
problem

max
P

− ∑
Y∈Y

P [Y] log (P [Y])

s.t. ∑
Y∈Y

P [Y] = 1

EY [Dn] = D?
n,

EY [Drow
n ] = Drow?

n , n = 1, ..., N,
EY [Ck] = C?

k ,

EY
[

Dcol
k

]
= Dcol?

k , k = 1, ..., K,

(3.11)

where Drow
n and Dcol

k are, respectively, the row and the column degree sequences
(see Appendix 3.7.2 for more details). The peculiarity of BIPECM is the addition
of the information on the degree sequences that is absent in both BIPWCM and
MECAPM16. Note that the three ensembles can be used not only for statistical in-
ferences, but to produce estimates of any function defined on the network, which is
the topic of the next section.

3.5.2 Results

Figure 3.6 compares the true value of the aggregated vulnerability, obtained by using
the real matrix of portfolio compositions, with those obtained with entropic meth-
ods. It is clear that all the methods track qualitatively well the temporal pattern
of AV in the investigated period, but it is worth noticing that CECAPM has a very
tiny bias, providing estimates of AVs in excellent agreement with the real one. As
expected from the above argument, AV under MECAPM is always slightly larger
than under CECAPM. Among the max entropy methods, MECAPM outperforms
BIPWCM and BIPECM. Since the information set required to derive the BIPECM
is larger than that used for the MECAPM, this means that it is not the amount of

16One could consider another maximum entropy ensemble where the constraints are the same as in
MECAPM plus the degree sequences. This is an enhanced MECAPM because additional information
on the number of asset classes in each portfolio (and the number of banks investing in each asset
class) is used. The optimization can be performed but the application on the US banks data shows no
appreciable improvement in the systemic risk assessment with respect to the CECAPM (data available
on request). For this reason and for the sake of simplicity in this chapter we will not present results on
this ensemble.
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FIGURE 3.6: This figure reports as a black continuous line the ag-
gregated vulnerability, as defined by equation (3.3), computed on the
matrix Ynk

? of portfolio holdings as provided by the FFIEC dataset
of US commercial bank holdings, described in Section 3.3. The other
lines refer to the aggregate vulnerability reconstructed with the four

entropic methods.

information that matters, rather the way in which information is conveyed in the re-
construction algorithm. Finally, notice that the true portfolio matrix is quite different
from the matrices of CECAPM, MECAPM, and BIPWCM because in the former half
of the matrix elements are zero while the latter models have adjacency matrices with
all non vanishing elements.

A similar comparative result holds by considering different shock scenario, as
those studied in Section 3.4 (see Fig. 3.9 of the Appendix 3.7.3) as well as for the
European Banking Authority Data (see Table 3.1. Among the max entropy methods,
MECAPM significantly outperforms BIPWCM and BIPECM in estimating the AV
obtained with the full knowledge of the portfolio composition of banks.

Finally we considered the assessment of systemic risk for individual banks. Fig-
ure 3.10 of the Appendix 3.7.3 shows that for each quarter BIPWCM strongly un-
derestimates individual bank systemicness and indirect vulnerability. The median
relative error ranges roughly between −60% and −70% and the interquartile range
is very far from zero. The estimator based on BIPECM (using the additional infor-
mation on degrees) gives slightly better results, even if a strong underestimation is
still present. The median relative error ranges roughly between −50% and −40%
and again the interquartile range is far from zero. On the contrary the estimator
based on MECAPM (or CECAPM) performs much better. The median relative er-
ror never goes below −20% and almost always the interquartile range is centered
around zero.17

17If instead we focus on the banks with higher systemicness or indirect vulnerability, the perfor-
mances of the estimator based on MECAPM worsen. In particular, for the quartile of banks with
largest systemicness, the median percentage bias of the MECAPM estimator of systemicness is always
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50% GIIPS 10% E.U. Gov. 10% All Gov.
AV = 496.3% AV = 270.8% AV = 357%

ÂV % Bias % Bias % Bias
CECAPM 480.4 % 3.2% 3.6 % 5.1 %
BIPWCM 361.9% 27.1 % 28.6 % 22.4 %
BIPECM 392.9 % 20.8% 20.6 % 12.5 %

MECAPM 436.7 % 12% 12.4 % 4.1 %

TABLE 3.1: Comparison, for the EBA data, between real and esti-
mated values of the Aggregate Vulnerability (AV). The three columns
correspond to different shocks. Under the name of each shock we re-
port the corresponding real AV, computed from the complete knowl-
edge of banks’ portfolios. In the first column we report the esti-
mated AV and the percentage bias for the 4 different ensembles, re-
sulting from a 50% value loss of GIIPS sovereign debt, as consid-
ered in Greenwood, Landier, and Thesmar, 2015. In the second and
third columns we report the percentage biases of estimated AV for
two alternative scenarios: a 10% loss of value for either all the E.U.

sovereign debt or the sovereign debt of all countries.

In summary, the estimates of systemicness and indirect vulnerably for each sin-
gle bank as provided by the CECAPM-implied matrix are almost identical to those
obtained as the corresponding expected values on the MECAPM ensemble. Besides,
they are satisfactorily accurate and surely more reliable than those provided by stan-
dard maximum entropy ensembles. Once more, the important message is that it is
possible to achieve pretty accurate estimates of systemic risk metrics, at the aggre-
gate or individual institution level, due to fire sales spillover without a full knowl-
edge of the portfolio holdings of financial institutions.

3.5.3 Monitoring and testing changes in systemicness

As another application of the ensembles of graphs obtained with the Maximum En-
tropy method, we consider here the problem of assessing whether the systemicness
of a given bank (or of the whole system) has changed in a statistically significant
way. In order to answer this question, it is necessary to have a null hypothesis and
we propose to use network ensembles to this end. Since the MECAPM shows supe-
rior performances in estimating risk metrics, in this section we use it and we propose
a possible application for statistical validation. Our objective here is not to study all
the banks and all the quarters, but only to show how the testing method can be
implemented.

In particular, imagine a regulator who monitors a given bank, measuring its sys-
temicness and searching for evidences of a significant increase. Having a given
quarter as reference, the regulator can extract the distribution of bank’s systemic-
ness and, in the subsequent quarters, identify when the systemicness is outside a
given confidence interval around the reference period. As a special case, we select
four banks among the top fifty in the first quarter and that exist for the entire time

between −20% and −30%. Similarly, the median of the percentage bias in the estimation of indirect
vulnerability via MECAPM is always between−20% and−35%. Nevertheless, the ranking among the
three estimation methods remains unchanged.
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FIGURE 3.7: We report, for four selected banks, the true systemicness
(thick dotted lines) and the 5%-95% confidence bands according to
the MECAPM ensemble. A magenta square is added in every quarter
in which the systemicness of the bank is above the 95% confidence

level of the first quarter of 2001.

period (i.e. they do not exit the dataset). For each quarter we compute the true
bank systemicness and the 5%-95% confidence bands according to the MECAPM
ensemble (see Figure 3.7). We then added a magenta square in each quarter when
the true systemicness is above the 95% confidence band of the first quarter, used as
reference. Hence, a magenta square is indicating a quarter when the systemicness
of the bank is statistically larger (according to the MECAPM) than at beginning of
2001. We show two banks for which a statistically significant change in systemic-
ness is observed (top row) and two for which no change is observed (bottom row).
Notably, for the former case we find that the systemicness of the banks analyzed
increased significantly much before the onset of the 2007-2008 financial crisis. This
phenomenon persisted along the entire period of the crisis and vanished not before
the end of 2009. This suggests that network statistical models could be of valuable
help in the surveillance activity of central banks and other supervisory authorities
as monitoring tools and in constructing early warning indicators.

3.6 Conclusions

In this chapter we focused on the problem of estimating metrics of systemic risk due
to fire sale spillover in presence of limited information on the composition of port-
folios of financial institutions. A full knowledge of the portfolio holdings of each
institution in the economy is generally required to have a precise estimate of any
risk metrics that, as those proposed by Greenwood, Landier, and Thesmar, 2015, is
based on the mechanism of portfolio rebalancing through fire sales. Nevertheless,
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such a huge and detailed information may not be available, especially at frequency
higher than quarterly, making the estimation of systemic risk quite difficult. In this
chapter we circumvent the problem by providing accurate estimates of systemic risk
metrics that are based on a partial knowledge of the system, more precisely only on
the sizes of balance sheets and the capitalization of assets (or asset classes), which
are much easier to trace. In this respect, we have shown that the method of Cross-
Entropy minimization does a very good job in estimating aggregate vulnerability
and individual bank systemicness without requiring any knowledge of the underly-
ing matrix of bank portfolio holdings.

Furthermore, we have compared the results with a Max Entropy ensembles.
Specifically we have introduced a new ensemble (MECAPM), which reproduces,
on average, the CECAPM and performs quite well in estimating systemicness and
indirect vulnerability of single institutions, outperforming standard Max Entropy
competitors. Moreover the estimation of systemic risk metrics could provide valu-
able information to any policy maker, but variations in systemicness and indirect
vulnerability are difficult to interpret in absence of a statistical validation. For this
reason, as a final contribution, we have proposed to use the Max Entropy ensemble
to assess the statistical significance of systemic risk metrics. On a selection of banks
of our dataset we documented that their systemicness significantly increased, with
respect to the level observed at the beginning of the 2001, much before the onset of
the 2007-2008 financial crisis. Even if deeper investigations are required in this direc-
tion, we believe that this approach could be easily implemented as an early warning
indicator of systemic risk.

Finally, we would like to comment again on the scope of the Greenwood, Landier,
and Thesmar, 2015 model as well of our work. As discussed in the main text, the
considered methodology belongs to the classic static stress test approach. Only the
portfolios and balance sheets at the time of the tested shock are used and no in-
tertemporal dynamics is ever considered. This is a serious limitation, since financial
distress and deleveraging might occur on longer periods and the bank’s decision
at a given quarter can depend, not only on the present price changes and portfolio
composition, but also on past market state and banks’ behavior. We believe that ex-
tending the Greenwood, Landier, and Thesmar, 2015 approach to a dynamic stress
test setting is a very interesting avenue for research both for academicians and for
regulators.
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3.7 Appendix

3.7.1 Data Description and Dataset Creation

This appendix provides some descriptive features of the data along with the method
adopted to build the 20 asset classes of the bank-asset network analyzed in the chap-
ter. The left panel (first row) of Figure 3.8 reports, on a log-log scale, the kernel den-
sity of the bank sizes (i.e. the total amount of assets detained by the bank) pooled
across all quarters. It is evident that bank sizes are quite heterogeneous. The right
panel (first row) of Figure 3.8 reports the density of the bank leverages Tn pooled
across all quarters. In this case we observe a much less heterogeneous distribution,
with most banks showing a leverage around 10. Finally, the second row of Figure
3.8 reports the relation between size and leverage. The plot is achieved by sorting
all records of bank size from the smallest to the largest and then applying a moving-
window procedure. As expected from the density plots, there is no relation between
leverage and bank size, having most bank a leverage of 10 and a highly heteroge-
neous size.

Concerning the formation of the asset classes used in the main text, we provide in
what follows details on how they have been created. As mentioned in the main text,
the focus of the chapter is on commercial banks, whose precise definition is given
by the FFIEC as [...] every national bank, state member bank, insured state nonmember
bank, and savings association is required to file a consolidated Call Report normally as of
the close of business on the last calendar day of each calendar quarter, i.e., the report date.
The specific reporting requirements depend upon the size of the bank and whether it has any
“foreign” offices [...]. This is the set of institutions that is referred as Commercial Banks
throughout all the chapter.

Forms FFIEC031 and FFIEC041 are dedicated to, respectively, banks with only
domestic offices and banks with domestic and foreign offices. However, in both
forms, it is adopted the same coding system. More specifically there are only two
types of codes, RCON and RCFD, which are followed by a four digits alphanumer-
ical code. The alphanumerical code identifies the budget item, for example 2170
refers to total assets of the bank. The prefix RCON is used for financial items rela-
tive to domestic offices, while RCFD encompasses both domestic and foreign offices.
Hence RCON2170 is the code for the total assets of the bank detained in U.S. offices,
while RCFD2170 is relative to the sum of total assets detained in U.S. plus offices
abroad. Of course, for banks that fill the FFIEC031 the two codes RCON and RCFD
report the same value if they have the same alphanumerical code.

Table 3.2 documents the detailed composition of each asset class. For each asset
class (first column) we report the composition in terms of FFEIC items in the third
column and a short name given to the asset class in the second one. Such abbrevia-
tion is needed since some asset class, e.g. “loans to consumers in foreign offices”, are
assembled subtracting from the FFIEC codes some previously defined asset classes.
There is a one-to-one correspondence between asset classes and variable names, a
part for the case of “loans secured by real estates in domestic offices”, which is com-
puted as the sum of five variables, from “construction loans” to “non farm, non
residential”. The composition of the FFEIC formula reported in the third column
may vary during time, hence we report in bold the period of validity of the formula
adopted. In this respect, note that the date 12/99 refers to the last available quarter,
that is the third quarter of 2014. In reporting the FFEIC formula, we adopt the con-
vention that the prefix is omitted whenever RCON is used solely for banks with only
domestic offices and RCFD solely for those that have at least on office abroad. On
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the contrary, when the prefix is specified, it means that only the code with that par-
ticular prefix is being been used. For example the code RCON3532 is used only in
its domestic version, hence we do not use RCFD3532 for banks with offices abroad.
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FIGURE 3.8: This Figure reports some descriptive features of the data analyzed. Top left panel
plots, on a log-log scale, the kernel density of bank sizes (defined as total assets in unit of
103$) while top right is the kernel density of the bank leverages. Both densities are computed
using all records pooled across the entire time span. For the sake of visualization, we put
a cut-off of 50 on the maximum leverage allowed, although leverages of more than 150 are
(rarely) observed. The bottom panel shows that there is no relation between leverage and size.
The procedure adopted to draw the plot is the following: all records of bank size are sorted
from the smallest to the largest one and a rolling window of 1000 records is moved, with an
incremental shift of 10 records, from the first to the last. In each window we compute the
mean leverage (black continuous line) and the standard deviation of leverage (red dotted line)
of banks that fall in the window. Mean and standard deviation are plotted as a function of the

mean size in the window, which is reported in the horizontal axis.
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TABLE 3.2: Composition of Asset Classes

Asset Class Variable Name FFIEC Formula

Total assets tot_ass 03/01-12/99: 2170+2123+3123

Equity equity 03/01-03/09: 3210+3000
03/09-12/99: G105

Cash and balances due from depository institutions cahab 03/01-12/99: 0081+0071

U.S. treasury securities ust_sec 03/01-12/99: 0211+1287+RCON3531

U.S agency securities agency_sec 03/11-12/99: 1289+1294+1293+1298+RCON3532

Securities issued by state and local governments state_sec 03/01-12/99: 8496+8499+RCON3533

Mortgage backed securities mbs 03/01-03/09: 1698+1702+1703+1707+1709+1713+1714+1717+1718+1732+
1733+1736+RCON3534+RCON3535+RCON3536.
06/09-12/10: G300+G303+G304+G307+G308+G311+G312+G315+G316+

G319+G320+G323+G324+G327+G328+G331+RCONG379+RCONG380+
RCONG381+RCONG382
03/11-12/99: G300+G303+G304+G307+G308+G311+G312+G315+G316+
G319+G320+G323+K142+K146+K145+
K149+K150+K154+K153+K157+

RCONG379+RCONG380+RCONG381+RCONK197+RCONK198

Asset backed securities abs 03/01-12/05: B838+B841+B842+B845+B846+B849+B850+B853+B854+
B857+B858+B861
03/06-03/09 C026+C027
06/09-12/99:
C026+C027+G336+G340+G344+G339+G343+G347

Other domestic debt securities dom_debt_oth_sec 03/01-12/99: 1737+1741

Foreign debt securities for_debt_sec 03/01-12/99: 1742+1746

Residual securities res_sec 03/01-12/99: A511

Futures, forwards sold and securities purchased un-
der the agreement to resell (asset) ffrepo_ass 03/01-12/01: 1350

03/02-12/99: RCONB987+B989

Loans secured by real estates in domestic offices

Construction loans 03/01-12/07: RCON1415
03/08-12/99: RCONF158+RCONF159

Secured by farmland 03/01-12/99: RCON1420

1-4 Family real estate 03/01-12/99: RCON5367+RCON5368+RCON1797

Multifamily property loans 03/01-12/99: RCON1460

Non farm, non residential 03/01-12/07: RCON1480
03/08-12/99: RCONF160+RCONF161

Loans secured by real estate in foreign offices ln_re_for 03/01-12/99: (if present) RCFD1410 - ln_const -
ln_farm - ln_rre - ln_multi - ln_nfnr,
3/01-12/99: (otherwise) zero

Commercial and industrial loans in domestic offices ln_ci_dom 03/01-12/99: RCON1766

Commercial and industrial loans in foreign offices ln_ci_for 03/01-12/99: (if present) RFCD1763+RFCD1764 - RCON1766,
03/01-12/99: (otherwise) zero

Loans to consumers in domestic offices ln_cons_dom 03/01-12/10: RCON2011+RCONB538+RCONB539
03/11-12/99: +RCONB538+RCONB539+RCONK137+RCONK207

Loans to consumers in foreign offices ln_cons_for 03/01-12/10: (if present) RCFD2011+ RCFDB538+
RCFDB539 - ln_cons_dom, (otherwise) zero
03/11-12/99 (if present) RCFDB538+RCFDB539+
RCFDK137+RCFDK207-ln_cons_dom, (otherwise) zero

Loans to depository institutions and acceptances of
other banks

ln_dep_inst_banks 03/01-12/99: (if present) RCFDB532+RCFDB533+RCFDB534+

RCFDB536+RCFDB537, (otherwise) RCON1288

other loans oth_loans 03/01-12/99: 2122+2123-ln_const-ln_farm-ln_rre-ln_multi-ln_nfnr-
ln_re_for-ln_ci_dom-ln_ci_for-ln_cons_dom-ln_cons_for-ln_dep_inst_banks

Equity securities that do not have readily deter-
minable fair value

equ_sec_nondet 03/01-12/99: 1752

other assets oth_ass 03/01-12/99: tot_ass - all preceding assets
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3.7.2 Max Entropy Ensembles

In this appendix we provide the details of the derivation of the probability mass
functions for the MECAPM, BIPWCM and BIPECM ensembles.

Maximum Entropy Capital Asset Pricing Model

Considering the maximum entropy optimization problem presented in Section 2.4
with constraint functions φnk = Ynk, and λnk as Lagrange multipliers, we obtain the
normalizing factor

Kϑ = ∑
Y∈Y

e−∑N
n=1 ∑K

k=1 λnkYnk

= ∑
Y∈Y

N

∏
n=1

K

∏
k=1

e−λnkYnk

=
N

∏
n=1

K

∏
k=1

∞

∑
Ynk=0

e−λnkY

=
N

∏
n=1

K

∏
k=1

1
1− e−λnk

. (3.12)

Hence

P (Y) =
N

∏
n=1

K

∏
k=1

e−λnk Ynk

1− e−λnk
.

Note that the partition function Kϑ in (3.12) is such that

∂ log (Kϑ)

∂λnk
= −EY [Ynk] . (3.13)

Hence, imposing the CAPM structure as required in (3.8), the Lagrange multipliers
are determined by

−∂ log Kϑ

∂λnk
=

D?
n C?

k
L?

,

which gives the probability mass function for the MECAPM

P =
N

∏
n=1

K

∏
k=1

(
YCAPM

nk

1 + YCAPM
nk

)Ynk
(

1
1 + YCAPM

nk

)
, (3.14)

where

YCAPM
nk =

D?
n C?

k
L?

.

Bipartite Weighted Configuration Model.

When we want to use as economic information the total asset size of each bank and
the total capitalization of each asset, without imposing the MECAPM structure, we
need one Lagrange multiplier λn for each φn = ∑k Ynk, and one Lagrange multiplier
ηk for each φk = ∑n Ynk. We can go on with computation by explicitly writing the



3.7. Appendix 51

expression of Dn (Y) and Ck (Y) in terms of the elements of the matrix Y, obtaining

Kϑ = ∑
Y∈Y

N

∏
n=1

K

∏
k=1

e−Ynk (λn +ηk)

=
∞

∑
Y1,1=0

· · ·
∞

∑
Y1,K=0

· · ·
∞

∑
Yn,1=0

· · ·
∞

∑
Ynk=0

N

∏
n=1

K

∏
k=1

e−Ynk (λn +ηk)

=
N

∏
n=1

K

∏
k=1

∞

∑
Ynk=0

e−Ynk (λn +ηk)

=
N

∏
n=1

K

∏
k=1

1
1− e−(λn +ηk)

=
N

∏
n=1

K

∏
k=1

1
1− ϕn ξk

,

where ϕn = e−λn and ξk = e−ηk , whence

P (Y) =
∏N

n=1 ∏K
k=1 e−Ynk (λn +ηk)

∏N
n=1 ∏K

k=1
1

1−ϕn ξk

=
N

∏
n=1

K

∏
k=1

(ϕn ξk)
Ynk (1− ϕn ξk) , (3.15)

The value of the Lagrange multipliers are determined by imposing that the expected
value of Dn (Y) and Ck (Y) on the ensemble Y are equal to, respectively, D?

n and C?
k .

As for the MECAPM case, note that Kϑ is such that

EY [Dn] = −
∂ log (Kϑ)

∂λn
,

and similarly

EY [Ck] = −
∂ log (Kϑ)

∂ηk
.

Hence we can compute EY [Dn] and EY [Ck] explicitly as a function of the Lagrange
multipliers, that is

EY [Dn] =
∂

∂λn

N

∑
n=1

K

∑
k=1

log
(

1− e−(λn +ηk)
)

=
K

∑
k=1

e−(λn+ηk)

1− e−(λn +ηk)
,

EY [Ck] =
∂

∂ηk

N

∑
n=1

K

∑
k=1

log
(

1− e−(λn +ηk)
)

=
N

∑
n=1

e−(λn+ηk)

1− e−(λn +ηk)
.

Therefore the Lagrange multipliers are determined by numerically solving the non-
linear system of equations

∑K
k=1

ϕn ξk
1−ϕn ξk

= D?
n, n = 1, ..., n,

∑N
n=1

ϕn ξk
1−ϕn ξk

= C?
k , k = 1, ..., K.

(3.16)
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Bipartite Enhanced Configuration Model.

The only difference with the Weighted model described in Appendix 3.7.2 is the ad-
dition of the constraints on the number of degrees for each node. Before proceeding,
we have thus to add some additional definitions.

The binary projection of Ynk is defined as the matrix Ynk = 1Ynk>0. Accordingly,
the number Drow

n of assets in which the n-th bank invests and the number Dcol
k of

banks that own the k-th asset class are computed as

Drow
n (Y) =

K

∑
k=1

Ynk, Dcol
k (Y) =

N

∑
n=1

Ynk, (3.17)

where the capital letter D stands for degree, as it is common practice in network
theory18.

The maximization problem for the BIPECM case is hence stated as

max
P

S (P [Y])

s.t. ∑
Y∈Y

P [Y] = 1

EY [Dn] = D?
n, n = 1, ..., N,

EY [Drow
n ] = Drow?

n , n = 1, ..., N,
EY [Ck] = C?

k , k = 1, ..., K,

EY
[

Dcol
k

]
= Dcol?

k , k = 1, ..., K.

With an obvious extension of the number of Lagrange multipliers, and since Drow
n (Y) =

∑K
k=1 1Ynk>0 (similarly, Dcol

k (Y) = ∑N
n=1 1Ynk>0), we obtain

Kϑ = ∑
Y∈Y
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∏
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K

∏
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=
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∑
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∞

∑
Yn,1=0
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=
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K
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∞
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=
N
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K
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(
1 + e−(ρn+δk)

∞
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e−(Ynk (λn+ηk))
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=
N
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n=1

K

∏
k=1

(
1 +

e−(ρn+δk)

1− e−(λn+ηk)
− e−(ρn+δk)

)
.

Defining ϕn = e−λn , ξk = e−ηk , ψn = e−ρn and γk = e−δk we get

Kϑ =
N

∏
n=1

K

∏
k=1

1− ϕn ξk (1− ψn γk)

1− ϕn ξk
. (3.18)

18We have chosen not to use a different notation for bank and asset degrees since, although they
have an immediate economic interpretation, they are not frequently used in economic analysis. In
fact, while Dn and Ck are typically publicly available, the degree sequences Drow

n and Dcol
k are instead

difficult to trace.
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Finally, we get that the probability mass function for the BIPECM is

Pϑ (Y) =
N

∏
n=1

K

∏
k=1

(1− ϕn ξk) (ϕn ξk)
Ynk (ψn γk)

1Ynk>0

1− ϕn ξk (1− ψn γk)
. (3.19)

The determination of the Lagrange multipliers follows a procedure identical to that
described for BIPWCM in Appendix 3.7.2, that is the expected values of Dn (Y),
Ck (Y), Drow

n (Y) and Dcol
k (Y) are computed as the partial derivative of − log (Kϑ)

with respect to the corresponding Lagrange multiplier and then equated to the ob-
served value. This procedure produce the non-linear system of equations

∑K
k=1

φn ξk ψn γk
(1−φn ξk) (1−φn ξk (1−ψn γk))

= D?
n, n = 1, ..., n,

∑K
k=1

φn ξk ψn γk
1−φn ξk (1−ψn γk)

= Drow?

n , n = 1, ..., n,

∑N
n=1

φn ξk ψn γk
(1−φn ξk) (1−φn ξk (1−ψn γk))

= C?
k , k = 1, ..., K,

∑N
n=1

φn ξk ψn γk
1−φn ξk (1−ψn γk)

= Dcol?
k , k = 1, ..., K.

(3.20)

3.7.3 Comparison of Reconstruction Methods under Different Shocks

In this appendix we report additional comparisons between cross entropy and max-
imum entropy ensemble methods for systemic risk assessment. In Figure 3.9 we
show the performances of the four methods presented in the chapter in reconstruct-
ing Aggregate Vulnerability, for four different shock scenarios. In all cases the CE-
CAPM and MECAPM estimation outperform the other two and track quite closely
the AV obtained from the full knowledge of portfolios composition. We therefore
conclude that our result is not due to the uniform shock assumption, but is more
generically applicable.

We then compare the performances of the different methods in assessing indi-
vidual bank’s quantities, it Indirect Vulnerability and Systemicness. In each quarter
we have from N = 6, 500 to N = 9, 000 values of relative errors for each metric.
To visualize the result we plot the median of the relative error and as a measure of
dispersion we use the interquartile range, i.e. the difference between the upper and
lower quartiles19. Clearly a median well centered around zero is an indication that
the estimator is unbiased.

Figure 3.5 shows the results for bank systemicness (top panel) and indirect vul-
nerability (bottom panel). The three different colors refer to the three different en-
sembles (see the figure caption for more details). We do not report the results for the
CECAPM because it is indistinguishable from the MECAPM one and this fact can
be understood by the argument in Eq. (3.10).

We observe that for each quarter BIPWCM strongly underestimates individual
bank systemicness and indirect vulnerability. The median relative error ranges roughly
between−60% and−70% and the interquartile range is very far from zero. The esti-
mator based on BIPECM (using the additional information on degrees) gives slightly
better results, even if a strong underestimation is still present. The median relative
error ranges roughly between −50% and −40% and again the interquartile range is

19We choose these metrics because they are more robust and less sensitive to outliers.
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FIGURE 3.9: Aggregate vulnerability under different shock scenarios.
Each panel reports the AV obtained from the full knowledge of port-
folios composition and those obtained using the four reconstruction

methods considered.

far from zero. On the contrary the estimator based on MECAPM (or CECAPM) per-
forms much better. The median relative error never goes below −20% and almost
always the interquartile range is centered around zero.20

In summary, the estimates of systemicness and indirect vulnerably for each sin-
gle bank as provided by the CECAPM-implied matrix are almost identical to those
obtained as the corresponding expected values on the MECAPM ensemble. Besides,
they are satisfactorily accurate and surely more reliable than those provided by stan-
dard maximum entropy ensembles.

3.7.4 Relation between CECAPM and MECAPM

This appendix is dedicated to derive explicit formulas for the expected values of
bank systemicness and indirect vulnerability under the MECAPM ensemble. More-
over we show that these expected values are well approximated by the correspond-
ing values returned by the CECAPM-implied matrix. First note that, according to
equation (3.14), the element Ynk is geometrically distributed with parameter p =

20If instead we focus on the banks with higher systemicness or indirect vulnerability, the perfor-
mances of the estimator based on MECAPM worsen. In particular, for the quartile of banks with
largest systemicness, the median percentage bias of the MECAPM estimator of systemicness is always
between −20% and −30%. Similarly, the median of the percentage bias in the estimation of indirect
vulnerability via MECAPM is always between−20% and−35%. Nevertheless, the ranking among the
three estimation methods remains unchanged.
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FIGURE 3.10: Time series of the relative error (see Eq. 3.7) of bank sys-
temicness (top panel) and indirect vulnerability (bottom panel) with
respect to real data as estimated by the three ensembles BIPWCM (red
and squares), BIPECM (blue and circles), and MECAPM (grey and
dashed line). The thick lines indicate the median and the colored ar-

eas the interquartile range.
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Hence the expected value of the systemicness of bank n is given by21
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21Remember that in our setting all the illiquidity parameters are set to a common value ` except for
the cash, which we assume to be the first class k = 1, for which it is set to zero, whence the sum from
k = 2 to k = K.
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Note that since
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This expression can be rewritten as
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In order to evaluate the relative error above consider the simplified case in which all
the capitalization are almost equal C?
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K , hence
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where the last inequality follows from the fact that L? = ∑N
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Concerning the indirect vulnerability we have
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Now consider that
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Assume, again, for simplicity that Ck ≈ L
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Chapter 4

Models for Temporal Networks

Synopsis of the Chapter In this Chapter we give an overview of the literature on
models for temporal networks. We start with a discussion of models for sequences
of binary snapshots networks, with particular attention to temporal extensions of
the ERGM models class. In the last part of the Chapter we review the literature on
models for temporal weighted networks.

