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Introduction

The present PhD thesis in Mathematical Finance is the result of almost four years
of research, ranging from the study of individual expectations and strategies imple-
mented in strictly theoretical contexts, such as pure exchange economies and asset
pricing models, to those ones of aggregate dynamics of content spread over a social
network structure in combination with behavioral data, passing through robustness
and sensitivity analysis of the models themselves. The modeling framework em-
ployed for approaching social, economic and financial contexts laid out in this thesis
is the one called: agent-based model. Withing the scope of my thesis, agent-based
modeling is the computational investigation of economies modelled as evolving sys-
tems of interacting autonomous agents. It is thus a specialisation in economics of the
basic paradigm of complex adaptive systems (Anderson, 1972; Gallegati and Kir-
man, 2012; Grazzini, 2012; Holland, 1992; Tesfatsion and Judd, 2006).

The novelty in agent-based modeling of economies lies on harnessing very pow-
erful computational means, in particular object-oriented programming. Four key
features let the extension of self-organization and economic evolution topics in lit-
erature by ABM investigators. Firstly, ABMs allow to computationally set up socio-
economic environments populated by heterogeneous agents, interacting one another
and with their environment, basing on internal behaviors, social norms and data
learnt from the past observations. In this way, agents observe a comprehensive in-
ternal cognitive frame which makes economic agents much more realistic and takes
into account actual ways of forming expectations and performing learning. This is
in opposition with the conventional way agents have been meant to behave in eco-
nomic models. In second place, a wide variety of agent behaviour and interactions
can be allowed for in such economic settings, with predatory and collaborative rela-
tionships alongside price and quantity connections. Agents constantly adjust their
actions in reaction to interactions both one another or with the environment in an
effort to fulfill their needs and desires. In other words, the rules of behaviour are
constrained by the state, and agents co-adjust their behaviour in an entangling in-
teraction network. Economic systems can thus show up self-organisation. Thirdly,
agents can be involved in open-ended testing with adaptive behavior rules changing
over time; in other words, economic agents co-evolve. The latter is allowed by evo-
lutionary process with can be thought as acting directly on agent behavioral features
rather than figuring laws of motion governing the dynamic of the agent population.
Finally, economic environments can be observed along a time evolution; such oppor-
tunity makes agent-based model pretty realistic. By setting boundary conditions and
model parameters, the dynamic of an economic model evolves by itself without any
later exogenous interventions, unless explicitly wanted (e.g. policy interventions,
structural breaking, changing due to uncertainty, etc). In order to recap, agent-based
modeling in socio-economic environments combines instruments and concepts from
cognitive science, evolutionary economics, computer science, applied mathematics
and dynamical system physics, in a way that may brings to very relevant develop-
ments. In first instance, the construct foundation of economic theories in the beliefs
and interactions of independent agents; secondly, the verification, fine-tuning, and
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extension of those theories by means of accurate computational exercises, statistical
evaluation of results, and suitable pairwise comparisons with analytical research,
econometric analysis, field trials, and laboratory investigations of human subjects;
finally, the development and verification of socioeconomic conceptually embedded
theories that are consistent with data and theory from many distinct social science
tields thought as separated, in principle (Tesfatsion, 2001).

The current PhD thesis mostly relates to financial context. In the middle and
late 20th century, finance experienced a major transformation. The emergence of
the efficient market hypothesis efficient markets, the capital pricing model and the
Black and Scholes option pricing formula brought to a new and "scientific" basis.
This new realm of finance was founded on the assumption that asset markets were
strong computational motors, capable of aggregating and processing the traders’ be-
liefs and demands, allowing the full range of correctly processed information actu-
ally available to be captured in prices (i.e. representative agent endowed of rational
expectation). It is worth noting that these bases came with a very significant com-
putational scale (LeBaron, 2006). In agent-based models the computational resource
is again at the centre of a shift in thinking about financial markets. This time it is
supporting the pursuit of a way of looking at the world in where agents can differ
in many directions, not only in their information, but in their capacity to elaborate
information, in their approaches to risk, and in many other aspects. Agent-based
models in finance consider financial markets as interacting communities of learning,
boundedly rational agents. In such contexts, analytical derivations are most of the
times impossible; computation simulations are then necessary. In ABM, dynamic
heterogeneity is critical. This heterogeneity is a distribution of agents, or wealth,
across a set of fixed or changing strategies. Financial markets are highly interest-
ing new applications for agent-based methods for a number of reasons. First of all,
the fundamental challenges in finance on market efficiency and rationality are still
unanswered. Secondly, financial time series include many intriguing complexities
which are not properly understood. In the third place, financial markets yield a rich-
ness of price and quantity data that can be investigated. And fourth, when looking
at evolution, markets give a fair approximation to a rough fitness measure by means
of return and wealth. Lastly, there are close linkages with significant experimental
findings that in some instances work on the same time scales as time scales of real
financial markets(LeBaron, 2006).

The academic finance has been discussing the issue of market efficiency for a
while. The notion of market efficiency has both theoretical and empirical support
that should not be disregarded (Fama, 1970; Fama and French, 1998). From a theo-
retical point of view, the contention is that investors with strategies that are less than
rational will vanish, and if prices include any predictable elements in their historical
series or linked to fundamentals, the rest of the rational traders will drop them to
zero. Such a strong concept is still in force in much of the academic financial world,
and can be found in articles like Rubinstein et al. (2001). As attractive as this no-
tion is, it is worth pointing out that there has never been a properly agreed dynamic
process depicting how the efficient market hypothesis is realized. The second cor-
nerstone of efficient market theories, endorsed by most of the first empirical work
on financial markets, is that markets are much more unpredictable than the finan-
cial practitioners” world indicates (Fama, 1970). Early conceptualization of efficient
markets has led to a strong model representation for financial markets: the repre-
sentative agent. This model gives a formal connection between asset prices and the
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expectations of a single aggregate actor who can thus be related to several macroe-
conomic state variables.

Rationality generally address three pillars: consistency, maximisation of ex-
pected utility and, if learning is entailed, Bayesian probability updating. Savage
(1972), the founder of modern Bayesian decision theory, identified two necessary
conditions for these three pillars of rationality: the perfect foresight of future real-
izations of the world and the perfect foresight of their consequences. Savage called
the latter a "small world". In a small world, all the possible future states of the
world, their outcomes and the probability associated to them are know for certain.
Savage himself clearly constrained his theory only to small worlds. For example,
he stressed that his theory does not hold under those conditions in which the set
of future realizations of the world and their outcomes is not known. In this case,
Bayesian updating is unachievable since one cannot assign prior probabilities to
future world states that sum up to one. In line with seminal contributions of Knight
(1921) and Simon (1955), the latter conditions are referred to the term uncertainly;
most of the situations faced in real words do not meet the assumptions of small
world (i.e. risk) for expected utility maximization and Bayesian updating. Chap-
ter 1 joins this discourse by exploring a standard security market economy where
agents have to form beliefs on future realizations of states of the world relying on a
set of predicting models that does not include the true one. The latter is the source of
uncertainly I embed in the model. The main goal of this chapter is to assess accuracy
of predictions of boundedly rational agents, rely on several learning protocols and
beliefs, compared to the rational agent (i.e. Bayesian updating benchmark). The
crucial and very relevant research question is the phenomenology of asset prices
if no agent knows the actual distribution (i.e. the truth), knowing that, in case a
Bayesian updating agent knows it, it would be unbeatable. My analysis is consistent
with the literature on market selection and long-run asset prices(Blume and Easley,
1992, 2009; Bottazzi et al., 2018; Bottazzi and Giachini, 2019; Dindo and Massari,
2020; Sandroni, 2000) Given an economy characterized by independent and identi-
cally distributed (i.i.d.) states of the world, I find that a boundedly rational trader
observing under-reacting, who gives a sufficiently high weight to the prior, drives
out of the market any other trader who does not learn the truth asymptotically (i.e.
the Bayesian one included). By performing numerical exercises, I provide a better
characterization of the advantages of an under-reacting rule. In particular, I show
that the accuracy of predictions (and, thus, the selection advantage) increases with
the degree of under-reaction the agent exhibit. I generalize such an idea showing
that, with i.i.d. states, an agent can make an opponent vanish by building its beliefs
as a moving average of the opponent’s predictions. I show that my results persist
when the sequence of states of nature is driven by Markov or Polya urn processes.
In this respect, extreme models, giving near full probability to different states, rep-
resent an optimal base on which an agent should root its updating when the true
model is not available. The latter consideration is totally in line with the concept that
behavioral protocols are properly modeled by heuristics. An heuristic is “a strategy
that ignores part of the information, with the goal of making decisions more quickly,
frugally and/or accurately than more complex methods” (Gigerenzer and Brighton
(2009), 454).

The theoretical aspects of the notion of efficient markets have been under attack
for a while. In general, the nature of an efficient market rests on two main concepts:
available information is already reflected in stock prices and traders cannot earn
risk-weighted excess returns (Degutis and Novickyte, 2014). Rationality of agents
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is a key prerequisite for its efficiency. In this perspective, an important argument is
derived by Grossman and Stiglitz (1980). In this paper, rational expectation agents
are given with the option of buying an information signal about an asset. Under a
perfectly efficient scenario with a cost on the signal (i.e. information), nobody would
have an incentive to purchase it. Although it is accepted that not all market players
act rationally, efficient markets supporters argue that the trades of irrational traders
are considered random, they don’t affect the market price and they are ruled out of
the market on the long-run (Fama, 1970, 1965). As I pointed out above by mentining
market selection literature, the latter is a controversial issue theoretically. Moreover,
in the noise trading literature, De Long et al. (1990) present the crucial idea that ra-
tional risk-averse traders may not be able to drive the dynamics and rule out less
rational approaches, since they trade in a less aggressive way as they are sensitive
to risk generated by noisy agents. Chapter 2 explores these settings. To the best
of my knowledge, my accurate dynamical reproduction of Grossman and Stiglitz
(1980)" static settings through agent-based modeling is pretty original in literature,
in particular from a theoretical perspective. Firstly, I set up a theoretical framework
where efficient market hypothesis should definitely hold: all the agents know that
the expected fundamental value of the risky asset evolves according to the expected
dividends. Agents choose to adopt a fundamentalist trading strategy: they expect fu-
ture asset price will converge to the fundamental one, so they trade accordingly to
exploit possible imbalances. A crucial issue is to provide information a dynamical
character. To this end, expected dividends, and accordingly fundamental price, play
that key role; this way of modeling matches information characterization in the orig-
inal model, including the idiosyncratic shock on the return. Moreover, I characterize
the demand of an agent 4 la Grossman-Stiglitz and how informed and uninformed
formally differ from each other. By performing both theoretical and numerical explo-
rations, two different asymptotic scenarios arise: one in which the population dis-
tributes in half informed and half uninformed over time, and one in which the whole
population joins uninformed strategy. This split crucially depends on the magnitude
of information cost and it is controlled by a threshold which I derived analytically.
In other words, an informed agent never performs better than an uninformed one
and, if the cost of information is too high w.r.t. current earnings, it is driven out
the market. In any case, market price follows the fundamental one. In this frame-
work, I prove dynamically the paradox found by (Grossman and Stiglitz, 1980); i.e.
if price would reflect all information available, no trader would pay the cost, as they
could learn information from the price; on the contrary, if no one does, then prices
would reflect no information, and it would be profitable to buy information. In line
with noisy traders literature (De Long et al., 1990) and ecological rationality litera-
ture (Gigerenzer and Brighton, 2009; Gigerenzer and Gaissmaier, 2011), I bring into
the model the heuristic rule which makes agents forming their expectations at each
time on the previous observed return (i.e. recency heuristic). Their presence destabi-
lizes the market, making market price deviating from fundamental value and price
volatility dramatically increasing. Moreover, also in this case the informed agent
never performs better that others and for a price of information higher than a certain
price threshold (that can be analytically derived) it is ruled out of the market. Uni-
formed and heuristic agents survive in the market and the dynamic matches Fehr
and Tyran (2005)" findings: strategies may be either complements or substitutes is
the actual main driver in determining aggregate outcomes. I found that when the
two strategies are complements, even a small amount of heuristic makes aggregate
outcomes diverge from rational ones. On the contrary, when agents’ strategies are
substitutes, even a small amount of fundamental agents leads to a convergence to
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rational outcomes.

As previously introduced, financial market is a good agent-based test bed. Fi-
nancial data are generally copious, detailed and available on many various dimen-
sions. Quality time series of at least sixty years are available on prices and books;
historical data on lower frequencies and for particular stocks up to one hundred
years are available as well. In the last forty years, very high frequency data have
become accessible. Such series often track every transaction or order that enters a
financial market, and sometimes incorporate identity information on traders. Thus,
researchers have a very accurate overview of precisely how the market is performing
and the market clearing dynamics. This level of detail on the behaviour of individu-
alsis crucial in the interest of agent-based models building and validation. Empirical
data are available that can be employed to align and calibrate agent behaviour. Since
ABMs aim to explore dynamic features that cannot be studied analytically, cause-
and-effect mechanisms that cannot always be properly identified, and emergent re-
lationships that cannot be simply inferred by aggregating micro-level interactions,
there is a urgent need for suitable and reliable tools to explore the model’s emergent
behaviour in terms of different parameter setting exploration and sensitivity analy-
sis (Fagiolo et al., 2019; Lamperti et al., 2018; Lee et al., 2015; Roventini and Fagiolo,
2017). In particular, the main challenge in ABM parameter space exploration and
calibration is the increasing number of parameters arising from the increasingly re-
alistic dynamics of ABMs. In that respect, a particularly interesting approach has
been presented by Lamperti et al. (2018); they propose a novel method to quickly
learn a cheaper proxy (i.e. surrogate model) for replacing an ABM, using a restricted
number of ABM valuations and approximating the non-linear relationship between
inputs and outputs. Along this line, Chapter 3 originally investigates opportuni-
ties and limits of calibration, parameter range exploration and sensitivity analysis.
I propose a novel, general and trustworthy approach for building a cheaper proxy
for replacing an ABM, in order to quickly perform reliable sensitivity analysis. As
far as I know, my methodology has no former proposals in financial ABM literature.
Through an intelligent exploration of parameter ranges, I select parameter intervals
over which surrogate models can be reliably trained. I show the dramatic gaining
in performances that I obtain by using my proposed procedure. Then, I employ and
compare those trained surrogate models with the true model for sensitivity analysis
purposes and I show that my approach lets building up trustworthy proxies which
can be employed for sensitivity analysis in place of the original ABM, with almost
zero computational effort.

It sounds pretty paradigmatic that last century’s academics believed that the
more information to process was available, the more an agent (e.g. an individual, a
firm, an institution, an organization, etc) would make a better decision, for instance
in rational expectation’s formalization, and nowadays, the enormous information
availability on web platforms brings to opposite conclusions. Individuals have never
been so cognitively impoverished to the extent that a "wealth of information creates
a poverty of attention" (p. 41, Simon (1996)). Large web platforms like Google and
Facebook act as hubs, distributors and curators (Kalogeropoulos et al., 2019; Lorenz-
Spreen et al., 2020). Their algorithms are essential to navigate the immense digital
landscape and enable bottom-up engagement in the production, dissemination and
spreading of information. Data curation companies exploit this crucial role to secure
the most valuable resource in the online marketplace: human attention. Using algo-
rithms that learn people’s behavioural patterns (Boerman et al., 2017; Kosinski et al.,
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2013; Ruths and Pfeffer, 2014), these companies target their customers with advertis-
ing and shape the users’ information and choice experiences (Lorenz-Spreen et al.,
2020). Their usage is far from being transparent and undermines user autonomy (e.g.
polarizing individual opinions, mis- and dis- information spreading). Moreover, it
has been profoundly under-researched academically, in particular collective behav-
ior effects. Chapter 4 explores this academic research gap by tackling a methodol-
ogy successfully performed by private companies to increase user engagement and
satisfaction about online features: A/B testing. My center of focus is to determine
how and under which conditions A/B testing affects the distribution of content on
the collective level, specifically on different social network structures. In order to
achieve that, I leverage once again the so powerful framework of agent-based mod-
eling, by reproducing social interaction and an individual decision-making model.
The latter approach is completely new in literature and my results are particularly
exiting. I find and show that A /B testing has a substantial influence on the qualita-
tive dynamics of information dissemination on a social network. In particular, I ob-
serve that the A /B testing mechanism increases the homogeneity of information that
is spread. In other words, I observe that A /B testing performed on a social network
structure reduces the exploration and amplifies exploitation of successful features
of early pieces of information, ignoring others. Moreover, my modeling framework
promisingly embeds conjecturing policy (e.g. nudging, boosting) interventions.