4.1 Definitions

Often systems that are fruitfully described as networks evolve in time. When pair-
wise interactions change over time, one usually speaks of temporal networks (So-
ramäki, Wetherilt, and Zimmerman, 2010; Holme and Saramäki, 2012; Craig and Von
Peter, 2014). In such time-varying setting, nodes can appear and disappear at any
point in time and links can last for a finite interval of time, a quantity usually referred
to as duration, or be instantaneous. To represent the most general temporal network,
without loss of information, each link should have a start time and an end time, and
various formalism have been proposed in the literature to describe dynamical pair-
wise interaction (Casteigts, Flocchini, Quattrociocchi, and Santoro, 2012; Rossetti,
2015; Latapy, Viard, and Magnien, 2018). Probably the most widespread way of
representing temporal networks is one that simplifies the temporal description by
considering sequences of networks in discrete time. That amounts to consider a
temporal partition of the sequence of links into a sequence of snapshot networks. In
this thesis, we focus on the latter description of temporal networks. Hence for the
rest of this work we will consider a temporal network as a sequence of networks,
in discrete time, each one associated with an adjacency matrix and observed at T

different points in time
{

Y(t)
ij

}T

t=1
.

In general, an econometric model for temporal, possibly weighted, networks can
be described in terms of a probability distribution P

(
Y(t)

ij |Y(t−1), . . . Y(1), X(t)
1 , . . . , X(t)

K

)
that describes the probability of each link Y(t)

ij to be observed, and the distribution
of its weight, as potentially depending on previous realizations of the network and
a set of, matrix valued, external variables X1 . . . XK. The external variables can be
different for each link, and Xij would be the value of the external variable associated
with link ij.

One of the main topics of this thesis is the proposal of new innovative econo-
metric models to handle binary and weighted temporal networks. Nevertheless, we
are by no means the first to approach this subject. In the following we review the
main models for temporal networks available in the literature. In doing so, we start
with models for binary temporal networks, focusing on the temporal extensions of
ERGMs, reviewed in Section 2.2, as the original contributions presented in Chapters
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6, 7 and 8 are all related to ERGMs and their temporal extensions. We then conclude
this Chapter with an overview of the, smaller, literature on models for weighted
temporal networks.

4.2 Models for Binary Temporal Networks

The literature on models for temporal binary networks is quite large but many con-
tributions are related to the ERGM framework, that we reviewed in Section 2.2.
Hence, we start this literature review from models that extend, in various ways,
the ERGM family for the description of temporal networks. These extensions are
meant to describe only binary temporal networks as link weights are not modelled
in ERGMs.

4.2.1 TERGM

The most well known temporal extension of ERGM is probably the one known as
Temporal Exponential Random Graph Model (TERGM). This approach was pio-
neered by Robins and Pattison, 2001 and subsequently discussed in detail in Han-
neke, Fu, Xing, et al., 2010 and Cranmer and Desmarais, 2011. This approach builds
on the ERGM, but allows the network statistics defining the probability at time t to
depend on current and previous networks up to time t− K. This K-step Markov as-
sumption is a defining feature of the TERGMs. Considering only lag 1 dependencies,
a TERGM is defined by the following probability mass function

P(A(t)|A(t−1), θ) =
e∑ θlql(A(t),A(t−1))

K(θ)
, (4.1)

where the functions ql(A(t), A(t−1)), called network statistics1, are defined to investi-
gate the determinants of the network’s dynamics, and K(θ) is a normalization coeffi-
cient, known as partition function. Examples of network’s statistics, among those ex-
plored in the original work of Hanneke, Fu, Xing, et al., 2010, are qstab(A(t), A(t−1)) =

∑ij A(t)
ij A(t−1)

ij +(1− A(t)
ij )(1− A(t−1)

ij ), that captures links’ stability, and qdens(A(t)) =

∑ij A(t)
ij , related to current network’s density.

In a related but different approach Krivitsky and Handcock, 2014 separately
model the tie duration and tie formation. They define a class of models called Sep-
arable Temporal Exponential Random Graphs (STERGM) that explicitly models the
transition of a network between time t − 1 and time t by defining two intermedi-
ate networks. They refer to them as the formation network A+, consisting of the initial
network A(t−1) with ties formed during the time step added and the dissolution network
A−, consisting of the initial network A(t−1) with ties dissolved during the time step re-
moved.2 Then they model the link formation A+ and link dissolution A− each with
a TERGM.

4.2.2 ERGM with Time Varying Parameters

A more recent approach to define temporal extensions of ERGM consists in allow-
ing for its parameters to be time-varying. A notable example of this approach is

1They can be defined as functions of the current and lagged adjacency matrices, Y(t) and Y(t−1),
and can depend on both or only one of them, as in the examples presented in the following.

2Definition from Krivitsky and Handcock, 2014, and adapted to our notation.
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the Varying-Coefficient-ERGM (VCERGM) proposed in Lee, Li, and Wilson, 2020.
There, the authors combine the varying-coefficient models’ formalism (see Fan and
Zhang, 2008, for a review) with ERGM to take into account the possibility of the
ERGM parameters to be smoothly time-varying. In particular, they specify a collec-
tion of basis functions B1 (t) , . . . , Bq (t) for t = 1, . . . , T, and then, assuming

P
(

A(t)|θ(t)
)
=

e∑s θ
(t)
s qs(A(t))

K
(
θ(t)
) (4.2)

they approximate θ(t) by a linear combination of these functions

θ
(t)
i = ∑

j
φijBj (t)

where φij denote the basis coefficients to be estimated. They choose as basis the set
of B-splines functions and, to infer parameter time-variation at time t need to use all
the available observations, including those from future times t′ > t. Thus, in time
series jargon, this approach is a smoother and not a filter. Also, due to its smoother
nature, it cannot be used to generate sequences of time-evolving networks.

In a related, but different, approach Mazzarisi, Barucca, Lillo, and Tantari, 2020
focus only on the ERGM specification known as fitness model, that we reviewed
in 2.2.1, and consider the possibility of a random evolution of the node specific pa-
rameters. They call this model Temporally Generalized Random Graph (TGRG) and
formally define it by assuming that, for each time t, the binary adjacency matrix has
the following probability distribution

P
(

A(t)|←−θ
(t)

,
−→
θ

(t)
)
= ∏

ij

e
A(t)

ij

(←−
θ

(t)
i +
−→
θ

(t)
j

)

1 + e

(←−
θ

(t)
i +
−→
θ

(t)
j

)

and the time varying fitness each follow an auto-regressive process of order one. For
example, the in-fitness of node i follows

←−
θ

(t)
i = c0,i + c1,i

←−
θ

(t−1)
i + ε

(t)
i

where ε
(t)
i ∼ N

(
0, σ2

i
)
∀i = 1, . . . , N, and a similar evolution is assumed for the

out-fitness parameters
−→
θ . Moreover, they complement such a time varying fitness

model with a link copying mechanism, inspired by the discrete auto regressive pro-
cesses (DAR), to explicitly model the phenomenon of link persistence in temporal
networks. The resulting model, that they call DAR-TGRG is then a mixture of a
the link copying mechanism (DAR) with a time varying fitness model that allows to
quantify how likely is a link to be copied from the previous realization, instead of
being drawn according to the TGRG at time t. The model can also be used to filter
the time-varying parameters in a very specific ERGM and, following the language
of Cox et al., 1981, it belongs to a class of econometric models known as parameter
driven, that we mention in Chapter 5.

4.2.3 Other Models for Binary Temporal Networks

Various instances of latent space models for networks, described in Section 2.3, have
been extended to model binary temporal networks (see, for example, Sarkar and
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Moore, 2005; Sewell and Chen, 2015). The underling idea of this stream of literature
is to allow the latent positions z, defined in Section 2.3, to evolve in time, as reviewed
in (Kim, Lee, Xue, Niu, et al., 2018). For example, Sewell and Chen, 2015 define a
Dynamic latent distance model with popularity and activity effects, where the adjacency
matrix depends on the value of the latent variables at time t parameters that evolve
following a random walk, and a set of constant parameters to capture the nodes’
activity effects ri for i = 1, . . . , N.

P
(

A(t)|z(t), βin, βout, r
)
= ∏

ij

eA(t)
ij η

(t)
ij

1 + eA(t)
ij η

(t)
ij

, (4.3)

where

η
(t)
ij = βin

1−
|z(t)i − z(t)j |

ri

+ βout

1−
|z(t)i − z(t)j |

rj

 , (4.4)

and the z(t)i parameters each follow an independent random walk.
Finally, it is important to mention that frameworks alternative to latent space

models and temporal extension of ERGM for modeling temporal networks have also
been considered in the social science literature. Notable examples are the Stochastic
Actor Oriented model (SAOM) of Snijders, 1996 and the Relational Event Model (REM)
of Butts, 2008.

4.3 Models for Temporal Weighted Networks

The literature on models for temporal weighted networks is scarcer than that for bi-
nary case. This is most certainly due to the additional model complexity required to
properly describe the weights. Moreover, as mentioned in Chapter 2 most real world
networks are found to have an abundance of zero entries that, in the weighted case,
require some care in modelling the probability for a link to be present, P

(
Aij = 1

)
=

P
(
Yij > 0

)
, and its expected weight E

[
Yij
]
.

For example, Giraitis, Kapetanios, Wetherilt, and Žikeš, 2016 use Tobit models
for temporal weighted networks with an abundance of zero entries. They associate
to the weighted adjacency matrix Y a latent matrix Y? by

Yij =


Yij

?, i f Yij
? > 0

0, i f Yij
? ≤ 0,

and model Y? in a standard way as a continuous variable. In practice, they select

a set of network statistics qi (Y) and, for each link, estimate the dependency Y(t)
ij

?

on q
(

Y(t−1)
)

. With their choice of network statistics, they estimate a separate Tobit
model for each pair of links. Finally, they use a local-likelihood method to estimate
the time varying coefficients of the regression. The censored regression used in this
paper has the downside issue of requiring a joint modeling of the presence of a link
and of its weight. While this choice allows for straightforward estimates and builds
on the well known Tobit regression, it models jointly the effect that a covariate has
on the probability of observing a link and the one that it has on its expected weight.
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Latent space models have also been considered for sparse weighted networks,
with the aim of inferring from the weights dynamics the time varying positions of
nodes in a latent space. For example Sewell and Chen, 2016, consider an extended
version of their binary model, presented in the previous section, by applying a differ-
ent link functions to (4.4) that allows them to handle count and positive continuous
weights. In the case of positive continuous weights, they combine their approach
with a Tobit model, in order to be able to model sparse networks.

Models that allow each one of the matrix elements Y(t)
ij to depend on each of

the Yij
(t−1) have also been considered in the literature. For example, Billio, Casarin,

and Iacopini, 2018 estimate a tensor regression (very similar to a VAR on vec(Y)),
with rank restrictions on the (huge) matrix of model’s parameters. Differently from
the previously mentioned papers, they do not take the sparse nature of networks
explicitly into account.
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Chapter 5

Score Driven Econometric Models

Synopsis of the Chapter In this chapter we review score driven econometric mod-
els. We start by briefly discussing time varying parameter models in general. Then
we give the formal definition of score driven models and discuss their application as
misspecified filters with one explicit example. We discuss a theoretical motivation
for using the score in the update rule for the parameters. Finally, we conclude dis-
cussing how to quantify uncertainty and test for temporal heterogeneity in the score
driven framework.

5.1 Introduction

Let us set the stage to better explain score-driven models by briefly reviewing the
theory of time-varying parameters models in discrete time. There is a rich literature
on the topic, which has been summarized in the review by Tucci, 1995 and more re-
cently by Koopman, Lucas, and Scharth, 2016. In general, a time-varying parameters
model can be written as

s(t) ∼ P(s(t)| f (t),S (t−1), Φ1) (5.1a)

f (t) = ψ( f (t−1), f (t−2), ...,S (t−1), ε(t), Φ2) (5.1b)

where s(t) is a vector of observations sampled from the probability distribution func-
tion p, S (t−1) is the set of all observations up to time t− 1 and f (t) are the parameters
which are assumed to be time varying. The dynamics of these parameters can ei-
ther depend on past observations, on past values of the same parameters, on some
external noise ε(t) and on two sets of static parameters Φ1 and Φ2.

If the function ψ only contains past values of the time-varying parameters, a
noise term and the static parameters, then the model is called a parameter-driven
model, whereas if the function ψ can be written as a deterministic function only of
past observations and past parameters, it is called an observation-driven model Cox
et al., 1981.

Examples for parameter-driven models can be found in the financial economet-
rics literature looking at stochastic volatility models Tauchen and Pitts, 1983; Shep-
hard, 2005, which aim at describing the time-varying nature of the volatility (i.e. the
variance) of price variations, as well as other examples Bauwens and Veredas, 2004;
Hafner and Manner, 2012.

Within the observation-driven models, the most celebrated example is the Gener-
alized Auto-Regressive Conditional Heteroscedasticity (GARCH) model Bollerslev,
1986b, where a time series of financial log-returns is modelled using a time-varying
volatility parameter depending deterministically on squared observations up to that
time and past values of volatility.
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One of the main topics of this thesis is the proposal of new observation driven
models for temporal networks. The main advantage of adopting an observation-
driven model rather than a parameter-driven one lies in its estimation: having time-
varying parameters that only depend on observations through a set of static parame-
ters results in a strong reduction of complexity in writing the likelihood of the model,
whereas the calculations for most non-trivial parameter-driven models are typically
extremely convoluted and computationally intensive.

In this thesis, we focus on the Score Driven approach for the definition of obser-
vation driven models that has received much attention in the recent econometric
literature. Several are the reasons of the flexibility of a score-driven approach and
of its success in time-series modeling, in the rest of this Chapter we precisely define
them, discuss in details a well known example, and review features and methods
from the score driven framework that motivated their widespread diffusion.

5.2 Definition

Score-driven models, also known as Generalized auto-regressive Score (GAS) or Dy-
namic Conditional Score (DCS) models, are a specific class of observation-driven
models. Originally introduced by Creal, Koopman, and Lucas, 2013 and Harvey,
2013b, they postulate that time-varying parameters depend on observations through
the score of the conditional likelihood, i.e. the gradient of its logarithm.

Specifically, let us consider a sequence of observations
{

y(t)
}T

t=1
, where each

y(t) ∈ RM, and a conditional probability density P
(

y(t)| f (t)
)

, that depends on a vec-

tor of time-varying parameters f (t) ∈ RK. Defining the score as∇(t) =
∂ log P(y(t)| f (t))

∂ f (t)′
,

a score-driven model assumes that the time evolution of f (t) is ruled by the recursive
relation

f (t+1) = w + b f (t) + aI (t)∇(t), (5.2)

where w, a and b are static parameters, w being a K dimensional vector and a and b
K× K matrices. I (t) is a K× K scaling matrix, that is often chosen to be the inverse
of the square root of the Fisher information matrix associated with P

(
y(t)| f (t)

)
, i.e.

I (t) = E

[
∂ log P(y(t)| f (t))

∂ f (t)′
∂ log P(y(t)| f (t))

∂ f (t)′

′]− 1
2

. However, this is not the only possible

specification and different choices for the scaling are discussed in Creal, Koopman,
and Lucas, 2013.

A second look at eq. (5.2) reveals to the reader the similarity of the score-driven
recursion with the iterative step from a Newton algorithm, whose objective function
is precisely the log-likelihood function. Indeed, at each step the score pushes the
parameter vector along the log-likelihood steepest direction. After scaling with the
matrix I , the intensity of the push is modulated by the parameter a, and its direction
adjusted by the auto-regressive component.

A score driven model can be regarded both as data generating process (DGP) or
as a filter. In both cases, the most important feature of (5.2) is the role of the score
as a driver of the dynamics of f (t). The structure of the conditional observation
density determines the score, from which the dependence of f (t+1) on the vector of
observations y(t) follows. When the model is viewed as a DGP, the update results
in a stochastic dynamics exactly thanks to the random occurrence of y(t). When the
score-driven recursion is regarded as a filter, the update rule in (5.2) is used to obtain
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a sequence of filtered
{

f̂ (t)
}T

t=1
. In this setting, the static parameters are estimated

maximizing the log-likelihood of the whole sequence of observations (for a detailed
discussion, see Harvey, 2013a; Blasques, Koopman, and Lucas, 2014),

(
ŵ, b̂, â

)
= arg max

(w,b,a)

T

∑
t=1

log P
(

y(t)| f (t)
(

w, b, a,
{

y(t
′)
}t−1

t′=1

))
. (5.3)

In the univariate case, Blasques, Koopman, and Lucas, 2014 work out the required
regularity conditions ensuring the consistency and asymptotic normality for the
maximum likelihood estimators of the parameter values.

5.3 An Example of Score-Driven Models as Misspecified Fil-
ters

Here we present a simple example of how score-driven models can be used to fil-
ter an unknown dynamics of a parameter, without assuming a specific model for
its time evolution. We will do it by considering the classical case of a discrete time
random walk model with time-varying diffusion coefficient. This type of models is
very popular in finance where the (logarithm of the) price follows a random walk
and the diffusion rate, termed volatility, represents the risk of the asset. As we will
show, under minimal assumptions, such a filter turns out to coincide with the pop-
ular GARCH model for volatility.

All this is relatively well known. Indeed, the interpretation of GARCH processes
as predictive filters is well described in this statement by Nelson, 1992: “Note that
our use of the term ‘estimate’ corresponds to its use in the filtering literature rather
than the statistics literature; that is, an ARCH model with (given) fixed parameters
produces ‘estimates’ of the true underlying conditional covariance matrix at each
point in time in the same sense that a Kalman filter produces ‘estimates’ of unob-
served state variables in a linear system”.

Let us call s(t) the increment of the log-price, p(t + 1) − p(t) and consider a
stochastic volatility model

s(t) = σ(t)ε(t) ε(t) ∼ N (0, 1).

i.e. the conditional probability density function of s(t) is

p(s(t)|σ(t)) =
1√

2πσ2(t)
e
− s2W(t)

2σ2(t)

By choosing as time-varying parameter f (t) = σ2(t), the score of the likelihood is

∂ log p(s(t)| f (t))
∂ f (t)

= − 1

2σ2(t)
+

s2(t)

2σ4(t)

hence the equation for the evolution of volatility is

σ2(t + 1) = w + bσ2(t) +
aI−1/2(t)

2

[
s2(t) − σ2(t)

σ4(t)

]
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Thus if s2(t) � σ2(t) (s2(t) � σ2(t)), the new σ2(t + 1) will be larger (smaller) than
σ2(t). This is exactly the mechanism which dynamically adjusts the filtered estima-
tion of volatility taking into account the most recent observation(s).

By choosing I (t) as the the Fisher information matrix and using E[s2(t)|σ2(t)] =

σ2(t), it is

I (t) ≡ −E

[
∂2 log p(s(t)|σ(t))

∂2σ2(t)

∣∣∣∣σ2(t)
]
= −E

[
1

2σ4(t)
− s2(t)

σ6(t)

∣∣∣∣σ2(t)
]
=

1

2σ4(t)

thus
σ2(t + 1) = w + bσ2(t) + a(s2(t) − σ2(t)) = w + αs2(t) + βσ2(t) (5.4)

with α = a and β = b − a, which coincides with the GARCH model. This model
has been originally proposed as a data generating process for describing realistic
dynamics of volatility, while here it is derived as a result of Score-Driven modeling.
The GARCH model of Eq. 5.4 is typically seen as a data generating process for the
volatility, and thus the price, of financial assets. This model is routinely estimated
from real data and used widely in the financial industry for risk management, port-
folio allocation, systemic risk, etc.. Fig. 5.1 shows a typical simulated price pattern
from a GARCH(1,1) process, displaying fat tails and clustered volatility, as observed
in empirical data. It turns out that other well known models in econometrics can be
expressed as score-driven models. Famous examples are the Exponential GARCH
model of Nelson, 1991, the Autoregressive Conditional Duration (ACD) model of
Engle and Russell, 1998, and the Multiplicative Error Model (MEM) of Engle, 2002.
The introduction of this framework in its full generality opened the way to applica-
tions in various contexts.

However, the main point we want to make here concerns the use of GARCH, and
more generally of score-driven models, as filters of a differently specified dynamics.
To show this in practice, we simulate 1000 price observations from the model

s(t) = σ(t)ε(t) ε(t) ∼ N (0, 1) σ(t) = 2 +
1
2

sin
(

πt
100

)
(5.5)

The top panel of Fig. 5.2 shows the simulated price dynamics. This is clearly not a
GARCH model and the sinuisodal shape can be modified with other deterministic or
stochastic processes. Assuming the data generating process of Eq. 5.5 is unknown,
one can nevertheless fit the GARCH(1,1) model and obtain, beside the static param-
eters w, a, and b, the filtered values of σ(t). The outcome of this procedure is shown
in the bottom panel of Fig. 5.2 where the red line is the simulated σ(t), while the
black circles represent the filtered values of σ(t).

The example shows how score-driven models can be used to filter the time-
varying parameters with unknown dynamics from data. As mentioned in the main
text, Score-driven models have been shown to be an optimal choice among observation-
driven models when minimising the Kullback-Leibler divergence to an unknown
generating probability distribution Blasques, Koopman, and Lucas, 2015.

5.4 Information Theoretical Optimality

There are motivations, originating in information theory, for the optimality of the
score-driven updating rule. In Blasques, Koopman, and Lucas, 2015, the authors
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FIGURE 5.1: Artificially generated time series of length 1000 from a
GARCH(1,1) model with w = 10−6, α = 0.1, β = 0.8. Figure from

Campajola, Di Gangi, Lillo, and Tantari, 2020.
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FIGURE 5.2: (a) Artificially generated time series of returns accord-
ing to the model of Eq. 5.5. (b) Simulated (orange line) and fil-
tered (purple dots) values of σ(t). The latter are obtained by fitting a
GARCH(1,1) model on the data in the top panel. Figures from Cam-

pajola, Di Gangi, Lillo, and Tantari, 2020.
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consider a true and unobserved DGP y(t) ∼ P
(

y(t)| f (t)
)

. They assume a given

and in general mispecified conditional observation density P̃(t) = P̃
(

. | f̃ (t)
)

, and
consider the Kullback-Leibler (K-L) divergence

DKL
(

P(t), P̃(t+1)
)
=
∫

A
P
(

y| f (t)
)

log
P
(

y| f (t)
)

P̃
(
y| f̃ (t+1)

) dy,

where A ⊆ R. Building on the minimum discrimination information principle (Kull-
back, 1997), they argue that, when the new observation yt becomes available, f̃ (t+1)

should ideally be such that the updated density P̃(t+1) is as close as possible to the
true density P(t). Given that the real DGP is not known, an optimal update that min-
imizes DKL cannot be defined in practice. For this reason, Blasques, Koopman, and
Lucas, 2015 focus on the improvements of DKL that an updating step produces irre-
spectively of the true DGP. One way of quantifying the improvement for a parameter
update from f̃ (t) to f̃ (t+1) is to consider the realized variation of DKL

∆t|t ≡ DKL
(

P(t), P̃(t+1)
)
−DKL

(
P(t), P̃(t)

)
=
∫

A
P
(

y| f (t)
)

log
P̃
(

y| f̃ (t)
)

P̃
(
y| f̃ (t+1)

) dy .

(5.6)
Based on this definition, a parameter update is realized K-L optimal when ∆t|t < 0

for every
(

y(t), f̃ (t), f (t)
)

. The authors prove that, under reasonable assumptions,

the updating rule (5.2) based on the score of P̃(t+1) is locally realized K-L optimal.
For more details, and alternative definitions of optimality, we direct the reader to the
original work and the more recent Blasques, Lucas, and Vlodrop, 2020.

5.5 Confidence Bands

Any filtering tool should provide an estimation of the uncertainty and confidence
bands for the estimates. Blasques, Koopman, Łasak, and Lucas, 2016 discussed
methods to quantify the uncertainty associated with the score driven filters, when
the DGP is itself a score driven model. Specifically, they proposed a simulation based
method to define in sample confidence bands around the filtered time varying pa-
rameters. Their procedure starts from the maximum likelihood estimate of the static

parameters, given observations
{

y(t
′)
}t−1

t′=1
, as defined in (5.3). Given the MLE esti-

mate, the method prescribes to repeatedly sample new parameters (w, bi, a)i from a
multivariate normal, centered around the MLE estimates, and variance-covariance
matrix estimated with the Huber-White estimator (Huber et al., 1967; White, 1980).
Then one uses each sample to filter a different sequence of time varying parameters,
from the same time series of observations, thus obtaining a sample of filtered paths

f̂ (t)i = f̂ (t)i

(
wi, bi, ai,

{
y(t
′)
}t−1

t′=1

)
for i = 1, . . . , K, where K is the number of sam-

ples. Finally, for each time t one uses the obtained distribution f̂ (t)i to calculate the
appropriate percentiles defining the confidence bands. While this construction is in-
tuitive and easy to implement in practice, it is meant to capture only the uncertainty
due to the estimation of the static parameters, often referred to as parameter uncer-
tainty. Hence the confidence bands reliably quantify uncertainty only when the DGP
is score driven. In other words, these bands do not take into account what is known
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as filtering uncertainty. This is the uncertainty due to the fact that in general we do not
know the true DGP and the score-driven filter may be regarded only as an approx-
imate filter. Recently Buccheri, Bormetti, Corsi, and Lillo, 2018 investigated the ap-
proximation error made by applying a score driven filter to a time varying parameter
model following a different DGP. They found that, for a class of DGPs where the pa-
rameters follow an auto-regressive process, the approximation becomes exact in the
limit of small variance of the latent parameters. Moreover they proposed a method
to define confidence bands, inspired by Hamilton, 1986, that accounts for both filter-
ing and parameter uncertainty in Score Driven filters. While we refer to their paper
for the details of the derivation, here we briefly describe the key steps of the pro-
cedure. The total conditional variance of the latent parameters is decomposed as
the sum of two terms. One term captures the parameter uncertainty similarly to the
approach of Blasques, Koopman, Łasak, and Lucas, 2016. The other term captures
the filtering uncertainty and can be written in terms of the static parameters (w, b, a)
and the scaling matrix I (t) from (5.2) as P(t) = b−1aI (t). In practice, the procedure
consists in sampling (w, b, a)i and obtaining a distribution of filtered paths, as in
Blasques, Koopman, Łasak, and Lucas, 2016. Then for each time step t the variance

of the latent parameters is obtained as 1
K ∑i

(
f̂ (t)i − f̂ (t)

)2
+ 1

K ∑i b−1
i aiS

(t)
i , where f̂ (t)

is the path filtered using the maximum likelihood estimates from (5.3).

5.6 Test for Temporal Heterogeneity

As a final aspect, score-driven models allow for a test discriminating whether the
observations are better described by a model with time-varying parameters or static
ones. In fact, following Engle, 1982, Calvori, Creal, Koopman, and Lucas, 2017 dis-
cuss, and extensively evaluate, the performances of a test for parameter temporal
variation tailored for score-driven models. For a detailed description of the test, we
refer the reader to Calvori, Creal, Koopman, and Lucas, 2017. Here, we shortly re-
view the main idea. The method consists in a Lagrange Multiplier (LM) test for the
parameter a that multiplies the score in the one dimensional version of the recur-
sion (5.2). The null hypothesis H0 is that the parameter f (t) is actually static, i.e.
β = α = 0, and it corresponds to w. As explained in Davidson, MacKinnon, et al.,
2004, the LM statistic for the hypothesis H0, versus the alternative a = b 6= 0 can
be conveniently obtained from an auxiliary regression. To allow for a coefficient b
different from a, one can use the same arguments as in Lee, 1991. As discussed in
Calvori, Creal, Koopman, and Lucas, 2017, the LM statistic can be written as the
explained sum of squares from the regression

1 = cw∇(t)
w + caI (t−1)∇(t−1)

w ∇(t)′
w + residual,

where cw and ca are regression coefficients that can be estimated with any statistical
software. It is worth noticing that, under the null, the score of the conditional density
with respect to f (t) is equal to the score with respect to w. From standard asymp-
totic theory, it follows that the LM statistic is distributed as a χ2 with one degree of
freedom.
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Chapter 6

Score Driven Exponential Random
Graphs

Synopsis of the Chapter Motivated by the increasing abundance of data describ-
ing real-world networks that exhibit dynamical features, we propose an extension
of the ERGMs that accommodates the time variation of its parameters. Inspired by
the fast growing literature on Dynamic Conditional Score-driven models each pa-
rameter evolves according to an updating rule driven by the score of the ERGM dis-
tribution. We demonstrate the flexibility of the score-driven ERGMs (SD-ERGMs),
both as data generating processes and as filters, and we show the advantages of
the dynamic version with respect to the static one. We discuss two applications to
time-varying networks from financial and political systems. First, we consider the
prediction of future links in the Italian interbank credit network. Second, we show
that the SD-ERGM allows to discriminate between static or time-varying parameters
when used to model the dynamics of the US congress co-voting network.

Almost all the contents of this chapter previously appeared in Di Gangi, Bormetti, and
Lillo, 2019.

6.1 Introduction

In this Chapter, we present an original approach to time-varying networks that is
based on two main ingredients: (i) a parametric probabilistic model, according to
which one can sample a network realization, i.e. an adjacency matrix; (ii) a simple
mechanism to introduce time-variation on the model parameters and, consequently,
to induce a dynamics on the network sequence. Concerning the former point, a
natural choice is the class of statistical models for networks, known as ERGMs. As
far as point (ii) is concerned, a flexible candidate is suggested by the fast growing
literature on the Dynamic Conditional Score-driven models. The goal of this paper
is to present a new class of models for temporal networks and to provide evidence
that the novel approach is versatile and effective in capturing time-varying features.
To the best of our knowledge, this is the first time the two frameworks are combined
to provide a dynamic description of networks.

Our main contribution is an extension of the ERGM framework that allows model
parameters to change over time in a score-driven fashion. The result of our efforts
is a class of models for time-varying networks where the information encoded in
Ft−1 is exploited to filter the time-varying parameters θ(t) at time t. We refer to this
class as Score-Driven Exponential Random Graph Models. At this point, it is worth to
comment that a generic SD-ERGM can be also used to generate synthetic sequences
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of graphs, i.e. it can be considered as a DGP. However, we are more inclined to in-
terpret it as an effective filter of latent time-varying parameters, regardless of what
the true DGP might be.

The rest of the Chapter is organized as follows. In Section 6.2 we introduce the
new class of models and validate it with extensive numerical experiments for three
specific instances of the SD-ERGM. Section 6.3 presents the results from an appli-
cation to two real temporal networks: The e-Mid interbank network for liquidity
supply and demand and the U.S. Congress co-voting political network. Section 6.4
draws the relevant conclusions.

6.2 Score-Driven Exponential Random Graphs

In this section, we introduce the general SD-ERGM framework, discuss in detail the
applicability of the score-driven approach to three different ERGMs, and validate
their performances with extensive numerical simulations.

We propose to apply the score-driven methodology, presented in Chapter 5 to
the ERGMs, presented in Chapter 2. This combination will allow any of the pa-
rameters θs in (2.5) to have a stochastic evolution driven by the score of the static
ERGM model, computed at different points in time. This approach results in a frame-
work for the description of time-varying networks, more than in a single model, in
very much the same way as ERGM is considered a modeling framework for static
networks. We refer to such class of models as Score-Driven Exponential Random
Graphs Models.

Conceptually, applying the score-driven approach is fairly straightforward. Given

the observations
{

Y(t)
ij

}T

t=1
, we can apply the update rule in (5.2) to all or some ele-

ments of θ, each of which is associated with a network statistic in (2.5). In order to
do this, we need to compute the derivative of the log-likelihood at every time step,
i.e. for each adjacency matrix Y(t). For the general ERGM, the elements of the score
take the form

∇(t)
s (θ) =

∂ log P
(

Y(t)|θ
)

∂θs
= hs

(
Y(t)

)
− ∂ logK (θ)

∂θs
.

It follows that the vector of time-varying parameters evolves according to

θ(t+1) = w + bθ(t) + aI (t)∇(t)
(

θ(t)
)

. (6.1)

Hence, conditionally on the value of the parameters θ(t) at time t and the observed
adjacency matrix Y(t), the parameters at time t+ 1 are deterministic. When used as a
DGP, the SD-ERGM describes a stochastic dynamics because, at each time t, the ad-
jacency matrix is not known in advance. It is randomly sampled from P

(
Y(t)|θ(t)

)
and then used to compute the score that, as a consequence, becomes itself stochas-

tic. When the sequence of networks
{

Y(t)
}T

t=1
is observed, the static parameters

(w, b, a), that best fit the data, can be estimated maximizing the log-likelihood of the
whole time series. Taking into account that each network Y(t) is independent from
all the others conditionally on the value of θ(t), the log-likelihood can be written as

log P
({

Y(t)
}T

t=1
|w, b, a

)
=

T

∑
t=1

log P
(

Y(t)|θ(t)
(

w, b, a,
{

Y(t′)
}t−1

t′=1

))
. (6.2)
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It is evident that the computation of the normalizing factor, and its derivative with
respect to the parameters, is essential for the SD-ERGM. Not only it enters the defi-
nition of the update, but it is also required for the optimization of (6.2).

Our main motivation for the introduction of SD-ERGM is to describe the time
evolution of a sequence of networks by means of the evolution of the parameters of
an ERGM. We assume to know, from the context or from previous studies of static
networks in terms of ERGM, which statistics are more appropriate in the description
of a given network. Hence, we do not discuss the choice of statistics in the context of
dynamical networks, but refer the reader to Goodreau, 2007 and Hunter, Goodreau,
and Handcock, 2008 for examples of feature selection and Goodness Of Fit (GOF)
evaluation, as well as to Shore and Lubin, 2015 for a recent proposal to quantify
GOF specifically in network models.

In the rest of this section, we discuss in details the SD extension of ERGMs with
given statistics. The first example allows for the exact computation of the likelihood,
but the number of parameters can become large for large network. In the second
example, we discuss how an SD-ERGM can be defined when the log-likelihood is
not known in closed form. Using extensive numerical simulations, we show that SD-
ERGMs are very efficient at recovering the paths of time-varying parameters when
the DGP is known and the score-driven model is employed as a misspecified filter.
Moreover, we show a first application of the LM test in assessing the time-variation
of ERGM parameters.

6.2.1 Score Driven Beta Model

Our first specific example is the score-driven version of the beta model, introduced in
Sec. 2.2.1. We start with this model not only because of its wide applications and rel-
evance in various streams of literature, but also because the likelihood of the ERGM,
and its score, can be computed exactly. Moreover, the number of local statistics, the
degrees, and parameters can become very large for large networks. Since we need to
describe the dynamics of a large amount of parameters, this last feature poses a chal-
lenge to any time-varying parameter version of the beta model. At the end of this
Section we will show how the SD framework allows for a parsimonious description
of such a high dimensional dynamics.

As anticipated, the SD-beta model is defined by the application of (6.1) to each
one of the

−→
θ and

←−
θ parameters. Among the possible choices, we use as scaling

the diagonal matrix I (t)ij = δij I
(t)
ij

−1/2
, where I(t) = E[∇(t)∇(t) ′], i.e. we scale each

element of the score by the square root of its variance. It is very common, in score-
driven models with numerous time-varying parameters, to restrict the matrices a
and b of (5.2) to be diagonal. In this work, we consider a version of the score update
having only three static parameters (ws, bs, as) for each dynamical parameter θs. The
resulting update rule for the beta model is

←−
θ

(t+1)
s = win

s + bin
s
←−
θ

(t)
s + ain

s

 ∑i

(
Y(t)

is −p(t)is

)
√

∑i p(t)is

(
1−p(t)is

)


−→
θ

(t+1)
s = wout

s + bout
s
−→
θ

(t)
s + aout

s

 ∑i

(
Y(t)

si −p(t)si

)
√

∑i p(t)si

(
1−p(t)si

)
 ,

(6.3)
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where the superscripts in and out indicate the first and second half of the parame-
ter vectors, respectively. In order to simplify the inference procedure, we consider
a two-step approach. First, we fix the node specific parameters wi in order to target
the unconditional means of

←−
θ and

−→
θ resulting from an ERGM with static parame-

ters. Conditionally on the target values, we estimate the remaining parameters ain,
aout, bin, and bout. We verified that the bias introduced by the two-step procedure is
negligible and results remain similar when the joint estimation is performed.

SD-ERGMs as filters: Numerical Simulations

As mentioned in the Introduction, SD-ERGMs (as other observation driven model,
e.g. GARCH) can be seen either as DGP and estimated on real time series or as pre-
dictive filters (Nelson, 1996), since time-varying parameters follow one-step-ahead
predictable processes. In this Section we show the power of the ERGMs in this sec-
ond setting. Specifically, we simulate generic non-stationary temporal evolution for
the parameters θ(t) of temporal networks. We then use the SD-ERGM to filter the
paths of the parameters and evaluate its performances. It is important to note that
the simulated dynamics of the parameters is different from the score-driven one used
in the estimation.

In practice, at each time t, we sample the adjacency matrix from the PMF of an
ERGM with parameters1 θ̄(t) , evolving according to known temporal patterns, that
define different DGPs. We then use the realizations of the sampled adjacency matri-
ces to filter the patterns. We consider a sequence of T = 250 time steps for a network

of 10 nodes, each with parameters
←−
θ i

(t)
and

−→
θ i

(t)
evolving with predetermined

patterns. We test four different DGPs. The first one is a naive case with constant

parameters θ
(t)

= θ0. The elements of θ0 are chosen in order to ensure heterogeneity
in the expected degrees of the nodes under the static beta model. For the remain-
ing three DGPs, half of the parameters is static and half is time-varying evolving
with either a deterministic sinusoidal function, a deterministic step function and a
stochastic AR(1) dynamics. More details on the definition of such DGPs are given in
2.2.1.

In the following, we benchmark the performance of the SD-ERGMs with that of
a sequence of cross sectional estimates of static ERGMs, i.e. one ERGM estimated
for each t. We quantify the performance of the two approaches computing the

Root Mean Square Error 1
T

√
∑t

(
θ̄
(t)
s − θ̂

(t)
s

)2
, that describes the distance between

the known simulated path and the filtered. We then average the RMSE across all
the time-varying parameters and 100 simulations, and report the results in Table 6.1.
These results confirm that the SD beta model outperforms the standard beta model
in recovering the true time-varying pattern. Notably, this holds true even when the
DGP is inherently non stationary, as in the case of the DGP where each parame-
ter has a step like evolution. Indeed the results of this Section and of Section 6.2.2
confirm that, while the SD update rule (5.2) defines a stationary DGP (see Creal,
Koopman, and Lucas, 2013), using SD models as filters, we can effectively recover
non stationary parameters’ dynamics.

Our last numerical simulations for the SD beta model explore its applicability
and performances for networks of increasing size. We explore this setting for two
reasons. The first one is that many real systems are described by networks with a

1In the following, the notation with a bar refers to the true parameters used in the DGP.
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TABLE 6.1: RMSEs (on a percentage base) of the filtered paths aver-
aged over all time-varying parameters and all Monte Carlo replicas
of the numerical experiment. Left column: results from the cross sec-
tional estimates of the beta model; right column: score-driven beta

model results. Each row correspond to one of the four DGPs.

DGPs Average RMSE

beta model SD-beta model
Const 1.75 0.20
Sin 2.76 0.34
Steps 2.46 0.28
AR(1) 1.82 0.24

large number of nodes. The second reason is that we want to compare the perfor-
mances of our approach with those of the standard beta model in regimes where the
latter is known to perform better, under suitable conditions. Indeed, as mentioned
in Section 2.2.1, asymptotic results on the single observation estimates Chatterjee,
Diaconis, Sly, et al., 2011 guarantee that, if the network density remains constant
as N grows larger, the accuracy of the cross sectional estimates increases. We want
to check numerically that, within the regime of dense networks, the accuracy of the
static and SD versions of the beta model reaches the same level. In order to check
whether the SD approach provides any advantage for large networks, we perform
numerical experiments similar to the previous ones, but in a different and more real-
istic regime of sparse networks, i.e. keeping constant the average degree. Moreover,
to ease the computational burden for the estimates, we consider a restricted version
of the SD-Beta model, as detailed in Section 6.5.1 of the Appendix, having only one
set of parameters

(
bin, bout, ain, aout) for the whole network, instead of one set per

each node.
In this analysis, we consider only one dynamical DGP and many different values

of N. Among the DGPs used above, we focus on the one with smooth and periodic
time variation. Most importantly, we set a maximum degree attainable for a node
and we let it depend on N in two distinct ways, each one corresponding to a different
density regime: one generating sparse networks and the other dense ones. It is impor-
tant to notice that the asymptotic results of (Chatterjee, Diaconis, Sly, et al., 2011) are
expected to hold only in the dense case. The average densities, for different values
of N, in the two regimes are shown in the left panel of Figure 6.1. Then, for both
regimes and each value of N, we compute the average RMSE across all time-varying
parameters and all Monte Carlo replicas. In the right panel of Figure 6.1, the average
RMSEs for different values of N clearly indicate that, also for large networks, the SD
version of the beta model attains better results compared with the cross sectional es-
timates. As expected, in the dense network regimes, both approaches reach the same
accuracy as long as N becomes larger. However, in the more realistic sparse regime,
the performance of the SD-ERGM remains much superior for both small and large
network dimensions.

6.2.2 Pseudo Likelihood SD-ERGM

As mentioned earlier, the dependence of the normalizing function on the θ param-
eters is often unknown. This fact prevents us from computing the score function
and directly applying the update rule (5.2) to a large class of ERGMs. To circumvent
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FIGURE 6.1: Left panel: average density as a function of the number
of nodes N in the dense (dashed line) and sparse (solid line) regimes.
Right panel: average RMSE of the filtered parameters with respect to
the simulated DGP in both the dense (dashed lines) and sparse (solid
lines) regimes. The average RMSE from the ERGM is plotted in blue,

while the one from the SD-ERGM in red.

this obstacle, instead of the unattainable score of the exact likelihood, we propose
to use the score of the pseudo-likelihood, discussed in Sec. 2.2.3, that we refer to as
pseudo-score

∇(t) (θ) =
∂ log PL

(
Y(t)|θ

)
∂θ

(t)′
s

= ∑
ij

δs
ij

(
Y(t)

ij −
1

1 + e−∑l θlδ
l
ij

)
, (6.4)

in place of the exact score in the definition the SD-ERGM update (5.2). Additionally,
we use the pseudo-likelihood for each observation Y(t) in (6.2) for the inference of
the static parameters.

Our approach, based on the score of the pseudo-likelihood, requires as input the
change statistics for each function hs

(
Y(t)

)
2. In the following, we show that the

update based on the score of the pseudo-likelihood is effective in filtering the path
of time-varying parameters. Remarkably, this is true even when the probability dis-
tribution in the DGP is the exact one, i.e. when we sample from the exact likelihood
and then use the SD-ERGM based on the pseudo-likelihood to filter.

At this point we point out that the realized optimality, proven in Blasques, Koop-
man, and Lucas, 2015 and reviewed in Section 5.4, defines a class of updates; it does
not represent a single update with a unique functional form. For instance, ∆t|t de-
fined in (5.6), is clearly specific of the chosen P̃. A different choice of P̃, e.g. one
inspired by the pseudo-likelihood specification, translates into an alternative opti-
mal choice for the update. In general, there can be an infinite number of realized
Kullback-Leibler optimal updates.

SD-ERGM for Transitivity and Network Density

In this section we discuss numerical simulations for an ERGM whose normalization
is not known in closed form, that we apply also to real data in Section 6.3.2. We show
the concrete applicability of the SD-ERGM approach based on the pseudo-score and

2For practical applications, it is very convenient that, for a large number of network functions, an
efficient implementation to compute change statistics is made available in the R package ergm Hunter
et al., 2008.
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FIGURE 6.2: Filtered paths of the parameters of the ERGM in (6.5)
with time-varying parameters. The path from the true DGP is in
black. The blue dots are the cross sectional ERGM estimates, and the

red lines the SD-ERGM filtered paths.

its performance as a filter in comparison with the cross sectional MCMC estimates
of the standard ERGM. The models we consider have two statistics. The first one is
the total number of links present in the network. The second statistics is the GWESP,
introduced in Section 2.2.2. The ERGM is thus defined by

∑
s

θsqs

(
Y(t)

)
= θ1 ∑

ij
Y(t)

ij + θ2GWESP
(

Y(t)
)

. (6.5)

To test the efficiency of the SD-ERGM, we simulate a known temporal evolution for
the parameters and, at each time step, we sample the exact PMF from the resulting
ERGMs. Finally, we use the observed change statistics for each time step to estimate
two alternative models: a sequence of cross sectional ERGMs and the SD-ERGM. In
what follows, we indicate the values from the DGP of parameter s at time t as θ̄

(t)
s .

We investigate four DGPs similar to those analyzed in Section 6.2.1. We sam-
ple and estimate the models 50 times for each DGP. Figure 6.2 compares the cross
sectional estimates and the score-driven filtered paths. Table 6.2 reports the RMSE
of the GWESP time-varying parameters, averaged over the different realizations for
the whole sequence t = 1, 2, . . . , T. It is evident that the SD-ERGM outperforms the
cross sectional ERGM estimates for all the investigated time-varying patterns. More-
over, when the constant DGP is considered, i.e. θ̄

(t)
1 = θ̄1 and θ̄

(t)
2 = θ̄2, the average

RMSE of the SD-ERGM is larger, but comparable, than the correctly specified ERGM
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TABLE 6.2: First four columns: RMSEs for the filtered paths of the
time-varying parameters, averaged over 50 repetitions, for the evolu-
tions of Figure 6.2. The last three columns describe the accuracy of
the test for dynamics in the parameters, considering the DGPs in Fig-
ure 6.2, as well as alternative DGPs where only one parameter is time
varying. We report the percentage of times that the LM test correctly
identifies the parameter as time-varying (or static in the case of the

first DGP). The chosen threshold for the p-values is 0.05.

DGP Average RMSE LM Test

ERGM SD-ERGM % Correct Results
θ
(t)
1 θ

(t)
2 θ

(t)
1 θ

(t)
2

(
θ
(t)
1 , θ2

) (
θ1 , θ

(t)
2

)
Const 0.02 0.1 0.0006 0.004
Sin 0.02 0.04 0.003 0.005 94% 93%
Steps 0.02 0.03 0.01 0.001 92% 96%
AR(1) 0.02 0.2 0.007 0.01 93% 90%

that uses all the longitudinal observations to estimate the parameters. The latter re-
sult confirms that, even for the static case, the SD-ERGM is a reliable and consistent
choice.

It is worth noticing that, for sampling and cross sectional inference, we employed
the R package ergm that uses state of the art MCMC techniques for both tasks (see
Hunter et al., 2008, for a description of the software). Hence, we compared the SD-
ERGM based on the approximate pseudo-likelihood – both in the definition of the
time-varying parameter update and inference of the static parameters – with a se-
quence of exact cross sectional estimates, that are in general known to be better per-
forming than the pseudo-likelihood alternative, as mentioned in Section 2.2. Even
if the cross sectional estimates are based on the exact likelihood, while the SD ap-
proach is based on an approximation, the SD-ERGM remains the best performing
solution. In our opinion, this provides further evidence of the advantages of SD-
ERGM as a filtering tool. Finally, the last column of Table 6.2 reports the percentage
number of times the LM test of Calvori, Creal, Koopman, and Lucas, 2017 applied
to the SD-ERGM correctly classifies the parameters as time-varying (or static for the
constant DGP). The test performs correctly in all the cases considered.

Comparison of Pseudo and Exact Likelihood SD-ERGM

To further investigate the proposed SD-ERGM, and its version based on the pseudo-
likelihood, in this section we focus on the ERGM having the total number of links
and the total number of mutual links as network statistics:

∑
s

θsqs

(
Y(t)

)
= θL ∑

ij
Y(t)

ij + θM ∑
ij

Y(t)
ij Y(t)

ji . (6.6)

The static version of this model is known as reciprocity p? model (Snijders, 2002).
This model is relevant for our discussion because it allows us to compare the SD
time-varying extension based on the pseudo-likelihood with the one based on the
exact likelihood. Indeed it is simple enough that the normalizing function is known
in closed form, but it has enough structure such that its pseudo-likelihood differs
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TABLE 6.3: RMSEs of ML-SD-ERGM and PML-SD-ERGM, relative to
that of the cross sectional ERGM. The averages are obtained over 50
repetitions, for the AR(1) DGP, described in the text. For each value
of T and N we report the RMSE of the SD-ERGMs divided by the

RMSE of the cross sectional ERGM.

PML-SD-ERGM ML-SD-ERGM

T
N

50 100 500 50 100 500

100 0.016 0.011 0.006 0.015 0.011 0.006
300 0.015 0.011 0.006 0.014 0.011 0.007
600 0.014 0.012 0.007 0.014 0.011 0.006

from its exact likelihood. In fact, the model results in dyads, i.e. pairs of mutual links
(Aij, Aji), being independent, while the pseudo-likelihood amounts to assuming in-
dependent links. Moreover, since its partition function is available in closed form,
such a model can be sampled efficiently, without the need to resort to MCMC meth-
ods. This allows us to run extensive numerical simulations, in reasonable time, to
investigate the properties of the confidence bands proposed by Buccheri, Bormetti,
Corsi, and Lillo, 2018 in the context of SD-ERGM models.

In this section we will refer to the pseudo-likelihood based SD-ERGM as PML-
SD-ERGM, and to the exact likelihood case as ML-SD-ERGM. We compare the ca-
pacity of the two models, used as filters, to recover a misspecified dynamics using
the same approach as in the previous sections, i.e. we simulate a known DGP for θ

(t)
L

and θ
(t)
M . We focus on a DGP where θL and θM follow two independent AR(1) pro-

cesses, as the one discussed in 6.2.1. Each AR(1) has Φ1 = 0.98 and ε ∼ N (0, σ) with
σ = 0.005. The Φ0 parameters are chosen such that, on average, the network density
is equal to 0.3 and the fraction of reciprocated pairs is 0.075. We choose this value
because it is between the maximum and minimum fraction of reciprocated links pos-
sible for a network of density 0.3, which is 0 and 0.3(N2 − N)/2. When comparing
results for different network sizes, we keep the density fixed for all network sizes
N, thus exploring a dense regime3. In our numerical experiment, we first sample
repeatedly sequences of synthetically generated observations from different specifi-
cations of the DGP. We then estimate the PML and ML versions of the SD-ERGM on
those observations, and filter the time varying parameters. Finally we quantify their
accuracy, with the average RMSE, across 50 samples, with respect to the simulated
DGP. In Table 6.3 we report the RMSE, for both PML-SD-ERGM and ML-SD-ERGM,
divided by the RMSE of the cross sectional standard ERGM, for various combina-
tions of network size N and number of observations T. It clearly emerges that both
versions of SD-ERGM strongly outperform the cross sectional ERGM. Moreover, the
performances of PML-SD-ERGM is similar to the one of the exact ML-SD-ERGM.

In the final part of this section, we investigate the possibility of using the method
of Buccheri, Bormetti, Corsi, and Lillo, 2018, that we describe in Section 5.5, to define
confidence bands for the parameters filtered with SD-ERGM. In Buccheri, Bormetti,
Corsi, and Lillo, 2018 the authors characterize the approximation error when the
SD approach is used to filter a set of latent parameters, whose true DGP is an auto-
regressive process. While we refer to Buccheri, Bormetti, Corsi, and Lillo, 2018 for
the details, we point out that their procedure rests upon the assumption that the SD

3We found the conclusions of this section to hold true also in a sparse network density regime.
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TABLE 6.4: Coverages of the 95% confidence bands averaged over 50
repetitions, for the AR(1) DGP, described in the text, and N = 100.

T ML-SD-ERGM PML-SD-ERGM

300 99.1 % 99.9 %
3000 94.5% 95.7 %

filter approximates the true underlying DGP. The authors prove that this approxima-
tion becomes exact in the limit of small variance for the latent parameters. Hence,
the confidence bands obtained with their method are theoretically guaranteed to be
reliable only in this limit. In practice, it is appropriate to assess whether for a given
value of the variance of the DGP the application of the confidence bands is justified.
This can be done by numerical experiments to assess their coverage with a simu-
lated DGP. For example, for the model and the DGP considered in this section, we
check the coverage of the confidence bands obtained, and report the results in Table
6.4, for N = 100. We find that that the coverage of the confidence bands, for both
ML-SD-ERGM and PML-SD-ERGM, approaches the nominal value in the limit of
large T, while for short time series, their coverages is higher than the nominal value.
Hence in small samples they should be interpreted as having a confidence of at least
their nominal values.

6.3 Applications to Real Data

After the analysis of synthetic data, this section presents two applications to real
dynamical networks. Our goal is to show the value of SD-ERGM as a methodology
to model temporal networks, irrespective of the specific system that a researcher
wants to investigate. The two real networks that we consider have been the object
of multiple studies in different streams of literature. They have been investigated, in
the context of ERGMs, using different network statistics. We first consider a network
of credit relations among Italian banks. The second real world application focuses
on a network of interest for the social and political science community, namely the
network of U.S senators cosponsoring legislative bills.

6.3.1 Link Prediction in Interbank Networks

Our first empirical application is to data from the electronic Market of Interbank De-
posit (e-MID), a market where banks can extend loans to one another for a specified
term and/or collateral. Interbank markets are an important point of encounter for
banks’ supply and demand of extra liquidity. In particular, e-MID has been investi-
gated in many papers (see, for example Iori et al., 2008; Finger, Fricke, and Lux, 2013;
Mazzarisi, Barucca, Lillo, and Tantari, 2020; Barucca and Lillo, 2018, and references
therein). Our dataset contains the list of all credit transactions in each day from June
6, 2009 to February 27, 2015. In our analysis, we investigate the interbank network
of overnight loans, aggregated weekly. We follow the literature and disregard the
size of the exposures, i.e. the weights of the links. We thus consider a link from bank
j to bank i present at week t if bank j lent money overnight to bank i, at least once
during that week, irrespective of the amount lent. This results in a set of T = 298
weekly aggregated networks. For a detailed description of the dataset, we refer the
reader to Barucca and Lillo, 2018.
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In recent years, the amount of lending in e-MID has significantly declined. In
particular, as discussed in Barucca and Lillo, 2018, it abruptly declined at the begin-
ning of 2012, as a consequence of important unconventional measures (Long Term
Refinancing Operations) by the European Central Bank, that guaranteed an alterna-
tive source of liquidity to European banks. The evident non-stationary nature of the
evolution of the interbank network is of extreme interest for our purposes. In fact,
as mentioned in Sections 6.2.1 and 6.2.2, one of the key strengths of SD-ERGM, used
as a filter, is precisely the ability of recovering such non-stationary dynamics.

In the following, we use the SD beta model for links forecasting. Specifically,
we consider the version with a restricted number of static parameters discussed at
the end of Sec. 6.2.1. We divide the data set in two samples. We consider rolling
windows of 100 observations and estimate the parameters aout, bout, ain and bin on
each one of those rolling windows. For each window, we then test the forecasting
performances, up to 8 steps ahead (i.e. roughly two months). The forecast works
as follows. Assuming that at time t, the last date of the rolling window, we have

filtered the value for the parameters
←−
θ

(t)
and
−→
θ

(t)
, we plug the estimated static

parameters and the matrix Y(t) in the SD update and compute the time-varying pa-

rameters
←−
θ

(t+1)
and
−→
θ

(t+1)
. From the latter, we readily obtain the forecast of the

adjacency matrix

E

[
Y(t+1)|←−θ

(t+1)
,
−→
θ

(t+1)
]

,

where t + 1 is the first date of the test sample. The K-step-ahead forecast for the SD-
ERGM model is obtained simulating the SD dynamics up to t + K 100 times4, thus

obtaining
−→
θ

(t+K)
n and

←−
θ

(t+K)
n for n = 1, . . . , 100, and then taking the average of the

expected adjacency matrices 1
100 ∑n E

[
Y(t+K)|←−θ

(t+K)
n ,

−→
θ

(t+K)
n

]
. Given the forecast

values, we compute the rate of false positives and false negatives. Then, we drop the
first element from the train set and add to it the first element of the test sample. We
repeat the forecasting exercise estimating the SD-ERGM parameters on the new train
set and testing the performance on the new test sample. We name this procedure
rolling estimate and iterate it until the test sample contains the last 8 elements of the
time-series.

Given a forecast for the adjacency matrix, we evaluate the accuracy of the binary
classifier by computing the Receiving Operating Characteristic (ROC) curve. All re-
sults are collected and presented in Figure 6.3. The left panel reports the ROC curve
for one-step-ahead link forecasting obtained according to the SD-ERGM rolling esti-
mate. The panel also shows other three curves based on the static beta model. Specif-
ically, the green curve results from a naive prediction, where the presence of a link
tomorrow is forecasted assuming that the t + 1 ERGM parameter values are equal
to those estimated at time t. Once the sequence of cross sectional estimates of the

static ERGM is completed, we take the estimated values
←̂−
θ

(t)
and
−̂→
θ

(t)
as observed

and model their evolution with an auto-regressive model of order one, AR(1). That

amounts to assuming
←̂−
θ

(t+1)
= c0 + c1

←̂−
θ

(t)
+ ε(t), where c0 and c1 are the static pa-

rameters of the AR(1), and ε(t) is a sequence of i.i.d. normal random variables with
zero mean and variance σ2. A similar equation holds for the out-degree parameters.
Using the observations from the training sample, we estimate the parameters c0, c1,
and σ2 and use them for a standard AR(1) forecasting exercise on the test sample.

4It is worth to stress that the results become stable after 20 simulations.
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FIGURE 6.3: Left panel: ROC curves for one-step-ahead link forecast-
ing. The green and orange ROC curves describe the one-step-ahead
forecasting with SD and cross sectional AR(1) beta model, respec-
tively. The blue curve corresponds to the forecast based on previous-
time-step ERGM. Right panel: AUC for the multi-step-ahead forecast.

The results correspond to the orange curve. It is important to stress that, while the
SD-ERGM forecast requires one static and one time-varying estimation on the train
set, in the latter procedure we have to estimate the static parameters for each date in
the train sample.

The left plot of Fig. 6.3 shows that the naive one-step-ahead forecast, in spite of
its simplicity, provides a quite reasonable result. The best performance corresponds
however to the forecast based on the SD-ERGM. The AR(1) static ERGM improves
on the naive forecast and it is slightly worst than the SD-ERGM. However, as com-
mented before, it is more computationally intensive. More importantly, the right
panel of Fig. 6.3 presents the result from a multi-step-head forecasting analysis. It
emerges clearly that the performance of the naive forecast (blue curve), tested up to
K = 8, rapidly deteriorates, while the SD-ERGM multi-step forecast remains the best
performing. 5.

To conclude this section, we point out that all three methods considered here for
link forecasting do not require the full knowledge of the adjacency matrices in order
to forecast the presence of links. This is due to the fact that they are all based on the
directed beta model. The latter, as we discussed in Section 2.2.1, can be defined as the
ERGM with the sequences of in and out degrees as sufficient statistics. In particular,
these statistics are sufficient to estimate our score driven version of the beta model
and to compute the score in the update rule (6.3), needed for the link prediction.
As discussed in Chapter 3, the problem of reconstructing networks from contem-
poraneous partial information6 has received much attention in the literature, and is
particularly relevant from the perspective of systemic risk reconstruction (Mistrulli,
2011; Anand et al., 2017). It is thus very interesting that our methodology, which has
been shown to outperform the alternatives discussed here, can be effectively used to
forecast directed binary networks from the sole knowledge of the degree sequences.7

5In all the results on link forecasting – one- or multi-step-ahead – we excluded the links that are
always zero, i.e. they never appear in the train and test samples. The reason is that those are extremely
easy to predict and keeping them would give an unrealistically optimistic picture on the predictability
of links in the data set. Importantly, the ranking of the methods remain unaltered when we keep all
links for performance evaluation.