Chapter 1

Market selection and learning
under model misspecification

1.1 Introduction

The main goal of this Chapter! is to assess accuracy of predictions, compared to
the rational agent (i.e. Bayesian benchmark), in a security market economy where
agents have to form beliefs on future realizations of states of the world relying on
a set of predicting models that does not include the true one. They rely on several
learning protocols and beliefs which are, in a way, bounded versions of the rational
agent benchmark. The assumption that agents behave are fully rational is the essen-
tial requirement of asset pricing standard models as the one of Lucas (1978). Fully
rational agents are aware of all (relevant) available information about the economy
and their behavior is either consistent with or comes from utility function maximiza-
tion. Moreover, they are endowed with rational expectations and they can exactly
compute every realization of future states of the economy. In order to model a deci-
sion maker, come by itself remarking how unrealistic the latter assumption is. As a
matter of fact, a crucial and very relevant research question is the phenomenology of
asset prices if no agent knows the actual distribution (i.e. the truth). A way to tackle
this topic is the one of Blume and Easley (2009); they analyze an Arrow-security
economy with complete markets and assume agents observe their "best" rational be-
havior conditioned to their expectations; both heterogeneous and incorrect (i.e. in
the sense of not knowing the true distribution of future states). Their main finding
relies on showing that asset prices on the long-run reflect beliefs of that agent whose
belief was the closest to the actual distribution of asset prices. Furthermore, in the
transition from fully rationality to bounded rationality (i.e. the assumption that agent
behavior is not relying on rational beliefs but rather on heuristics), it is commonly
thought to obtain a worsening in asset pricing, market dynamics, etc. In this regard,
Gigerenzer and Brighton (2009) exactly assert the opposite, so that they proved that
simple fast and frugal rules actually improve outcomes in complex environments.
This chapter analyzes market selection in a security market economy where
agents’ learning process is characterized by model misspecification. More specifi-
cally, agents have to form beliefs on future realizations of states of the world relying
on a set of predicting models that does not include the true one. In this setting, a
Bayesian learner would asymptotically predict as the best model in its set (Berk,
1966). According to Massari (2020), the Bayesian learner could be driven out of the
market by a trader who under-reacts to information. Under-reaction amounts to

1Bottazzi G., Giachini D., M. Ottaviani (2021). "Market selection and learning under model mis-
specification", forthcoming.
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update the weight a model has in the agent’s prediction according to a convex com-
bination of the Bayesian update with the prior and Massari (2020) points out that
the dynamics of weights and predictions of an under-reacting rule matches those
of relative consumption levels and risk neutral probabilities in an Arrow-Debreu
security market as in Dindo and Massari (2020). In order to build up the connection
between learning and market dynamics, I follow the literature on market selection
(Blume and Easley, 1992; Bottazzi et al., 2018; Bottazzi and Giachini, 2019; Dindo and
Massari, 2020; Sandroni, 2000). Relative entropy turns out as the correct measure
of accuracy of a trader’s beliefs and its infinite time average is deeply connected
to asymptotic dynamics. I argue that, in an economy characterized by indepen-
dent and identically distributed (i.i.d.) states of the world, an under-reacting trader
who gives a sufficiently high weight to the prior drives out of the market any other
trader who does not learn the truth asymptotically. By means of numerical exercises,
I provide a better characterization of the advantages of an under-reacting rule. In
particular, I show that the accuracy of predictions (and, thus, the selection advan-
tage) increases with the degree of under-reaction the agent exhibit. Such a superior
performance results from a combination of the good properties of the Bayesian up-
date with the systematic smoothing of predictions operated by an under-reacting
rule. I generalize such an idea showing that, with i.i.d. states, an agent can make
an opponent vanish by building its beliefs as a moving average of the opponent’s
predictions. I show that my results persist when the sequence of states of nature is
driven by Markov or Polya urn processes. In this respect, extreme models, giving
near full probability to different states, represent an optimal base on which an agent
should root its updating when the true model is not available. Indeed, learning over
a set of extreme models coupled with smoothing beliefs by means of a combination
of under-reaction and moving average increases the chances an agent has to survive
the market selection struggle. The latter consideration is totally in line with the
concept that behavioral protocols are properly modeled by heuristics. An heuristic
is “a strategy that ignores part of the information, with the goal of making decisions
more quickly, frugally and/or accurately than more complex methods” (Gigerenzer
and Brighton (2009), 454).

1.1.1 Literature review

In this chapter I build up the connection between learning and market dynamics
through analyzing market selection in a security market economy where agents’
learning process is characterized by model misspecification. How the presence of
different heterogeneous boundedly rational agents affects asset pricing and market
dynamics in general has been a relevant threat in literature. In their seminal re-
view, Fehr and Tyran (2005) collects and discuss how individual irrationality (in their
words) affects the economic aggregate outcomes. They observe that many many
economists are aware they live in a world where, obviously, individuals are not fully
rational. Nonetheless, they often make use of models which analyze economic in-
teractions of fully rational agents, in their professional life. In order to reduce the
"cognitive dissonance" of this clear paradoxical situation, many economists believe
that market interactions actually offset or even correct individually "anomalous be-
haviors". The authors report five common hypotheses which support the latter cre-
dence. Firstly, there is the assumption that random deviations from full rationality
offset on average during aggregation of expectations. The second hypothesis states
that agent learning protocols tend to the rational one in the long-run: "learning from
their own mistakes" makes agents become rational over time. The third one argues
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that market structure is the actual driver to rational aggregate outcomes; it relies on
results obtained by Gode and Sunder (1993) on allocative efficiency of markets with
zero-intelligence traders. The fourth assumption relates market selection results,
in line with Alchian (1950); Friedman (1953): rational agents outperform irrational
ones, make much higher profits and in the long-rung, they drive irrational agents
out of the market. The last hypothesis argues that rational agents hold marginal
buying or selling positions while irrational ones extreme positions, so in a very pop-
ulated market, in equilibrium, only rational agents really matter. Since there exist
many cases in which all these mechanisms don’t work at all, Fehr and Tyran (2005)
conclude that strategies may be either complements or substitutes is the actual main
driver in determining aggregate outcomes. In case strategies are complements, even
a small amount of individual rationality makes aggregate outcomes diverge from
rational ones. On the contrary, when agents’ strategies are substitutes, even a small
amount of rational agents leads to a convergence to rational outcomes. The con-
nection between individual rationality and aggregate outcomes that Fehr and Tyran
(2005) illustrate is thus clear: a failure of the former is a potential damage to the
latter.

The idea that agents” bounded rationality accounts for deviations from rational
outcomes underlies the entire domain of behavioural economics (Camerer et al.,
2011). This literature is based on the work of Tversky and Kahneman (1974),
which deals with cognitive biases due to judgement heuristics. The basic claim
is that widespread heuristics negatively affect decision-making by enabling agents
to make non-optimal decisions. This view is partially challenged by the work of
Gigerenzer and Brighton (2009); Gigerenzer and Gaissmaier (2011); Gigerenzer et al.
(1999). Gigerenzer and his co-authors even argue that heuristics can actually en-
hance decision-making. The contrast between the contributions of Tversky and
Kahneman and the work of Gigerenzer and other authors is that the latter examine
individuals in a complex environment in which an optimal choice is inconceivable.
Therefore, heuristics turn into simple tricks to get the best out of a setting that is
uncertain in Knight (1921) terms. In addition, the authors illustrate that attempting
to increase the "rationality" of a decision (e.g. by collecting more information) leads
in many cases to a decrease in performance due to a variance-bias trade-off. In
other words, sophisticated statistical models have poor predictive power in some
situations due to overfitting. This idea is explored by Dosi et al. (2017) in the setting
of a macroeconomic agent-based model in which aggregate economic performance
is measured across different expectation formation rules. In a complex evolving
environment, they demonstrate how agents’ use of sophisticated expectation for-
mation rules leads to a deterioration in terms of both individual performance and
the economy’s aggregate outcome compared to the case where they assume simple
myopic expectations. The underlying idea is that any statistical model based on
past observations will be biased if the data generating process is altered over time.
Therefore, a simple prediction scheme, such as assuming that the next value of a
variable is the same as the last observed one, can outperform sophisticated models
based on long time series. They conclude that under Knightian uncertainty arising
from technical change, interaction and imperfect information, recourse to simple
heuristics removes the trade-off between variance and bias and enhances overall
performance. A somewhat related perspective arises from the analysis of Kirman
(2010a): the interaction of simple heterogeneous individuals, such as shoppers in
fish markets (Gallegati et al., 2011; Hardle and Kirman, 1995; Kirman and Vriend,
2000), often leads to aggregate outcomes that behave well, while the interaction of
more rational agents can lead to outcomes that are far from the rational benchmark.
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The analysis presented in this chapter is consistent with the literature on mar-
ket selection and long-run asset prices. Blume and Easley (2009) examine an Arrow
security economy with complete markets, constant total endowments and agents
maximising the expectation of their geometrically discounted utility of consump-
tion over an infinite horizon. Given an agent-specific survival index that includes
the discount factor and belief accuracy, they demonstrate that long-run prices gen-
erally reflect the beliefs of the agent with the highest survival index, i.e. the one for
whom markets choose. They also find that there are cases where at least two agents
survive (same maximal survival index), and this implies that prices vary between
the evaluations of these traders. Dindo and Massari (2020) illustrate how such situ-
ations turn generic when agents adjust their beliefs dogmatically with equilibrium
prices. Indeed, this kind of belief correction enhances agents” accuracy and equi-
librium prices become more accurate than those of the most precise agent. They
further provide evidence that this accuracy increases with the degree of adjustment.
The authors therefore conclude that market efficiency is a self-fulfilling prophecy:
when market participants believe that prices provide valuable information, they in
fact become informative. Massari (2017), on the other hand, investigates selection
and price formation in large economies (i.e. economies populated by a continuum
of traders) and concludes that efficient prices emerge even when accurate traders
disappear due to selection forces at work in the market.

I follow the literature on market selection (Blume and Easley, 1992; Bottazzi et al.,
2018; Bottazzi and Giachini, 2019; Dindo and Massari, 2020; Sandroni, 2000). Rela-
tive entropy turns out as the correct measure of accuracy of a trader’s beliefs and its
infinite time average is deeply connected to asymptotic dynamics.

1.2 The Model

Consider an Arrow-Debreu economy with infinite horizon and discrete time (in-
dexed by t = 0,1,...). There is a homogeneous consumption good and markets are
complete. Call s; € {1,2,...,5} the state realized at time t > 0. I indicate with
o= (s1,8,...,8...) apath and with ¢! = (s1,sy,...,s;) a partial history until time
t. The set of all the possible paths is £ while X! indicates the set of all partial his-
tories until time . Let €(c!) = {0 € Z|o = (¢,...)} be the cylinder with base ¢*,
F} is the o-algebra generated by the cylinders €(¢"). Then, by construction, ()52,
is a filtration and I indicate with J the c-algebra generated by the union of filtra-
tions. I indicate with p the true probability measure on (%, ), such that (X, 5, p)
is a well-defined probability space. I assume that p follows a discrete-time Markov
chain with transition matrix P, that is p(si+1]0f) = Ps,5,,, Vt,0 and p(s|e?) = pso
with pso > 0 Vs € {1,...,S}. Expectation is denoted with E and, when there is no
subscript or superscript, it is computed with respect to p.

The economy is populated by N agents indexed by i = 1,2,..., N. Every agent i
is endowed with a stream of consumption good for any path o, (e;+(c))>, and has
subjective beliefs on the realizations of the states of the world. Basically any agent
has a subjective measure p; on (X, F).
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I indicate with ¢;;(c) the consumption of agent i at time ¢ along path ¢ and her
consumption levels are chosen such as to solve

max Z Z 5]91 u; (cif(0))

{eip(0), Y0} 120 et

subject to Z Y qlof) (eir(0) —cip(0)) >0,

t=0gtext

(1.1)

where B; € (0,1) is agent i’s discount factor, u; is the instantaneous utility of con-
sumption of agent i, and g(¢") is the price of the Arrow-Debreu security paying 1 if
partial history ¢’ is realized. I shall perform my analysis assuming the competitive
equilibrium: consumption plans maximize (1.1) for any i and markets clear in ev-
ery period. Thus, defining the aggregate endowment at time ¢ along sequence ¢ as
e/(0) = YN, e;,(0), I assume that Vt, o it is

Z cit(0) =e(0). (1.2)

Following Peleg and Yaari (1970), to ensure that a competitive equilibrium exists I
have to assume the following:

i) Vi € {1,2,...,N}, u; is continuously differentiable, increasing, strictly con-
cave, and satisfies the Inada condition at 0;

ii) Vi € {1,2,...,N}itis p(¢') > 0 — p'(¢') and Je > 0 such that Vi, t,o it is
pi(silot) > €.

iii) Vt, o, the aggregate endowment e;(c) is uniformly bounded from above and
away from zero.

1.2.1 Consumption asymptotic behavior

My main goal is to evaluate the selection dynamics taking place in competitive mar-
kets under different learning protocols. To do that I need to introduce some im-
portant definitions and results concerning the asymptotic behavior of the system in
connection to evolutionary dynamics. Let us start clarify the meaning of vanishing,
surviving, and dominating.

Definition 1.2.1. An agent i:

e vanishes on a path o if and only if tlim cit(oc) =0;
—00

e survives on a path ¢ if and only if tlim supcit(o) >0;
—00 4

e dominates on a path ¢ if and only if tlim cit(0) = tlim er(o) .
— 00 — 00

Isay that trader i vanishes, survives, dominates, if the previous limits hold respectively
p—almost surely.

Next, I have to introduce relative entropy and its infinite time average. Indeed,
following the literature on market selection (Blume and Easley, 1992; Bottazzi et al.,
2018; Bottazzi and Giachini, 2019; Dindo and Massari, 2020; Sandroni, 2000), relative
entropy turns out as the correct measure of accuracy of a trader’s beliefs and its
infinite time average is deeply connected to asymptotic dynamics. I also clarify what
I mean when I compare agents in terms of accuracy.
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Definition 1.2.2. Iindicate the relative entropy of agent i’s beliefs with respect to the
truth p given partial history o' as

S t
D,(p;, ') = sle’) lo plsle’) ,
p(pi, o) S;p(\ ) 8 ) (s]07)

while I indicate its infinite time average on a path ¢ as

D,(pi,o) = lim — ZD pi, 0

t—oo t

I say that agent j is more accurate than agent i on a path ¢ if D,(p;,0) < D,(pi, )
while I say that agent j is more accurate than agent i if the inequality holds p-almost
surely. I say that agent j is as accurate as agent i on a path o if D, (pj, o) = D, (p;, o)
while I say that agent j is as accurate as agent i if the equality holds p-almost surely.

I report in the following Proposition a fundamental result proved by Sandroni
(2000) that shall guide my analysis.

Proposition 1.2.1 (Sandroni (2000)). An agent i vanishes if there exists an agent j such
that, p-almost surely, it is

log Bj — Dy(pj, o) > log Bi — Dy(pi, o).

According to Proposition 1.2.1, asymptotic outcomes in terms of selection de-
pend upon time preferences and accuracy. Indeed, an agent who is more patient
and more accurate than another drives the latter out of the market. In what follows,
I will often neglect time preferences (e.g. assuming discount factor homogeneity)
and focus on devising the average relative entropy of agents’ beliefs under some
specific assumptions. In particular, I will focus on two different, whereas connected,
definitions of learning with under-reaction.

1.3 Learning protocols

As mentioned above, each agent i has a subjective measure p; on (X,5). These
subjective measures derive from a learning process and I assume that agents be-
lieve that the true probability measure is i.i.d. and they can rely on K ii.d. mod-
els 711,..., k. Aniid. model k is simply a probability measures on (X, F) with
e (se]ot™1) = mi(st) > 0 Vk,t,0. The spirit of these assumptions is that the model
misspecification I want to address is not limited to not having the true model in the
set of models agents over which agents are learning, but it also must be intended as
the true model being more complex than those the agents can rely upon.

The baseline learning protocol I consider is Bayesian learning. The conditional
beliefs of an agent i who learns in a bayesian way the true model is

K
Z (s)wir(c™1) vt,o, (1.3)
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with w; ;(¢'~!) denoting the weight agent i attaches to model k after having observed
the partial history o’ 1. Those weights evolve according to Bayes rule, that is

Tt (se)wi g (o= 1)
pi(silot=1)

wir (o) = Vk,t, 0. (1.4)

Indeed, the weight w; ¢ (¢') can be considered the probability agent i attaches to the
event “model k is the true one” conditional upon the observation of partial history
o!. Notice that Eq. (1.3) coupled with 7t;(s) > 0 Vk, s ensures that assumption ii) is
satisfied.