6Reconstructing a network at time t from partial information describing the network at time t.
7And with very simple modifications it can be extended to undirected networks.
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FIGURE 6.4: Estimates for the time-varying parameters associated
with the number of links and the GWESP statistics. Blue dots cor-
respond to the cross sectional ERGM estimates, while the red lines
are the estimates from the SD-ERGM, with the corresponding 95%

confidence intervals denoted by the red shaded regions.

Finally, let us mention that being able to run link prediction based on the sole knowl-
edge of the degree sequence can be extremely convenient when applying the method
to very large networks. Indeed, from a practical point of view, the memory required
to store and process the time series of degree sequences, of length 2N for each time
step, can be much lower than that needed to store the time series of full adjacency
matrices, each having N (N − 1) elements.

6.3.2 Temporal Heterogeneity in U.S. Congress Co-Voting Political Net-
work

Networks describing the U.S. congress’ bills have been the object of multiple stud-
ies (see, for example Fowler, 2006; Faust and Skvoretz, 2002; Zhang et al., 2008; Cran-
mer and Desmarais, 2011; Moody and Mucha, 2013; Wilson, Stevens, and Woodall,
2016; Lee, Li, and Wilson, 2020). It is thus an appropriate real system for our second
application of the SD-ERGM framework. In particular, we want to show that the
update rule based on the pseudo-score defined in (6.4) can be concretely applied to
a real network, and that it draws a different picture when compared to the sequence
of cross sectional ERGM estimates. In order to build the network, we use the freely
available data of voting records in the US Senate (see Lewis et al., 2019) covering
the period from 1867 to 2015, for a total of 74 Congresses. We define the network
of co-voting following Roy, Atchadé, and Michailidis, 2017 and Lee, Li, and Wilson,
2020, where a link between two senators indicates that they voted in agreement on
over 75% of the votes, among those held in a given senate when they were both
present. This procedure results in a sequence of 74 networks, one for each differ-
ent Congress starting from the 40th. For this empirical application, we consider the
SD-ERGM with the two network statistics discussed in Section 6.2.2. As defined
in (6.5), parameter θ

(t)
1 is associated with the number of edges, while θ

(t)
2 with the

GWESP statistic. The fact that the number of nodes is not constant over time is not a
problem for our application, since we do not consider statistics associated to single
nodes. That case – as for instance considering the degrees of the beta model – would
require the number of time-varying parameters to be different at each time step.

As we did for the numerical simulations and the previous empirical application,
we compare our framework with a sequence of standard ERGMs. The goal of this
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empirical exercise is not to draw conclusions about the specific network at hand.
Our main aim is to show that the two approaches return a qualitatively different
picture. The choice between the alternative models, and combinations of statistics –
possibly based on model selection techniques – is beyond the scope of our exercise.

Using the test for temporal heterogeneity based on SD-ERGM, only the param-
eter θ2 turns out to be time-varying. In fact, testing the null hypothesis that each
parameter is static, we obtain a p-value of 0.1 for the link density and 10−4 for
GWESP. In order to check whether the sequence of cross sectional estimates is con-
sistent with the hypothesis that the parameters remain constant, we estimate the
values θc

1, θc
2 from an ERGM using all observations. This amounts to compute θc =

arg max
θ

∑74
t=1 log P

(
Y(t), θ

)
. Then, for each sequence of cross sectional estimates

θ
(t)
1 and θ

(t)
2 , we test the hypothesis of them being normally distributed around the

constant values with unknown variance. The p-values resulting from the t-tests are
1.4× 10−6 and 0.03 for parameters θ1 and θ2, respectively. This simple test confirms
that the two approaches imply quantitatively different behaviors for the parameters.
This clearly emerges from Figure 6.4 that reports the estimates from the SD-ERGM
(thick red lines), with their respective 95% confidence intervals (shaded red bands),
as well as the cross sectional ERGM estimates – one per date (blue dots) or using the
entire sample (dashed blue line).

In order to compute the confidence bands as in Buccheri, Bormetti, Corsi, and
Lillo, 2018, we checked numerically whether the data is compatible with a DGP
having a small variance. In practice, we first estimate the SD-ERGM. Then we quan-
tify the variance of the latent parameters by estimating an AR(1) on the filtered time
series8. Finally we repeatedly simulate such an AR(1) DGP, similarly to what done
at the end of section 6.2.2, and check the coverage of the confidence bands. We
find that, for the current application, the coverage of the confidence bands is 99.9%,
hence greater than the nominal value. These simulation-based results support the
reliability of the approximate SD filter and provide a conservative estimate of the
confidence bands. Thus allowing us, for example, to deduce that the data is not
compatible with a model where one of the two parameters is zero.

6.4 Conclusions

In this chapter, we proposed a framework for the description of temporal networks
that extends the well known Exponential Random Graph Models. In the new ap-
proach, the parameters of the ERGM have a stochastic dynamics driven by the score
of the conditional likelihood. If the latter is not available in closed-form, we showed
how to adapt the score-driven updating rule to a generic ERGM by resorting to the
conditional pseudo-likelihood. In this way, our approach can describe the dynamic
dependence of the PMF from virtually all the network statistics usually considered
in ERGM applications. We investigated two specific ERGM instances by means of
an extensive Monte Carlo analysis of the SD-ERGM reliability as a filter for time-
varying parameters. The chosen examples allowed us to highlight the applicability
of our method to models with a large number of parameters and to models for which

8We extensively tested via simulation that, for the model at hand and T and N taken from the
data, estimating the variance of the latent parameters in such a way results, on average, in a small
underestimation. In checking the coverage of the confidence bands we considered a DGP with variance
increased, with respect to the one estimated on the filtered time series, to compensate for this bias.
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the normalization of the PMF is not available in closed form. The numerical simu-
lations proved the clear superior performance of the SD-ERGM over a sequence of
standard cross sectional ERGM estimates. This is not only true in the sparse net-
work regime, but also in the dense case when the number of nodes is far from the
asymptotic limit. Finally, we run two empirical exercises on real networks data. The
first application to e-MID interbank network showed that the SD-ERGM provides
a quantifiable advantage in a link forecasting exercise over different time horizons.
The second example on the U.S. Congress co-voting political network enlightened
that the ERGM and the SD-ERGM could provide a significantly different picture in
describing the parameter dynamics.

Our work opens a number of possibilities for future research. First, the applica-
bility of the test for parameter instability in the context of SD-ERGM with multiple
network statistics could be investigated much further. Second, the SD-ERGM could
be applied on multiple instances of real world dynamical networks. An interesting
application would be the study of networks describing the dynamical correlation
of neural activity in different parts of the brain (see, for example, Karahanoğlu and
Van De Ville, 2017, for a review of the topic and list of references). In this context, the
application of the static ERGM have already proven to be extremely successful (as,
for example, in Simpson, Hayasaka, and Laurienti, 2011). Moreover, as mentioned
at the end of Section 6.3.1, the score driven beta model can be used to forecast binary
networks from the sole knowledge of the nodes’ in and out degrees. We believe that
this is extremely relevant for possible extensions of the literature on network recon-
struction from partial information (Anand et al., 2017), to the context of temporal
networks. The last future development that we plan to explore is the extension of
the score-driven framework to the description of weighted dynamical network. Re-
gretfully, this setting has not received enough attention in the literature (one isolate
example is Giraitis, Kapetanios, Wetherilt, and Žikeš, 2016), but it is of extreme rel-
evance, particularly from the financial stability perspective and its implications for
systemic risk.

6.5 Appendix

6.5.1 Details of Numerical Simulations

In the main text we referred to a set of DGPs used for numerical simulations. Al-
though the different numerical experiments that we presented differ for the mean-
ing and number of parameters, in every experiment each of the parameters can be
constant or evolve according to one of the following dynamical DGPs:

• abrupt change of half the parameters at t = T/2, i.e. for odd s we have θ
(t)
s =

θ1s for t ≤ T/2 and θ
(t)
s = θ2s for t > T/2, while for even s it is θ

(t)
s = θ0s for

t = 1 . . . T;

• smooth periodic variation for half the parameters, i.e. for odd s we have θ
(t)
s =

θ0s +
(
θ2s − θ1s

)
sin (4πt/T + φs) for t = 1 . . . T, where the φs are randomly

chosen for each node, while for even s it is θ
(t)
s = θ0s for t = 1 . . . T;

• autoregressive of order 1 (AR(1)), i.e. for odd s we have θ
(t)
s = Φ0s +Φ1θ

(t−1)
s +

ε(t) for t = 1 . . . T, where Φ1 = 0.99, Φ0s is chosen such that the unconditional
mean is equal to θ0s , ε ∼ N (0, σ) and σ = 0.1. As in the previous cases, for

even s we keep θ
(t)
s = θ0s for t = 1 . . . T.
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The dynamics considered are such that element s of vector θ remains bounded
between θ1s and θ2s . The values of θ1 and θ2 are fixed in order to allow fluctuations
in the in and out degrees of the nodes, as follows. The vector θ0 is obtained by
first generating two degree sequences (in and out) such that the degrees linearly
interpolate between a minimum degree Dm = 3 and a maximum of DM = 8. Then,
we need to ensure that the degree sequence is graphicable, i.e. such that it exists
one matrix of zeros and ones from which it can be obtained. We iteratively match
links that make up the out-degree sequence with those that make up the in-degree
sequence, starting with the largest in- and out-degrees. In practice, we start with an
empty matrix, select the largest out degree and set to one the matrix element between
this node and the node with largest in degree. If at some point we cannot entirely
allocate a given out-degree, we disregard the leftover links outgoing from that node
and move to the next one. This procedure amounts to populating the adjacency
matrix, until no more links can be allocated. The degree sequence associated to this
adiacency matrix is guaranteed to be graphicable. The numerical values of θ0 follow
from the estimation of the static beta model. Finally, in order to gain additional
heterogeneity in the amplitude of the fluctuations, we define N values evenly spaced
between 0.4 and 1, i.e. cs for s = 1 . . . N. We use them to define

θ1s = θ0s + cs
(
θ0s+1 − θ0s

)
θ2s = θ0s − cs

(
θ0s+1 − θ0s

)
.

Figure 6.5 shows the temporal evolution for one randomly chosen parameter of
the beta model for all the DGPs, together with the paths filtered from the observa-
tions using the SD beta model and the sequence of cross sectional static estimates.
The score-driven filtering and cross sectional estimation are repeated over 100 sim-
ulated network sequences. As discussed in the main text, it clearly emerges that the
paths filtered with the SD beta model are on average much more accurate than those
recovered from a standard beta model.

SD-Beta Model for large N

In one of the numerical simulations that we presented in the main text we consider
networks of increasing size. Here we present some additional details on how the
DGPs are defined for networks of increasing size. Practically, we have to fix the
vectors θ0s , θ1s , and θ2s in a similar way, with the only difference being the numerical
values for Dm and DM. Specifically, in the sparse case we keep for each N Dm = 10
and DM = 40. In the dense case, we set DM = 0.8N, i.e. the maximum degree and
the average degree both increase.

One peculiarity of the beta model is that the number of parameters, i.e. the length
of the vectors

←−
θ and

−→
θ , increases with the number of nodes. This is not the case for

many ERGMs, as for example the one that we will discuss in the following section.
Consistently, when we use the score-driven extension described so far, the length of
the vectors w, a and b increases too.

Recall that the numerical values of θ0, θ1 and θ2 are chosen in order to fix the
values of average degrees over time and the amplitude of their fluctuations, as de-
scribed in Appendix 6.5.1. For each value of N, we choose them in order to guarantee
heterogeneity in the degrees across nodes and significant fluctuation in time. Most
importantly, we set a maximum degree attainable for a node and we let it depend on
N in two distinct ways, each one corresponding to a different density regime: one
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FIGURE 6.5: Temporal evolution of one of the parameters, randomly
selected, for the considered DGPs. The black line is the true path of
the parameter of the DGP, the red ones are those filtered using the
SD-beta model, and the blue dots correspond to the cross sectional

estimates of the beta model.
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generating sparse networks and the other dense ones. It is important to notice that
the asymptotic results of (Chatterjee, Diaconis, Sly, et al., 2011) are expected to hold
only in the dense case.

In the first numerical experiment testing the SD-beta model as misspecified fil-
ter, we estimated a total of 60 parameters, 6 static parameters for each one of the
ten nodes, 3 for the time-varying in-degree and 3 for the time-varying out-degree.
Here we present in detail the further parameter restriction mentioned in the main
text, that proved to be useful when the number of nodes increases. Specifically, we
assume that the parameters aout and bout are common to all out-degree time-varying

parameters
−→
θ

(t)
. Similarly, all in-degree time-varying parameters

←−
θ

(t)
share the

same ain and bin. The coefficients win
s and wout

s remain node specific. The resulting
update rule is

←−
θ

(t+1)
s = win

s + bin←−θ
(t)
s + ain

 ∑i Y(t)
is −p(t)is√

∑i p(t)is

(
1−p(t)is

)


−→
θ

(t+1)
s = wout

s + bout−→θ
(t)
s + aout

 ∑i Y(t)
si −p(t)si√

∑i p(t)si

(
1−p(t)si

)


. (6.7)
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Chapter 7

Score Driven Model for Sparse
Weighted Temporal Networks

Synopsis of The Chapter In this Chapter, we propose a novel time varying pa-
rameter model for sparse weighted temporal networks as a combination of the fit-
ness model, appropriately extended to handle also the weights, and the score driven
framework. While the vast majority of the literature on models for time varying net-
works focuses on binary graphs, i.e. graphs that are defined solely by a set of nodes
and a set of links between pairs of nodes, often we can associate a weight to each link.
In such cases the data is better described by a weighted, or valued, network. One
important well known fact is that real world valued networks are very often found
to be sparse, i.e. their adjacency matrices have an abundance of zero entries. Our
main contribution is a model for sparse weighted dynamical networks, that also ac-
commodates for the dependency of the network dynamics on external variables, and
its application to weighted temporal network data, describing overnight exposures
in the European interbank market. Our work contributes to the extremely scarce
literature on dynamical models for sparse weighted networks by extending the well
known fitness model for static binary networks. We consider a zero augmented
generalized linear model to handle the weights and a state of the art econometric
approach to describe time varying parameters. This results in a flexible model that
allows us to decouple the probability of a link to exist from its expected weight, and
to explore the influence of external regressors on the network’s dynamics. We then
exploit such flexibility to investigate how the relevance of EONIA rates on the e-Mid
interbank market changed over time.

7.1 Introduction

In the last two decades, networks, or graphs, have attracted an enormous amount
of attention as an effective way of describing pairwise relations in complex systems
Barabási, 2002. The ever increasing abundance, and variety, of graph data has mo-
tivated a great deal of applications of statistical models to graphs (see, for example
Newman, 2010, for a review). More recently, the availability of time varying net-
works’ data has stimulated the development of models for temporal networks (Han-
neke, Fu, Xing, et al., 2010; Sewell and Chen, 2015; Giraitis, Kapetanios, Wetherilt,
and Žikeš, 2016; Mazzarisi, Barucca, Lillo, and Tantari, 2017; Di Gangi, Bormetti,
and Lillo, 2019). While the vast majority of this literature focuses on binary graphs,
i.e. graphs that are defined solely by a set of nodes and a set of links between pairs
of nodes, often we can associate a weight to each link. Links’ weights are typi-
cally positive, discrete or continuous, numbers and can be associated, for example
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to the strength of the relation described by each link. In standard binary descrip-
tions, such relevant information is completely lost. For example, in a network of
exposures among financial institutions the weight could be the value of the credit.
In this case, a binary network would describe in the same way a link associated to an
exposure of 1 million to that associated to an exposure of 1 billion. Indeed it is very
common for network data to have also informative weights associated with their
links. Some additional examples are: the International Trade Network (Leamer and
Levinsohn, 1995; Fagiolo, Reyes, and Schiavo, 2010), migration flows (Fagiolo and
Santoni, 2016), scientific collaborations (Newman, 2001), transportation networks
(Barrat, Barthelemy, Pastor-Satorras, and Vespignani, 2004), just to mention a few.
In these cases the data is better described by a weighted, or valued, network, that
can be associated with a positive, real valued matrix Y with elements Yij ∈ R+. Yij
is the value of the link between node i and node j, and Yij = 0 when the link is
not present. It is well known that real world networks, both binary and weighted,
are very often found to be sparse, i.e. their adjacency matrices have an abundance of
zero entries. That is the case, for example, of interbank networks (Anand et al., 2017),
a class of weighted temporal networks of paramount importance , that are known
to be extremely relevant to financial stability (Allen and Babus, 2011; Haldane and
May, 2011), and have motivated the application and development of a number of
statistical models for networks (Bargigli et al., 2015b; Mazzarisi, Barucca, Lillo, and
Tantari, 2017). In spite of the their relevance, networks’ weights have received less
attention in the literature on models for temporal networks. Indeed there are only a
few models for temporal networks that take them into account. In this chapter we
propose a novel model for sparse weighted temporal networks, that also accommo-
dates for the dependency of the network dynamics on external variables. Our efforts
are originally motivated by the need to properly model weighted temporal network
data, describing overnight exposures in the European interbank market. The result-
ing modeling framework is nevertheless very general and extremely flexible, as it
allows to decouple the probability of a link to exist from its expected weight, and to
explore the influence of external covariates on the network’s dynamics. We achieve
that by extending the well known fitness model (Holland and Leinhardt, 1981a; Cal-
darelli, Capocci, De Los Rios, and Muñoz, 2002; Garlaschelli and Loffredo, 2008;
Chatterjee, Diaconis, Sly, et al., 2011; Yan, Leng, Zhu, et al., 2016; Yan, Jiang, Fien-
berg, and Leng, 2018) for static binary networks, combining it with a simple general-
ized linear model to handle the weights and a state of the art econometric approach
to describe time varying parameters. In doing so we explicitly account, by means of
zero augmentation, for the abundance of zeros that follow from the sparse nature of
real world networks. We then exploit such flexibility to investigate the relevance of
interbank rates on the e-Mid interbank market, and to contribute to the literature on
link persistence in financial networks (Hatzopoulos et al., 2015), exploring also the
persistence of links’ weights.

7.2 Definition

In order to introduce our score driven weighted fitness model, let us describe a sequence
of networks with a set of random variables Y(t)

ij , one for each link. We propose to use

Zero Augmentation to model separately the probability of observing a link, Y(t)
ij > 0,

and the probability to observe a specific weight Y(t)
ij . We choose Zero Augmentation

over censoring, as we believe the former to be much more flexible in the context of
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network data. With this choice the probability distribution for link ij is

P
(

Y(t)
ij = y

)
=


1− p(t)ij f or y = 0

p(t)ij g(t)ij (y) f or y > 0 .
(7.1)

where g(t)ij (y) is the distribution for the positive continuous weight for link ij, con-
ditional on that link being present.

We then model the binary temporal network and its weights by means of time
varying fitness and allowing also for the dependency on external covariates Xij. In
our model the probability of a link to exist is described by

p(t)ij =
1

1 + e−(
←−
θ

(t)
i +
−→
θ

(t)
j +X(t)

ij βbin)
, (7.2)

where, for simplicity we consider only one external covariate X(t)
ij with its own asso-

ciated parameter βbin, while in general nothing prevents us to have multiple covari-
ates. With this choice, the log-likelihood for the single observation

(
Y(t)

)
in (7.1)

is

log P
(

Y(t)|←−θ
(t)

,
−→
θ

(t)
, βbin, βw, X(t)

)
= ∑

ij

(
Θ
(

Y(t)
ij

)
− 1
)(←−

θ
(t)
i +

−→
θ

(t)
j + βbinX(t)

ij

)

− log

(
1 + e

−
(←−

θ
(t)
i +
−→
θ

(t)
j +βbinX(t)

ij

))
+ Θ

(
Y(t)

ij

)
log g(t)ij ,

(7.3)
where the function Θ, defined in (2.1), is zero if its argument is less or equal than
zero and one it’s greater. As in the standard fitness model for binary networks, the

time varying binary fitness parameters
(←−

θ
(t)

,
−→
θ

(t)
)

describe the tendency of nodes

at time t to form links, that are not explained by the external covariate X(t). In order
to model the weights of the observed links, we consider a generalized version of
the fitness model where we associate to each node i, at time t, also the parameters
←−
λ

(t)
i ,
−→
λ

(t)
i , that we call weighted fitness. They describe the propensity of a node to

have more or less heavy weights in incoming and outgoing links respectively, and
are related to the distribution of the weights of present links g(t)ij by

E
[
Yij

(t)|Y(t)
ij > 0

]
= e

(←−
λ

(t)
i +
−→
λ

(t)
j +X(t)

ij βw

)
, (7.4)

where we considered the dependency on a single external covariate X(t)
ij and indi-

cated the associated regression coefficient with βw to distinguish it from the coeffi-
cient for the binary part in (7.2). This choice of linking the weighted fitness to the
mean of the distribution g provides dynamics and heterogeneity only to one pa-
rameter of the conditional distribution, as shown in the following with a concrete
example. Our score driven weighted fitness model can be defined for a generic dis-
tribution g, for both continuous and discrete data, as we discuss in Appendix 7.6.1.
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Nevertheless in the following, for concreteness, we will focus on the gamma distri-
bution to model links’ weights

gij (y) =

(
µij
)−σ y(σ−1)

Γ (σ)
e
− y

µij . (7.5)

Given a sequence of observed weighted adjacency matrices
{

Y(t)
}T

t=1
, we denote by

f (t) a, K dimensional vector, where K = 4×N, containing all the time varying fitness

parameters
←−
θ

(t)
,
−→
θ

(t)
,
←−
λ

(t)
,
−→
λ

(t)
. With this notation, the model’s distribution takes

the following form

P
(

Y(t)
ij = y| f (t), βbin, βw, σ

)
=



e
−(←−θ (t)

i +
−→
θ
(t)
j +X(t)

ij βbin)

1+e
−(←−θ (t)

i +
−→
θ
(t)
j +X(t)

ij βbin)
f or y = 0

(
µ
(t)
ij

)−σ
Γ(σ)−1

1+e
−(←−θ (t)

i +
−→
θ
(t)
j +X(t)

ij βbin)
y(σ−1)e

− y

µ
(t)
ij f or y > 0 .

(7.6)
with

µ
(t)
ij = σ−1e

(←−
λ

(t)
i +
−→
λ

(t)
j +X(t)

ij βw

)
.

We let the fitness, both binary and weighted, evolve in time, following the score-
driven recursive update rule in (5.2), that in this case takes the form

f (t+1) = w + b f (t) + aI (t)
∂ log P

(
Y(t)| f (t)

)
∂ f (t)′

, (7.7)

where w, a and b are three K dimensional vectors of static parameters 1. I (t) is
a K × K scaling matrix. Hence, conditionally on the value of the parameters f (t)

at time t and the observed adjacency matrix Y(t), the parameters at time t + 1 are
deterministic. The element k of the score for the in and out binary fitness takes the
following form

∂ log P
(

Y| f (t), βbin, βw, X(t)
)

∂
←−
θ

(t)′
k

= ∑
j

Θ
(

Y(t)
kj

)
− 1

1 + e−(
←−
θ

(t)
k +
−→
θ

(t)
j +X(t)

kj βbin)



∂ log P
(

Y| f (t), βbin, βw, X(t)
)

∂
−→
θ

(t)′
k

= ∑
i

(
Θ
(

Y(t)
ik

)
− 1

1 + e−(
←−
θ

(t)
i +
−→
θ

(t)
k +X(t)

ik βbin)

)
(7.8)

1Hence, in our definition we have three static parameters for each time varying fitness. While in
the general formulation of score driven models (as given, for example, in Creal, Koopman, and Lucas,
2013), the parameters b and a are defined as matrices, it is very common to impose some restriction on
them in order to limit the number of parameters to be estimated, as we do here.
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and does not depend on the choice of g. The element k of the score for the weighted
in and out fitness are

∂ log P
(

Y| f (t), βbin, βw, X(t)
)

∂
←−
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k
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(7.9)

In (7.8) and (7.9), as scaling matrix S(t) we use the Hessian of the log-likelihood.
As any score driven model, our model can be regarded both as a DGP or as a

filter of a misspecified dynamics. When used as a DGP, it describes a stochastic
dynamics because, at each time t, the adjacency matrix is not known in advance. It
is randomly sampled from P

(
Y(t)| f (t)

)
and then used to compute the score that, as

a consequence, becomes itself stochastic. When the sequence of networks
{

Y(t)
}T

t=1
is observed, and the model is applied as a filter of the time varying parameters, the
static parameters (w, b, a), that best fit the data, can be estimated maximizing the
log-likelihood of the whole time series.

Taking into account that each network Y(t) is independent from all the others
conditionally on the value of f (t), the log-likelihood can be written as

log P
({

Y(t)
}T

t=1
|w, b, a

)
=

T

∑
t=1

log P
(

Y(t)| f (t)
(

w, b, a,
{

Y(t′)
}t−1

t′=1

))
. (7.10)

Then the filtered time varying fitness f̂ (t) are obtained by an iterative application of
(7.7) using as parameter values the maximum likelihood estimates.

For ease of exposition, so far we introduced a baseline version of our model
where the probabilities depend on a single external covariate through the scalar
βbin and βw. This implies uniform, i.e. equal across all links dependency on the
covariates. In order to explore node specific dependency on the external variables,
we could easily consider also the specification Xij

(
βbini + βbinj

)
, where we associate

two covariate coefficients to each node, one for outgoing links and one for incoming
links.

7.3 Numerical Simulations in Misspecified Settings

In this section we discuss the results of extensive numerical simulations2 that we
run to evaluate the score driven Weighted Fitness Model as a misspecified filter,
i.e. when the true DGP of the simulated data is not the same as the Score Driven
filter. This is the typical situation in practical applications, where the true DGP is
unknown.

2The python code used for the simulations is available at https://github.com/domenicodigangi/
DynWGraphsPaper

https://github.com/domenicodigangi/DynWGraphsPaper
https://github.com/domenicodigangi/DynWGraphsPaper
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When modeling a sequence of observed weighted networks with time varying
fitness as in (7.6), we can consider two simple alternatives to the score driven up-
date rule. The first one is to specify the fitness, both binary and weighted, as static.
This amounts to consider a zero augmented generalized linear model, accounting
for node specific effects by means of the fitness. The probability of observing a link
is that of the standard fitness model (7.2), where the parameters

(←−
θ ,
−→
θ
)

are shared
for all time steps T = 1, . . . , T, while the distribution of the weights depends on the
constant weighted fitness

(←−
λ ,
−→
λ
)

such that

E
[
Yij

(t)|Y(t)
ij > 0

]
= e

(←−
λ i+
−→
λ j+X(t)

ij βw

)
. (7.11)

The second alternative consists in estimating a static fitness model for each snap-
shot observed. This procedure results in a sequence of single snapshot estimates for
the fitness, where clearly the number of parameters to be estimated grows with the
number of networks observed. This sequence of single snapshot estimates provides
a filter for the time varying fitness, and has already been discussed, for the binary
case, in Di Gangi, Bormetti, and Lillo, 2019, and in Chapter 6.

In the rest of this section we compare the score driven weighted fitness model,
when appropriate, with these two alternatives in three numerical experiments.

7.3.1 Filter Time Varying Fitness

In our first numerical experiment we focus on filtering the time varying fitness that
evolve in time following a DGP different from the score driven dynamics that we
propose. As mentioned in Section 7.2, our model can be regarded as a DGP. Nev-
ertheless, we are more inclined to interpret it as a misspecified filter and intend to
validate its applicability as such. Specifically we assess how accurately the score
driven methodology allows us to filter the fitness when no external covariates are
present, and compare it with the sequence of single snapshot standard MLE esti-
mates. Since the focus here in on filtering time varying fitness, we do not consider
the alternative version with constant fitness. In Di Gangi, Bormetti, and Lillo, 2019,
and in Chapter 6, we already carried out a similar comparison for the binary part of
the model. There we showed that, for the binary part, the sequence of cross sectional
estimates clearly under-performs the Score Driven fitness model, both in numerical
simulations and empirical applications. Here we repeat a similar exercise consider-
ing also the weighted fitness.

Specifically, we consider sequences of networks sampled from (7.6) where each
fitness, both binary and weighted, evolves according to an auto-regressive process
of order one, f (t+1)

i = b0 + b1 f (t)i + ε(t) where ε ∼ N (0, 0.1) , b1 = 0.98 and b0 is
chosen for each parameter in order to sample networks that resemble a real world
realization. In practice, in order to obtain realistic parameters values for the DGPs,
we first estimate the fitness models, both binary and weighted on the first observa-
tion available for the temporal interbank network data that we describe in Section
7.4.2. 3. Given this DGP for the time varying fitness, we sample time series, of 150
observations, from the AR(1) processes for each fitness independently. We use the
simulated paths for the fitness as parameters to sample from the model specification

3The numerical values for the fitness used are available at https://github.com/domenicodigangi/
dynwgraphs. We have checked that similar results hold true using different numerical values for the
fitness parameters.

https://github.com/domenicodigangi/dynwgraphs
https://github.com/domenicodigangi/dynwgraphs
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in (7.6). Then, using only the sequence of sampled matrices as input we use the two
methods to filter the time varying evolution of the fitness. For each fitness we com-
pute the mean squared error (MSE) over the time series and then average it across
nodes, keeping separate the MSE for binary and weighted fitness. Finally, we repeat
the sampling and filtering sequence 50 times and average the obtained MSE across
the repetitions. The results showed in Table 7.1 confirm that, also for the weighted

SS Fit. SD Fit.

Avg. MSE
(←−

θ ,
−→
θ
)

0.36 0.11

Avg. MSE
(←−

λ ,
−→
λ
)

0.54 0.25

TABLE 7.1: Results from the first experiment: MSE of the filtered fit-
ness averaged across all nodes

fitness, the score driven update rule is a clear better choice in filtering misspecified
paths for the time varying fitness.

Having established that as a misspecified filter of the fitness, the sequence of
single snapshot estimates under-performs the score driven alternative, also for the
weighted fitness, let us mention a second limitation of the single snapshot approach.
In the usual empirical setting, only one network is observed in each time step. In
such a setting, we might not be able to jointly estimate the sequence of single snap-
shots estimates and the coefficients βbin, or βw, due to the low number of observa-
tions per parameters. This is the case, for example, if we consider as covariate a
variable that is uniform across all links i.e. X(t)

ij = x(t) ∀i, j, a case that we consider in
the empirical application of Section 7.4.2. In this case, an identification issue arises
for the single snapshot estimates for both the binary and weighted parameters. In
fact, the probability of the sequence of observations, given the sequence of weighted
fitness, remains unchanged under the following transformation

←−
λ

(t)
→←−λ

(t)
+ c1x(t)

−→
λ

(t)
→ −→λ

(t)
+ c2x(t)

βw → βw + c3, (7.12)

for any choice of (c1, c2, c3) such that c1 + c2 + c3 = 0, since for each t such a transfor-

mation does not change the sum
←−
λ

(t)
i +

−→
λ

(t)
j + βwx(t). Hence, in a model specifica-

tion with a uniform external variable, we cannot identify the parameter of interest βw
and this prevents us to use sequences of single snapshot estimators. With a simple
change of notation we can see that the same issue arises for the binary parameters.
We point out that the model with static fitness, that we use for comparison, and our
score driven version, do not suffer from this identification issue, as in both cases the
number of static parameters to be estimated does not increase with the number of
time steps observed. For instance, in the score driven model, the sequence of pa-

rameters
(←−

λ
(t)

,
−→
λ

(t)
)

for t = 1, . . . , T, is not estimated directly but follows from

the score driven update rule (7.7) that is uniquely identified given the sequence of
observations and the static parameters (w, b, a). For this reason, in the rest of this sec-
tion, we compare the score driven weighted fitness model only with the alternative
having constant fitness.
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7.3.2 External Covariates and Omitted Variables Misspecification

In the rest of this section we discuss two numerical experiments that focus on as-
sessing how effective our score driven weighted fitness model can be in estimating
the dependency of the network dynamics on external covariates. We show that, in
synthetically generated data-sets, introducing the binary and weighted fitness, and
allowing them to vary in time, reduces errors due to unobserved variables.

Our second experiment is designed to show that the score driven model allows
us to estimate the effect of external covariates, even when the time varying fitness are
generated by a DGP that is not score driven. Moreover it highlights the importance
of taking into account time varying node specific effects. In fact, assuming the fitness
to be constant, when they are actually time varying, results in poor estimates of
the dependency on external covariates. In order to show that, we consider samples
from the model in (7.6), where we let the fitness evolve with the AR(1) DGP of the
previous experiment, and suppose that the network dynamics depends also on the
realization of two independent, predetermined, external variables, Xbin and Xw. The
first covariate enters in the binary part of the DGP

p(t)ij =
1

1 + e
−(←−θ

(t)
i +
−→
θ

(t)
j +X(t)

binij
βbin)

,

and the second one influences the expected weights in 7.6 as follows

µ
(t)
ij = σ−1e

(←−
λ i+
−→
λ j+X(t)

wij βw

)
.

We fix βbin = 1, βw = 1 and consider two possible specifications for the DGP of
the synthetic external covariates. In the first one both external variables are scalar,
X(t)

binij
= x(t)bin and X(t)

wij = x(t)w ∀i, j, and follow an AR(1) process equal to the one fol-

lowed by the fitness in the previous example4. In the second specification for the
external variables, we set X(t)

binij
= Θ

(
Y(t−1)

ij

)
and X(t)

wij = log
(

Y(t−1)
ij

)
∀i, j. The lat-

ter DGP, due to the explicit dependency of the network at time t from its realization
at previous time t − 1, simulates a temporal network with link persistence, i.e. a
higher probability of observing at time t a link if this was present at time t− 1.

We sample 50 sequences of networks, and external covariates, each of 150 time
steps. For each sampled sequence, we estimate our score driven weighted fitness
model maximizing the likelihood of the static parameters. We then compute the
MSE between simulated and estimated values of βbin and βw across the sample. In
order to test the effects of completely disregarding time varying effects in estimating
the dependency of the external covariates, we repeat the same procedure also for
a version of the model with static fitness and report the results in Table (7.2). It
emerges clearly that not taking into account the dynamics of the fitness can severely
deteriorate our estimation of the effect of external covariates.

In order to motivate our third and last numerical experiment, let us mention that
the topic of estimation errors due to omitted variables has been discussed widely in
the econometric literature (Greene, 2000; Barreto and Howland, 2006; Wooldridge,
2010). The standard approach to mitigate it consists in using control variables. This
approach has some known downsides (see for example Griliches, 1977; Yatchew and
Griliches, 1985; Clarke, 2005) and, most importantly, is not always viable since the

4With parameter b0 set such that the unconditional mean of the AR(1) process is equal to 1.
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DGP AR Fit. & Scalar AR Ext. Var. AR Fit. Link persistence

Filter Const. Fit. SD-Fit. Const. Fit. SD-Fit.

MSE βbin 0.14 0.06 0.23 0.02
MSE βw 0.34 0.02 0.18 0.015

TABLE 7.2: Results for the second experiment: MSE of the estimated
regression coefficients over 50 replicates of the numerical experiment.
In both DGPs the fitness follow an AR(1) process. Two columns on the
left: results from the DGP with scalar external regressors following
two AR(1) processes. Two columns on the right: results for the DGP

that simulates a persistent dynamics in both links and weights.

data on appropriate controls might not be available for a number of reasons. In-
deed, this is very common for financial networks, as the one that we consider in
Section 7.4.2, where the variables that one would like to use as controls are likely to
be privacy protected and often unavailable to researchers. Considering, for example
the case of interbank networks, we could very well expect the current leverage of
a bank to have a significant influence on the decision to borrow or lend, i.e. create
interbank links. Nevertheless it is very unlikely for this information to be available,
at the frequency required. This issue is even more frequent when the data-sets are
anonymous, and the identity of the nodes is not known. For this reasons, here we
present a numerical experiment with the narrow objective of motivating the appli-
cation of time varying fitness when estimating the effect of external covariates on
temporal networks. In short, in our third experiment we show that allowing the
fitness to vary in time is extremely beneficial to mitigate the errors that arise due
to omitted variables, at least in the context of controlled numerical simulations. We
assume the network’s dynamics, both that of the links and that of the weights, to be
determined by two external covariates. We then assume that, for whatever reason,
only one of them is observed. Specifically the DGP considered is similar to the one
in (7.6) but with parameters defined as

p(t)ij =
1

1 + e−(β1,binx(t)1 +β2,binx(t)2 )
,

and
µ
(t)
ij = σ−1e

(
β1,wx(t)1 +β2,wx(t)2

)
.

We assume that the x(t)2 is not observed and assess the effect of disregarding it in es-
timating the effect of the available one. Furthermore, we show that introducing the
score driven fitness, in this controlled numerical experiment, compensates the im-
pact of the neglected variable on the estimates. In this setting, as before, we consider
external variables that follow an AR(1) model with high persistence, b1 = 0.98. We
sample the DGP and estimate the coefficients 50 times for a sequence of networks
long 150 time steps. We then compare the MSE for the estimates of parameters β1,bin
and β1,w, obtained using three different specifications of the model in (7.6). One
without node heterogeneity, hence no fitness, where the probability of observing
a link depends only on the observed covariate, one with constant fitness, and our
model with score driven fitness, also depending on the observed external covariate.
From the results that we report in Table (7.3), it follows that considering a model with
time varying fitness is extremely beneficial even when the DGP is not characterized



100 Chapter 7. Score Driven Model for Sparse Weighted Temporal Networks

DGP No Fit. 2 regressors

Filter 1 Reg. No Fit. Const.Fit. SD-Fit.
MSE βbin1 5.66 0.53 0.01
MSE βw1 133 0.39 0.08

TABLE 7.3: Misspecified filtering of a DGP with two covariates and
no fitness. Results from our third experiment: MSE of the estimated
regression coefficients for the observed variable. The DGP has no fit-
ness and depends on two covariates each following an AR(1) process.
The first column (No Fit.) shows the MSE for the estimates of βbin and
βw, when no fitness is used. The second column (Const. Fit.) when
the estimates are obtained using a model with constant fitness. In the
third column (SD Fit.) we show the same results using a model with

score driven fitness.

by explicit node specific effects, i.e. the DGP itself depends only on the realizations
of the external variables and does not include node specific fitness. We believe that
the results presented in this section strongly support our choice to describe tempo-
ral weighted networks by means of time varying fitness. Moreover, they give us
clear insights to interpret the results of Section 7.4, where we find a clear advan-
tage, in terms of goodness of fit, in using our score driven weighted fitness model to
describe empirical data.

7.4 Link and Weight Dynamics in the Italian e-MID

We apply our model to the interbank overnight loans market described as a tem-
poral weighted network. Inter-bank markets are an important point of encounter
for banks’ supply and demand of extra liquidity, and have received much attention
in the literature (see Green et al., 2016, for a review). In particular, e-MID has been
investigated in many papers (see, for example Iori et al., 2008; Finger, Fricke, and
Lux, 2013; Mazzarisi, Barucca, Lillo, and Tantari, 2017; Barucca and Lillo, 2018, and
references therein). We use data from the e-MID, a market where banks can extend
loans to one another for a specified term and/or collateral. Our data-set contains the
list of all credit transactions in each day from June 6, 2009 to February 27, 2015. In
our analysis, we investigate the interbank network of overnight loans, aggregated
weekly. The standard approach in the literature to model temporal interbank net-
works is to disregard the size of the exposures and consider only the presence or
absence of links, i.e. consider only the binary network. Thanks to the flexibility of
our score driven weighted fitness model, we are able to take into account and ex-
plicitly model also the weights of the loans. We thus consider a link from bank j
to bank i present at week t if bank j lent money overnight to bank i, and its weight
as the total amount lent over that period. This results in a set of T = 298 weekly
aggregated weighted networks. For a detailed description of the data-set, we refer
the reader to Barucca and Lillo, 2018.

As it is evident from the left panel of Figure 7.1, the number of links in e-MID
is significantly lower in the second half of the dataset. In particular it started de-
clining in 2011, most likely as a consequence of the european sovereign debt crisis
and then fluctuated around a new lower level since the beginning of 2012. As dis-
cussed in Barucca and Lillo, 2018, the decreased number of links corresponds to a



7.4. Link and Weight Dynamics in the Italian e-MID 101

FIGURE 7.1: In the left panel we show the number of links present in
the data for each time step. In the right panel we show the average

weight, in Millions of Euro, of the present links.

lower number of banks being active in the market and both the network density5

and the average weight of present links has not followed a similar clear transition to
a different level.

7.4.1 Weight Prediction Exercise

As a first empirical application of our model we explore the possibility of using
it to predict the weight of future links. The problem of link prediction in binary
temporal networks is extremely relevant in practical applications and has been dis-
cussed widely in the literature (Lü and Zhou, 2011; Wang, Xu, Wu, and Zhou, 2015;
Martínez, Berzal, and Cubero, 2016; Haghani and Keyvanpour, 2017). It can be
defined in multiple ways depending on the context, the type of data at hand, and
whether we want to predict the presence of a link in the future or the existence of a
link in a partially observed network. Weight forecasting in temporal networks has
instead received much less attention so far. Among the works mentioned in section
4.3, that propose models for weighted temporal networks, only Giraitis, Kapetanios,
Wetherilt, and Žikeš, 2016 discuss a forecasting application. Moreover, they run a
forecasting exercise on a very dense and small network6. For this reason here we
run an exercise using the full dataset described in the previous section. We focus on
forecasting the weights of the network at time t + 1, using only information avail-
able at time t. This is very much in line with what we did in Di Gangi, Bormetti, and
Lillo, 2019, and in Chapter 6, with the important difference that here we consider the
prediction of the weights instead of the prediction of links’ presence. Since our focus
is on weights prediction, we consider only the links that are actually present at time
t + 1 and do not discuss the prediction of the existence of a link, that we considered
in our previous work. Moreover, all the out of sample measures of goodness of fit
for the weights considered in the rest of this Chapter are computed on the subset of
links observed at time t + 1.

In our weight forecasting exercise we compare the forecasts obtained using two
methods, that we describe in the following. In both approaches, when forecasting

5Number of links present divided by the number of possible links, given the number of active
banks.

6This is due to the structure of the UK interbank market that they consider. Indeed the fraction of
links present at every time step for the full temporal network that they consider is always above 40%.
Furthermore, they run the link forecasting only on the sub-network composed by the 4 largest banks
in the system, thus increasing the density of the actual network considered.
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observations at time t + 1 we use only observations from t− Ttrain to t for training7.
The first approach that we consider uses our score driven model to forecast the fit-
ness at time t + 1 with the update rule (7.7). This is very easy to do in practice since,
as mentioned in Section 7.2, the score driven fitness at time t + 1 are deterministic
conditionally on the observations at time t. The second approach that we consider
is a combination of the sequence of single snapshot estimates, described at the be-
ginning of Section 7.3, and a set of AR(1) models, one for each fitness. In the latter
approach, we first obtain the sequence of single snapshot estimates on the training
set and then use them to estimate an AR(1) process for each fitness. Finally, we use
this set of AR(1) models to forecast one value of the fitness at time t + 1. Practically,
we repeatedly estimate the two models on rolling windows of length Ttrain = 100
time steps and, once for each estimate, we forecast the first out of sample observa-
tion for each train window. We then compare the weights of present link at time t+ 1
with the expected values obtained from the two models and quantify the error by
the mean squared error between the logarithms of observed and predicted weights

MSE Log. =

∑ij Θ
(

Yij
(t+1)

)(
log

(
E

[
Yij|
←̂−
λ

(t+1)
,
←̂−
λ

(t+1)
])
− log

(
Yij

(t+1)
))2

∑ij Θ
(

Yij
(t+1)

) ,

where
←̂−
λ

(t+1)
and
←̂−
λ

(t+1)
are the forecasts for the in and out weighted fitness, ob-

tained using only observations up to time t. Similarly we compute the mean absolute
difference (MAD)
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We compare the logarithms of predicted and observed weights because the distribu-
tion of observed weights is quite heterogeneous, it roughly spans 5 order of magni-
tudes, and directly comparing the weights would result in measures of goodness of
fit mainly describing the fit of the largest weights 8.

Method Score Driven AR(1) Single Snap. Diebold-Mariano (p-value)
MSE Log. 0.859 0.882 1.73× 10−7

MAD Log. 0.726 0.737 1.21× 10−7

TABLE 7.4: Results of the weight prediction exercise. In the table we
show the mean square error and mean absolute difference between
the logarithm of observed weights and that of the weights predicted
with the two methods discussed. In the first column the results of our
score driven approach, in the second column those of the forecasting
approach based on single snapshot estimates and AR(1) processes for
the fitness. In the third column we show the p-value of a Diebold-
Mariano test for the null hypothesis that the two forecasts are equiv-

alent.

7Extremes included.
8Similar results hold using measures of relative error for the comparison between predicted and

observed weights.
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From the results reported in Table 7.4 we deduce that, similarly to the binary case,
the score driven dynamical evolution is a better choice to predict the weights with
respect to a prediction based on sequence of single snapshot estimates, both in terms
of MSE and MAD for the logarithms. Moreover we run a Diebold-Mariano (Diebold
and Mariano, 2002; Harvey, Leybourne, and Newbold, 1997) test that rejects the
hypothesis that the two forecasts are statistically equivalent.

7.4.2 The Effect of Interest Rates on Interbank Lending

In this section we discuss an application of our model to investigate the effect of
the interest rates on the dynamics of the interbank network data introduced above.
To track average interest rates, we use the Euro Overnight Index Average (EONIA)
benchmark. EONIA is a measure of the effective interest rate prevailing in the euro in-
terbank overnight market. It is computed as a weighted average of the interest rates on
unsecured overnight contracts on deposits denominated in euro, as reported by a panel of
contributing banks.9

Intuitively we can expect banks’ funding rates and the topology of the interbank
market to be deeply related. This relation is of clear interest from the point of view of
the policymaker and has received much attention in the literature (see, for example,
Akram and Christophersen, 2010; Iori, Burcu, and Olmo, 2015; Arciero et al., 2016;
Temizsoy, Iori, and Montes-Rojas, 2017; Brunetti, Harris, Mankad, and Michailidis,
2019). Of particular relevance for the results discussed in this section is the work
of Akram and Christophersen, 2010 that investigated the effects of banks character-
istics and the conditions of the network as a whole on the interest rates that each
bank faces on the interbank market. They exploited a remarkable dataset, attained
from Norges Bank real time gross settlement system, that allowed them to model
bank specific interest rates as dependent on a set of variables and controls, includ-
ing overall market’s liquidity. From basic supply and demand reasoning one would
expect that excess liquidity in the market would have a negative pressure on the in-
terest rates on average, and indeed they found that interest rates tend to be lower
when the overall liquidity available on the market is higher.

A second work that is relevant for the purposes of this section is that of Brunetti,
Harris, Mankad, and Michailidis, 2019, where the authors considered data on the e-
Mid interbank market for a period ranging from the beginning of 2006 to the end of
2012, focusing solely on the binary part of the daily temporal network of overnight
loans. They computed various aggregated network statistics for each time step, thus
obtaining one univariate time series for each statistic. Among other quantities, they
computed the density of each network10 and, using a standard linear regression,
found it to be positively related with EONIA.

In the following we explore the impact of interest rates on the probability of ob-
serving each link and on the expected weight of observed links by applying our
score driven weighted fitness model to the e-Mid dataset, using as external variable
the EONIA interest rate. For our estimates, we use a training set comprising the
first 80% of time steps and left the last 20% to assess goodness of fit out of sample.
Moreover, similarly to what done in the numerical simulations discussed Section
7.3, we compare the score driven dynamical fitness with two alternative specifica-
tions: a model without fitness and one with constant fitness, as defined in Section
7.3, both with EONIA as the only external variable. We then compare their goodness
of fit both in-sample and out of sample. In Table 7.5 we show the results that clearly

9Definition from https://stats.oecd.org/.
10Defined as the number of connections as a proportion of all possible connections

https://stats.oecd.org/
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confirm the importance of including time varying fitness to improve goodness of fit.
We report the Bayesian Information Criterion for each model, computed separately
for the likelihood of observing links and the likelihood of their weights, to compare
goodness of fit in-sample. The binary and weighted parts of each model are eval-
uated separately out of sample. We quantify out of sample accuracy in predicting
link’s presence by means of the AUC, while for the weights we compute the MSE of
the logs of the weights, only for the present links. Since the model without fitness

Model No. Fit. Const. Fit. SD-Fit.

BIC Bin 1.75× 106 0.53× 106 0.45× 106

BIC Weight 1.898× 106 1.460× 106 1.459× 106

AUC - Test Set 0.48 0.82 0.92
MSE Log. - Test Set 58.15 1.01 0.776

TABLE 7.5: EONIA Effect on e-Mid. We report the in sample Bayesian
Information Criterion (BIC), for both the binary and weighted part of
model 7.6, the area under the curve (AUC) for our of sample evalu-
ation of the binary part and the MSE of the logarithms for the out of
sample evaluation of the weighted part. The first column describes
the results for a model without any fitness. The second one for the
case of constant fitness and the third one for the case of score driven

fitness.

is clearly not a good fit for the data we do not discuss it further, and in Table 7.6
we report the estimated regression coefficients using the models with constant and
score driven fitness. The model with score driven fitness is clearly the best fit for the

Model Const. Fit. SD-Fit.

βbin 0.69± 0.06 0.29± 0.05
βw 0.022± 0.029 −0.13± 0.02

TABLE 7.6: EONIA Effect on e-Mid. Estimates of the regression coef-
ficients using models with constant or score driven fitness.

data, both in sample and out of sample, as measured by the measures reported in Ta-
ble 7.5. Moreover, the parameters estimated by the score driven fitness model have
always a statistically significant difference with respect to those estimated using a
model with constant fitness. We interpret this discrepancy as a sign that disregard-
ing the fitness dynamics can lead us also to miss-guided qualitative interpretations,
consistently with our numerical results of section 7.3.2. For example, in this case,
the βw parameter estimated using a model with constant beta is not significantly
different from zero.

From the estimate βbin = 0.29± 0.05, we can deduce that, in the considered pe-
riod, the probability of observing a link in the network is positively related with the
interest rates, hence the lowering of interest rates tends to reduce the overall market
interconnectdness, even taking into account bank specific effects captured by the fit-
ness. This result is coherent with the relation between network density and EONIA
found in Brunetti, Harris, Mankad, and Michailidis, 2019, although the approach
based on standard regression on aggregated network statistics is different from ours.
In fact, thanks to the time varying binary fitness in our model, the estimated effect
of EONIA is decoupled from bank specific effects that are instead accounted for by
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the fitness. Such a separation of bank specific effects from the impact of a covariate
is instead not possible when considering the density of the whole network as done
in Brunetti, Harris, Mankad, and Michailidis, 2019.

For what concerns the effect on the liquidity exchanged trough the observed
links, i.e. the link’s weights, the estimated βw = −0.13 ± 0.02, indicates that the
weight of the observed overnight loans is negatively related with the average inter-
est rate in the market. Our result is coherent with the work of Akram and Christo-
phersen, 2010 on the Norwegian interbank market, but our methodology allows us
to explore a different aspect of the relation between liquidity and interest rates. In
fact, their result regards the relation between bank specific rates and aggregated liq-
uidity, while we explore the relation between average rates on the market and the
weight of present links, controlling for time varying bank specific effects by means of
the time varying fitness. Thanks to zero augmentation and our separate modelling
of links and weights, our finding is directly related with the average magnitude of
the overnight loans that are actually present, more than with the total liquidity in
the market. In summary, the data considered indicate that lower interest rates are
related with a reduction of network interconnectdness but an increase of the average
liquidity flow for the loans that are present.

We point out that our results on the relation between the dynamics of the e-Mid
interbank network and EONIA, are obtained leveraging the full information avail-
able in the description of a temporal network as a temporal sequence of matrices,
and considering the impact of the covariate both on the probability of each individ-
ual link and the expected weight of observed links. Differently from Akram and
Christophersen, 2010 and Brunetti, Harris, Mankad, and Michailidis, 2019 we do
not need to collapse the matrices into a single network statistic to estimate the ef-
fects of external variables. We directly use matrix valued network data and, thanks
to the time varying latent fitness parameters, we can decouple the impact of EONIA
from unobserved time varying node specific effects. The advantage of using matrix
valued network data will become even more evident in the next section where we
consider link specific covariates and carry out an analysis that would be completely
impossible with standard regression methods on univariate network statistics.

7.4.3 Link and Weight Persistence

As a final application, we use our model to contribute to the literature on the persis-
tence in interbank networks (Weisbuch, Kirman, and Herreiner, 2000; Cocco, Gomes,
and Martins, 2009; Hatzopoulos et al., 2015; Mazzarisi, Barucca, Lillo, and Tantari,
2017) by exploring both the persistence of links and that of the weights. The exis-
tence of privileged lending relations between pairs of banks is a well known phe-
nomenon and it is often referred to as preferential trading (Weisbuch, Kirman, and
Herreiner, 2000). The motivations behind it can be explained by the relevance of
strong lending relationships between banks as a way to overcome monitoring of
credit worthiness and limit the risk of counter-party default (Cocco, Gomes, and
Martins, 2009). The existence of preferential trading behaviours has been assessed
quantitatively by means of statistical methods specifically developed for the pur-
pose (Hatzopoulos et al., 2015). Additionally, models for binary temporal networks
have been proposed that explicitly take it into account (Mazzarisi, Barucca, Lillo,
and Tantari, 2017).

In this section we exploit the flexibility of our model and estimate the effect of
two predetermined covariates that are meant to capture the persistence of links and
weights. For what concerns link persistence of the binary network, we explore how
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the presence of a link at time t− 1 influences the probability of observing a link at
time t. That amounts to use Θ

(
Y(t−1)

ij

)
as external covariate in Eq. (7.2). To assess

persistence in the links’ weights, we estimate the effect of the weight of a link at
t − 1 in determining its weight at time t by using log

(
Y(t−1)

ij

)
as covariate in Eq.

(7.4). Let us recall that we have tested numerically the possibility to estimate such
effects in synthetically generated data in Section 7.3. As in the previous section, we

Model No. Fit. Const. Fit. SD-Fit.

βbin 0.0644± 0.0385 2.875± 0.045 2.0478± 0.0448
βw 1.05± 0.003 0.073± 0.0019 0.0637± 0.0018

BIC Bin 5.66× 106 4.46× 106 4.16× 106

BIC Weight 2.61× 106 1.451× 106 1.454× 106

AUC - Test Set 0.748 0.882 0.932
MSE Log. - Test Set 21.22 0.9 0.764

TABLE 7.7: Results on estimates of link persistence in e-Mid. One
column for each one of the three alternative model specifications con-
sidered. In the third and fourth rows we show the in sample BIC,
respectively for the binary and weighted parts of the model in (7.6).
The last two rows are out of sample measures of goodness of fit. The
fifth one is the out of sample AUC for the binary part. The last row is

the out of sample MSE of the logarithms of the weights.

compare three models, a model without fitness, one with constant fitness, and our
score driven fitness model, all using the same external covariates and two scalar co-
efficients, βbin and βw that quantify the persistence of links and weights respectively.
The results in Table 7.7 confirm that neglecting node specific time varying effects
results in worst fitting of the data, as is evident by looking at the superior perfor-
mances, both in sample and out of sample of the models with score driven fitness,
with respect to those without or with constant fitness. The three model specifications
all result in positive coefficients both for the binary and the weighted covariates.
With the best performing model among those three, the model with score driven fit-
ness, we estimate βbin = 2.0478± 0.0448. This indicates that globally the presence of
a link at time t− 1 positively impacts the probability of observing that same link at
time t. This is in agreement with the current consensus in the literature, indicating
for the existence of preferential trading behaviours in e-Mid, that has been validated
empirically only on the binary part of temporal interbank networks, for example by
Hatzopoulos et al., 2015 and Mazzarisi, Barucca, Lillo, and Tantari, 2020. The novel
aspect of our analysis lays in the estimated βw = 0.0637± 0.0018, that highlights a
weights persistence effect. This result complements the analysis of Hatzopoulos et
al., 2015, as they considered the weighted networks of the number of loans between
each pair of banks, neglecting altogether the amount lent for each loan. By design,
our model allows us to highlight the tendency of banks to form links whose weight
is positively related with their weights at previous steps. A tendency that we might
refer to as weights’ persistence.
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7.5 Conclusions

In this work, we proposed a model for the description of sparse weighted temporal
networks that extends the well known fitness model for static binary networks. In
our new score driven weighted fitness model, we model also links weights with an
additional set of fitness. Both binary and weighted fitness have a stochastic dynam-
ics driven by the score of the conditional likelihood. Additionally, we considered
also the possibility for the network dynamics to depend on a set of external covari-
ates.

Our numerical simulations proved the advantages of the score driven fitness
over static fitness and over a sequence of standard cross sectional estimates. As
an empirical application, we used our model to explore the determinants of the dy-
namics of links and weights in the e-MID interbank network. We proved that there
is a significant advantage in using score driven parameters to forecast weights, with
respect to single snapshot estimates. Moreover we used the flexibility of our model
to estimate the impact of the EONIA rate in determining the links and weights dy-
namics. And used it to inform the discussion on persistence in interbank networks
with a first empirical evidence of persistence in the weights.

Our work opens a number of possibilities for future research. First, the possibil-
ity to jointly model and predict links’ presence and their weights could find relevant
applications in the financial stability literature, since weighted financial networks
are known to be among the determinants of Systemic Risk, and their dynamical de-
scription has so far neglected the weights of the links. Second, score driven weighted
fitness model could be applied on multiple instances of real world sparse weighted
temporal networks, where the standard approach of neglecting the weights might
result in significant information loss. The last future application that we plan to ex-
plore is the possibility to use as external covariate a variable related to whether two
nodes belong to the same group or community. Community detection has attracted
an enormous amount of attention in various streams of literature (Javed et al., 2018),
also in the context of temporal networks (Rossetti and Cazabet, 2018). We believe
that the dynamical fitness could offer valuable insight in whether a given partition
of the nodes into groups is more or less valid across nodes and time.

7.6 Appendix

7.6.1 Fitness Identification

It is easy to see that, already in its static version, the fitness of the fitness model for
a directed network are not identified. This fact is well known for the binary fitness
model (Yan, Leng, Zhu, et al., 2016) and remains true for the weighted fitness that we
consider here. For this reason, let us indicate here with←−ϕ and −→ϕ the vectors of in
and out fitness respectively, without specifying whether they are binary or weighted.
With this notation it is easy to see that the following transformation

←−ϕ →←−ϕ + c (7.13)
−→ϕ → −→ϕ − c (7.14)

does not change the sum←−ϕ i +
−→ϕ j + βXij and leaves the PMF unchanged, ∀c. The

parameters are not uniquely identified and, in order to compare estimates across
different time steps, we need to impose an identification restriction, as commonly
done in the literature (Yan, Leng, Zhu, et al., 2016; Mazzarisi, Barucca, Lillo, and
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Tantari, 2020). In this work we require that

∑
i

←−ϕ i = ∑
j

−→ϕ j, (7.15)

at every time step.

7.6.2 Alternative Distributions for the Weights

As mentioned in the main text, we considered the gamma distribution to model the
weights for concreteness but it is extremely easy to consider different distributions
to model the weights. If, for example, we consider the log-normal distribution, we
can simply substitute its parametric form

gij (y) =
1

yσ
√

2π
e
−(ln y−µij)

2

2σ2 (7.16)

in place of the gamma distribution, and obtain as a consequence a different update
equation for the time varying fitness, as they would be driven by the score of the
log-normal

si

(
Y(t),
←−
λ ,
−→
λ , σ

)
= ∑

j

1
σ2 log

E
[
yij|yij > 0

]
yij

− Ki. (7.17)

Indeed, extending our approach to use a different distribution is also practically
straightforward. The interested reader would only need to add the functions to
compute the log-likelihood, sample from the distribution and compute its deriva-
tives and scaling matrix. Conveniently the log-likelihood and sampling methods are
already available for many distributions in PyTorch (Paszke et al., 2019), upon which
we built the core library for this work. https://github.com/domenicodigangi/
dynwgraphs.