The second learning protocol I consider consists in a modification of Eq. (1.4) ac-
cording to the notion of under-reaction proposed in Epstein et al. (2010) and Massari

(2020). Thus, an agent i that learns with under-reaction builds its conditional beliefs
as in Eq. (1.3) while the weights evolve according to the rule

AT T ()
pi(selot=1)

wik(0) = Aiwii(0'™1) + (1= A)) vk, t, o, (1.5)

with A; € [0,1). Notice that setting A; = 0 I recover bayesian learning. Thus, such
a learning protocol can be considered a form of “moderate” Baysian learning where
the probability attached to the event “model k is the true one” in obtained taking a
convex combination of Bayes rule with the prior probability. This underreaction can
be proven to be a robust learning strategy against model misspecification since it
may outperform bayesian learning (Massari, 2020). Moreover, equations (1.3) and
(1.5) constitute the Soft-Bayes algorithm of Orseau et al. (2017), match the dynamics
of prices and wealth in the prediction market model of Bottazzi and Giachini (2019),
and describe the risk neutral probabilities and consumption shares in the pure ex-
change economy model analyzed by Dindo and Massari (2020). Finally, as in the case
of Bayesian learning, Eq. (1.3) and 71;(s) > 0 Vk, s let assumption i) be respected.

The idea of under-reacting in the sense of moderating a learning protocol can be
also obtained by means of a moving average. That is, assume agent i can observe
Vt, o the conditional probabilities p*(s;|c'~!) generated by a given learning protocol
respecting assumption ii). Then, provided a finite natural number M;, it builds its
beliefs according to

p*(s¢|ot1) ift < M;,
pi(sile'™!) = M (1.6)
MY pr(selot=™) ift > M;.
m=1

This procedure can be considered a form of under-reaction since, for t > M;, it mod-
erates the probabilistic prediction the learning model p* produces averaging it with
its previous predictions. However, in what follows, in order to do not generate con-
fusion, I shall refer to under-reacting by applying a moving average as “smoothing”,
while I will keep the term “under-reaction” to refer to the learning protocol defined
by Eq. (1.3)-(1.5). Also in this case, the moving average procedure over probabilistic
predictions respecting assumption ii) generates beliefs that respect if).

Finally, I propose a limited memory version of Bayesian learning. That is, assume
that an agent i build its beliefs as in Eq. (1.3) but now the weight it assigns to model
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k after a partial history o' reads

o 7t (st)w; x (0°)
wl’k(0'> == 2][{(/:1 nk’(st)wi,k’(go) (17)

such that

K 7T w CO 8
k(st—l) ik( )
'(S ‘U‘t ) S ’S E 7T ) ‘ (1 )
pi(st t|ot— 1 Z ]If/ 1 k/(Stfl)wi,k’(c O)

Basically agent i in any period t is forgetting all the sequence of states occurred
until t — 1 (excluded) and restarts its Bayesian learning procedure simply consider-
ing the previous state and the initial distribution of weights, that is, the initial prior
w; 1(09),w;2(c),...,w; k(¢?). This can be considered a simplified and extreme form
of over-reaction. Indeed, the agent does not only give higher weight to the last event
(as it would be in the definition provided by Epstein et al., 2010), but it arrives to
completely forget realizations older than one period ago.

1.4 Learning accuracy and market selection outcomes

I start reporting two important results — one for Bayesian learning and the other
for under-reaction — that shall be fundamental to develop my analysis. They are
mainly adaptations to the framework at hand of the results of Berk (1966) and Mas-
sari (2020). The first one states that, provided the existence of unique “best” model,
Bayesian learning lets an agent select the most accurate model in its set.

Proposition 1.4.1. Assume that ﬁp(nn,a) exists finite Yn € {1,2,...,K} p-almost
surely and suppose that there exists a k such that D,(m,0) < Dp(mj,0) p-almost
surely Vj # k. Then, for a Bayesian agent i it is p-almost surely lim; o w;r(0') = 1,
limy 00 pi(s|o’) = mx(s) Vs, and D, (pi, ) = Dy (i, 0).

Proof. Consider the quantity
1 wi,k(at) . 1 7Tk(0't) 1 wi/k((TO)

~1 — -1
r o8 wii(ot) ot 8 mj(ot) T8 w;j(00)’

taking the limit for t — oo and invoking the Strong Law of Large Numbers for
Martingale Differences, one obtains p-a.s.

t
() _ Dy(7tj,0) — Dp(rmy,0) > 0.

(ot
lim 1log Wikle) lim 1log
t—oo t wi,]-(at) t—oo t 7'[]‘(0't)

This implies lim; .o w;;(0f) = 0 p-a.s. Vj # k. Hence, it is lim; e wix(c?) = 1
p-a.s., which in turn implies, p-a.s., lime pi(s|o’) = mi(s) Vs, and D,(p;,0) =
Ep(ﬂ'k, 0'). O

Thus, a Bayesian agent is as accurate as the best i.i.d. model in its set. As showed
by Massari (2020), an under-reacting agent is at least as accurate as a Bayesian al-
most surely with respect to the empirical distribution of states. The empirical dis-
tribution of states correspond to the true measure when the latter one is i.i.d.. In
the other cases, the true probability measure cannot does not correspond with the
one derived from the empirical distribution. Thus, stating that a result holds al-
most surely with respect to the empirical distribution is not generically equivalent
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to having that the same result holds almost surely with respect to the true mea-
sure. However, the formal arguments Massari (2020) proposes can be easily gener-
alized. Indeed, provided the existence of average relative entropies (i.e. the exis-
tence of the limits involved in their definition), under-reaction is never worse than
Bayesian learning in terms of accuracy also for more general processes, like the
Markovian one I shall consider.” To formally show that, I define the mixed model
kpir(str1]ot) = Aipi(sitalo’) + (1 — A;) i (se+1), such that Eq. (1.5) can be rewritten
as wi(ct) = wir(c Y pix(silot=1)/pi(silot~1). The following Proposition shows
that any mixed model is at least as accurate as the corresponding model and an
under-reacting agent is at least as accurate as the the best mixed model. Thus, an
under-reacting agent cannot be less accurate than a Bayesian.

Proposition 1.4.2. Consider an under-reacting agent i and assume that D,(p;, o), Dp(pi, 7),
and D (1, o) exist finite Vk € {1,2,...,K} p-almost surely. Then, p-almost surely, it is

517(]91'/‘7) < Ep(pi’k,a') < E}7(7-(1(/0-) Vk € {1/2//K}

Proof. Let us start noticing that, V¢, 7, it is

K K
Y pik(seralowig(ch) = Aipi(siale’) + Y m(sii)wir (') = pi(siale’) .
k=1 k=1

Thus, considering p;(c?) and iteratively substituting with (1.5), one obtains
~- 1 0 K

pi(c') = pi(d"™1) Y pix(selo’ w0 ' Z Nw; (o).
k=1 k=1

Hence, Vk, t,0, itis p;(c!) > p;x(0!)w; (¢°), which implies log p;(c!) > log p;x(c) +
log w; 1 (¢°). Multiplying both sides by 1/t and taking the limit for t — oo, it is

.1 ' .1 '

fim § log pi(er) = lim 7 log pik(”)
and the first inequality in the statement follows multiplying both sides by —1,
adding to both sides lim;_,. ¢ !logp(c!) and invoking the Strong Law of Large

Numbers for Martingale Differences. Then, focus on p;x(¢’) and notice that, by
Jensen’s inequality, it is

log o k(0 Z log(A;pi(sc|o™ 1) 4+ (1—A)mi(se)) > Ailog pi(o) + (1 — A;) log i (o) .

2When the true probability measure is defined by a Markov chain admitting a unique invariant dis-
tribution, such an invariant distribution is indeed the empirical distribution of states. Notice, however,
that computing the average relative entropy with respect to the invariant is, in general, not equivalent
to computing the average relative entropy with respect to the transition probabilities of the chain.
Moreover, the implications derived computing the average relative entropy with respect to the invari-
ant hold almost surely with respect to the i.i.d. measure defined by the invariant distribution. In the
generic Markov case this amounts to selecting those sequences of states that seem i.i.d., which is a zero
measure set with respect to the true (Markov) measure.
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Thus, multiplying both sides by 1/t, taking the limit for t — oo, and invoking the
previous result, one obtains

.1 .1 .1
lim — log p;x(c) > A lim —log pir(d) + (1 —A) lim — log (o).
Rearranging terms, dividing both sides by 1 — A;, multiplying both sides by —1,
adding to both sides lim; .t 'log p(c?), and invoking the Strong Law of Large
Numbers for Martingale Differences, the second inequality follows. O

Notice that, as long as the limits involved exist, there are not particular require-
ments I have to impose on the true probability measure to let the statements hold.
Hence, the Markovian assumption on the true probability is not needed for the pre-
vious two Propositions to hold. In what follows, instead, it shall be central for my
analysis. I will first impose that all the rows of the transition matrix are equal, such
that the i.i.d. special case is obtained. I will refer to this as the parameter misspeci-
fication case. Indeed, the models the agent use belong to the same class of the true
one, but their parameters are, generically, not correct. Under this assumption I will
prove that under-reaction is very effective when the truth belongs to the convex hull
of i.i.d. models and the degree of under-reaction is high. Such an advantage can be
further exploited by an agent that adopts a moving average approach using as refer-
ence the beliefs of an under-reacting agent. Then, I focus on the general Markovian
case. I will refer to it as the proper model misspecification case, since the models agents
use belong to a different (and less general) class than the truth. I show that the av-
erage accuracy of a model (and, thus, of a Bayesian) is the sum of two components:
the relative entropy of the i.i.d. model with respect to the invariant distribution and
the average accuracy of the invariant with respect to the transition probabilities. I
proceed showing that the advantage under-reaction has when the truth isi.i.d. fades
away when the true process is increasingly different from the i.i.d. one and in those
cases a limited memory Bayesian can make more accurate predictions.

1.4.1 Parameter misspecification: i.i.d. states

I start assuming that states of nature follow ani.i.d. process, such that models agents
use belong to the same family of the truth but have misspecificated parameters. This
case can be easily recovered from my Markovian assumption for the true probability
measure assuming that all the rows of the transition matrix are equal.

A1 The transition matrix P of the Markov chain defining the true probability mea-
sure p is such that Py ; = 71(s) Vs, s’ with 7 = (7(1),...,7(S)) € AT 13

I provide a novel result on under-reaction inspired from previous finding from
the market selection literature®.

Proposition 1.4.3. Define H = {v € A5 |v = YK 0omy, & > OVk, YK, ¢ = 1}
and assume 7t € H. Consider an under-reacting agent i, then, given € > 0, there exists a
6 > 0 such that if |A; — 1| < & then D,(p;, o) < € p-almost surely.

3With Aifl I refer to the interior of the (S — 1)-simplex.
4Gee section 5 of Bottazzi and Giachini (2017) and Theorem 1 of Dindo and Massari (2020).
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K
Proof. By assumption there exists a { € AKX~ such that 7 = ¥ {;7tx. From Lemma

k=1
A.2.11in appendix A.2, Vo it is
tim LA 5 3 ) () O((1 = A?)] =
f=vo0 t T=1s=1 '(S|0-T 1) o
:Dp(piza)_zgk pzk/ Z pll _DP(pi,k/a)>'
k=1 k=1

By Proposition 1.4.2 itis D,(p;, o) < Dy (pix, ) Vk p-almost surely, thus

t S
Yo ) n(s) (;%(;Tﬁ;)l) - l) <]0((1—A;)%)| p-almost surely

and, since log(x) < x — 1, one has p-almost surely

Ay g n(s) )2
Y ) (e —1) < oM =A%)

T=1s5=1

(1= Ai)Dp(pi, o) <

t—o0

and the statement follows. O

Proposition 1.4.3 shows that when the truth belongs to the convex hull of the i.i.d.
models, then an under-reacting agents becomes extremely accurate for a sufficiently
high level of under-reaction.

Indeed, provided a market in which no one can asymptotically learn the truth —a
common consequence of model misspecification — an under-reacting can survive in-
creasing enough its degree of under-reaction. I formalize this point in the following
Proposition.

Proposition 1.4.4. Assume 1 € H and suppose that there exists a number € > 0 and
a set of agents I C {1,2,..., N}y with I = {i € {1,2,...,N}|Dy(pi) > €'}. Assume
homogeneity in discount factors across agents and the presence in the economy of an under-
reacting agent j € {1,2,...,N}, with j ¢ I, whose A; is sufficiently close to one, then every
agent in I vanishes.

Proof. The statement is a straightforward consequence of Proposition 1.2.1 and of
Proposition 1.4.3. Indeed, consider a sequence of under-reacting agents character-
ized by A, A, ... with A; = 1—1/n. Then, Proposition 1.4.3 implies that there
exists a natural number 1o such that for all n > ne it is Dy (pj,, o) < €. Choosing
1-1/ne < A;j < 1 and imposing discount factor homogeneity, Proposition 1.2.1
directly delivers the statement. O

In the following, I leverage an illustrative example in order to lay out a graphic
representation of the results coming from Propositions 1.4.3 and 1.4.4. Let us con-
sider a particular case of the economy in which there exist only two possible states
of the world, A and B. Without loss of generality, an equivalent description is given
by an event that, at a certain time ¢, may either occur, then s; = A = 1, or not,
st = B = 0. N agents repeatedly bet on the latter binary event which every time
may take place or not. The event occurrence is based on an independent Bernoulli
trial s4; at every time t, only two realizations of the world are possible: s; = 1 with
probability p or s; = 0 with probability 1 — p. Agents are unaware of the process
success probability p. Nevertheless, they know that two models which estimate the
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true probability are available. These are two misspecified models, a and b, and ac-
cordingly their estimates probabilities 77,(s¢|c? 1) and 71,(st|o*~!). Let us consider
the case they are fixed over time,i.e. 77,(1|c*~1) = 71, and 7, (1|¢' 1) = 7, Vt and,
without loss of generality, let us set 77, < 71,. Since the number of models provided
in the economy is reduced to K = 2, the weights assign to models by each agent i are
now related: w;,(c!) + w;,(c!) = 1 Vt. Then, I am allowed to set w; ,(¢") = w;(c?)
and w; (") = 1 — w;(¢"). The probability of agent i of observing state s; = 1 after
ct~1 (Eq. 1.3) becomes:

pi(1|at’1) =11, wi(at’l) + 7 (1 — wi(at’l)) , (1.9)

and it is, of course, always bounded by the two models: 7t; € [, 71, Vt. After the
realization of s;, the updating of w;(¢") is:

A t—1
Tawil0 ) if s =1
pi(1]ot1)
wi(o') = Awi(c™) 4+ (1 - A) (1.10)
(1 — ﬂu) wi(at_l) :
if St = 0.

1 =pi(Afe=1))

Substituting w;(¢") in (1.9) the dynamics of p;(1|c?) can be derived (see also Bot-
tazzi and Giachini, 2017, 2019), obtaining

A (o — pi(1le™™ 1)) (pi(|e' 1) — 7)) (s — pi(1]e' 1))
Z pi(1]et=1) (1 — pi(1]et~1)) '
(1.11)

According to Prop.1.2.1 and in line with my illustrative example where two mis-
specified models 77, and 71, are given, I notice that asymptotically two cases are
possible: either the agent prediction converges to the best model or a more accurate
combination is adopted. Given the settings above and in line with both Proposi-
tions 1.4.3 and 1.4.4, I show in Fig.1.1 to what extend a sub-Bayesian learning pro-
tocol overperforms a Bayesian one in case of A; greater than zero, otherwise its best
model identifies the Bayesian one. Furthermore, in a two-model sub-bayesian learn-
ing system, I can recover sufficient and necessary conditions adapting the results in
Proposition 3.1 of Bottazzi and Giachini (2019). In particular, there exists a A; such
that for A; < A; I have the convergence to the best model and for A; > A; I have the
emergence of the more accurate mixture. The latter is easily shown by Fig.1.1; the
plot suggests the existence of A; with respect to p, 7, and 71, values. The conditions,
however, are implicit in A;.