7.6.3 Filtered Fitness Dynamics With External Covariates

In this section we inspect the dynamical behaviour and the role of the fitness filtered
with our score driven weighted fitness model, defined in Section 7.2, when we con-
sider the effects of external covariates. In particular, we discuss how the dynamical
evolution of the filtered fitness changes when we consider the dependency on EO-
NIA, estimated as described in Section 7.4.2, with respect to their behaviour when
no external covariate is considered.

To this end, for a subset of the most active links11, we compute the sum of the
in and out fitness corresponding to their probabilities, and expected weights. For

example, for link (i, j) we consider
←̂−
θ i +

−̂→
θ j and

←̂−
λ i +

−̂→
λ j. We compute these quan-

tities using two sets of filtered fitness. The first set is obtained by estimating and
running our score driven weighted fitness model as a filter without considering any
external covariate, similarly to what we did in Section 7.4. The second set is obtained
with a similar approach, now including in the model specification also the depen-
dency on EONIA, exactly as in Section 7.4.2. Then, given these two sets of fitness
sums we look at their Spearman rank correlation (Spearman, 1961), over time, with
EONIA, thus obtaining four correlations for each of the considered links, for each of
the two sets of filtered fitness (with and without EONIA as covariate) we have one

11We consider the links that are present at least 5% of the times.

https://github.com/domenicodigangi/dynwgraphs
https://github.com/domenicodigangi/dynwgraphs
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correlation for the binary fitness and one for the weighted fitness. We consider the
sum of fitness because, as is evident from (7.2) and (7.4), they are related to the prob-
ability of observing a link, or to the expected weight of that link. Moreover, given
that the EONIA rate had a substantial drop around the middle of 2012, as showed
in Figure 7.2 in computing the correlation with the sums of fitness we split the data
set in two periods and consider them separately.

FIGURE 7.2: Weekly average of EONIA rate over the time period con-
sidered.

The plots shown in Figure 7.3 highlight the different behaviour of the fitness,
with respect to EONIA when the latter is explicitly considered as external covariate.
We notice that in the first period, i.e. when EONIA rates are higher, the correla-
tion between fitness sums and EONIA are significantly different when we include
EONIA as covariate or we do not. To statistically confirm the difference we run a
Kolmogorow-Smirnov test having as null hypothesis the fact that the two distribu-
tions are identical. In the first period the distributions result different for both the
binary and weighted part, considering a confidence level of 5% to reject the null hy-
pothesis. In the second period instead, we cannot reject the hypotheses that the two
distributions are different. Hence the relation of the fitness with EONIA in the sec-
ond period does not seem to be affected by whether the latter is explicitly included
or not as external covariate.

In order to better understand this behaviour we repeated the same analysis of
correlation artificially modifying the regression coefficients before filtering the fit-
ness. We keep everything equal except the values of βbin and βw. Instead of their
MLE values, we now artificially set the values of these parameters to be βbin = 3
and βw = 3 in Figure 7.5 and βbin = −3 and βw = −3 in Figure 7.4. In practice,
we change the regression coefficients and then filter the time varying fitness using
the score driven update rule. We notice that, when the regression coefficient is artifi-
cially inflated , Figure 7.5, the fitness sums tend to negatively correlate with EONIA.
While, when we set the coefficients to be artificially negative, the fitness positively
correlate with EONIA. In both cases the filtered fitness behaviour tends to mitigate
the impact of the artificial regression coefficients. These effect is more evident in the
first period than in the second, as expected due to the higher values of EONIA in the
first period.
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FIGURE 7.3: In the above plots we inspect the correlation between the
sums of pairs of fitness, associated to a subset of the links, and the ex-
ternal covariate EONIA. Specifically we show the distribution of the
Spearman correlation between the fitness sum and EONIA computed
in two periods. The first one ranges from the beginning of the sample
up to 15/07/2012, the second one from 22/07/2012 to the end of the
sample. The correlations computed for the first period are showed on
the left panels, those computed in the last period on the right. In the
top panels we show the correlations between EONIA and the sums
of binary fitness, while in the bottom one we consider the weighted

fitness.

FIGURE 7.4: Similar plots as in Figure 7.3, now repeated after substi-
tuting artificial values for the regression coefficients βbin = −3 and

βw = −3.
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FIGURE 7.5: Similar plots as in Figure 7.3, now repeated after sub-
stituting artificial values for the regression coefficients βbin = 3 and

βw = 3.
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Chapter 8

Score Driven Kinetic Ising Model

Synopsis of the Chapter A common issue when analyzing real-world complex
systems is that the interactions between the elements often change over time: this
makes it difficult to find optimal models that describe this evolution and that can
be estimated from data, particularly when the driving mechanisms are not known.
Here we offer a new perspective on the development of models for time-varying
interactions introducing a generalization of the well-known Kinetic Ising Model
(KIM), a minimalistic pairwise constant interactions model which has found appli-
cations in multiple scientific disciplines. Keeping arbitrary choices of dynamics to a
minimum and seeking information theoretical optimality, the Score-Driven method-
ology lets us significantly increase the knowledge that can be extracted from data
using the simple KIM. In particular, we first identify a parameter whose value at a
given time can be directly associated with the local predictability of the dynamics.
Then we introduce a method to dynamically learn the value of such parameter from
the data, without the need of specifying parametrically its dynamics. Finally, we ex-
tend our framework to disentangle different sources (e.g. endogenous vs exogenous)
of predictability in real time. We apply our methodology to several complex systems
including financial markets, temporal (social) networks, and neuronal populations.
Our results show that the Score-Driven KIM produces insightful descriptions of the
systems, allowing to predict forecasting accuracy in real time as well as to separate
different components of the dynamics. This provides a significant methodological
improvement for data analysis in a wide range of disciplines.

Almost all the contents of this chapter previously appeared in (Campajola, Di Gangi,
Lillo, and Tantari, 2020).

8.1 Introdution

Complex systems, characterized by a large number of simple components that inter-
act with each other in a non-linear way, have been an increasingly important field of
study over the last decades. Interactions make the whole more than the sum of its
parts (Bar-Yam, 2002): for this reason the effort when modeling complex systems is
ultimately directed to understand how interactions arise, how to parametrize them
into quantitative models and how to estimate them from empirical measurements.

One complication that is ubiquitous to real complex systems, but very rarely
considered in modeling, is that interactions change over time: traders in financial
markets continuously adapt their strategic decision-making to each other’s actions
(Challet, Chicheportiche, Lallouache, and Kassibrakis, 2016) and to new information
(Lillo et al., 2015); preys change their behavior to avoid predators (Schmitz, 2017);
neurons reinforce (or inhibit) connections in response to stimuli (Tavoni et al., 2017).
As we show also below, a modeling approach assuming that all the interactions are
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constant can be misleading, sometimes leading to spurious estimations of the inter-
actions, which can be avoided only with very strong limitations to sample selection
and experimental design (when possible).

In this chapter we propose a novel approach to the development of models for
time-varying interactions based on the generalization of a minimalistic constant-
interactions model, which is commonly used in many scientific disciplines, the Ki-
netic Ising Model (Crisanti and Sompolinsky, 1988). In the following we show that
this generalization allows to describe conditions where the predictability of the over-
all dynamics of the observed process is variable, while commonly employed con-
stant interaction models fail in this respect. More importantly, our modeling ap-
proach does not assume that the causes or the dynamics of the variable interactions
are known, but they are estimated (or filtered) from the data themselves. Thus, dif-
ferent types of time-varying interactions can be present in the investigated system,
including non-stationarities of various form (regime-shift, seasonalities, etc.). In-
deed it often occurs that the modeler has no insight on the nature of the underlying
dynamics of interactions: the dynamics that is given to the time-varying parame-
ters then needs to be as agnostic as possible with respect to the actual generating
dynamics, i.e. be robust to model misspecification errors.

Since it is generally difficult to determine why and how interactions change over
time, it is even riskier to try to model their dynamics with specific external drivers.
Conversely we assume a generic Markovian paradigm in which J(t)ij - representing

the interaction between the system’s variables s(t)i and s(t)j at time t - endogenously

adapt to the observations of s(t) themselves, i.e.

J(t+1)
ij = F(J(t), s(t)). (8.1)

The updating functional F is determined by general assumptions based on informa-
tion theory principles. First of all, one can assume the interactions variation depends
on surprise: the more an observation of the system’s state is “unexpected”, the more
the relations between its components will change. In social systems, for example,
friendship relationships can get damaged if not constantly fed or may arise from un-
expected gestures of openness. This is also a common principle in biological learn-
ing processes and artificial neural networks, where the least expected inputs have
the largest impact on the values of the synapses or inter-units weights (Ackley, Hin-
ton, and Sejnowski, 1985). The most widespread measure of surprise is minus the
logarithm of the conditional likelihood p(s(t)|J(t)) of observing a given pattern with
the current level of interactions. As a second principle we assume that the system’s
reaction to surprise is to adapt to it, making what has been unexpected for that mo-
ment, expected for the future. In this sense the interactions change to increase the
log likelihood of the last observation i.e.

J(t+1) = w + bJ(t) + a(t)
∂ log p(s(t)|J(t))

∂J(t)
, (8.2)

which can be interpreted as the updating rule of an autoregressive process with a
gradient ascent perturbation with given learning rate parameter A(t), which possi-
bly depends on time. This type of observation-driven (Cox et al., 1981) dynamics
has been recently introduced (Creal, Koopman, and Lucas, 2013; Harvey, 2013b)
in defining the class of score-driven models. These have been shown to be an optimal
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choice among observation-driven models when minimizing the Kullback-Leibler di-
vergence to an unknown generating probability distribution (Blasques, Koopman,
and Lucas, 2015) and have risen in popularity in econometrics (Bernardi and Cata-
nia, 2019) as well as network science (Di Gangi, Bormetti, and Lillo, 2019).

The focus of the Chapter is the score-driven generalization of the KIM (Derrida,
Gardner, and Zippelius, 1987; Crisanti and Sompolinsky, 1988), which is the dynam-
ical counterpart of the celebrated Ising spin glass model (Kirkpatrick and Sherring-
ton, 1978; Edwards and Anderson, 1975). Ising models in general are known to be
among the simplest models of complex systems that have been developed in the
field of statistical physics and are at the roots of the theory on collective behavior
and phase transitions. This large interest is also due to the fact that they fall into the
class of Maximum Entropy models (Jaynes, 1957; Schneidman, Berry, Segev, and
Bialek, 2006; Marre, El Boustani, Frégnac, and Destexhe, 2009) when only average
values and cross correlations are taken into account. The KIM in particular has been
adopted in a variety of fields, such as neuroscience (Cocco, Monasson, Posani, and
Tavoni, 2017; Nghiem et al., 2018; Ferrari et al., 2018), computational biology (Tanaka
and Scheraga, 1977; Imparato, Pelizzola, and Zamparo, 2007; Agliari, Barra, Guerra,
and Moauro, 2011), economics and finance (Bornholdt, 2001; Bouchaud, 2013; Sor-
nette, 2014; Campajola, Lillo, and Tantari, 2020) and has been studied in the litera-
ture of machine learning (LeCun, Bengio, and Hinton, 2015; Hornik, Stinchcombe,
and White, 1989; Decelle and Zhang, 2015) to understand recurrent neural network
models.

The KIM describes the time evolution of a set of N binary variables s(t) ∈ {−1, 1}N

for t = 1, . . . , T, typically called “spins”, which can influence each other through a
time lagged interaction. We focus on its applications to time series analysis and ex-
tend it to allow the presence of time-varying parameters with score-driven dynam-
ics. In its standard form the Kinetic Ising Model for time series (Campajola, Lillo,
and Tantari, 2019) involves three main sets of parameters: a N × N interaction or
coupling matrix J and a N-dimensional vector h of variable-specific biases, which
we summarize as Θ = (J, h). The model is Markovian with synchronous dynamics,
characterized by the transition probability

p(s(t)|s(t−1); β, Θ) =
eβ ∑i s(t)i g(t)i

K(t)
(8.3)

where K(t) is a normalizing constant commonly known as the partition function
in statistical mechanics, and β is a parameter that determines the amount of noise
in the dynamics, known as the inverse temperature. Typically the quantity g(t)i ≡
∑j Jijs

(t−1)
j + hi is called the effective field perceived by spin i at time t. Furthermore, it

is possible in principle to introduce dependency on any number K of external regres-
sors x(t)k , by adding a term bikx(t)k to g(t)i for each k ∈ {1, . . . , K}, as done for instance
in (Campajola, Lillo, and Tantari, 2020).

From the standard KIM we use Eq.(5.2) to provide a dynamics to the parameters
(β, Θ) thus introducing a Score Driven generalization of the KIM. Notice however
that the number of parameters in the KIM is large, O(N2): as customary in high-
dimensional modeling, in the following we will propose two parsimonious and in-
formed parameter restrictions that simplify the treatment and define two kinds of
Score-Driven KIM, each tailored to highlight different effects.

As we show in this Chapter, the development of a score-driven KIM addresses
three important points: first, introducing a dynamical noise parameter β(t) allows
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to gain real time insight on the ability of the model to explain the observed dynam-
ics, thus leading to more informed forecasts; second, neglecting time variability of
parameters by estimating a standard KIM turn out to produce systematic errors,
in particular the estimated values are different from the time-averaged values that
generated the sample; third, by introducing a convenient factorization for the model
parameters, it is possible to discriminate whether an observation is better explained
by endogenous interactions with other variables or by exogenous effects, offering an
improved understanding of the dynamics that generated the data even when these
effects are not constant over time. We prove the effectiveness of our modeling ap-
proach by extensive numerical simulations and by empirical application to different
complex systems.

8.2 Preliminary Discussion of the Kinetic Ising Models

Spin systems have been analyzed by physicists since the early 20th century, mostly
as models to understand the microscopical foundations of magnetism. A spin is in-
deed a proxy for an atomic magnetic moment, i.e. the torque the atom is subject to
when immersed in a magnetic field. The first spin model is the celebrated 1D Ising
Model (Ising, 1925), which mathematically abstracts the problem to an infinite chain
of binary variables s (the spins) that can be either in an “up” or “down” state. These
perceive the local magnetic field generated by their nearest neighbors as well as any
external magnetic field and tend to “align” (i.e. match the state) or “disalign” (i.e. go
in the opposite state) with the net field they sense, based on the value of a parameter
J. The model was intended to verify the hypothesis that thermal properties of fer-
romagnetic materials can arise from microscopic interactions between their atoms,
but failed to do so because no net magnetic field would be observed at equilibrium.
However, it was later shown (Onsager, 1944) that the failure was not due to the
mechanism, but to the oversimplification of taking a 1-dimensional system: in fact,
if one takes a 2D lattice instead of a 1D chain, this extremely simple model qualita-
tively reproduces the macroscopic thermal properties of ferromagnets. The success
of the Ising Model has led to its extension and refinement to describe exotic materials
such as spin glasses (Kirkpatrick and Sherrington, 1978), and its fascinating ability
to describe macroscopic properties determined by microscopic coordination posed
the foundations to many quantitative models of complex systems, with examples
of successful Ising-like models for protein and DNA chains (Tanaka and Scheraga,
1977), neurons (Hopfield, 1982) and financial markets (Bouchaud, 2013).

The appeal of Ising Models comes in part from the fact that they belong to the
class of Maximum Entropy models, as introduced by (Jaynes, 1957). The principle
states that, given a set of constrained quantities from available observations - such
as sample averages - a probability distribution that maximizes Shannon’s entropy
(Shannon, 1948) subject to the constraints is the best distribution to describe the ob-
servations, as it is the one that makes the least arbitrary assumptions. In particular
Ising Models result from Shannon’s entropy maximization constraining means and
correlations of the spins, thus making them a popular choice to describe systems that
can be encoded in binary strings.

The KIM is the out-of-equilibrium version of the Sherrington-Kirkpatrick (SK)
spin glass (Derrida, Gardner, and Zippelius, 1987; Crisanti and Sompolinsky, 1988),
developed a few years later and proposed as dynamical model for asymmetric neu-
ral networks with discrete time and synchronous sampling. The model’s transi-
tion probability, describing the probability of observing a future configuration {s(t)i }
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given a current configuration {s(t−1)
t }, reads

p({s(t)i }|{s
(t−1)
i }, J, h) =

1
K(t)

exp{∑
i,j

Jijs
(t)
i s(t−1)

j + ∑
i

his
(t)
i } (8.4)

Differently from its predecessor, which describes the equilibrium properties of
spin glasses, this model describes the dynamics of a system of spins which have
asymmetric interactions, namely spin i’s effect on spin j is different from spin j’s
effect on i. This difference is incorporated in the structure of the J matrix, which is
symmetric in the SK model and asymmetric in the KIM. Having Jij 6= Jji in fact im-
plies that these coefficients can no longer describe a synchronous interaction, as for
instance a correlation coefficient, but need to describe an asynchronous one, specifi-
cally in this case a lag one interaction.

Typically, in the physics literature, the J elements are assumed to be iid Gaus-
sian random variables, Jij ∼ N (J0/N, J2

1 /N) and the properties of the model as data
generating process are the object of analysis. As shown in (Crisanti and Sompolin-
sky, 1988), the KIM loses the so-called “spin glass” phase of the SK model - a phase
in which the system “freezes” in a metastable configuration with local order but no
global order - and only presents a dynamic phase transition between a paramagnetic
phase - where spins do not show preferential alignment - and a ferromagnetic phase
- where all spins align in one direction - when the mean of the J elements, J0/N, is
greater than 1/N.

A more complete characterization of the model can be found in the physics lit-
erature (Crisanti and Sompolinsky, 1988; Derrida, Gardner, and Zippelius, 1987;
Coolen, 2001a; Coolen, 2001b), with recent developments contributing to neuro-
science (Tyrcha, Roudi, Marsili, and Hertz, 2013), machine learning (Dunn and Roudi,
2013; Decelle and Zhang, 2015; Campajola, Lillo, and Tantari, 2019) and finance
(Campajola, Lillo, and Tantari, 2020) literatures. As a last remark, the model has
been developed in at least another independent strand of literature with the name
of Discrete Auto-Regressive model (DAR) (Jacobs and Lewis, 1978), and an equiva-
lence between these models has been recently shown in (Campajola, Lillo, Mazzarisi,
and Tantari, 2021).

8.3 The Dynamical Noise KIM

The first score-driven KIM we propose addresses the first two points made above,
namely the real time prediction of forecast accuracy and the correction of system-
atic estimation errors of a constant parameter model. The Dynamical Noise KIM
(DyNoKIM) is defined by letting the noise parameter β in Eq. 8.3 be time-varying,
while all other parameters are constant.

To better understand the rationale behind this choice, let us introduce the theo-
retical Area Under the ROC Curve (AUC) (Hanley and McNeil, 1982; Bradley, 1997),
a standard measure of the accuracy of the forecast, and study how it varies as a func-
tion of β in the standard KIM. We provide the details of the derivation in Appendix
8.7, where we show how the AUC depends both on β and on the unconditional dis-
tribution of the effective fields g(t)i . In Figure 8.1 we display the result assuming that
g is Gaussian distributed with mean g0 and standard deviation g1. This is the case
for instance if the Jij entries are Gaussian distributed with zero mean. We see that the
AUC is monotonically increasing with β, but also that the distribution of the static
parameters affects the slope with which the curve converges towards 1, namely the
smaller the mean and variance of the effective fields gi, the slower the growth of
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AUC. Figure 8.1 tells us that the larger is β the more reliable is the prediction of the
model. Hence if we are able to estimate β locally we can assess in real time how
good the model is in forecasting the next observation. This is why in the DyNoKIM
we consider a time-varying β.

0.0 0.5 1.0 1.5 2.0 2.5

0.
5

0.
7

0.
9

β

A
U

C

g0 = 0
g0 = 1
g0 = 2

g1 = 0.5
g1 = 1
g1 = 1.5

FIGURE 8.1: Theoretical AUC as a function of β assuming gi is Gaus-
sian distributed with mean g0 and standard deviation g1. Different
colors correspond to different values of g0, while line types identify
values of g1. We see that increasing β has the effect of reducing the
uncertainty on the random variable s(t)i , keeping gi unchanged. Grey

dashed lines at AUC = 0.5 and AUC = 1 are guides to the eye.

Specifically, the DyNoKIM is characterized by the transition probability

p(s(t)|s(t−1); J, β(t)) =
eβ(t) ∑i s(t)i g(t)i

K(t)
(8.5)

with K(t) = ∏i 2 cosh
[

β(t)g(t)i

]
. We give score-driven dynamics to f (t) = log β(t), as

β is positive and inversely related to the noise:

log β(t+1) = w + b log β(t) + aI−1/2(t)∇t (8.6)

where w, b and a are scalar parameters and I (t) is the Fisher Information and ∇t =
∂p(s(t)|s(t−1),β(t))

∂β(t) is the score.
The interpretation for this model is simple yet extremely useful: the higher the

value of β, the smaller the uncertainty over the realization of s(t) or, in other words,
the more accurate a prediction of the value of s(t), as we have shown in Fig. 8.1.
Operationally, at a given time t − 1 with an observation s(t−1), it is possible to use
the DyNoKIM to produce one-step ahead forecasts for s(t), which we call ŝ(t)i . These
are obtained as

ŝ(t)i = sign
[

p
(

s(t)i = 1
∣∣s(t−1), Θ, β(t)

)
− α
]

(8.7)

where α is an arbitrary threshold level. Sweeping the value of α between 0 and 1
one obtains a ROC curve, which in turn can be used to calculate the AUC. We report
simulation results for this procedure in Appendix 8.7. Notice that β(t) depends only
from past observations S (t−1) through Eq.8.6, thus the predictions are fully causal.

In the statistical physics literature there have been few attempts to study sim-
ilar models (Penney, Coolen, and Sherrington, 1993; Beck and Cohen, 2003; Beck,
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Cohen, and Swinney, 2005). However these works assume that the sampling of the
observations and of the time-varying parameters take place on two separated time
scales, meaning that the parameters are locally constant when the observations are
sampled. This is not true for score-driven models, which are in fact designed to not
require this assumption, intuitively formalized by the values of the parameters b
and a. If b� a then the evolution of f is indeed slower than the one of observations,
while if b� a they evolve on the same time scale.
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FIGURE 8.2: (a) Example of a filtered β trajectory with a piece-
wise constant generating process over 30 simulations. (b) Estima-
tion of J under model misspecification with a time-varying β(t) =
1 +K sin(ωt), comparing the KIM and the DyNoKIM. On the x axis
we plot the amplitude K, on the y axis the distribution of the coeffi-
cient b of the linear regression over 60 simulations. Insets show ex-
ample scatter plots of the true J values (x axis) and the estimated val-
ues (y axis) using the standard KIM (yellow points) or the DyNoKIM
(purple crosses). Simulation parameters are ω = 2π/300, T = 3000,

N = 30, Jij ∼ N (0, 1/
√

N), hi = 0 ∀ i

The estimation of the DyNoKIM requires some restrictions. It is known (Mézard
and Sakellariou, 2011) that, given a set of observations, the parameter β in the stan-
dard KIM of Eq. 8.3 is not identifiable. In fact, for any two values β1 and β2
there are also two sets of parameters Θ1 and Θ2 such that p(s(t)|s(t−1); β1, Θ1) =
p(s(t)|s(t−1); β2, Θ2) for all s(t). For this reason in inference problems it is typically
assumed that β = 1 incorporating its effect in the size of the other parameters. When
β is made time-varying though, the identification problem is limited to its time av-
erage value 〈β〉 (which still needs to be assumed equal to 1), while its local value
can be inferred from the data. This result has implications particularly for forecast-
ing applications: a forecast should be considered more or less reliable by looking at
the value of β(t) at the previous instant in time and considering how much above
0.5 the corresponding expected AUC is, according to the relation shown in Figure
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8.1. Finally, the parameters of Eq. 8.6 are inferred by Maximum Likelihood Esti-
mation as follows. The KIM static parameters Θ are inferred via Maximum Like-
lihood Estimation using a known Mean Field technique (Mézard and Sakellariou,
2011) or, when this is not possible, via standard Gradient Descent methods. Given
Θ we estimate w, b, a by performing a targeted estimation (Francq, Horvath, and
Zakoïan, 2011) through ADAM stochastic Gradient Descent (Kingma and Ba, 2014).
Targeted estimation, which is common in observation-driven models such as the
GARCH (Bollerslev, 1986b), first fits the mean value of the time-varying parameter
〈 f 〉 = w/(1− b) and then fits the (w, b, a) parameters keeping this ratio constant.
This procedure significantly reduces the estimation time and produces accurate es-
timates in our simulations. Further details on the process can be found in Appendix
8.7.

Our main focus here is to study the model’s ability to retrieve the correct param-
eters also when the data generating process is not score-driven. Indeed there is little
reason to believe that this sort of dynamics is an actual data generating process for
real-world complex systems, where β might follow exogenous and unknown dy-
namics. The power of score-driven models lies also in the capability of estimating
time-varying parameters, such as β(t), without actually requiring any assumption
on their true dynamical laws. In this sense they behave as filters for the underly-
ing unknown dynamics of the parameters. To show that this is the case also for the
DyNoKIM, Fig. 8.2a displays an example of misspecified β(t) dynamics, a determin-
istic double step function, that is correctly recovered by the score-driven approach.
We simulate 30 time series of length T using the given values of β(t) to generate the
s(t); given only the simulated s(t) time series, the inference algorithm determines the
optimal static parameters a, b and J and filters the optimal value of β(t) at each time.
The resulting βest(t) values are well localized around the simulated ones.

One could argue that a KIM with a time varying β(t) has similar performances to
a standard KIM with a constant β equal to 〈β〉. This is not the case. Fig. 8.2b shows
the results for a set of simulations where β(t) follows a deterministic sinusoidal dy-
namics, β(t) = 1 + K sin ωt, varying the amplitude K, and the time evolution of
s(t) is given by Eq. 8.5. For each value of K we simulate 60 time series of T observa-
tions and fit both the constant parameters KIM and the score-driven DyNoKIM, then
comparing the inferred Jest with the one that was used to generate the data, Jtrue, by
means of a linear regression model Jest

ij = a + bJtrue
ij + ε. We see from Figure 8.2b that

when β is not constant, the KIM underestimates the absolute value of the parame-
ters, highlighted by the fact that b < 1 (and a ≈ 0, not shown). The error is greatly
reduced in the DyNoKIM thanks to the way in which we solve the indetermination
of 〈β〉: after the model parameters are estimated and a filtered βest(t) is found, we
normalize its mean to 1 and multiply the estimated Jest by the same factor, leaving
the likelihood of the model unchanged. This result supports our argument that us-
ing a KIM on data where parameters of the data generating process are time varying
can be misleading and leads to significant errors, something that can be overcome
by adopting the score driven models proposed here.

Finally, let us point out that the Lagrange Multiplier (LM) test, described in Sec-
tion 5.6, can be used to reject the hypothesis of constant β.

8.3.1 Forecasting stock price activity with DyNoKIM

Our first application of DyNoKIM is to financial markets. Measuring high-frequency
price volatility in financial markets is a non-trivial task that has been at the core of
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research in quantitative finance over the last two decades (Aït-Sahalia, Mykland,
and Zhang, 2011). Volatility is in fact a latent process which is hard to measure for
reasons that range from price staleness to microstructural effects like price discretiza-
tion and bid-ask bounce. Price activity, namely the binary time series marking the
events of price changes, is a proxy for high-frequency price volatility that has been
used recently to quantify the endogeneity in the price formation (Filimonov and Sor-
nette, 2012; Hardiman, Bercot, and Bouchaud, 2013; Filimonov and Sornette, 2015;
Hardiman and Bouchaud, 2014; Wheatley, Wehrli, and Sornette, 2019; Rambaldi,
Pennesi, and Lillo, 2015; Rambaldi, Filimonov, and Lillo, 2018).

Here we propose the DyNoKIM as an effective tool to forecast stock price activity
at high frequency. The advantages with respect to standard methods is twofold:
first, we are able to model the dynamics of a large panel of assets, hence considering
volatility spillovers between them; second, the score driven approach allows us to
measure the local predictability of price activity in real time. We study the 100 largest
capitalization stocks in the NASDAQ and NYSE over 11 trading days. Price activity
is defined as a binary variable s(t)i for each stock i, taking value +1 if the stock price
has changed in the interval (t − 1, t] and −1 otherwise, with time discretized at 5
seconds. The choice of time scale is largely arbitrary: we choose 5 seconds to obtain
a set of variables that have unconditional mean as close to 0 as possible to have a
balanced dataset. We focus our attention on the lagged interdependencies among
different stocks, by applying the DyNoKIM to the multivariate time series s(t).
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FIGURE 8.3: AUC statistics compared to β(t) for stock price activity
on November 19, 2019 aggregated for different values of β(t), com-
pared to the theoretical expected AUC with Gaussian g(t)i and to the

performance with constant β;

Our theoretical results from Figure 8.1 suggest to use β to quantify the reliability
of forecasts of price activity using this model. We thus estimate the model parame-
ters once per day and use them to filter β(t) on the following day, while measuring
the out of sample accuracy of the predicted price movements using the AUC metric.
To ensure that there is reason to model the system with time-varying β, we apply
a Lagrange Multiplier (LM) test (Calvori, Creal, Koopman, and Lucas, 2017) with a
null hypothesis of constant β, finding strong rejections of the null at the p < 0.001
level for every day in the sample. Further information on the test can be found in
Section 5.6.

We show an example of the results of this analysis in Fig. 8.3 where we consider
a single day. We empirically observe that when the filtered value of β(t) is large, the
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subsequent forecast of activity is systematically more reliable because AUC is larger.
We find a good agreement between the empirical results and the theoretical values
for AUC under the assumption of Gaussian effective fields gi, even if some discrep-
ancy is observable due to the non-Gaussianity of actual fields. Thus we conclude
that the DyNoKIM can be effectively used to model high frequency volatility of a
large portfolio of stocks and to measure in real time its level of predictability.