Let us consider the setting 77, < p < 715, and let us call 77, < p the value which
satisfies the equation: D, (7,) = Dy(7); the inequality D,(7t,) < D,(7;,) always
holds for 7, < 7,. By following the analysis shown in appendix A.3, the functional
form derived is then:

pi(lle’) = pi(1le’™ ) + (1~

Tty — 7T
&(na) = 7_[2 — 7_[” . (1.12)
a

In the settings above, Eq.1.12 is represented by the dashed line in Fig.1.1; as I may
notice, the theoretical model exactly matches the the transition point which separate
the two regimes mentioned above: for A; < A; I have the convergence to the best
Bayesian model and for A; > A; I have the emergence of the more accurate mixture
where then a sub-Bayesian protocol overperforms the Bayesian one. In Fig.1.1 some
illustrative trends of the sub-Bayesian learning protocol for different p’s are given in
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FIGURE 1.1: Relative entropy of a sub-bayesian agent probability
distribution w.r.t. the true probability distribution p computed for
different A;. The thicker black line indicates the relative entropy of
a Bayesian agent; it switches between observing one misspecified
model instead of the other according to which is the closest (i.e. in
term of relative entropy distance) to the true probability distribution
p. It can be exactly computed since the analytical form is available.
Conversely, the thinner lines deviating from the thicker one indicate
sub-Bayesian performances for different A;. The latter need to be sim-
ulated since analytical results don’t hold in this case. Furthermore, as
I may notice, the greater is A;, the lower is the relative entropy value
and the wider is the p range where a sub-Bayesian learning performs
better. The confidence bounds in the simulations are negligible since
much smaller than 1% of D, (p;).

order to show the latter agreement.

To further explore the mechanism that makes a A; close to 1 cause an improve-
ment in predicting accuracy, consider the conditional expected variation of agent i’s
belief. From (1.11), it reads

E [pi(l\ot) — pi (1Y) pi ] = pl} =(1-X) (7t — Pz)p%z - %)(P —pi)
(1.13)

It follows that the conditional expected variation is positive if the previous belief
was smaller than p and negative if it was bigger than p. Then, once p;(1]c') arrives
in the neighborhood of p, it starts to fluctuate around it, since, whenever the belief
goes away from p, it tends to come back. From (1.13) one immediately notices that
A; modulates the amplitude of fluctuations. Thus, the larger A; is, the closer to p the
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FIGURE 1.2: Relative entropy of an agent probability distribution
w.r.t. its A; computed for different p. Each curve is characterized by
two different regimes and a transition point. The thicker black line in-
dicates the range in which observing the best misspecified model by
a Bayesian agent overperforms a sub-Bayesian one. The latter takes
place when satisfying the conditions to dominate in Proposition 3.1
of (Bottazzi and Giachini, 2019) and this regime can be then exactly
computed. Conversely, the thinner line corresponds to the regime in
which mixing the two misspecified models by a sub-Bayesian domi-
nates and no analytical result holds; then, I may characterize it only
by performing simulations. The presence of the star highlights that
transition point A; analytically derivable according to (A.11); here
the relative entropy of performing the best misspecified model by
a Bayesian agent equates mixing the two models by a sub-Bayesian
one. The confidence bounds are negligible since much smaller than
1% of Dp.

belief of agent i tends to stay asymptotically.” Hence, it seems that damping fluc-
tuations one may experience an improvement in accuracy. Thus, other smoothing
operations on the learning updates may produce similar improvements.

Finally, let us explore this idea in the following: I show that smoothing may
have an advantage in terms on selection when the learning protocol it leverages is
adopted by another agent in the economy.

Indeed, the following Proposition shows that in such a case, provided the as-
sumption Al , a smoothing agent cannot be less accurate than the agent whose prob-
abilistic predictions it averages.

5Indeed, the side effect of a large A; (and the resulting small variations) is that, if the initial belief is
far away from the truth, it takes many periods to arrive in a neighborhood of p. However, this is not
particularly relevant for the analysis at hand, which concerns asymptotic market selection outcomes.
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Proposition 1.4.5. Consider an under-reacting agent i and assume that V't, o another agent,
say j, builds its beliefs according to Eq. (1.6) with p* = p;. Then, under A1, p-almost surely
it is

Dp(Per) < Dp(Pir‘T) .
If, moreover, Ik" € {1,2,...,K} such that Dp(Aift + (1 — Aj) ) < Dp(7), with 7t =
argming .y, xy D, (i), then p-almost surely it is

5p<pj,0') < 5;;(}71',0') .

Proof. Consider the difference between the average relative entropy of agent j and
of agent i, then one has p-almost surely

1 mt(s)
}LTO;T_ZA:A. s;n(s)log T — Dp(pi,0") | <
=M; | s= - T—m
M7 E pislom)
lim ~ Zt: M1 Z]: Dy (pi,c™™™) — Dy(pi,0") | =
tﬁootT:Mj ] =1 p APy pAP

1 Mj—1 M;~1 1 M;
lim M Y ) Dy (pi,af) +lim ) (Mj1 Dp(pi,(TT)) — D, (p;, o)
= T 7

(1.14)
and the first statement follows. For the second statement it is enough to notice that
the condition implies that p; never settles on a unique model (see Lemma 5 of Mas-
sari, 2020) and, from Eq. (1.5), one notice that settling on a unique model is the only
case in which p;(s|o!) = p;i(s|c*~!) Vs and for some t, 0. Hence, the inequality in Eq.
(1.14) is strict and the statement is proven. O

Proposition 1.4.5 shows that, when state of the worlds are i.i.d., if an agent j
builds its beliefs taking the arithmetic average of the last M; beliefs generated by
agent i, agent j is never less accurate than agent i. This confirms the intuition I
provided in advance: averaging (i.e.a simple form of smoothing) can be benefi-
cial in terms of accuracy. The reason for that can be understood noticing how a
trader j, averaging the beliefs of trader i, incorporates in its prediction for state
si+1 after a partial history ¢! the forecast of i for s;,q after the (sub-)partial his-
tories ¢f, ot=1, ..., ot Mi. Fig.1.3 shows us a graphic demonstration of Proposition
1.4.5 through the same particular case of before; the dashed lines are those rela-
tive entropies by performing moving averages on sub-Bayesian learning protocols
of Fig.1.1 with respect to themselves. Thus, averaging, and smoothing in general,
allows to incorporate more information: it simultaneously evaluates the occurrence
of a given state after different partial histories. Obviously, such improvement in
forecasting accuracy translates in a selection advantage, especially if the beliefs it is
averaging derive from under-reaction.
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FIGURE 1.3: I report Fig.1.1 as a baseline, i.e. Relative entropy of a
sub-bayesian agent probability distribution w.r.t. the true probability
distribution p computed for different A;. Conversely, the dashed line
deviating from the thinner one (i.e. sub-Bayesian) indicates the rela-
tive entropy of an agent implementing a moving average on its cor-
responding sub-Bayesian learning protocol, in line with Eq.(1.6). Ac-
cording to proposition 1.4.5, an agent computing a moving average
on the sub-Bayesian learning protocol may perform better than the
latter. Moreover, for average A’s, MA protocol’s gains are maximized
and the greater is A (i.e. that tends to 1), the more this gain tends to
vanish. Finally, the dashed dot-line shape represents the D, (p;) for a
limited memory Bayesian learning protocol, according to Eq.(1.8). As
shown on the plot, the performances of a Bayesian agent not embed-
ding the available information about past realizations over time may
even overperform all the other learning protocols (which in principle
they would be thought “more accurate"). The latter results depend
on the fixed weights assigned to the models available, in line with
Eq.(1.7), the models themselves and the true probability distribution.
The confidence bounds in the simulations are negligible since much
smaller than 1% of D, (p;).

1.4.2 Model misspecification: Markov states

In this subsection I consider more general Markov processes assuming that the true
transition matrix is composed by strictly positive entries. In this way assumption ii)
of section 1.2 is automatically satisfied for the learning protocols I consider and I can
analyze the asymptotic outcomes emerging when the true process belongs to a more
general class than the one the models agents use are part of.

A2 The transition matrix P of the Markov chain defining the true probability mea-
sure p is such that Py ¢ > 0 Vs/, s.
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An immediate consequence of assumption A2 is that a unique invariant distribution
= (n(1),7(2),...,7(S)) with rt(s) > 0 Vs exists. Indeed, the strict positiveness
of the entries of the transition matrix implies that the Markov chain defining the
true probability measure p is irreducible with only ergodic states (i.e. aperiodic and
persistent with finite mean recurrence time; see Feller, 1968, sections XV.6 and XV.7).
This, in turn, delivers the existence of the unique invariant probability distribution
7t (see Feller, 1968, page 393). The invariant distribution emerges in the computation
of models” accuracy.

Proposition 1.4.6. Under A2, for any i.i.d. model k it is p-almost surely

s s s P
p (T, 0 Z ((S Z_: s) Z Py slog 7Ts(:) ) (1.15)

s=1

Proof. From the definition of D, (71, o) one has p-almost surely

D ( ’ ) . 1¢ > St,8
Dp(7tk, ) —}Ei‘otzzp slo)log £ 5 = Jim g b L Peslog 75 =
= lim ~ Z Z 1 2 Py ¢lo i (s i Py ¢lo Fos
t-veo t T=1¢'= T > 8 ( ) s'=1 s=1 #5108 7‘L’k(S) '
where 1y, represents the indicator function (Iys = 1 if and only if s = s and

0 otherwise) and the last equality is an application of the Strong Law of Large
Numbers. The equation in the statement directly follows adding and subtracting
Y5, 7(s)log 7t(s) and exploiting the properties of the invariant distribution, i.e.
(s) = £5_, Posre(s') V. 0

Proposition 1.4.6 shows that the average relative entropy of an i.i.d. model in a
Markov world results from the sum of two components. The fist can be considered
the relative entropy of the model with respect to the “best” i.i.d. distribution (i.e.
the invariant distribution of the chain), while the second represents the average rel-
ative entropy of the “best” i.i.d. model with respect to the transition probabilities.
This has an immediate consequence for Bayesian learning. Indeed, coupling it with
Proposition 1.4.1, one obtains that a Bayesian is increasingly inaccurate as the true
Markov model is increasingly different from the i.i.d. special case. Such a loss of
accuracy derived from learning over i.i.d. models when the truth is Markov can be
quantified by the second term of Eq. (1.15).

Hence, when the true process driving the realizations of states of nature belongs
to a more general class than the one of models over which the agents are learning,
accuracy is obviously negatively affected. My analysis shows that in the Bayesian
case one can be able to split the accuracy loss in two components, one identified by
how inaccurate is the best model in the set with respect to the best model possible
in the class of i.i.d. models and the other consisting in how inaccurate is the best
possible i.i.d. model with respect to the true transition probabilities of the chain.

Next, I investigate the performance of an under-reacting agent i focusing on the
simple example I have introduced in advance. Figure 1.4 shows the average rela-
tive entropy estimated over 100 independent realizations of 10000 steps each of the
underlying Markov chain with for different values of P; 1, P1, and A;. As one can
notice, increasing the degree of under-reaction provides a clear advantage in terms
of accuracy when the transition probabilities can be written as a convex combination
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FIGURE 1.4: Average relative entropy of an under-reacting agent
computed for different A;, P; 1 and P, ;.

of the two i.i.d. models the agent is using. This is especially true when P; ; and P
are equal: in such a case A1 is recovered and Proposition 1.4.3 holds. Hence, by con-
tinuity of the average relative entropy, an high degree of under-reaction is effective
also when P;; and P, are not exactly equal but close. This advantage disappears
as Py and P, become increasingly different. This clearly appears from Figure 1.5,
where I plot the mean average relative entropy recorded for different A; as a function
of |P1; — Pya| with P11, Py1 € {0.25,0.35,0.45,0.55,0.65,0.75}. Indeed, one observes
that high levels of under-reaction are still beneficial in terms of selection, but the
extreme accuracy achieved when the truth belongs to the same class of models pop-
ulating the set over which the agent is learning, fades away as transition probability
become increasingly different.

The fact that increasing the level of under-reaction improves the accuracy and,
thus, the selection advantage of an agent, suggests that also in the generic Markov
case a moving average approach should be beneficial. In Figure 1.6 I repeat the ex-
ercise of Figure 1.5 for the case of a moving average agent i with M; = 500 that
uses as reference an under-reacting learning protocol with under-reaction degree A;.
Comparing the two Figures one notices that applying the moving average procedure
provides indeed an advantage over the reference under-reaction protocol and, as in
the i.i.d. case, such advantage becomes weaker as the underlying degree of under-
reaction increases. Again, this is due to the damping of fluctuations that increasing
the degree of under-reaction causes: as the level of under-reaction grows the mag-
nitude of jumps in the probabilistic prediction decreases. Thus, in the long-run an
under-reacting agent with high degree of under-reaction narrowly fluctuates around
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minimum and maximum recorded values of average relative entropy.

the best i.i.d. model, that is, the invariant distribution of the chain. Thus, the damp-
ing effect that is key to generate the advantage of the moving average approach with
under-reaction reference (almost) disappears when the reference under-reaction pro-
tocol has a degree of under-reaction extremely close to 1.

Finally, notice that “fluctuations in beliefs” are, in principle, less detrimental
when the truth is Markov than in the ii.d. case. Indeed, when such fluctuations
are somehow aligned with the true transition probabilities, accuracy increases. This
situation clearly emerges when one considers the limited memory Bayes protocol
defined by Eq. (1.8). Here the limitation in the number of observations the agent
adopts let its prediction move in a Markovian way. Thus, in those cases in which
the i.i.d. models it uses and the initial weights it attaches are such that the result-
ing probabilistic prediction are close to true transition probabilities, it shows an high
level of accuracy.

Proposition 1.4.7. Under A2, for an agent i that uses the limited memory Bayes protocol
in Eq. (1.8) it is p-almost surely

S S

J— P/

Dy(pi,o) = ) 7(s') ) Poslog — 5
— 5— TS )W; k(O
s'=1 1 Z n_k(s) = k( ) k( )

S (o)

(1.16)
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entropy.

Proof. The statement follows from Eq. (1.8) and the application of the Strong Law of
Large Numbers as in the proof of Proposition 1.4.6. O

A straightforward consequence of Proposition 1.4.7 is that the limited memory
Bayesian, depending on the available i.i.d. models and the weights, can be maxi-
mally accurate. I show this point in Figure 1.7, where I consider again my example
and Iset w;1(0%) = w;»(c”) = 0.5. As one can notice, there generically exist combi-
nations of P ; and P, such that the limited memory Bayesian can be more accurate
than an agent that strongly under-reacts. In the right panel of Figure 1.7 I also added
the average accuracy of the best i.i.d. model, that is, the invariant distribution. As
one can notice the average accuracy of the invariant looks like a lower bound for the
under-reaction protocol, while the limited memory Bayesian can, in some cases, be
more accurate.

This shows how in general cases of model misspecification —i.e. when the true
model is more complicated than those the agents use to learn — there generically ex-
ist cases in which naive approaches outperform more sophisticated ones. Indeed,
looking at Figure 1.7 one notices that strong under-reaction can produce beliefs ap-
proximately as accurate as the besti.i.d. model, but it cannot improve upon that. The
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FIGURE 1.7: Left: average relative entropy of an agent i who com-
putes its beliefs according the limited memory Bayes approach for
different values of P; ; and P, 1. Right: the dots represent the average
relative entropy of an agent i who computes its beliefs according to
the limited memory Bayes protocol as a function of |P; 1 — P, 1| with
P;1,P1 € {0.25,0.35,0.45,0.55,0.65,0.75}; the black line represents
the mean of average relative entropy of an under-reacting agent j with
j = 0.99 as a function of [Py — Py1|. Dashed lines represent mini-
mum and maximum recorded values of average relative entropy for
such under-reacting agent. The dotted gray line represents the mean
average relative entropy of the invariant distribution. Minimum and
maximum values for the average accuracy of the invariant are not
reported since differences in recorded values are smaller than 1073.

limited memory Bayes approach, instead, naturally generates beliefs that change de-
pending on the previous state, that is, it naturally produces Markovian beliefs. This
can more than compensate for its inability of exploiting information for selecting the
best model in the set (the key feature of Bayesian learning) or getting close to the
best convex combination of models (the key feature of strong under-reaction).