The empirical example presented show that our theoretical results for the DyNoKIM
are indeed verified in realistic applications and that using this method - which we
believe could be applied even to more sophisticated models - can result in a signifi-
cant gain in the use of forecasting models, giving a simple criterion to discriminate
when to trust (or not) the forecasts.

8.4 The Dynamic Endogeneity KIM

A more general specification of the score-driven KIM is the Dynamic Endogeneity
Kinetic Ising Model (DyEnKIM), where we assume that each parameter J and h has
its own specific time-varying factorization. Going back to Eq. 8.3, we now impose
the following structure to the parameters:

β = 1

J(t)ij = β
(t)
diag Jijδij + β

(t)
o f f Jij(1− δij)

h(t)i = β
(t)
h (hi + h(t)0 ) (8.8)

where δij is the Kronecker symbol which is 1 if i = j and 0 otherwise and we will call
β(t) = (βdiag, βo f f , βh) in the following.

With this choice we want to be able to discriminate between different compo-
nents of the observed system dynamics: one associated with the idiosyncratic prop-
erties of variable i (βh), with general trends (h0), with autocorrelations (βdiag), and
finally with lagged cross-correlations among variables (βo f f ). In this formulation
each of these time-varying parameters β measures the relative importance of one
term over the others in the generation of the data, highlighting periods of higher en-
dogeneity of the dynamics (when correlations have higher importance) rather than
periods where the dynamics is more idiosyncratic or exogenously driven. We re-
port a consistency analysis for the DyEnKIM in Section 8.7 of the Appendix, where
we show that even under model misspecification this approach correctly separates
the different components of the dynamics and captures their relative importance.
Additionally, when using the test of Section 5.6, in the DyEnKIM, having multiple
time-varying parameters, we test each parameter against two null hypotheses, one
where all parameters are constant and one where all other parameters are score-
driven, applying FDR correction for multiple tests.

8.4.1 Role of non stationarity in neural data

As a first example of the application of the DyEnKIM, we consider the firing dy-
namics of a set of neurons. Inferring the network of connections between neurons
by observing the correlated dynamics of firing has received a lot of attention in the
last two decades (Cocco, Leibler, and Monasson, 2009; Schneidman, Berry, Segev,
and Bialek, 2006) and the KIM has been extensively used for this purpose (Hertz et
al., 2010; Zeng, Aurell, Alava, and Mahmoudi, 2011; Hoang, Song, Periwal, and Jo,
2019). The underlying idea is that the (lagged) correlation in the firing of two time
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series suggests the existence of a physical connection between the two correspond-
ing neurons.

However, as pointed out in (Tyrcha, Roudi, Marsili, and Hertz, 2013), correlated
behavior can also be generated by the fact that neurons are subject to a common non-
stationary input, for example driven by the external environment. Disentangling the
contributions to correlations coming from external drivers from those coming from
genuine interactions is critical to reliably identify the network structure between
neurons.

To this end (Tyrcha, Roudi, Marsili, and Hertz, 2013) proposes an inferential
method to achieve this result by considering a KIM with a time dependent exter-
nal field h(t)i representing the contribution of the external stimuli and of all the non
recorded neurons to the activity of neuron i at time t. However the inference method
requires many "trials" or repetitions of the experiment, under the strong method-
ological assumption that all the repetitions are obtained under identical conditions,
an hypothesis that might be difficult to control in such type of complex experiments.

We now show that DyEnKIM can be used for this purpose on a single experiment.
We use the data of (Tkačik et al., 2014) obtained from a multichannel experiment
recording firing patterns of 160 salamander retina neurons, stimulated by a film clip
of a swimming fish. The 20s experiment is sampled with time binning of 20ms,
corresponding to T = 944 and we considered the N = 40 most active neurons.
Finally the experiment is repeated 297 times.

The DyEnKIM of Eq. 4 is estimated and for each experiment we perform an
LM test. We find that while for β

(t)
o f f , β

(t)
h , and h(t)0 we reject the null hypothesis

of constant parameter in 99.3%, 76.8%, and 100% of the experiments respectively,
this percentage drops to 43.1% for β

(t)
diag. For this reason we consider a simplified

model where β
(t)
diag is constant1. Fig. 8.4a shows the temporal dynamics of the three

filtered parameters. Since we are able to filter the dynamics for each experiment,
in the figure we show the mean and the 90% confidence interval. It is evident that
the three parameters show significant variations, likely in response to the external
stimulus provided by the film clip and by unobserved neurons.

In order to evaluate how well our model describes the empirical data we con-
sider two statistics: (i) the distribution of the number of synchronous (i.e., within
the same time bin) spikes and (ii) the Zipf plot, obtained as the rank plot of the
frequency of each spiking pattern. Both quantities depend on the many body syn-
chronous correlations among spins, thus are not automatically explained by KIM-
type models which fit the pairwise correlations. As a benchmark model we consider
a constant parameter KIM estimated on the whole dataset. In Fig. 8.4b-c we show
these statistics. We observe that the DyEnKIM reproduces both quite well, while the
constant parameter KIM largely fails in describing the distribution of the number of
synchronous spikes and in predicting the frequency of the most frequent patterns
(rank between 2 and ∼ 100) where the underestimation is up to an order of magni-
tude. We also considered a sparse version of the KIM obtaining similar results in the
Appendix.

The above results are very interesting because they show that a pairwise dynamic
interaction model is able to reproduce higher-order correlations, if one takes into ac-
count the time varying dynamics of the global interactions (see also (Schneidman, Berry,
Segev, and Bialek, 2006) for the static Ising model). It is important to stress once
more that, while an approach as in Ref. (Tyrcha, Roudi, Marsili, and Hertz, 2013)

1The following results are essentially unchanged when considering a time varying β
(t)
diag.
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FIGURE 8.4: (a) Filtered values of βo f f , βh, and h(t)0 for salamander
retina data. The continuous line is the mean value across the 297 ex-
periments and the 90% confidence interval (i.e. 268/297 of the fil-
tered values stay within the bands). (b) Estimated probability density
function of the number of synchronous spikes. (c) Zipf plot of the
frequency of observed patterns. In (b-c) the probability densities are
obtained as average across the experiments, but a small variability is

observed when considering individual experiments.

requires many experiments and the strong methodological assumption that these
are identical realizations of the same process, our method to measure time-varying
interactions can be performed on a single experiment. Incidentally, one can then use
the estimation to test whether the different experiments are statistically equivalent
by comparing the estimates across replicas. Moreover our model has only three time
dependent scalars, while the model of (Tyrcha, Roudi, Marsili, and Hertz, 2013) re-
quires a time dependent field for each of the N neurons, thus the latter is highly
parametrized with a modeled dynamics strongly constrained by the data.
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8.4.2 Disentangling endogenous and exogenous price dynamics

As a second application of the DyEnKIM we consider the problem of quantifying the
contribution to stock price changes due to exogenous events (e.g. news, announce-
ments) and to endogenous feedbacks. A vast literature (Filimonov and Sornette,
2012; Filimonov and Sornette, 2015; Hardiman, Bercot, and Bouchaud, 2013; Hardi-
man and Bouchaud, 2014; Rambaldi, Pennesi, and Lillo, 2015; Rambaldi, Filimonov,
and Lillo, 2018; Wheatley, Wehrli, and Sornette, 2019) has tackled this point, but
almost invariably this has been done by assuming that the relation between price
and external drivers, as well as those driving the internal feedback, is constant in
time. The DyEnKIM allows us to test this hypothesis, by considering time varying
parameters whose dynamic can be filtered from data. Understanding the role of ex-
ogenous or endogenous drivers in market volatility is very important, also to devise
possible policy measures able to avoid their occurrences and DyEnKIM, being able
to identify them in real time, could provide valuable tools for market monitoring.

For this application we focus on two events that caused huge turmoil in the stock
markets at the intraday level. The first one is the May 6, 2010 Flash Crash, when a
seemingly unjustifiable sudden drop in the price of E-mini S&P 500 futures contracts
caused all major stock indices to plummet in a matter of a few minutes, recovering
most of the lost value when circuit breakers came into place. Multiple explanations
of what happened have been offered by a large number of academics, regulators
and practitioners: responsibility has been attributed to careless algorithmic trading
(Commission and Commission, 2010), deteriorated market liquidity which quickly
vanished when price volatility increased (Easley, De Prado, and O’Hara, 2011), mar-
ket fragmentation (Madhavan, 2012; Menkveld and Yueshen, 2019), predatory trad-
ing strategies by high-frequency traders (Kirilenko, Kyle, Samadi, and Tuzun, 2017;
Aquilina, Budish, and O’Neill, 2020).

The second event we analyze is the announcement following the Federal Open
Market Committee (FOMC) meeting of July 31, 2019. In this meeting the Federal
Reserve operated its first interest rate cut in over a decade, the last one dating back
to the 2008 financial crisis, encountering mixed reactions in both the news and the
markets. In particular an answer to a question in the Q&A press conference by the
Fed Chairman Powell has been highlighted by news agencies, when being asked
whether further cuts in the future meetings were an option, he answered “we’re
thinking of it essentially as a midcycle adjustment to policy” (Powell, July 31, 2019).
This answer triggered turmoil in the equity markets, with all major indices dropping
around 2% in a few minutes.

Like in the previous section, we construct our dataset for both events taking price
movements for the then S&P100-indexed stocks at the 5 seconds time scale and con-
structing the associated price activity time series. Differently from the previous ex-
ample, here we apply the DyEnKIM methodology to study variations in the relative
importance of different sets of parameters as events unfold. In this case the LM test
rejects the null of constant parameters for all βs and all datasets. To better interpret
the results we introduce the value of the components of the effective fields g(t)i , each
related to one of the time-varying parameters
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nouncement on July 31, 2019 (b). The black lines are the the aver-
age midprice across the S&P100 stocks. The red area in the top panel
highlights the time window (14:32:00 to 15:08:00 EST) where the Flash

Crash takes place.

g(t)i = g(t)i,diag + g(t)i,o f f + g(t)i,h

g(t)i,diag = β
(t)
diag Jiis

(t)
i

g(t)i,o f f = β
(t)
o f f ∑

j
Jijs

(t)
j

g(t)i,h = β
(t)
h (hi + h(t)0 )

which we then average at each time across all indices i, obtaining the quantities
〈gdiag〉(t) and so on.

Since the model is applied to price activity, which can be thought of as a proxy
of high-frequency volatility (Filimonov and Sornette, 2012; Hardiman, Bercot, and
Bouchaud, 2013), the financial interpretation of these time-varying parameters re-
lates to volatility clustering in the case of βdiag, to volatility spillovers for βo f f , to
higher or lower market-wise volatility for h0 and the relevance of exogenous effects
is given by βh. Thus the 〈g·〉(t) quantities can be intuitively related to what the ex-
plained sum of squares means for linear regression models, in the sense that the
more a 〈g·〉(t) is far from 0 relative to others the more the data are affected at time
t by that subset of parameters and the corresponding variable. We choose to show
these quantities as a simple way of assessing the relevance of the components, a
problem that is not easily solved in this kind of models.

The top panel of Figure 8.5 shows the components of the fields during the Flash
Crash of May 6, 2010. Here the parameters show a very significant variation around
the crash, with a large increase of 〈gh〉 in the 45 minutes preceding the crash together
with a similar increase of the endogeneity field 〈gdiag〉 and 〈go f f 〉 during the event,
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which then stay large until market close. This indicates that the turmoil induced by
the Flash Crash reverberated for the remainder of the trading hours, even after the
prices had recovered at pre-crash levels. The intraday pattern is overshadowed by
the effect of the crash, but the picture at the beginning of the day is similar to normal
trading days2. These results indicate an exogenous increase in activity before the
crash, which is accompanied by the endogenous mechanism of volatility spillovers
between stocks, as evidenced by large value of 〈go f f 〉 during and after the Flash
Crash. In conclusion our analysis indicates that both exogenous and endogenous
drivers were important for the onset of Flash Crash.

In the bottom panel of Figure 8.5 we show the values of the effective fields on July
31, 2019. The FOMC announcement went public at 14:00:00 EST and is followed by a
press conference at 14:30:00 EST, with a Q&A starting at around 14:36:00 EST. Again
we see that the usual intraday pattern is interrupted by the news, which however,
differently from the Flash Crash, was a scheduled event. This difference leads to the
complete absence of any sort of “unusual” effect in the earlier hours of the day, as
typically analysts provide forecasts regarding these announcements in the previous
days and this information is already incorporated in the prices. What then happens
is that, if the news does not meet market expectations, a correction in prices will
occur as soon as the information is made public, leading to higher market volatility
in the minutes and hours following the announcement (Chuliá, Martens, and Dijk,
2010; Hautsch, Hess, and Veredas, 2011). In this specific case, forecasts were mixed
between a 0.25% and a 0.50% interest rates cut scenario.

The published announcement at 14:00 EST mostly matched these forecasts, with
the FOMC lowering the interest target rate by 0.25%, and we indeed see that the
price levels are not particularly affected by the news. However a transient increase
in volatility, and in particular the endogenous components, can still be observed in
the few minutes following the announcement, quickly returning to average levels.
It is interesting to see the reaction to the press conference held 30 minutes after the
release, and in particular to the answers the Chairman of the Fed Jerome H. Powell
gives to journalists in the Q&A. As soon as the Q&A starts, around 14:36 EST, prices
begin to plummet in response to the Chairman’s answers, possibly reacting to the
statement that this interest rates cut was only intended as a “midcycle adjustment
to policy" rather than as the first of a series. Expectations of further rates cuts in the
later months of the year could be a reason for this adjustment in the prices when
these forecasts are not met, as usually lower interest rates push the stock prices up.
We see however that this unexpected event causes a behavior in the estimated time-
varying parameters resembling what we have seen in the Flash Crash, albeit the
endogenous components are even more significant here.

8.5 Score Driven KIMs for Temporal Networks

Networks are a paradigmatic tool to describe pairwise relations in complex systems
(Newman, Barabási, and Watts, 2006; Cohen and Havlin, 2010; Barabási, 2013; New-
man, 2018) and applications include human mobility (Gao, Wang, Gao, and Liu,
2013), migration (Fagiolo and Mastrorillo, 2013), disease spreading (Draief and Mas-
soulie, 2010), international trade (Bhattacharya et al., 2008) and financial stability
(Gai, Haldane, and Kapadia, 2011; Cimini, Squartini, Garlaschelli, and Gabrielli,
2015), to mention a few. More recently, the increasing availability of time varying
relational data stimulated a widespread and fast growing interest in the analysis

2See Section 8.7 of the appendix.



128 Chapter 8. Score Driven Kinetic Ising Model

of temporal networks (Holme and Saramäki, 2012). It also motivated the develop-
ment of a number of models to describe the dynamics of temporal networks (Sewell
and Chen, 2015; Sewell, 2018; Mazzarisi, Barucca, Lillo, and Tantari, 2020; Hanneke,
Fu, Xing, et al., 2010) A network, defined by a set of M nodes and a set of links
between pairs of nodes, can be described by an M × M binary adjacency matrix
A ∈ {0, 1}M×M , where Aij = 1 if a link between nodes i and j is present and Aij = 0
otherwise. When the relation described by the links is not directional, Aij = Aji
and the network is said to be undirected. We consider temporal networks where the
number of nodes M is fixed across multiple time steps and indicate the adjacency
matrix of the graph at time t by A(t).

In order to use the KIM to model a temporal network, we map the elements of the
adjacency matrix into spins, associating a present link to a spin +1 and an absent link
to a spin −1. In this way we represent each adjacency matrix A (t) as a vector s(t) ∈
{−1, 1}N where N = M(M − 1)/2, assuming the network to be undirected and
without self loops. In light of this mapping, the matrix J now captures the tendency
of links to influence each other at lag one - for example the diagonal terms can be
interpreted as measuring link persistence - while the elements of h are associated
with the idiosyncratic probability to observe a given link.

More formally, indicating by vec(A) the vectorized version of matrix A, the map-
ping can be summarized by the relation

vec(A(t))k = 1/2 + s(t)k /2

and the KIM is equivalent to the following version of the TERGM

P(s(t)|s(t−1), θ) =
e∑ij Jijs

(t−1)
i s(t)j +∑i his

(t)
i

K(J, h)
(8.9)

=
e∑ab θ

(1)
ab vec(A(t−1))avec(A(t))b+∑a θ

(2)
a vec(A(t))a−∑a θ

(3)
a vec(A(t−1))a

K(θ)
, (8.10)

where we omitted the constant terms, not depending on the adjacency matrix, that
have been absorbed in the normalization constant.

Interestingly, such a mapping highlights that (standard) KIM can be seen as be-
longing to the Temporal Exponential Random Graph Model (TERGM) (Hanneke,
Fu, Xing, et al., 2010) family. Indeed, KIM is equivalent to a TERGM having three
kinds of network statistics: first, the set of all possible lagged interactions q(1)ab =

vec(A(t−1))avec(A(t))b between pairs of links, each appearing in this specification of
Eq. 4.1 with a parameter θ

(1)
ab = 4Jab; second, a term associated to the probability of

each link to be observed, q(2)a = vec(A(t))a, with θ
(2)
a = 2(ha − 1); and the last group

of statistics, q(3)a = vec(A(t−1))a, is related with the presence or absence of each link
at the previous time step with parameters q(3)a = 2 ∑b Jab.

The DyNoKIM allows us to consider time varying θi and to estimate the forecast
accuracy of the model at each time step, as showed with the link prediction example
presented in the main text.

Interestingly, a wide range of TERGM specifications can be mapped to the KIM.
As a simple example, let us consider a TERGM with two terms only

P(A(t)|A(t−1), θ) =
e∑ij

[
θdensA(t)

ij +θstab(A
(t)
ij A(t−1)

ij +(1−A(t)
ij )(1−A(t−1)

ij ))
]

K(θ)
. (8.11)
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This can be rewritten as

P(s(t)|s(t−1), θ) =
eNθdens/2+∑k

(
s(t)k θdens/2+s(t)k s(t−1)

k θstab/2
)

K(θ)
,

which is exactly equivalent to a KIM restricted to have just two parameters Jij =
Jdiag = θstab/2 ∀i, j and qi = q0 = θdens/2 ∀i, and, absorbing the constants in the
normalization function, we have

P(s(t)|s(t−1), Jdiag, q0) =
e∑k s(t)k q0+s(t)k s(t)k Jdiag

K(θ)
.

If we consider the DyNoKIM extension of such a restricted KIM we obtain

P(s(t)|s(t−1), Jdiag, h0, β(t)) =
eβ(t) ∑k

(
s(t)k h0+s(t)k s(t−1)

k Jdiag

)
K(θ)

(8.12)

that is effectively an extended version of the initial TERGM. Moreover, it is easy to
see that the DyEnKIM results in the following

P(s(t)|s(t−1), Jdiag, h0, β(t)) =
e∑k

(
s(t)k β

(t)
h h0+s(t)k s(t−1)

k β
(t)
diag Jdiag

)
K(θ)

. (8.13)

that maps to a version of (8.11) with dynamical parameters θ
(t)
dens and θ

(t)
stab evolving

independently. We believe this observation is very relevant as it is an extension of
the TERGM at hand to its version where each parameter is allowed to follow its
own evolution, potentially unrelated to the others. This is a different evolution from
the DyNoKIM’s one, as the latter is driven by a single β(t) and maps into comoving
TERGM parameters. Indeed, also in this context, the two models have different
purposes and different applicability. TERGM extensions resulting from DyNoKIM
allow us to quantify forecast accuracy, similarly to what showed in the main text,
while DyEnKIM, similarly to what we discussed in the applications presented and in
numerical simulations, allows for a decoupling of the temporal relevance of different
network statistics.

As a final remark, we point out that the class of TERGMs that can be mapped
into KIMs, and benefit of the corresponding score driven extensions, is not restricted
to cases with linear dependency on the lagged adjacency matrix. In fact, we can
also consider network’s statistics depending on products of lagged matrix elements,
e.g. q(A(t), A(t−1)) = ∑ijk A(t)

ik A(t−1)
ij A(t−1)

ik , as long as they depend linearly on A(t).
A TERGM with such statistics can be mapped in a KIM with the addition of pre-
determined regressors and is easily extended, for example, to the corresponding
DyNoKIM version. For example, all the statistics discussed as explicit examples in
(Hanneke, Fu, Xing, et al., 2010) take this form, and can be mapped into a KIM.
Although a full characterization of the set of TERGM’s specifications that can be
mapped into a KIM lies outside the scope of this work, we suspect it to be very
large, and potentially include all statistics commonly used in practice.

In summary, as we have shown that KIM belongs to the TERGM family, and its
score driven extensions result in extensions of the corresponding TERGM. That is
the case for both DyNoKIM and DyEnKIM, as we showed explicitly for a simple
TERGM specification. We believe that our findings open up a vast space of potential
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applications of score driven KIM to temporal networks, and raise interesting theo-
retical questions on the possibility of mapping a generic TERGM into a KIM, that we
leave for future explorations.

Moreover, it turns out that a large subset of possible TERGM specifications can be
mapped into a KIM. Hence, the score driven KIM that we propose here is an exten-
sion of the TERGM allowing its parameters to evolve in time. This frames DyNoKIM
also as a contribution to the literature on network models with time varying parame-
ters, alongside with a recent extension of a different, but related, family called Expo-
nential Random Graphs (Holland and Leinhardt, 1981b) to its score driven version
(Di Gangi, Bormetti, and Lillo, 2019).

8.5.1 Link Prediction in Temporal Networks with DyNoKIM

As a final contribution we discuss an empirical application to temporal networks
data. Specifically, we show that DyNoKIM can be used to model temporal networks.
In particular we show that DyNoKIM dynamically provides the level of predictabil-
ity of links of the network by exploiting again the relation between β(t) and AUC.

The problem of link prediction in networks is very important and can be framed
in different ways (Wang, Xu, Wu, and Zhou, 2015; Martínez, Berzal, and Cubero,
2016). For discrete time temporal networks, link prediction amounts to forecasting
the presence of a link at time t + 1 given the observations available up to time t. This
is easily done with the KIM defining the forecast exactly as in Eq 8.7.

We apply DyNoKIM to a real world temporal network describing close prox-
imity between workers at the Institut National de Veille Sanitaire in Saint-Maurice
(Génois et al., 2015). The data was collected with the sensing platform developed
by the SocioPatterns (SocioPatterns Research Collaboration, 2008) collaboration and
describe situations of face-to-face proximity between pairs of workers lasting at least
20 seconds. The observations cover 10 working days, from June 24 to July 3, 2013.
For each day, we construct the time series of adjacency matrices, at a frequency of
20 seconds between 7:30 am and 5:30 pm. A link between two workers is present if
they face each other at a distance less than 1.5 meters and is absent otherwise. As
is often the case in real temporal networks, a large number of links is never, or very
rarely, observed. Since for such trivial links the prediction problem is not interest-
ing, and to keep the computational complexity to a reasonable level, we consider
only the subset of the 100 most active links in each day. For each day, we estimate
the DyNoKIM on a training set consisting of the first 75% of observations and then
use the remaining 25% for out of sample validation. For each t we compute the
AUC and report in Fig. 8.6b the aggregated results for all days. As in the financial
application, we observe a monotonically increasing relation between β(t) and AUC,
indicating that DyNoKIM is a reliable tool to dynamically quantify forecast accuracy
also in applications to temporal networks data. Also in this case, we observe a good
agreement with the theoretical prediction, with differences explainable by the non
Gaussianity of the estimated matrix J.

8.6 Discussion

We have applied the score-driven methodology to extend the Kinetic Ising Model to
a time-varying parameters formulation, introducing two new models for complex
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FIGURE 8.6: AUC statistics compared to β(t) for link prediction in the
SocioPatterns dataset, compared with the theoretical expected AUC

and the constant β benchmark.

systems: the Dynamical Noise Kinetic Ising Model and the Dynamic Endogene-
ity Kinetic Ising Model. We showed that the DyNoKIM, characterized by a time-
varying noise level parameter β(t), has a clear utility in forecasting applications, as
the Area Under the ROC Curve can be showed to be a growing function of β(t), while
the DyEnKIM can be used to discriminate between endogenous and exogenous ef-
fects in the evolution of a multivariate time series.

We then provided example applications of the two models. We successfully em-
ployed the DyNoKIM to quantify the real-time forecasting accuracy of stock price
activities in the US stock market. The result, largely matching the predictions from
theory and simulations, is a methodological breakthrough for the real-world appli-
cation of time-varying parameter models of complex systems, opening to the possi-
bility of implementing real-time indicators quantifying the accuracy of model-based
predictions.

We have then applied the DyEnKIM to model a population of salamander retina
neurons and describe the high-frequency volatility of US stocks in proximity of ex-
treme events such as the Flash Crash of May 6, 2010 or around scheduled announce-
ments as the FOMC report of July 31, 2019. We designed the DyEnKIM to disentan-
gle the effects of interactions from the ones of exogenous sources on the observed
collective dynamics, a task that is typically non-trivial but nonetheless fundamental
in the modeling of complexity. Our results show that this distinction can be made
regardless of the underlying system, providing a detailed description and insight
on the dynamics, and most importantly without requiring multiple controlled ex-
periments, as is common practice in previous applications of the KIM on neuron
populations, thus opening to the adoption of the model in contexts where running
repeated experiments is costly or impossible.

Finally, we discussed the possibility to use KIM and our score driven exten-
sions to model temporal networks and discussed an empirical application of the
DyNoKIM to the real-time link prediction in a temporal social network.

In conclusion, the Score-Driven KIM poses the foundations for a new modeling
paradigm in complex systems. We foresee several relevant extensions such as the
modeling of non binary data, for example extending to a Potts-like model (Binder,
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1981), or to non-Markovian settings. The key advantages provided by the score-
driven methodology in terms of ease of estimation and minimization of model mis-
specification errors open to the implementation of more accurate and versatile mod-
els, interesting a wide range of disciplines that look to describe and unravel com-
plexity from empirical observations.

8.7 Appendix

Data

US stock prices data provided by LOBSTER academic data - powered by NASDAQ
OMX. The data consists of the reconstructed Limit Order Book (LOB) for each US
stock with timestamps at millisecond precision. We take the mid-price (i.e. the av-
erage between the best ask and the best bid prices in the LOB) as a real-time proxy
of the price, as done in (Rambaldi, Pennesi, and Lillo, 2015). Press reports about
the analyzed market events can be found on financial media outlets. FOMC meet-
ing reports are publicly available at federalreserve.gov. The salamander retina neuron
data has been collected by Prof. Michael J. Berry II and made publicly available
at doi:10.15479/AT:ISTA:61. It consists of measurements from 160 salamander retina
ganglion cells collected through a multi-electrode array. The cells are responding
to a light stimulus in the form of a 20 s naturalistic movie and the experiment is
repeated 297 times. The electrical signal has been preprocessed to obtain a binary
time series for each neuron with time resolution of 20 ms, identifying time intervals
where the neuron has produced at least one spike with a 1, and 0 otherwise. From
the public dataset we selected the 40 neurons with highest average spike rate over
the 297 repeats of the experiment.

The data describing situations of face to face proximity between individuals in
the workplace, is provided by the SocioPatterns (SocioPatterns Research Collabo-
ration, 2008) collaboration. It was collected, over a period of two weeks, in one of
the two office buildings of the Institut National de Veille Sanitaire (InVS), located in
Saint Maurice near Paris, France. Two thirds of the total staff agreed to participate to
the data collection. They were asked to wear a sensor on their chest, that allow ex-
change of radio packets only when the persons are facing each other at a range closer
than 1.5 m. By design, any contact that lasted at least 20 seconds was recorded with
a probability higher than 99%. In our temporal network application, we associate
a node to each individual, and assign a link between two workers if they face each
other at a distance less than 1.5 meters. We then consider only the subset of the 100
most active links in each day.

Details on the inference method

As mentioned in the main text our estimation procedure is done in steps, starting
by estimating the parameters Θ = (J, h) of the standard KIM and then running a
targeted estimation for the w, b and a parameters. In this Appendix we provide
some further details about this procedure.

The whole process can be summarized as the maximization of the log-likelihood
L(Θ, b(t), w, b, a) of the model in question, which in the case of the DyNoKIM reads
(setting as usual hi = 0 ∀i)

L(Θ, β(t), w, b, a) =
T

∑
t=1

{
∑

i

[
b(t) ∑

j
s(t)i Jijs

(t−1)
j

]
− log K(t)

}
(8.14a)
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with log β(t+1) = w + b log β(t) + aI−1/2(t)∇t (8.14b)

and the definitions of the various quantities are given in the main text. The log-
likelihood shown above has a recursive form, as each term in the sum of Eq. 8.14a
depends on β(t), which is determined recursively through Eq. 8.14b from a starting
condition β(1). This means that, if one were to maximize L with respect to all the
parameters by applying a standard Gradient Descent method, at each computation
of L and its gradient it would be necessary to compute the recursion, resulting in
a slow and computationally cumbersome process. In order to make the estimation
quicker we implement our multi-step procedure, relying on existing methods for the
estimation of the standard KIM and of observation-driven models.

Our first step consists of maximizing Lwith respect to the standard KIM param-
eters Θ. This is done adopting the Mean Field approach of Mézard and Sakellariou
(Mézard and Sakellariou, 2011), which is both fast and accurate in the estimation of
fully connected models. We refer the interested readers to the original publication
for further details on the method itself. In the specific case of neuron spike data, the
Mean Field method fails numerically and we resort to standard Gradient Descent
methods. The main reason to detach this step from the optimization of the com-
plete log-likelihood is that Θ contains a large number of parameters: if one can get
an estimate for those without recurring to slow and hard to tune Gradient Descent
methods the computational cost of the inference reduces significantly.

Given the values of Θ obtained in the first step, we then move to the targeted
estimation of w, b and a. This consists in first estimating a target value f̄ for the
unconditional mean of f (t) = log β(t) and then optimize w, b and a maintaining the
ratio w/(1− b) = f̄ fixed. To estimate f̄ we maximize the log-likelihood of Eq. 8.14a
temporarily imposing a = b = 0, hence Eq. 8.14b becomes log β(t) = f̄ = const.
Finally, given this target value we optimize Lwith respect to w, b and a maintaining
the ratio w/(1− b) = f̄ fixed and setting f (1) = f̄ to start the recursion of Eq. 8.14b.
During these last two steps we use the ADAptive Momentum (ADAM) (Kingma
and Ba, 2014) Stochastic Gradient Descent method as optimization algorithm, as we
found in our case it had better performance with respect to other available methods.