1.5 Conclusions

In this chapter I build up the connection between learning and market dynamics
through analyzing market selection in a security market economy where agents’
learning process is characterized by model misspecification. In this setting, a
Bayesian learner would asymptotically predict as the best model in its set (Berk,
1966). According to Massari (2020), the Bayesian learner could be driven out of the
market by a trader who under-reacts to information. I follow the literature on market
selection (Blume and Easley, 1992; Bottazzi et al., 2018; Bottazzi and Giachini, 2019;
Dindo and Massari, 2020; Sandroni, 2000). Relative entropy turns out as the cor-
rect measure of accuracy of a trader’s beliefs and its infinite time average is deeply
connected to asymptotic dynamics. In an economy characterized by independent
and identically distributed (i.i.d.) states of the world, I find that an under-reacting
trader who gives a sufficiently high weight to the prior drives out of the market
any other trader, the Bayesian one included, who does not learn the truth asymp-
totically. By performing numerical exercises, I provide a better characterization of
the advantages of an under-reacting rule. In particular, I show that the accuracy of
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predictions (and, thus, the selection advantage) increases with the degree of under-
reaction the agent exhibit. Such a superior performance results from a combination
of the good properties of the Bayesian update with the systematic smoothing of
predictions operated by an under-reacting rule. I generalize such an idea showing
that, with i.i.d. states, an agent can make an opponent vanish by building its beliefs
as a moving average of the opponent’s predictions. I show that my results persist
when the sequence of states of nature is driven by Markov or Polya urn processes.
In this respect, extreme models, giving near full probability to different states, rep-
resent an optimal base on which an agent should root its updating when the true
model is not available. Indeed, learning over a set of extreme models coupled with
smoothing beliefs by means of a combination of under-reaction and moving av-
erage increases the chances an agent has to survive the market selection struggle.
The latter consideration is totally in line with the concept that behavioral protocols
are properly modeled by heuristics. An heuristic is “a strategy that ignores part of
the information, with the goal of making decisions more quickly, frugally and/or
accurately than more complex methods” (Gigerenzer and Brighton (2009), 454).
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Chapter 2

The Grossman and Stiglitz model:
an agent-based extension

2.1 Introduction

In broad terms, an efficient stock market is one in which share prices reflect the fun-
damental information about agents. In that case, the market price reflects changes in
a way that is close to its intrinsic value. Such changes are not in line with the value
and do not restrain from financial assets trading. The disparities in agent awareness
and uneven costs of transaction avoid fundamental values variations to be totally
and immediately reflected in market prices (Koller et al., 2010). Eakins and Mishkin
(2012) claimed that an efficient market is one in which asset prices fully reflect all
available information. In general, the nature of an efficient market rests on two main
concepts: available information is already reflected in stock prices in efficient mar-
kets; traders cannot earn risk-weighted excess returns in efficient markets (Degutis
and Novickyte, 2014). The efficient market hypothesis (EMH) is intimately linked to
other financial models and assumptions. Firstly, the absolute or partial rationality of
the market agents is a key prerequisite for its efficiency. It is frequently assumed that
not all market players act rationally, which results in that some trading is not ratio-
nal analysis based. Conversely, the trades of irrational traders are considered random
and in this perspective it should not affect the market price. The EMH achieved its
popularity peak in the 1980s (Shiller, 2003) and the greatest contribution was made
by E. Fama, whose works have become classics in the area of market efficiency. Fama
(1965) affirmed the randomness of stock prices and defined the concept of the "ef-
ficient market" for the first time. Fama defined an efficient market as the market
in which information is "fully reflected" and suggested that market efficiency tests
should be conducted along the lines of asset valuation tests (Fama, 1970). Gross-
man (1976) highlighted the paradox of market efficiency: The more traders believe
in market efficiency, the less efficient the market gets. Grossman argued that if there
exists a universal agreement that the market is efficient, agents start trading pas-
sively and stop gathering information, then leading to inefficiency. Later, Grossman
and Stiglitz (1980) claimed that markets cannot be efficient because there are infor-
mation costs. The return on investment must therefore be higher than the informa-
tion costs, otherwise the inclination to invest would vanish. Grossman and Stiglitz
(1980) developed a rational-expectation equilibrium model of financial markets, in-
troduced by Lucas (1978). In this model, agents trade an asset with uncertain value;
they submit a demand curve of the asset quantity they would buy for every price
would be realized. wherein “fundamentalist” traders can choose to be informed
or uninformed with respect to the future return of the asset. In the first case, they
pay a cost to become informed, while in the latter they estimate the future return.
Hence, the total population (which is fixed) splits into two fractions endogenously
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determined. This concept comes form the necessity of including and recognizing the
costly activity of those who arbitrage in a competitive economy, who would not pay
for information if there were no profit. Within their model, Grossman and Stiglitz
showed the existence of a unique equilibrium, as the benefit of being informed de-
creases in the number of informed agents. The latter occurs either because the more
people are informed, the more informative the price is, or a higher fraction of in-
formed agents means that pro capita gains decrease. More importantly, Grossman
and Stiglitz showed that prices cannot be fully efficient: they cannot reflect all the
available information. Indeed, if that were the case, no agent would pay the cost of
becoming informed, as they could just learn information from the price. In contrast,
if no trader produces information, then prices would have no information content
inside, and it would be advantageous to produce it. In other words, a competitive
equilibrium cannot exist if information is costly and prices are fully informative:
prices partially reveal information (i.e. with some noise), making agents willing to
acquire it.

The aim of this Chapter is to reproduce the settings in which EMH should defi-
nitely hold in a dynamical framework. In order to do the latter, I port the model in
an agent-based framework explicitly considering the interactions of heterogeneous
traders. Agent-based models represent the economy as a complex, evolving system
populated by heterogeneous, interacting agents (Dosi et al., 2012; Farmer and Fo-
ley, 2009; Kirman, 2010b; Leal et al., 2016; LeBaron and Tesfatsion, 2008; Tesfatsion
and Judd, 2006). In line with the settings EMH should definitely hold, all the agents
know that the expected fundamental value of the risky asset evolves according to
the expected dividends. Agents choose to adopt a fundamentalists trading strategy:
they expect future asset price will converge to the fundamental one, so they trade
accordingly to exploit possible imbalances. In this case, some agents will decide
to pay the cost to acquire information about the value of the expected dividends
(informed “fundamentalists”), while the others will infer it from past realizations
of the dividend process (uninformed “fundamentalist”). My first research question
lies on what is the effect on economic aggregate outcomes, market stability and if
informed traders really earn more the uninformed ones by paying a cost for private
information.

Later, a third category of agents is introduced. They are agnostic about the “laws
of motion” of the market and trade according to heuristics. They can be considered
as “noisy” traders, or simply, even if they think that the share price will revert to
its fundamental value, the believe that world is too complex to follow “fundamen-
talist” strategies. In line with Grossman and Stiglitz (1980), each trader submits a
demand curve for the asset-quantity for every price and an exogenous noisy supply
for the asset occurs. Then, the price is such that market clears and earnings of being
informed of not can be computed. Every types of agents can adaptively learn, i.e.
they can compute the performance of all the available strategies and switch to that
which guaranteed the highest return in the previous period. The resulting model
is an adaptive interacting system: the interactions of heterogeneous population of
agents with different trading strategies will determine the evolution of asset prices
and strategy profits which in turn will affect the share of traders following specific
rules. In such a framework one can study the informative content of the price level
vis-a-vis the fundamental and, more generally, the efficiency of the financial mar-
ket. Moreover, exploiting the information gathered at the microeconomic level, one
can condition the previous results to the evolution of the different trading strategies.
Are noisy traders destabilizing the markets or is it rational to follow heuristics? How
noisy traders are affecting the economic aggregate outcomes? The entire perspective,
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so that a dynamical adaptive framework in which a fundamental value is ensured
and agents may trade w.r.t. it, paying for a private information or simply following
heuristics, has never been explored in literature previously. In the next Section 2.3,
I briefly describe the paper Grossman and Stiglitz (1980) from which I take inspi-
ration for the model I set up in this chapter. In Section 2.4, I formally describe the
model, including how market prices are set and fundamental value and dividends
evolve. In Subsection 2.4.1, I focus on the possible strategies followed by the agents:
I characterize the demand of an agent 4 la Grossman-Stiglitz and how informed and
uninformed formally differ from each other, and I briefly describe three heuristic
rules, recency, adaptive and chartist. In Subsection 2.4.2, the dynamics of the model is
presented, showing how agents compare their performances after market price has
been set, updating of their wealths, the way in which they choose to keep their pre-
vious strategy or move to another and what one. In Section 2.5, I analyze a market
composed by agents provided of the Informed and Uninformed strategies and I de-
scribe my numerical and analytical findings. By exploring the parameter space, two
different asymptotic scenarios arise: one in which the population distributes in half
informed and half uninformed over time, and one in which the whole population
joins uninformed strategy. This split crucially depends on the magnitude of C and
it is controlled by a threshold (i.e. C*). In Subsection 2.5.1 I show how I derived it
analytically. In Subsection 2.5.3 I lay out an illustrative example in which I prove the
paradox found by (Grossman and Stiglitz, 1980); i.e. if price would reflect all infor-
mation available, no trader would pay C, as they could learn information from the
price; on the contrary, if no one does, then prices would reflect no information, and it
would be profitable to buy information. Finally, in Section 2.6, I go through a prelim-
inary exploration of all the possible market combination, considering three different
agent demands: Informed, Uninformed and the heuristic Recency. Moreover, I take
into account also another dividend process setting: the structural break case; i.e. a
periodic switching of the dividends between two different GBM processes. In par-
ticular, I analyze the case in which informed agents that are actually so rich that the
cost of being informed is always negligible compared to their wealth (i.e. C = 0).

2.2 Literature review

An efficient stock market is one in which share prices reflect the fundamental infor-
mation about agents. In that case, the market price reflects changes in a way that
is close to its intrinsic value. Such changes are not in line with the value and do
not restrain from financial assets trading. The disparities in agent awareness and
uneven costs of transaction avoid fundamental values variations to be totally and
immediately reflected in market prices (Koller et al., 2010). Eakins and Mishkin
(2012) claimed that an efficient market is one in which asset prices fully reflect all
available information. In general, the nature of an efficient market rests on two main
concepts: available information is already reflected in stock prices in efficient mar-
kets; traders cannot earn risk-weighted excess returns in efficient markets (Degutis
and Novickyte, 2014). The efficient market hypothesis (EMH) is intimately linked
to other financial models and assumptions. Firstly, the absolute or partial rational-
ity of the market agents is an key prerequisite for its efficiency. It is frequently as-
sumed that not all market players act rationally, which results in that some trading
is not rational analysis based. Conversely, the trades of irrational traders are consid-
ered random and in this perspective it should not affect the market price. The EMH
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achieved its popularity peak in the 1980s (Shiller, 2003) and the greatest contribu-
tion was made by E. Fama, whose works have become classics in the area of market
efficiency. Fama (1965) affirmed the randomness of stock prices and defined the con-
cept of the "efficient market" for the first time. Fama defined an efficient market as
the market in which information is "fully reflected" and suggested that market effi-
ciency tests should be conducted along the lines of asset valuation tests (Fama, 1970).
Grossman (1976) highlighted the paradox of market efficiency: The more traders be-
lieve in market efficiency, the less efficient the market gets. Grossman argued that
if there exists a universal agreement that the market is efficient, agents start trading
passively and stop gathering information, then leading to inefficiency. Leter, Gross-
man and Stiglitz (1980) claimed that markets cannot be efficient because there are
information costs. The return on investment must therefore be higher than the in-
formation costs, otherwise the inclination to invest would vanish. Grossman and
Stiglitz (1980) developed a rational-expectation equilibrium model of financial mar-
kets, introduced by Lucas (1978). In this model, agents trade an asset with uncertain
value; they submit a demand curve of the asset quantity they would buy for every
price would be realized.

The issues of information aggregation through prices and the information effi-
ciency of markets in the face of heterogeneous information have been extensively
studied in the literature. In a seminal paper, Grossman (1978, 1976) illustrates how
prices can perfectly aggregate information and replace private information in mar-
kets. This result brings up the potential for an interesting paradox that Grossman
and Stiglitz (1980) have highlighted: If prices aggregate costly private information
in a perfect way, there would be no incentive for traders to purchase such infor-
mation, since they could merely observe prices, but then no information would be
available to aggregate prices. A standard method of overcoming this paradox is to
incorporate into prices aggregate noise, following the approach in Hellwig (1980)
and Diamond and Verrecchia (1981). The introduction of aggregate noise overcomes
the paradox because prices in equilibrium are only partially informative, and hence
agents have an interest in acquiring private information.

Another possibility to tackle the paradox is to examine markets with a finite
amount of traders who hold market power, such as in Kyle (1989): market power
guarantees that prices only partially disclose private information, so that agents
have an incentive to buy that information. Another workaround to the paradox,
suggested lately by Vives (2014), is to differentiate between common and private
value components in traders” evaluations, where signals yield only bundled infor-
mation on such components.

In all these papers, static situations are considered where the information is re-
ceived only once. However, noisy equilibria with rational expectations have been
analysed in dynamic scenarios as well. Vives (1993) investigates the rate at which
dispersed information converges to the prices of risk-neutral firms. This conver-
gence is slow with finite accuracy of private information, but a crowd of perfectly
informed agents accelerates the convergence.

Kyle (1985) studies how quickly new private information about the underlying
value of a speculative asset enters market prices and how it affects the market’s
liquidity. In the model, there are three types of traders: a single risk-neutral in-
sider, random noise traders and competitive risk-neutral market makers. The in-
sider makes profits positively by leveraging his power as a monopolist, where the
noise trader hides their trading from the market makers. In the limiting case, when
the time between auctions approaches zero, all private information is integrated into
prices through trading.
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Amador and Weill (2012) look at a dynamic framework in which agents learn
from the trading actions of others through two channels: a public channel, like
equilibrium market prices, and a private channel, like local interactions: In the case
where agents learn only through the public channel, an initial disclosure of public
information raises knowledge and welfare, while the result is reversed when there
is also a private learning channel, and an increment of initial public information
decreases agents’ knowledge asymptotically. It is important to note that initial real-
isations of signals focus on the true state of the world, while following realisations
focus on the endogenous actions of the agents: This means that subsequent to the
initial period, all the incoming information on the state of the world stems from
others and there is no extra incoming exogenous information.

The assumption that agents behave are fully rational is the essential requirement
of asset pricing standard models as the one of Lucas (1978). Fully rational agents are
aware of all (relevant) available information about the economy and their behavior
is either consistent with or comes from utility function maximization. Moreover,
they are endowed with rational expectations and they can exactly compute every
realization of future states of the economy. In order to model a decision maker, come
by itself remarking how unrealistic the latter assumption is.

Actually, it is even not that clear what "rational” expectations would mean, even
in concept, in the presence of Knightian uncertainty; i.e. when there are radical
changes in policies Dosi et al. (2017); Stiglitz (2015); ? and/or structural breaks in
the underlying distributions on which agents form their predictions (Hendry and
Mizon, 2010).

The idea that agents’ bounded rationality accounts for deviations from rational
outcomes underlies the entire domain of behavioural economics (Camerer et al.,
2011). This literature is based on the work of Tversky and Kahneman (1974),
which deals with cognitive biases due to judgement heuristics. The basic claim
is that widespread heuristics negatively affect decision-making by enabling agents
to make non-optimal decisions. This view is partially challenged by the works:
Gigerenzer and Brighton (2009); Gigerenzer and Gaissmaier (2011); Gigerenzer et al.
(1999). Gigerenzer and his co-authors even argue that heuristics can actually en-
hance decision-making. The contrast between the contributions of Tversky and
Kahneman and the work of Gigerenzer and other authors is that the latter examine
individuals in a complex environment in which an optimal choice is inconceivable.
Therefore, heuristics turn into simple tricks to get the best out of a setting that is
uncertain in Knight (1921) terms. In addition, the authors illustrate that attempting
to increase the "rationality” of a decision (e.g. by collecting more information) leads
in many cases to a decrease in performance due to a variance-bias trade-off. In
other words, sophisticated statistical models have poor predictive power in some
situations due to overfitting. This idea is explored by Dosi et al. (2017) in the setting
of a macroeconomic agent-based model in which aggregate economic performance
is measured across different expectation formation rules. In a complex evolving
environment, they demonstrate how agents” use of sophisticated expectation for-
mation rules leads to a deterioration in terms of both individual performance and
the economy’s aggregate outcome compared to the case where they assume simple
myopic expectations. The underlying idea is that any statistical model based on
past observations will be biased if the data generating process is altered over time.
Therefore, a simple prediction scheme, such as assuming that the next value of a
variable is the same as the last observed one, can outperform sophisticated models
based on long time series. They conclude that under Knightian uncertainty arising
from technical change, interaction and imperfect information, recourse to simple
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heuristics removes the trade-off between variance and bias and enhances overall
performance. A somewhat related perspective arises from the analysis of Kirman
(2010a): the interaction of simple heterogeneous individuals, such as shoppers in
fish markets (Gallegati et al., 2011; Hardle and Kirman, 1995; Kirman and Vriend,
2000), often leads to aggregate outcomes that behave well, while the interaction of
more rational agents can lead to outcomes that are far from the rational benchmark.

In line with the latter contributions, I go through an alternative path based on
the seminal papers of Cyert et al. (1963); March and Simon (1993); Simon (1955).
Firstly, expectations and behaviour cannot be neatly separated in a complex environ-
ment, and secondly, behavioural patterns are appropriately incorporated by heuris-
tics that, under Knightian uncertainty and the non-stationarity of economic funda-
mentals, may not only be "reasonable” but also rational in a particular sense. If all
individuals use these heuristics, both the accuracy of their predictions and their wel-
fare may be higher than if they follow apparently more complicated rules. A heuris-
tic is "a strategy that ignores some information with the aim of making decisions
faster, more economically and/or more accurately than more complex methods"
(Gigerenzer and Gaissmaier, 2011). The heuristics I examine below exhibit the so-
called "less-is-more" effect, which arises in response to the "bias-variance dilemma"
- basically the possible trade-off between accuracy in interpolating past observa-
tions and accuracy of prediction-also well known in machine-learning and statisti-
cal inference Dosi et al. (2017). However, heuristics are not "biases" based on "fast
thinking" producing suboptimal behaviours (as one would understand from Kahne-
man (2003) and from the field of behavioural economics), but may well be resilient
strategies that result in performance that is better than in purely "rational" choices
in changing worlds characterised by substantive and procedural uncertainty (Dosi
et al., 2017). The reason for this seemingly abnormal outcome is that how expecta-
tions are formed affects how the system performs; more "rational" expectations may
lead to poorer system performance, where the difficulties of prediction increase, in
some sense, quicker than the sophistication of the forecasting method.

I'study Grossman and Stiglitz (1980) settings under different rules of expectation
formation and behavior in an agent-based framework. ABMs represent the economy
as a complex, evolving system populated by heterogeneous, interacting agents (Dosi
et al., 2012; Farmer and Foley, 2009; Kirman, 2010b; Leal et al., 2016; LeBaron and
Tesfatsion, 2008; Tesfatsion and Judd, 2006). Agent-bases modeling lets me obtain a
dynamical counterpart of the static considerations by Grossman and Stiglitz (1980),
poorly present in literature.

2.3 Grossman and Stiglitz (1980)

The model developed by Grossman and Stiglitz (1980) extends from the combina-
tions of Lucas’s model and the informational flows among traders due to Green
(1973).

In that model, they consider just two financial assets: one bond B, a safe asset
which guarantees a fixed return R at the end of the whole period T; one stock S, a
risky asset that observes a random return u varying with time. The return of S is a
variable composed of two terms:

u==06 4+ € (2.1)



2.3. Grossman and Stiglitz (1980) 35

where 6 and € are both random variables; the primer is knowable at a cost C while
the latter is unobservable. In the model, the difference between informed and un-
informed traders depends on whether they paid of not C to obtain the information,
otherwise they are fully identical one another. Given P as the price of the risky asset
S, The demand functions for the two different kind of agents shall own the form:

D;(6,P): informed traders Dy(P,F,): uninformed traders

where P is the risky asset price and F, is the cumulative distribution of return. It is
assumed the uninformed have rational expectations: "rational”" means they rely on the
relationship between F, and P in order to derive the demand. Given a percentage
of informed traders A, an equilibrium can be defined through a price function of the
risky asset Py (6, x) such that demand equals x, that is the supply:

Y . D; = Dy(6,P) + Dy(P,F,) = x
i

In order to prevent uniformed traders from learning 6 from observing P, (6, x), it
shall be assumed that they do not observe x. In this way, variations in price observed
by uninformed traders may be due both to changes in informed choices and changes
in aggregate supply. Agents’ switching mechanism from informed to uninformed
and viceversa depends on the expected utility E[V]: some individuals from the state
(U or I) with the smaller expected utility shift to the opposite state (I or U). It is taken
into account the cost C paid to observe the information for the informed traders.
That is, at a certain time ¢:

if  Er[Vi_st] > Eul[Vi—st] then A(t) > A(t— ot) (and conversely).

The use of 6t is just to remark the causal relationship: for a certain time ¢ the two
different expectations are computed and then someone gets to the other side for
convenience.

An overall equilibrium needs E;[V;_s5| = Eu[Vi—st]-

With an increasing in A, i.e. the more uninformed ones become informed, the ratio
E([V]

decreases for two reasons:
EylV]

e the aggregate demand (and thus the asset price) is very sensitive to changes
in 6, since the more traders observe 6, the more the information of informed is
available to the uninformed. Thus, the price system becomes more informative
and the gain of informed trading with the uninformed is reduced.

e Even if the above effect would not happen, anyhow the increase in the number
of informed traders leads to per capita gain reduction.

A list of conjectures is provided in order to summarize what above about equilib-
rium description when price carries information.

Proposition 2.3.1. The more agents that are informed, the more informative the system is
("more informative” shall be properly defined below.)

Proposition 2.3.2. The more agents who are informed, the lower is the ratio of the expected
utility of informed to the uninformed.

Critical parameters of the economy, which the equilibrium number of informed
depends on, are: C cost of information, "how much" the price system is informative
(i.e. noise that interferes with the info carried by price system), "how informative"
is the information bought from informed people.
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Proposition 2.3.3. The more expensive the information cost C, the smaller will be A, the
equilibrium percentage of informed people.

Proposition 2.3.4. If information quality increases, informed agents” demands will vary
better according with information and, thus, the price will vary better according 6. The price
system becomes more informative. In this case, ratio of informed to uniformed may be either
decreased or increased, because both the value of being informed has increased, due to higher
0 quality, and the value of being uninformed, due to the more informative price system.

Proposition 2.3.5. The higher the noise, the less informative will the price system be, hence
the lower Ey;[V]. At equilibrium, the higher the noice, the larger A.

Proposition 2.3.6. In the no noise limit, price conveys all information, so there is no rea-
son to buy information. Hence, the only feasible equilibrium is the one with no information.
However, in a totally uninformed world, it may be convenient for someone to purchase infor-
mation. Hence, there doesn’t exist a competitive equilibrium (Grossman and Stiglitz, 1980).

In other words, if anyone is informed, by buying information would be the only
way to get informed, since the price system cannot reveals information. By paying
C, a trader would be able to predict better than others, hence he/she would have
an higher expected utility in comparison with uniformed, gross of information cost.
So, for a sufficiently low price C, everyone would desire to get informed. Reasons
of trading among people could be: tastes (risk aversion), endowments and beliefs.
Focusing on the latter, it is worth to emphasize that, at equilibrium, there could exist
two situations in which all individuals have identical beliefs: when all of them are
informed and when not. That is:

Proposition 2.3.7. Considering all the remaining conditions fixed, markets will be thinner
under those conditions in which A is either near zero ore one.

Grossman and Stiglitz were not able to obtain a general proof for any of the

propositions. They studied a particular example, the one in which the utility func-
tion employed is the Constant Absolute Risk-Aversion (CARA) and random vari-
ables are normally distributed. With these assumptions, the equilibrium price can
be calculated and all the conjectures above can be verified.
The two kind of agent demands employed by Grossmn and Stiglitz could be easily
linked to both the forms known in literature for rational expectation. For the in-
formed agent, a stronger form of rational expectation (Fama, 1972): one has access
to all relevant available information about the structure of their environment, makes
optimal use of this information in forming his expectation and the latter will be cor-
rect up to unsystematic (unavoidable) errors, so P = F + €, where P is the actual
price (my case u), F the fundamental price (my case ), and € is an error (in my case
i.i.d. with zero mean and variance o).

24 The model

I develop a pure exchange economy model in which trading occurs in discrete time.
Two goods are traded: a risky asset (stock), which pays a positive random dividend
y: anytime a period ¢t starts, and a riskless asset (bond) that has a constant interest
rate ¥ > 0. The price of the riskless asset is set to 1, as it is the numéraire of the
economy. At any time step f, the price of the risky asset is determined through
market-clearing condition, taking into account the aggregate demand and supply
emerging from the decentralized decisions of heterogeneous traders. I assume that
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dividends grow at a positive rate. This implies that both the fundamental price and
total wealth will increase over time.

In the market, there are N heterogeneous interacting traders, indexed by i. The
wealth W;; of the traders evolves over time according to their trading performance.
At time t, each agent 7 fixes its (excess) demand function Df, +(P}) for the risky asset
adopting different trading strategies s. The different strategies are spelled out in
Section 2.4.1 below.

Let us identify X; the aggregate supply at time t.Under a Walrasian auctioneer
scenario, the market clearing condition at time t implicitly defines the market price
Pti

N
E Df,t(Pt) = X . (2.2)
i=1

Furthermore, let us consider the following notion of fundamental price as bench-
mark:
> E 1
E=Y t[yt—irkl]( _A+wuy ) (2.3)
=1 (1+7) r—p
where 0 < p < r is the positive expected dividend growth rate. As showed in
Appendix B.1, it originates from the special case where there is only a rational-
expectation representative agent and zero supply of output shares (i.e. x; = 0 Vt).
In that setting, the market converges to it.
The evolution of the fundamental price depends on the dividends {y;} which

follows a geometric brownian motion:

Virn = 1+ p+08m1) v u>0 , oc>0 , (2.4)

where {; ~ N(0,1) are i.i.d. random shocks, u represents the expected growing rate
of the dividends and ¢ the standard deviation of the dividend growth rate. Con-
sistently with Eq.2.3, fundamental price process {F;} will follow a similar behavior,
together with same value of expected growth rate and standard deviation. Note
that the information about the last realization of the dividend process will allow
the agents to compute the exact value of the fundamental price and consequently
the possible difference with the market price. It is worth to mention that dividends
play a crucial role in this model, since the knowledge of its process coincides with
information one chooses to buy or not.

When it comes to simulating the model, I assume that dividend process {y;} fol-
lows a geometric Brownian motion, since Eq.B.3 is consistent with this assumption:

Yipr = 1+ p+0l1)y: u>0 , >0 , (2.5)

where {; ~ N(0,1) are ii.d. random shocks, j represents the expected growing
rate of dividends and ¢ the standard deviation of the dividend growth rate. By
definition of fundamental price F; in Eq.2.3, the latter will follow a similar process
as well Chiarella et al. (2009), with same value of expected growth rate and standard
deviation.

2.4.1 Heterogenous strategies

Given the general market set up spelled out in the last Section, how do agents com-
pute their demand for the risky asset? Agents can choose among different trading
strategies which involve different degree of rationality and learning capabilities. I
start with a framework & la Grossman and Stiglitz where agents form expectations
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about the fundamental price, and they can choose to buy or not the costly informa-
tion concerning the future dividend. The cost of such information is C > 0. Agents
that buy the information follow an Informed (I) “fundamentalist” strategy, while the
other an Uninformed (U). Both I and U agents face the same demand function:

D (Pr) = K* - (Ef[Fry1] + E{[ys41] — RP) se{L Uy

where R = 1 + 1, is the compound interest rate of the risk-free asset.

However, informed agents are aware of the exact value of expected dividend growth
rate 1, so they can correctly compute both expectations of next dividend E/[y;11] =
(14 p) y: and consequently next fundamental, E/[F;;1] = (1 + p) F;. Uninformed
ones rely instead on the expected dividend growth rate /i estimated according to
past dividend observations (more details in Appendix B.2). In that respect, their
expectations will be: EY[y;11] = (1 + f1) y¢ and E¥[Fy1] = (1+ f1) E;. Uninformed
agents compute the fundamental at time ¢ following Eq.2.3 correctly but I, i.e. F; =
(+7) ye

i - Hence, the demands of informed and uninformed agents are equal to:

DL, (P) =K' - (1+p)F+(1+pu)y:—RP)
DY(P)=KY- (1+p) B+ (1+p)y: —RP) . (2.6)

In the first set of simulations, I will consider only the Informed and Uninformed
fundamentalist agents in order to have an agent-based counterpart of the original
model. Later, I will let agents to trade according to different heuristics. Why do
agents should choose heuristics? One possible explanations is that the market is pop-
ulated by noisy traders De Long et al. (1990). Or there are some forms of bounded
rationality. Finally, agents could rationally choose to follow heuristics because the
price dynamics is too much complex to trade according to the evolution of the funda-
mental price even if they perfectly know it. This is in line with the idea of ecological
rationality ? and with the results obtained in Dosi et al. (2017). In the first recency
demand (N) heuristics, agents think that the past is the best guess for the future:

D{(P) = (P +yt — RP_1) = pr—1(P}) ; (2.7)

in other words, recency agents fully rely on the previous realized excess return
pi—1(P;), that is over the period [t — 1,t]. In the adaptive demand (A) heuristics, agents
correct their past demand forecast mistakes:

Dfi(Pt) = Dit4(P-1) + walpr1(P) = DLy ()] 5 (2.8)

where 0 < wy < 1is the intensity of correction. Finally, agents can follow the chartist
demand (C) heuristics taking into account the market trend:

Di3(Py) = pi—1(P) + welpr—1(Pr) — pr—2(Pi—1)] ; (2.9)

where 0 < wc < 1is the value of the parameter weighting past demand changes.

2.4.2 Market dynamics

Agents can choose among different strategies at any time step. Let S be the number
of performable strategies and N; the number of agents following the strategy s at
which implies Y°5_; #3 = 1. I observe this rephrasing in order to directly match how

time t, then: N = Y'5_; N;. Hereafter let us consider population fractions: 15 =
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the fraction of informed agents is expressed in Grossman and Stiglitz (1980). At the
beginning of any time ¢, the population is divided in S fractions, nj, where index s
refers to all the strategies defined above, i.e. s € {I,U, N, A,C}. Any agent (thereby
any fraction) will compute the desired amount of risky asset D;,(P). In order to

observe same unit, let us define x; = Xt which denotes the average aggregate supply
of shares per agent at time ¢. Formally, x; are independent random variables with
mean ¥ and variance ¢2.!

Traders provide to the auctioneer their excess demand schedules and it aggre-
gates them in order to obtain the market price Chiarella et al. (2009). Hence, the

market clearing condition will fix the prevailing price P; of the stock as follows:
S
Y oni-Di(P)=x . (2.10)
s=1

Once price P; is determined, the risky asset return referred to [t — 1,t] period is
known: p;_1(P;) = P; + y; — RP;_1. Then the realized profit of the previous period
7; , for any agent i who followed strategy s can be accordingly computed:

niI,t = Dil,tfl(Ptfl) pi—1(P) —C s=1
iy = Diy_1(Pie1) - pr-1(Pt) se{U,N,AC}.

Every agent wealth at time t can be updated:

Wit = D};_1(Pr—1) - pt—1(Pt) + (Wis-1 — D, _1(Pi—1) - P-1 — C) R s=1
Wip=D;; 1(P-1) - pr-1(Pt) + Wip—1 — D, _1(P—1) - Pr—1) R se€{U,N,A,C}.

At this point, agents can switch strategies according to their past performance.
In line with Brock and Hommes (1998b), the performance U}, of agent i who has
followed strategy s is updated according to the resulting profits:

U, =m+nm_  se{LUNAC}; 2.11)

where 0 < 7 < 1is a memory parameter measuring the relative weight attributed
by agents to past profits of the same strategy they just performed. According to
discrete choice probability approach Brock and Hommes (1998b), agents adopt a
given trading strategy for the next period with a probability 7}, ,, which is updated
as follows:

‘ exp [p U]

M1 = ’
e lpUy]

where f measures intensity of choice, i.e. how fast agents switch to more successful
strategies. In this way, there will be an ecology of strategies evolving over time and
relates them to the performance of the market.

(2.12)

IThe aggregate supply is given by the composition of all individual supplies at agent level. If the
agent supplies are independent normally distributed variables, with mean ¥’ and variance Uiz, their

average aggregate supply per agent will be x; = % = NTF + %Ct = X + 0y {t, where & ~ N(0,1) is

the idiosyncratic shock any agent is exposed to.
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2.5 Informed vs Uninformed: numerical and analytical model
explorations

I started my numerical analysis by considering the market only provided of the two
fundamentalist strategies mentioned above, Informed and Uninformed. I carried out
a comprehensive parameter space exploration and a first output surface response.
In Table 2.1 I report all the parameters that make up the model, together with their
explored ranges. I begin underlying the main features arising from the simulation.

TABLE 2.1: Parameters involved in the market model composed by
Informed and Uninformed strategies, together with their correspond-
ing numerically explored ranges.