This targeted estimation is not necessary - one could directly estimate w, b and
a together - but it is a standard procedure in the estimation of observation-driven
models like the GARCH (Francq, Horvath, and Zakoïan, 2011), as it typically re-
duces the total number of iterations of gradient descent.

We point out one last remark concerning the indetermination of 〈β〉 in the model
of Eq. 3 in the main text (and of 〈β〉 for the DyEnKIM), which is crucial to under-
stand the results of our simulations. The fact that these values cannot be identified is
not problematic per se, but requires caution when comparing models and filtered pa-
rameters across different samples, or when comparing estimates with simulations.
To avoid misleading results, one needs to enforce the sample mean of the filtered β(t)

(or of each of the elements of β(t) in the DyEnKIM) to be equal to a reference value,
which without loss of generality we pick to be 〈β〉 = 1. This is easily done by run-
ning the estimation and filtering, then measuring 〈β〉 and rescaling β′(t) = β(t)/〈β〉.
To leave the model unchanged an opposite rescaling is needed for the parameters
J and h, each having to be multiplied by 〈β〉 themselves. This transformation does
not change the log-likelihood, thus the model parameters are still MLE, but crucially
allows to set a reference value for β that solves the indetermination.

Given this remark, in all the simulations we show where the data generating pro-
cess of β(t) is misspecified we generate its values making sure that their sample mean
is 1. By doing so we do not lose any generality in our results, as the indetermination
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needs to be solved for the data generating process too if one wants to obtain mean-
ingful results, and we are able to correctly compare the simulated values of J, h and
β(t) with the ones that are estimated by the score-driven model. Notably, since the
model is misspecified, this cannot be achieved during estimation by enforcing the
targeted unconditional mean to be equal to 1, as the score in that case is not a mar-
tingale difference and thus the unconditional mean of the score-driven parameter is
ill-defined itself, as shown by Creal et al. (Creal, Koopman, and Lucas, 2013).

Derivation of the theoretical AUC

Here we expand on the derivation of the theoretical Area Under the ROC Curve
shown in Fig. 1 in the main text. A ROC curve is a set of points (FPR(α), TPR(α)),
with α ∈ [0, 1] being a free parameter determining the minimum value of p(s(t)i =

+1|s(t−1); β, Θ) which is considered to predict ŝ(t)i = 1. If the prediction ŝ(t)i matches

the realization s(t)i then the classification is identified as a True Positive (or Negative,
if p < α), otherwise it is identified as a False Positive (Negative). The True Positive
Rate (TPR) is the ratio of True Positives to the total number of realized Positives, that
is True Positives plus False Negatives. Similarly the False Positive Rate (FPR) is the
ratio of False Positives to the total number of realized Negatives. Summarizing

TPR =
TP

TP + FN
; FPR =

FP
FP + TN

We can explicitly derive the analytical form of the theoretical Area Under the
Curve, that is the area that lies below the set of points (FPR(α), TPR(α)), assum-
ing the data generating process is well specified and performing some assumptions
on the distribution of the model parameters. As a reminder, a classifier having
AUC = 0.5 is called an uninformed classifier, meaning it makes predictions statis-
tically indistinguishable from random guessing, while values of AUC greater than
0.5 are a sign of good forecasting capability.

Following the definition of TPR and FPR one can compute their expected values

TPRφ(α, β) =
1

K+
φ (β)

∫
gi :p+>α

dgiφ(g)p+(β, gi) (8.15a)

FPRφ(α, β) =
1

K−φ (β)

∫
gi :p+>α

dgiφ(g)p−(β, gi) (8.15b)

where K±φ (β) = p(si = ±1) is a normalization function, φ(g) is the unconditional
distribution of the effective fields gi and we have abbreviated the probability of sam-
pling a positive or negative value as

p±(β, gi) =
e±βgi

2 cosh(βgi)

The definition of the theoretical AUC then reads as

AUCφ(β) =
∫ 0

1
TPRφ(α, β)

∂FPRφ(α, β)

∂α
dα

that is the area below the set of points (FPR(α), TPR(α)). The lower limit to the
integration in Eqs. 8.15 is gmin : p+(gmin) = α, which is found to be
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gmin(α, β) =
1

2β
log

α

1− α

Then applying the partial derivative to the definition of FPR it follows that

∂FPR
∂α

= − 1
K−φ (β)

∂gmin

∂α
φ(gmin)(1− α)

where we have substituted p−(β, gmin) = 1− α. Plugging all the above results in
the definition of AUCφ we then find

AUCφ(β) =
1

K+
φ (β)K−φ (β)

∫ 1

0
dα

[∫ +∞

gmin(α,β)
dgφ(g)

eβg

2 cosh βg

] [
1

2αβ
φ(gmin(α, β))

]
(8.16)

From an operational perspective φ(g) is the distribution that the effective fields
show cross-sectionally across the whole sample, that is g(t)i ∼ φ(g) ∀i, t, but it can
also be calculated by giving a prior distribution to the static parameters of the model,
Θ = (J, h, b). Finding this distribution can be useful to provide an easier and more
accurate evaluation of the expected AUC of a forecast at a given β value, as it pro-
vides a bridge from the model parameters to the AUC(β) we derived in Eq. 8.16 and
shown in Fig. 1 in the main text.

Let us assume, as is standard in the literature (Crisanti and Sompolinsky, 1988;
Roudi and Hertz, 2011; Mézard and Sakellariou, 2011), that the parameters Θ are
structured in such a way that

Jij
iid∼ N (J0/N, J2

1 /N − J2
0 /N2)

hi
iid∼ N (h0, h2

1)

If that is the case then the distribution of g(t)i is itself a Gaussian, as g(t)i is now a
sum of independent Gaussian random variables Jij and hi with random coefficients

s(t)j . Let us also define two average operators: the average 〈·〉 over the distribution
p, also called the thermal average (which, the system being ergodic, coincides with
a time average for T → ∞), and the average · over the distribution of parameters,
also known as the disorder average. Following Mézard and Sakellariou (Mézard and
Sakellariou, 2011) we can then find the unconditional mean of si which reads

mi = 〈s(
t)

i 〉 =
〈

tanh
[

βg(t)i

]〉
(8.17)

where we have substituted the conditional mean value of s(t)i inside the brackets.

This depends from the distribution of g(t)i : assuming stationarity and calling g0
i =

〈g(t)i 〉 and ∆2
i = 〈g2

i
(t)〉 − 〈g(t)i 〉2 we find that they are

g0
i = 〈∑

j
Jijs

(t)
j + hi〉 = ∑

j
Jijmj + hi (8.18a)

∆2
i =

〈(
∑

j
Jijs

(t)
j + hi

)2〉
−
〈

∑
j

Jijs
(t)
j + hi

〉2

= ∑
j,k

Jij Jik

[〈
s(t)j s(t)k

〉
−mjmk

]
(8.18b)
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In Eq. 8.18b spins s(t)j and s(t)k are mutually conditionally independent under
distribution p: this means that the only surviving terms are the ones for j = k, and
thus we find

∆2
i = ∑

j
J2
ij(1−m2

j ) (8.19)

Having determined the value of the mean and variance of the effective field of
spin i we can now proceed to average over the disorder and find the unconditional
distribution of effective fields at any time and for any spin, φ(g). First we realize
that the average of Eq. 8.17 can now be substituted by a Gaussian integral

mi =
∫

Dx tanh
[
β
(

g0
i + x∆i

)]
(8.20)

where Dx is a Gaussian measure of variable x ∼ N (0, 1). Then we can see that
the unconditional mean of the fields distribution φ(g) is

g0 = 〈g(t)i 〉 = ∑
j

Jijmj + hi (8.21)

Given the above results and the definition of J, the dependency between Jij and
mj vanishes like O(1/N), which means that the two can be averaged over the disor-
der separately in the limit N → ∞. This results in the following expression for the
unconditional mean of g(t)i

g0 = J0mj + h0 = J0m + h0 (8.22)

where

m = mi =
∫

Dx tanh [β(gi + x∆i)]

both the integral and the average here are of difficult solution and results have
been provided by Crisanti and Sompolinsky (Crisanti and Sompolinsky, 1988): they
show that in the limit N → ∞ and with hi = 0 ∀i the system can be in one of two
phases, a paramagnetic phase where m = 0 if β is smaller than a critical threshold
βc(J0) and J0 < 1, and a ferromagnetic phase where m 6= 0 otherwise. In the fol-
lowing we report results for simulations in the paramagnetic phase, as the inference
is not possible in the ferromagnetic phase. To give better intuition let us consider
the integral above in the limit β → 0: then we can expand the hyperbolic tangent
around 0 to find (since x has zero mean)

m ≈ βgi = β

(
∑

j
Jijmj + h0

)
= β(J0m + h0) (8.23)

which in turn leads to an approximated solution for g0 in the limit β→ 0

g0 ≈ h0

(
βJ0

1− βJ0
+ 1
)

Moving on to the variance of g the calculation is straightforward. Adding the
mean over the disorder to Eq. 8.18b we find
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g2
1 =

〈[
∑

j
Jijs

(t)
j + hi

]2〉
−
〈

∑
j

Jijs
(t)
j + hi

〉2

=

= ∑
j

J2
ij + h2

i + 2hi ∑
j

Jijmj −∑
j

Jijmj + hi
2
=

= J2
1 + h2

1 − J2
0 m2 (8.24)

Equations 8.22 and 8.24 can then be used to calculate, given the parameters of
the distribution generating Θ, the values of g0 and g1 that are to be plugged in the
distribution φ(g) of Eq. 8.16

We simulated a Kinetic Ising Model with N = 100 spins for T = 2000 time
steps at different constant values of β and then measured the AUC of predictions
assuming the parameters are known. In Fig. 8.7 we report a comparison between
these simulated values and the theoretical ones provided by Eq. 8.16 varying β and
the hyperparameters J0, J1, h0 and h1 in the Gaussian setting we just discussed and
adopting the expansion for β → 0. We see that the approximation for small β of Eq.
8.23 does not affect the accuracy of the theoretical prediction for larger values of β
and that the mean is correctly captured by Eq. 8.16. The only exception to this is
found for β > 1 and J0 = 1, which according to the literature is close to the line of
the ferromagnetic transition: in this case the small β approximation fails to predict
the simulated values. Larger values of N and T (not shown here) produce narrower
error bars.

The general effect we see from Fig. 8.7 is that higher variance of the J and h
parameters leads to higher AUC values leaving all else unchanged (orange squares
and yellow circles), while moving the means has little effect as long as the system is
in its paramagnetic phase.

These results are easy to obtain thanks to the assumption that the model param-
eters J and h have Gaussian distributed entries, but in principle the distribution φ(g)
can be derived also for other distributions, albeit probably requiring numerical so-
lutions rather than the analytical ones we presented here.

Further details on the DyEnKIM

There are a couple of subtleties that need to be pointed out regarding the structure
of the b and a parameters and of the Fisher Information I of the DyEnKIM, which
are matrices rather than scalars as in the case of the DyNoKIM.

In order to make the estimation less computationally demanding in our example
applications we assume a, b and I diagonal, disregarding the dependencies between
time-varying parameters: this will likely make our estimates less precise, but it also
reduces the number of static parameters to be inferred, letting us bypass model se-
lection decisions which are outside the scope of this chapter.

As previously discussed there is also in this case the problem of identification
for the averages of the components of β, which we solve in the exact same way as
we did for the DyNoKIM by dividing the values of each component by their sample
mean while multiplying the associated static parameter by the same factor, again
leaving the likelihood of the model unchanged, but setting a reference level for β.

As a last remark, notice that the DyNoKIM and the DyEnKIM are equivalent
when h(t)0 = 0 ∀ t and βdiag = βo f f = βh = β. For this reason we mainly present sim-
ulation results for the DyNoKIM alone to keep the manuscript concise, as we found
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no significant differences between the two models when it comes to the reliability of
the estimation process.

Consistency analysis for estimation

We perform a consistency test on simulated data, aimed at understanding whether
the two-step estimation procedure we outlined above is able to recover the values of
the parameters of the model when the model itself generated the data.

Here we report results for simulations run with parameters N = 50, T = 750
or T = 1500, Jij ∼ N (0, 1/

√
N), hi = 0 ∀ i, b = 0.95 and a = 0.01. We see from

Fig. 8.8 that the estimation of the elements of J is indeed consistent: we estimate
a linear regression model between the estimated and the true values of Jij, namely
Jest
ij = c0 + c1 Jtrue

ij + ε, and plot the histogram of the values of c1 and of the coefficient
of determination R2 of the resulting model from 250 simulations and estimations
(c0 is consistently found to be very close to 0 in all our simulations and for this
reason we omit it). In the ideal case where for any i, j Jest

ij = Jtrue
ij one would have

c1 = R2 = 1, which is what we aim for in the limit T → ∞. We see from our results
that there is indeed a convergence of both values towards 1 when increasing sample
size, reducing both the bias and the variance of the regression parameters.

Turning to the score-driven dynamics parameters a and b, the situation does not
change significantly. In Fig. 8.9 we show the histograms of estimated values of b and
a over 250 simulations of N = 50 variables for both T = 750 and T = 1500. It again
appears clearly that when increasing the sample size the bias and variance of the
estimators converge towards 0, with the estimated parameter converging towards
its simulated value. Thanks to these results we are able to confidently apply the
two-step estimation method without the need to estimate all the parameters at once.

To add further evidence to what we presented in the main text, here we also re-
port two additional figures regarding the filtering of misspecified β(t) for the DyNoKIM
and the DyEnKIM. In Fig. 8.10 we show two examples of misspecified β(t) dynamics
that are correctly recovered by the score-driven approach: the first is a deterministic
sine wave function and the second is an AutoRegressive model of order 1 (AR(1))
which follows the equation

βest(t+1)
= c0 + c1βest(t) + ε(t)

where ε(t) ∼ N (0, Σ2) with parameters c0 = 0.005, c1 = 0.995, Σ = 0.01 so to have
〈βest〉 = 1 and we select a simulation where β(t) > 0 ∀ t. In both cases we simulate
30 time series of length T using the given values of β(t) to generate the s(t); given
only the simulated s(t) time series, the inference algorithm determines the optimal
static parameters a, b and J and filters the optimal value of β(t) at each time. We see
that regardless of whether the underlying true dynamics is deterministic, stochastic,
or more or less smooth the filter is rather accurate in retrieving the simulated values.

Regarding the DyEnKIM we want to show that different effects are correctly sep-
arated and identified when estimating the model on a misspecified data generating
process. In fact while the consistency analysis largely resembles the one we reported
for the DyNoKIM in Figures 8.8 and 8.9 and for this reason we omit it, the effect of
filtering multiple time-varying parameters is something that cannot be predicted by
the simulations on the DyNoKIM alone.

In Figure 8.11 we show the results when estimating the DyEnKIM on a dataset
generated by a Kinetic Ising Model with time-varying β

(t)
diag, β

(t)
o f f and β

(t)
h but where
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the dynamics of the parameters is predetermined instead of following the score-
driven update rule. We arbitrarily choose to take a constant β

(t)
diag = 1, a piecewise

constant β
(t)
o f f and an exponentiated sinusoidal β

(t)
h = exp[sin(ωt)], with ω = 5 2π

T ,
T = 1500 and N = 30. The results show that the filter works correctly and that the
different time-varying parameters are consistently estimated, regardless of the kind
of dynamics given to each of them.

Additional results on neural population data

In this section we provide further results on the application of the KIM to the neural
population data. In particular we discuss the possibility to use the DyEnKIM to test
the significance of the elements of J fitted over multiple experiments and expand on
the comparison between the static parameters KIM and the score-driven version.

In Figure 8.12a we show an example of the analyzed data in the form of a raster
plot of one of the experiments. It appears clear that the dynamics of spikes is bursty
and there are non-negligible auto- and cross-correlation effects among neurons, likely
driven by the external stimulus of the video (Tkačik et al., 2014).

As mentioned in the section on the DyNoKIM in the main text, it is possible to
use the filtered time-varying parameters to correct the values of J from misspecifi-
cation error. The same can be done with the DyEnKIM, correcting the elements of
J by a factor given by the sample mean of βdiag and βo f f and the external fields h
by the sample mean of βh. In Figure 8.12b we show a scatterplot of the values of
Jij, comparing the parameters fitted with a KIM on all available data (x-axis) with

the average value Jij =
1
M ∑M

k J(k)ij , where J(k)ij is the value fitted with the DyEnKIM
correction on experiment k. It is clear that, as in the case of DyNoKIM shown in
Figure 2 of the main text, the correction - which in this case only affects off-diagonal
elements as βdiag = 1 - tends to increase the absolute value of Jij with respect to the
static KIM version.

Pruning irrelevant parameters is central to the definition of meaningful statis-
tical models. Here we propose two alternative methods, Decimation and t-testing;
the first is standard in the literature on Kinetic Ising Models (Decelle and Zhang,
2015), whereas the second exploits the repeated experiments in the data to compare
parameters fitted on different samples and assess their significance by means of a
t-test. For Decimation we refer the interested readers to the original paper introduc-
ing it (Decelle and Zhang, 2015). As an alternative in cases where multiple repeti-
tions of the experiment are available, as is the case for our neuron spike dataset, it
is possible to fit a DyEnKIM for each of the M experiments and then use a Student’s
t-test on the set of values Jk

ij, k = 1, . . . , M to test whether their average is signifi-
cantly different from 0. In Figure 8.12c we show a comparison between these two
methods, with Decimation applied to the KIM J and the t-test used to validate the
DyEnKIM result, adopting a Bonferroni correction for multiple hypothesis testing
at the p < 0.01 level. In our case, the Decimation approach selects less elements
of Jij as significant, whereas the t-test appears to be less specific or more sensitive.
This difference is possibly related to Decimation being a likelihood-based method,
which may suffer from misspecification in case the data generating process is not a
KIM, but answering this question goes beyond the scope of this work. Finally, in
Figure 8.12d we report a visualization of the t-tested DyEnKIM J matrix. The diag-
onal elements are largely positive, indicating significant autocorrelation in spiking
dynamics (as would be expected by a visual inspection of the raster plot), whereas
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off-diagonal elements are generally smaller in absolute value and both positive and
negative, albeit significantly different from 0.

Results on the application of DyEnKIM on regular trading days

As a comparison with the observations reported in the main text regarding particu-
lar events affecting stock markets, such as the Flash Crash and the FOMC announce-
ment of July 31st 2019, here we briefly discuss observations for a regular trading day
where nothing as exceptional happened. In Figure 8.13 we replicate the plot shown
in Figure 5 of the main text for six days in November 2019. Here we see that the
J-related components of effective fields 〈gdiag〉(t) and 〈go f f 〉(t) show a U-shaped pat-
tern throughout the trading day, having higher values at the opening and closing,
while the h-related 〈gh〉 only shows an increase towards the end of the day. The
h0 parameter, which captures the average exogenous price activity across all stocks,
shows itself a U-shaped pattern which is more pronounced at closing, consistent
with the intraday pattern typical of traded volume. The consistency of this result
throughout these relatively uneventful days thus reinforces the qualitative descrip-
tion provided by the DyEnKIM for the turbulent events analyzed in the main text.
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J0=  1, J1=0.5, h0=−1, h1=0.5

FIGURE 8.7: Comparison between the AUC estimated on data simu-
lated from a Kinetic Ising Model and the theoretically derived AUC
with Gaussian distribution of the J and h parameters, varying β and
the hyperparameters J0, J1, h0 and h1. Plot points report average sim-
ulated values for a given β with error bars at ±1 standard deviation,

dashed lines report theoretical values predicted by Eq. 8.16.
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FIGURE 8.8: Consistency of the J matrix estimation. (a) Histogram of
linear regression coefficients b between inferred and true values of Jij
over 250 samples for N = 50, T = 750 and T = 1500; (b) Histogram
of coefficients of determination (R2) for the same set of models. The
convergence of both values towards 1 when increasing T is a sign of

consistency of the estimation.
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FIGURE 8.9: Consistency of the score-driven dynamics parameters.
(a) Histogram of estimated values of b over 250 samples for N = 50,
T = 750 and T = 1500; (b) Histogram of estimated values of a over
250 samples for the same set of models. The convergence towards the
true value by increasing T is a sign of consistency of the estimation.
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FIGURE 8.10: Simulation and estimation of a misspecified score-
driven model over 30 simulations, with sample trajectories high-
lighted. (a) Deterministic β following a sinusoidal function; (b)

Stochastic β(t) following an AutoRegressive model of order 1.

FIGURE 8.11: Estimation of β
(t)
diag, β

(t)
o f f and β

(t)
h under model mis-

specification. The model was simulated with a constant β
(t)
diag = 1,

a piece-wise constant β
(t)
o f f and an exponentiated sinusoidal β

(t)
h =

1
J0(1)

exp[sin(ωt)], with ω = 5 2π
T and J0 the Bessel function of first

kind of order 0 to normalize the mean. The points are the result of
30 different simulations and estimations, the lines show the values of

βo f f and βh used to generate the data.
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FIGURE 8.12: Additional results on the neuron spike data. (a) Raster
plot for one sample in the data. Time is on the x-axis, neurons on
the y-axis, a black dot at (t,i) indicates a spike from neuron i at time
t; (b) Comparison between fitted values of Jij using a KIM over the
complete dataset (x-axis) and the average fitted values of Jij with

DyEnKIM correction, Jij =
1
M ∑M

i J(k)ij , where J(k)ij is the J matrix fit-
ted on sample k and M is the total number of experiments (y-axis). A
dashed line is traced on the diagonal as guide to the eye; (c) The same
as panel b after the Decimation pruning technique has been applied
to the KIM and the t-test pruning has been applied to the DyEnKIM;
(d) Visualization of the DyEnKIM J after the t-test pruning has been

applied. White squares correspond to non-validated interactions.
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FIGURE 8.13: Values of 〈gdiag〉(t), 〈go f f 〉(t), 〈gh〉(t) and h(t)0 during six
days in November 2019, when no abnormal event was recorded. The
usual U-shaped pattern of intraday volatility and volume is observed.
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Chapter 9

Conclusions

In this thesis we presented contributions to the literature on statistical models for
both static and temporal networks. All our works propose novel methodologies
with clear applications to multiple fields that are validated trough extensive numer-
ical simulations and are then applied to a number of different real world systems.

In Chapter 3 we focused on the problem of estimating metrics of systemic risk
due to fire sale spillover in presence of limited information on the composition of
portfolios of financial institutions. A full knowledge of the portfolio holdings of
each institution in the economy is generally required to have a precise estimate of
any the risk metrics by Greenwood, Landier, and Thesmar, 2015 that is based on the
mechanism of portfolio rebalancing through fire sales. Nevertheless, such a huge
and detailed information may not be available at the required frequency. We circum-
vented the problem by providing accurate estimates of systemic risk metrics that are
based on a partial knowledge of the system, more precisely only on the sizes of bal-
ance sheets and the capitalization of assets (or asset classes), which are much easier
to trace. In this respect, we showed that the method of Cross-Entropy minimiza-
tion does a very good job in estimating aggregate vulnerability and individual bank
systemicness without requiring any knowledge of the underlying matrix of bank
portfolio holdings. Furthermore, we compared the results with a Max Entropy en-
sembles. Specifically we introduced a new ensemble (MECAPM), which reproduces,
on average, the CECAPM and performs quite well in estimating systemicness and
indirect vulnerability of single institutions, outperforming standard Max Entropy
competitors. The contributions presented in this chapter fit well within the literature
on the reconstruction of networks and systemic risk from partial information. Like
most works in the field (Anand et al., 2017), we considered only the common setting
where aggregate information at the node level is available. In the real world differ-
ent situations where regulators have incomplete knowledge on financial networks
often arise. The first example that comes to mind is the setting where a regulator, e.g.
a central bank, only has knowledge of the portion of the network that falls under its
supervision. Such a setting is not uncommon as often regulators have no data on
the financial connections between entities outside their jurisdiction. This situation
might lead to inaccurate estimations of systemic risk that still need to be addressed
properly using methods similar to the ones presented in Chapter 3.

In Chapter 6 we proposed a framework for the description of temporal networks
that extends the well known Exponential Random Graph Models. In the new ap-
proach, the parameters of the ERGM have a score driven dynamics. If the log-
likelihood is not available in closed-form, we showed how to adapt the score-driven
updating rule to a generic ERGM by resorting to the conditional pseudo-likelihood.
In this way, our approach can describe the dynamic dependence of the PMF from
virtually all the network statistics usually considered in ERGM applications. We
investigated two specific ERGM instances by means of an extensive Monte Carlo
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analysis of the SD-ERGM reliability as a filter for time-varying parameters. The
chosen examples allowed us to highlight the applicability of our method to models
with a large number of parameters and to models for which the normalization of
the PMF is not available in closed form. The numerical simulations proved the clear
superior performance of the SD-ERGM over a sequence of standard cross sectional
ERGM estimates. This is not only true in the sparse network regime, but also in the
dense case when the number of nodes is far from the asymptotic limit. Finally, we
run two empirical exercises on real networks data. The first application to e-MID
interbank network showed that the SD-ERGM provides a quantifiable advantage in
a link forecasting exercise over different time horizons. The second example on the
U.S. Congress co-voting political network enlightened that the ERGM and the SD-
ERGM could provide a significantly different picture in describing the parameter
dynamics.

Following a similar approach, in Chapter 7 we focused on describing also links’
weights. We proposed a novel model for sparse weighted temporal networks that
also accommodates for the dependency of the network dynamics on external vari-
ables, and its application to weighted temporal network data, describing overnight
exposures in the European interbank market. Our work contributes to the extremely
scarce literature on dynamical models for sparse weighted networks by extending
the very well known fitness model for static binary networks. We considered a zero
augmented generalized linear model to handle the weights and the score driven
framework to describe time varying parameters. This results in a flexible model that
allows us to decouple the probability of a link to exist from its expected weight, and
to explore the influence of external covariates on the network’s dynamics. We then
exploit such flexibility to investigate how the relevance of EONIA rates on the e-
Mid interbank market changed over time. We started from the well known fitness
model Caldarelli, Capocci, De Los Rios, and Muñoz, 2002; Garlaschelli and Loffredo,
2008, also known as beta model or configuration model, and considered its extension
to describe the weights and the dependency on external covariates. Alongside the
standard, binary fitness parameters, we associate to each node i two new parameters
that we call weighted fitness. They describe the propensity of a node to have more
or less heavy weights in incoming and outgoing links respectively, and use them
to model the weighted adjacency matrix using a zero augmented distribution. We
then extended this model to the dynamical context by allowing the fitness, both bi-
nary and weighted, and the regression parameters to change over time, following
the Score Driven approach. We run extensive numerical simulations to make sure
that this update rule defines an effective way to filter the time varying parameters,
also when their temporal evolution is governed by a different DGP. We empirically
applied our model running an exercise in weight forecasting and to explore the re-
lation between the dynamics of a portion of the European interbank market, e-Mid,
and the EONIA rate. Finally, we explored the persistence of weights in the e-Mid
market.

In both Chapter 6 and Chapter 7 we introduced novel methodological contribu-
tions that are extremely flexible. We proved that they are very effective in a range of
numerical experiments, and tested them in three empirical applications. We believe
that more empirical applications have yet to be explored to exploit the full potential
of our methodologies and validate the added value that they can bring in empirical
analysis. Probably the most relevant empirical application that we would foresee is
to the literature of network reconstruction from partial information and its extension
to take into account the longitudinal dimension of temporal networks. A systematic
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exploration of network forecasting from partial information represents an interest-
ing avenue of research that we have yet to investigate.

Finally, in Chapter 8 we applied the score-driven methodology to extend the Ki-
netic Ising Model to a time-varying parameters formulation, introducing two new
models for complex systems: the Dynamical Noise Kinetic Ising Model and the Dy-
namic Endogeneity Kinetic Ising Model. We showed that the DyNoKIM, character-
ized by a time-varying noise level parameter β(t), has a clear utility in forecasting
applications, as the Area Under the ROC Curve can be showed to be a growing
function of β(t), while the DyEnKIM can be used to discriminate between endoge-
nous and exogenous effects in the evolution of a multivariate time series. We then
provided example applications of the two models. We successfully employed the
DyNoKIM to quantify the real-time forecasting accuracy of stock price activities
in the US stock market. The result, largely matching the predictions from theory
and simulations, is a methodological breakthrough for the real-world application of
time-varying parameter models of complex systems, opening to the possibility of
implementing real-time indicators quantifying the accuracy of model-based predic-
tions. We have then applied the DyEnKIM to model a population of salamander
retina neurons and describe the high-frequency volatility of US stocks in proximity
of extreme events such as the Flash Crash of May 6, 2010 or around scheduled an-
nouncements as the FOMC report of July 31, 2019. We designed the DyEnKIM to
disentangle the effects of interactions from the ones of exogenous sources on the ob-
served collective dynamics, a task that is typically non-trivial but nonetheless funda-
mental in the modeling of complexity. Our results show that this distinction can be
made regardless of the underlying system, providing a detailed description and in-
sight on the dynamics, and most importantly without requiring multiple controlled
experiments, as is common practice in previous applications of the KIM on neuron
populations, thus opening to the adoption of the model in contexts where running
repeated experiments is costly or impossible. Last but not least, we discussed the
possibility to use KIM and our score driven extensions to model temporal networks
and discussed an empirical application of the DyNoKIM to the real-time link predic-
tion in a temporal social network. Although very general the spin like description of
a complex systems allows each entity to be in only one of two states. This might be
limiting and result in information losses for systems that would be better described
by more than two states. Hence, the application of a similar approach, as the one
presented in Chapter 8, to Potts like models (Potts, 1952; Wu, 1982) could result in a
even wider realm of potential applications with respect to our score driven KIM.
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