Parameter Explored range
H expected dividend growth rate [le — 4,9 — 4]
r constant interest rate [le —2,1e — 3]
C cost of information [1e — 3,1¢e10]
ayz variance of the dividend growth rate | [le — 15,9¢ — 6]
g variance of aggregate supply [le — 13, 1e5]
K!,KY positive constants in demands [0,1]
KI,KY positive constants in demands [0,1]
n, initial fraction of agent i with strategy s [0,1]
B agent intensity of choice [le —7,9¢ — 1]

I fix KL,KY to the same value; i.e. same risk preferences and same beliefs on the
variance of returns for both kind of agents. In this way I am not losing of generality.
After some analytical considerations, tested by numerical simulations as well, I also
keep p and r fixed. The latter because either there are some constraints given by the
model (e.g. the definition of the fundamental price imposes y < r), or their relation-
ship of proportionality sets other parameter ranges” magnitude. The initial value
of informed traders fraction (nj, = A(t = 0)) has no impact on model dynamics;
it only affects the first time steps before trading settles down. Hence, I am mainly
considering the following parameter combination: {Uyz, 02,B,C}. As it arises from
simulations, it is worth to mention that price always follows fundamental value ex-
cept for large 02 and/or U'yz ; in these cases, price keeps anyways the same trend of
fundamental but fluctuating over/below or around it. By exploring the parameter
space, two different asymptotic scenarios arise: one in which the population dis-
tributes in half informed and half uninformed over time (Scenario A), and one in
which the whole population joins uninformed strategy (Scenario B). The intensity
of choice S is responsible for slowing down (if smaller) or speeding up (if larger) the
asymptotic convergence to a given Scenario.

2.5.1 Profit threshold for the cost of information

The split mentioned above crucially depends on C magnitude, both in short and
long runs. The latter suggests the existence of a threshold C* for the price, over
which the dynamics converges to Scenario B and under which to Scenario A. This
intuition is supported and confirmed by easy analytical derivations. The condition
under which the benefit of being informed is exactly offset by its cost (i.e. C, the
cost of information), so that the net profit is as much as the one of the Uninformed
agent, is the equality of the probabilities of joining a given strategy for an agent i (or,
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in other words, the equality of the two population fractions). Then, in line with Eq.
2.12:

u! ex u4
T ppp— AU - _F AU ——ull,, wherese {LU}. (213)
Zs:l exp [:B ui,t] Zs:l exp [:B ui,t]

The latter becomes an equality of the two exponents indicating agent performances,
as in Eq. 2.11. By considering 17 = 0 for both strategies, for an agent i:

nf = Dj; 1(P—1) - pr—1(Pt) — C = Df{_1(P—1) - pra(Py) = i7" (2.14)

The model consistency allows to elide the index 7, since performances, profits and
demands are the same for all the agents sharing the same strategy (i.e. in this case,
Informed of Uninformed). By making the profits explicit and together with some
computations, I derive an expression for a threshold cost of information:

Cf = (Pr+yt — RPi_1) (D{_1(Pi—1) — D{L(Pi—1)) ; (2.15)

it turns out to be the realized excess return times the difference in demands. If the
cost of information is lower that C;, then the Informed agent is gaining more than
the Uniformed; on the contrary, if it is greater the C;, the Uninformed is earning
more than the Informed. Let us describe Scenarios in these terms in the following. It
is worth to mention that, clearly, C;f m 0 by definition, but it crucial how long it

takes.

2.5.2 Remarks on simulation constraints

The cost of information C actually is not fixed but increases over simulated time,
proportionally to the dividend growth rate, in order to keep the same proportional-
ity among relationships. This because the dividend growth rate is positive, so this
implies that both the fundamental price and total wealth will increase over time. If C
weren’t so, I would asymptotically see only Scenario A; in other words, at a certain
point of the simulation, any fixed C would always be too small, compared to earn-
ings at stake in that moment, in order to be worth. Moreover, an higher or lower
value of the interest rate r doesn’t alter how the model behaves qualitatively. Only
the proportion between earnings of risky asset and risk less one changes; at the same
conditions then, a competitive price for information C is meant to be lower or higher
to matter.

2.5.3 Scenario A

This is the case the cost of information C is comparable with C;. Mainly two cases
are distinguishable. In the first one, A(t) = 0.5, Vt. Here profits of U and I strate-
gies are comparable over time; i.e. population is half informed indefinitely, no one
switches. By observing C >~ C; Vt € [0, T], it means that realized extra profit ob-
tained being informed is totally offset by the cost of information. The fact that this
relation keeps constant over time happens for two reasons: C; roughly keeps the
same value for a long period because the decrease in (DY — D) is counterbalanced
by increasing in realized excess returns, as dividends grow over time; once that C;
reaches zero, since (DY — D) does asymptotically, C is so small that the relation-

ship 7'(1.1 A 7rl.ut preserves over time anyways. Anyhow, the most interesting case is:
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T
% Y. A(t) = 0.5. Here, for different time steps ¢, cases in which C > C; and others
t=1

in which C < Cf take turns. Larger O'yz results in a (DY — D) P 0 much slower
—00

convergence. Larger 02 and /or 0'5; produce (wider) fluctuations in price which cause
(very) profitable earnings and/or (severe) losses (variations in realized profits). As a
consequence, that causes fluctuations in performances and then fluctuations in pop-
ulations. A particular case is the one where agents switch altogether. Since the latter
is particularly illustrative of the model dynamics, I show a representative simulation
of Scenario A in Fig.2.1.

Degenerate ecology and deviation of P; from F;

I recall the paradox found by (Grossman and Stiglitz, 1980): if price would reflect all
information available, no trader would pay C, as they could learn information from
the price; on the contrary, if no one does, then prices would reflect no information,
and it would be profitable to buy information. An illustrative example (shown in
Fig.2.3) takes place in case of large 0'y2, moderate or large B, C comparable to earnings
(Scenario A), 02 large or small. Agents periodically alternate according to how the
paradox prescribes: when all uninformed, they realize that it would have been more
profitable to be informed (by comparing the previous strategy performances), then
all agents pay C and join I. Now, as response to N informed demands by the whole
population, the price approaches the fundamental, revealing then all information
available. Once there, anyone leaves I strategy because performing less profit than
U one, so all agents return to be uninformed and price goes back to reflect only the
estimations carried out so far without paying C.

2.5.4 Scenario B

This is the case in which the cost of information C > C5 > --- > C;; > Cj,
Vt € [0,T]. The more time goes by, the greater C w.r.t. C; is; in other words, C;
decreases as time passes by, so profits of Informed are more and more unprofitable
and the whole population gradually joins Uninformed. Here the main reason of
C; decreasing is the progressive tendency of (DY — D') — 0, for t — oo, since o
perturbation caused on uninformed learning is little relevant. B impacts driving
this process quicker, since it acts making agents choose the best strategy even for
a very small profit difference. An illustrative example of this settings in Fig. 2.4; I
show the dynamics of the fraction of informed population, the price compared to its
fundamental one and the profits of both strategies.

2.6 Numerical exploration when C is negligible w.r.t. wealth
of Informed

Here I go through a preliminary exploration of all the possible market combination,
considering three different agent demands: D! for the informed expectation, DY
the uninformed one and DR® the recency (i.e. the heuristic expectation I take into
account) one. Moreover, I take into account also another dividend process setting:
the structural break case. The latter consists of a periodic switching of the dividends
between two different GBM processes. However, a random switching instead of a
periodic one doesn’t impact on the models dynamics. The most mattering param-
eters to calibrate are still the ones mentioned in the subsection above. Anyhow, in



2.6. Numerical exploration when C is negligible w.r.t. wealth of Informed

43

10

08

0.6

04

02

2080

2070

2060

2050

2040

2030

— A

/V—' | — Ry
F(t)

—— Profits by Informed
—— Profits by Uninformed

0 10 20 30 40 50
time [+30]

FIGURE 2.1: Here a representative simulation of Scenario A. In green
the percentage of informed; in blue the price and in orange the fun-
damental; in black profits by informed and in red the ones by unin-
formed. Note that here, the maximum percentage deviation of price
from fundamental value is about 0.6%. The plots should be read from
top to bottom: at time t, fractions of I and U proportionally contribute
to determine market price, alongside exogenous aggregate supply;
once P; is given, profits of the two strategies can be computed and,
accordingly, new population fractions for next time step, t + 1.

this case I prefer an exploration of the parameters without considering the cost of
information C (i.e. C = 0 for each time step). I have opted for this initial screening in
order to calibrate all the models before including C impact; its later introduction in
already calibrated models facilitates me for analytical assessing. Moreover, the case
of C = 0 may be seen in the terms of informed agents that actually are so rich that
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FIGURE 2.2: Here I show how price behaves w.r.t. fundamental in
case of large (75 or large ¢2. Maximum percentage deviation of market

price from fundamental value may reach about 20%. Both 5" and 6’

below belong to a particular degenerate case of Scenario A, in which

agents switch altogether every a few steps. Reading it from the C;

perspective, wide fluctuations in 5’ are due to either the presence of

y: in the realised profits, or the difference in demands, since y; and F;

are mattering. On the contrary, in 6’ only the fuctuations in realised
profits are mattering.

the cost of being informed is always negligible compared to their wealth. I discuss
hereafter the numerical analysis of each possible market made of pairwise combina-
tions of the different strategies together with a market in which all three strategies
are available. I performed numerical analysis on four different market combinations.
The cases I explored are three two-strategy markets, i.e. Informed vs Uninformed,
Informed vs Recency, Uniformed vs Recency, and a three-strategy market, composed
of Uninformed, Informed and Recency. Each of the latter is a different model and
they may differ one another with respect to parameter settings. After wide parame-
ter explorations employing several sampling methods (e.g. Sobol’, NOLH, Random
Sampling, etc) and sensitivity analysis, I identified the parameters are most impact-
ing on model dynamics and outputs. Moreover, I calibrated each model taking into
account model constraints that allow to set restrictions for the parameter ranges. As
mentioned before, the parameters impacting the most are: O'yZ, 02, B. Model dynamics

and outputs are robust with respect to K;, K7, Kg, ”i’s,o variation. Then, I am allow to
keep them fixed without loss of generality. The couple yu,r, bound together by the
relationship p < r, set the order of magnitude of the other parameters. After param-
eter screenings, I set their two values fixed for my numerical exercises. The latter are
then numerically defining the order of magnitude of demands, performances, profits
and, consequently, ayz, (73%, B. As I pointed out in Subsection 2.5.1, the cost of infor-
mation is relevant with respect to a threshold which is directly depending on the
different in demands and the realized returns; that means the order of magnitude of
the model has to be made firstly without C, since C* explicitly depends on U'yz, o2, B.
Then, the first analysis it performed keeping C = 0. In particular, a crucial constraint
for the parameter settings is the non-negativity of the equilibrium price generated at
each time step by market clearing. This condition implies setting down further the
bounds of the main drivers of model dynamics. Moreover, I tuned the agent inten-
sity of choice B specifically for each model, in order to always keep agents at their
optimal trading activity; the latter means that either they are not underreacting to
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FIGURE 2.3: An illustrative example of degenerate ecology, which I ar-

gued it can be seen as the dynamical version of the Grossman and

Stiglitz (1980) paradox. Prices cannot reflect all the information avail-

able to informed agents. Prices reveal information with some noise,
making traders willing to but it.

the possibility of switching, nor overreacting, bringing the population moving from
a strategy to the other always all at one. All these considerations led me to draw up
the Table 2.2, where I indicated for each model its own calibrated parameter com-
bination. In principle, it is not possible an absolute comparative analysis among all
of them of strategy profitability, deviation of the equilibrium price from the funda-
mental one and the daily volatility of price; each different market has to be taken
into account specifically. Anyhow, some models have very close parameter combi-
nations and then it is possible to bring them into comparison. I carried out the same
numerical exploration for a different setting of the dividend dynamics: dividends
periodically switch between two different geometric Brownian processes, {y;1} and
{yi2} (i.e. structural break); its results are shown in Table 2.3. I briefly discuss the
results from the numerical analysis, either with a geometric Brownian process lead-
ing the dividends, or with dividends periodically switching between two different
geometric Brownian processes.

In calibrating the eight different market cases where they exist, I notice that the
models with a simple GBM leading dividends allow wider explorations of the pa-
rameter ranges with respect to the structural break case; the latter gives me a glimpse
of analytical conditions for the models existence. An interesting perspective is the
comparison of the different strategy combinations for the two settings. In the two-
agent market composed by Informed and Uninformed, when the pure GBM leads
dividends, no strategy overperforms the other; the market price does not deviate
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FIGURE 2.4: Here a representative simulation of Scenario B. In this
range of simulation, the maximum percentage deviation of market
price from fundamental value is about 0.5%. Since informed fraction
is at most 9% in some spikes, their demand little contributes to price
formation; price is then determined almost only by uninformed one
and exogenously shifted by fluctuations of aggregate supply.

from the fundamental and price volatility increases as U'yz increases. In the structural

break setting, the Informed has a benefit in profits w.r.t. Uniformed. This advan-
tage increases as the difference in the two dividends increases. Clearly, the more
the two dividend processes get closer one another, the more structural break tends
to pure GBM. In this case, market price deviates from fundamental of about —90%
and price volatility reaches 40%. In the Informed-Recency market and pure GBM
setting, no strategy overcomes the other, market price deviates from the fundamen-
tal of 50% and price volatility may reach 40%. In the structural break, the Informed
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TABLE 2.2: Case of pure GBM dividend process: parameters in-

volved in the simulation and their corresponding calibrated numeri-

cal ranges. Intensity of choice, §, has been the last one calibrated after

U1, 0'5, (7,%. At the bottom, relative difference in profits between the

strategies present in the market, price deviation w.r.t. the fundamen-
tal value and price volatility are reported.

Parameter DT vs DU DT vs DR DU vs DK DT vs DU vs DR
M 5¢e —4 5e —4 5e —4 5¢ —4
r le—3 le—-3 le—-3 le—3
a [0,1e—7) [0,1e 7 [0,1e 8] [0,1e 7]
o2 [0,1e3] [0,1e3] [0,1¢3] [0,1e3]
(B [ [5e+1,15e—4] | [40le—7,37¢e—7] | [0,352¢ —7] T [le—7,47¢—7] |

Relative profit difference [0.5+0.0%,0.5 £ 0.0%)] [0.4 £ 0.0%, 0.7 £ 0.0%] [0.4 £0.0%, 0.3 £ 0.0%] [0.0+0.0%,0.0 £0.0%

[—2.24+0.0%,0.0 £ 0.0%
P deviation w.r.t. F [0.0 £0.0%, 0 & 0.2%)] [55.5 4 0.0%, 54.6 = 0.0%)] [55.5 4 0.0%, 54.0 + 0.0%)] [48.2+0.0%,38.3 +0.1%
volatility of P [0.0 £0.0%,4 + 0.3%)] [40.6 4 0.0%, 31.4 + 0.7%)] [42.4 4 0.0%, 22.3 + 0.8%)] [47.9 +0.0%, 8.7 £0.7%

TABLE 2.3: Case of structural break (i.e. dividends switch between
two GBM processes periodically): parameters involved in the simu-
lation and their corresponding calibrated numerical ranges. Intensity
of choice, B, has been the last one calibrated after y, 7, (7511, (7;,2, (T,%.
At the bottom, relative difference in profits between the strategies
present in the market, price deviation w.r.t. the fundamental value

and price volatility are reported.

Parameter DT vs DU DT vs DR DU vs DR DT vs DU vs DK
1 3e—4 3e—4 6e —4 3e—4
723 8e—4 8e—4 8e—4 8e—4
r le—3 le-3 le—3 le—3
2 — - o — —
! [0,1e — 8] [0,1e — 8] [0,1e — 9] [0,1e - 9]
ajz [0,1e — 8] [0,1e — 8] [0,1e —9] [0,1e—9]
o2 [0, 1¢3)] [0, 1¢3)] [0, 1e3] [0, 1¢3)]
[ B [ [3.8¢—6,1.c— 6] [ [9.5¢ —7,8.5¢ — 7] [ [4.2¢ —8,3.6¢ — 8] [ [87¢—8,7¢—8] |

Relative profit difference [25+0.0%,7.5 £ 1.0%)] [21+£0.0%, 1.0 £ 0.0%)] [~1.4£0.0%, —1.2£0.0%)] [20+0.0%,1.6 £0.0%

[-0.3 £0.0%, —0.2 4 0.0%
P deviation w.r.t. F [—60.0 +0.0%, —87.0 =+ 2.8%)] [54.8 £ 0.0%, 53.0 & 0.0%)] [23.5 4 0.0%, 22.6 + 0.0%)] [—25.0 £ 0.0%, —24 £ 0.0%
volatility of P [36.8 & 0.0%, 43.4 & 0.5%)] [71.0 £ 0.0%, 35.0 & 0.6%)] [72.3 4 0.0%,59.2 + 0.5%)] [75.3 4 0.0%, 60.7 + 0.2%

strategy overperforms the Recency one (anyway less than if it were Uninformed); as
above, the more the two dividends are different, the wider this advantage is. Mar-
ket price deviation from the fundamental and price volatility are the same. In the
Uninformed-Recency market, the parameter ranges explorable are tighter than the
two cases above: the market is more unstable and exists for small fewer parameter
combinations. In the pure GBM case, no strategy overcomes the other, market price
deviates of 50% from fundamental and price volatility of 30%; in the structural break
case, Recency overcomes Uninformed, market price deviates from fundamental of
63% and price volatility is 63%. In a market composed by all three strategies I took
into account, agents don’t switch from a strategy to another as frequently as in the
cases above; there are much less appealing profit opportunities over time. When a
pure GBM leads dividends, no strategy overcomes the others, market price deviated
form fundamental of 34% and price volatility is 6%. In the structural break case, the
Informed has a small advantage on the Uninformed but Recency has also a small
advantage in profit with respect to the Informed. Market price deviates from the
fundamental as before and price volatility become 30%.

2.7 Conclusions

The nature of an efficient market rests on two main concepts: available information
is already reflected in stock prices and traders cannot earn risk-weighted excess re-
turns (Degutis and Novickyte, 2014). Rationality of agents is a key prerequisite for its
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efficiency. In this perspective, an important argument is derived by Grossman and
Stiglitz (1980). In this paper, rational expectation agents are given with the option
of buying an information signal about an asset. Under a perfectly efficient scenario
with a cost on the signal (i.e. information), nobody would have an incentive to pur-
chase it.

This chapter explores these settings. To the best of my knowledge, my accu-
rate dynamical reproduction of Grossman and Stiglitz (1980)” static settings through
agent-based modeling is pretty original in literature, in particular from a theoretical
perspective. Firstly, I set up a theoretical framework where efficient market hypothe-
sis should definitely hold: all the agents know that the expected fundamental value
of the risky asset evolves according to the expected dividends. Agents choose to
adopt a fundamentalist trading strategy: they expect future asset price will converge
to the fundamental one, so they trade accordingly to exploit possible imbalances.
A crucial issue is to provide information a dynamical character. To this end, ex-
pected dividends, and accordingly fundamental price, play that key role; this way
of modeling matches information characterization in the original model, including
the idiosyncratic shock on the return. Moreover, I characterize the demand of an
agent 4 la Grossman-Stiglitz and how informed and uninformed formally differ
from each other. By performing both theoretical and numerical explorations, two
different asymptotic scenarios arise: one in which the population distributes in half
informed and half uninformed over time, and one in which the whole population
joins uninformed strategy. This split crucially depends on the magnitude of infor-
mation cost and it is controlled by a threshold which I derived analytically. In other
words, an informed agent never performs better than an uninformed one and, if the
cost of information is too high w.r.t. current earnings, it is driven out the market.
In any case, market price follows the fundamental one. In this framework, I prove
dynamically the paradox found by (Grossman and Stiglitz, 1980); i.e. if price would
reflect all information available, no trader would pay the cost, as they could learn
information from the price; on the contrary, if no one does, then prices would reflect
no information, and it would be profitable to buy information. In line with noisy
traders literature (De Long et al., 1990) and ecological rationality literature (Gigeren-
zer and Brighton, 2009; Gigerenzer and Gaissmaier, 2011), I bring into the model
the heuristic rule which makes agents forming their expectations at each time on
the previous observed return (i.e. recency heuristic). Their presence destabilizes the
market, making market price deviating from fundamental value and price volatility
dramatically increasing. Moreover, also in this case the informed agent never per-
forms better that others and for a price of information higher than a certain price
threshold (that can be analytically derived) it is ruled out of the market. Uniformed
and heuristic agents survive in the market and the dynamic matches Fehr and Tyran
(2005)" findings: strategies may be either complements or substitutes is the actual
main driver in determining aggregate outcomes. I found that when the two strate-
gies are complements, even a small amount of heuristic makes aggregate outcomes
diverge from rational ones. On the contrary, when agents’ strategies are substitutes,
even a small amount of fundamental agents leads to a convergence to rational out-
comes.
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Chapter 3

Modern Tools for Agent-Based
Model Sensitivity Analysis

3.1 Introduction

This chapter! suggests a new approach to model calibration, parameter space explo-
ration and sensitivity analysis in agent-based models (ABMs). It couples supervised
machine learning, ad-hoc sampling (because of ABMs constrains) together with tra-
ditional and machine-learning sensitivity analysis methods in the development of
a meaningful parameter exploration in order to produce a reliable surrogate meta-
model that is a computationally cheap approximation to the real model. The latter
can be then employed for sensitivity analysis purposes with almost zero computa-
tional effort.

ABMs are concerned with the investigation of socio-ecological systems that can
be accurately conceptualised through a set of micro- and macro-relations. An inher-
ent problem of this approach is that the statistical properties of interest are unknown
a priori, even to the designer of the model. Indeed, such features arise from repeated
interactions involving ecologies of heterogeneous, boundedly rational and adaptive
agents. This leads to dynamic features that cannot be studied analytically, cause-
and-effect mechanisms that cannot always be properly identified, and emergent re-
lationships that cannot be simply inferred by aggregating micro-level interactions
(Anderson (1972); Gallegati and Kirman (2012); Grazzini (2012); Tesfatsion and Judd
(2006)). Consequently, there is a need for suitable tools to explore the model’s emer-
gent behaviour in terms of different parameter settings, random seeds and initial
conditions.

The main challenge in ABM parameter space exploration and calibration is the
increasing number of parameters arising from the increasingly realistic dynamics
of ABMs. For instance, more recent macroeconomic models employ dozens of pa-
rameters to account for the complexity of micro-founded, cross-sectoral and cross-
country phenomena (see Roventini and Fagiolo (2017), for a recent review). Existing
direct estimation and global sensitivity analysis tools (often advocated as a natural
approach to explore ABM (Ten Broeke et al. (2016); Thiele et al. (2014)), are computa-
tionally unaffordable and require time and computational resources often not at the
disposal of researchers or practitioners. This growth in the size of the parameter set
leads to what has been called " the curse of dimensionality", i.e. the convergence of
any estimator to the true value of a smooth function defined in a high dimensional

10ttaviani M., Sani A., Lamperti F, A. Roventini (2021). "Modern Tools for Agent-Based Model
Sensitivity Analysis", forthcoming.
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parameter space is extremely slow (De Marchi and De Marchi (2005)). There is po-
tentially an exponential number of local critical values in parameter space that can
be mistaken for global maxima or minima.

Calibrating ABMs conventionally involves three computationally intensive
steps: running the model, calibrating quality, and identifying the parameters of
interest (for more on validating ABMs, see Fagiolo et al. (2019)). As Grazzini et al.
(2017a) note, these steps account for more than half of the time needed to estimate
ABMs, even for very simple models. Thus, suitable tools need to be developed to
search quickly for "meaningful" parameters and initial conditions. An approach is to
use a cheaper proxy to replace the computationally intensive ABM. This is the goal
of metamodels or surrogates that approximate the relationship between the inputs
and outputs of ABMs (Fagiolo et al. (2019); Lee et al. (2015)) to explore the param-
eter space quickly. Traditionally, surrogate models are used as fast approximations
of complex phenomena that are expensive to evaluate in real world or simulation
(Booker et al. (1999)), and are regularly used to find promising parameter combina-
tions and avoid expensive computations. If the error of approximation is small, the
surrogate can be considered a suitable substitute for the original ABM in parameter
space exploration, calibration and sensitivity analysis.

Kriging and XGboost have recently been implemented as a surrogate modelling
method to support the exploration of the parameter space and sensitivity analyses
of ABMs (Bargigli et al. (2020); Dosi et al. (2018a,b); Lamperti et al. (2018); Salle and
Yildizoglu (2014a)). If, however, the response surface of the model is unknown en-
tirely and may contain non-smooth regions, as is typically the case for ABMs, krig-
ing and XGboost require a high number of evaluations and large exploratory data
analyses that scale up with the parameter space size. Such limitations also apply
to state-of-the-art extensions (Herlands et al. (2016); Wilson et al. (2015)), requiring
large-scale ABM modellers to arbitrarily specify a subset of parameters when the
parameter space is large (Barde and Van Der Hoog (2017).

Lamperti et al. (2018) suggested a novel approach which "learns" a quick sur-
rogate metamodel using a restricted number of ABM valuations and approximates
the non-linear relationship between inputs and outputs. Performance is measured
using the asset pricing model of Brock and Hommes (1998a) and the endogenous
growth model "Islands" of Fagiolo and Dosi (2003). The findings show that the ma-
chine learning surrogates obtained with the proposed iterative learning procedure
replace the actual model fairly precisely and drastically reduce the computational
time required for the exploration and calibration of the parameter space on a large
scale. Sensitivity Analysis (SA hereafter) are precious tools when one builds and
uses numerical methods. They allow to study how the uncertainty in the output
of a model can be apportioned to different sources of uncertainty in the model in-
put A Saltelli and Scott (2000). Through the identification of the parameter or set
of parameters that have the greatest influence on the model output, SA is very use-
ful for the determination of the most contributing input variables to an output be-
havior as well as the non-relevant inputs and also the assessment of interaction ef-
fects within the model. SA application can be summarized as four main steps: (i)
understanding the input-output relationship, (ii) determining to what extent un-
certainty in structural model parameters contribute to the overall variability in the
model output, (iii) identifying the important and influential parameters that drive
model outputs and magnitudes, and (iv) guiding future experimental designs looss
and Lemaitre (2015); Kiparissides et al. (2009); Zhang, Trame, Lesko, and Schmidt
(Zhang et al.). From model builders and users perspectives, it is also a useful tool to
check the model structure, uncertainty around the input parameters and feedback
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into the model refinement to gain additional confidence in the model. Especially in a
very complex model, the results of sensitivity analysis will help the model builders
to focus on the critical parameters that determine the model output Zhang, Trame,
Lesko, and Schmidt (Zhang et al.). Since their usage directly on an ABM may re-
sult computationally prohibitive, an attempt is to employ meta-models in order to
replace the original model with a cheaper proxy which whose computational effort
is way more affordable. I look for an 'hand-off” approach to employing meaningful
sensitivity analysis methods together with accounting for limited computational re-
sources of the researcher/practitioner. As illustrative examples, I explore the same
asset-pricing model of Brock and Hommes (1998a) and the limit-order book model
of Franke and Westerhoff (2012a). Despite their apparent simplicity, both models
might exhibit multiple equilibria, let several behavioural attitudes and allow a pretty
broad range of dynamics, which essentially depends on their inputs. My approach
is made up with the precise purpose of being general, without either knowledge of
the model output surface or parametric assumptions.

Along the line of Lamperti et al. (2018), I treasure their results in order to set up
a cheap way of performing sensitivity analysis without losing of generality of any
kind of agent-based model. Since my two illustrative examples are two financial
models, I choose as outputs four representative stylized facts of financial markets.
In this way, either I obtain a very rich description of model outputs, or I can calibrate
them at the same time. The first key limitations in the parameter space exploration
lies on the impossibility of employing already set up gridded sampling methods
(e.g. Sobol’, LOAH, etc). The reason why they are not working has to be found in
the nature of agent-based models. ABMs are stochastic systems; they are strongly
non-linear and they present tipping points. Some parameter combinations automat-
ically computed by gridded sampling methods may not be available. This limitation
drives me to the design on an intelligent sampling method in order to obtain mean-
ingful parameter combinations to explore. Still exploring the parameter space by
performing the most common local sensitivity analysis method (i.e. One-Factor-A-
Time, OFAT), I realize how dangerous and misleading can be even the best calibrated
parameter combination. Parameter ranges may present areas in which, for the same
inputs, the model can behave in very far away manners. This phenomenon has
again its reason in the ABM nature. The existence of this ambiguity makes the train-
ing of any kind of surrogate model extremely hazardous and misleading. A robust-
ness assessing of model outputs for the same parameter combinations is absolutely
essential. I propose a novel self-consistent approach to analyze parameter ranges
robustness and point out stable areas over which perform either sensitivity analysis
or surrogate model training. I called it Monte Carlo-OFAT; it leverages the OFAT
sensitivity analysis method combining it with a Monte Carlo replica robustness as-
sessing and finally pointing out trustworthy areas of parameter ranges though a
normality test. The meta-models I employ are three different versions of Kriging
and XGboost. I show how their prediction power dramatically increases after the
introduction in the analysis of my proposed approach MC-OFAT. Moreover, I pro-
pose a further design approach which increases much more surrogate performances.
That is a further selection in the pool of parameter combinations, this time based on
model outputs. I employ three different global analysis methods on the two illustra-
tive ABMs: the standard and most common Sobol’ first order index (Sobol (1993)),
Borgonovo’s Delta approach (Borgonovo (2007); Plischke et al. (2013)) and XGboost-
based Shapley effects assessing Shapley (1953); Song et al. (2016). Also in this case,
the application of my proposed approach MC-OFAT makes surrogate performances
dramatically better than without its usage. In the end, I conclude that MC-OFAT
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approach lets the design of solid, resilient and trustworthy surrogate models and I
show they can reliably replace the original model for assessing the most impacting
parameters in the model though global sensitivity analysis methods.

Letting replace the original ABM by its cheap meta-model version in a delicate
task like performing sensitivity analysis gives enormous room of manoeuvre to a
researcher or practitioner in a policy making perspective.

3.2 Literature Review

3.2.1 Agent Based Model Calibration

The relationships between ABMs and real-world data are fundamental in informing
methodological research and theoretical analysis.Recently, many studies dealt with
the issue of estimating and calibrating ABMs Fagiolo et al. (2017). As well-described
by Chen et al. (2012), ABMs world needs to translate with proper tools the qualitative
capability to grow stylized facts to a quantitative perspective in which parameters
are chosen according to sound econometric methods. In those situations in which
the model is quite simple and well behaved, it’s allowed to derive a closed form
solution for the properties of the distribution of a certain model output, and then es-
timating the parameters determining such distributions Alfarano et al. (2005, 2006);
Boswijk et al. (2007). However, when model complexity prevents analytical solu-
tions, more sophisticated techniques are required. Amilon (2008) estimates a model
of financial markets with 15 parameters (with only 2 or 3 agents) using the method
of simulated moments?, reporting high model sensitivity to assumptions made on
the noise term and stochastic component of the procedure. Gilli and Winker (2003)
and Winker et al. (2007) introduce an algorithm and objective function to estimate
exchange-rate models by indirect inference®, pushing them closer to the properties
of real data. Franke (2009) refines on this framework to estimate 6 parameters of an
asset pricing model. Franke and Westerhoff (2012b) propose a model contest over
structural stochastic volatility models, but the models are defined by only a few pa-
rameters.? Finally, Recchioni et al. (2015) use a simple gradient-based procedure for
calibration, evaluating performance based on out-of-sample forecast errors.

A common limitation shared by all these methods is the cost of simulating ABMs.
As well discussed in Grazzini et al. (2017b), simulating the ABM is the most expen-
sive step in calibration, estimation and validation; lots of parameter vectors, initial
conditions and seeds of the pseudo-random number generators may hinder proper
model evaluations.In addiction, the understanding of model’s response to possibly
combined variations in some parameter values or initial conditions is essential to
evaluate the robustness of models” output as well as to draw robust conclusions
from policy simulations. It's the aim of Sensitivity Analyisis; however, the latter
in ABM often implies high computational costs deriving by simulating the model.
Salle and Yildizoglu Salle and Yildizoglu (2014b) were the firsts suggesting to com-
bine "design of experiments" and surrogate modelling in order to tackle the problem
in economics literature. The strategy they propose is straightforward. DoE allows to
minimize the sample size of parameter configurations under the constraint on their

2The method of simulated moments was introduced as an approach to estimating moment func-
tions when they can not be evaluated directly. See Franke and Westerhoff (2012b); Gilli and Winker
(2003) for more information on its use in the macro literature.

3Note that the method of simulated moments is a form of indirect inference.

4See also Grazzini and Richiardi (2015) and Fabretti (2012) for other applications of the same ap-
proach.
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representativeness. Based on the data collected through that sample, the original
model is approximated with a meta-model, which is then employed to connect the
parameters to the variables of interest at virtually zero computational costs. Building
on such an approach, Dosi et al. (2016) provide a global sensitivity analysis for a rel-
atively simple model of industry dynamics. Meta-modeling was achieved through
kriging (or Gaussian process regression); it is a simple and efficient method for in-
vestigating the behavior of simulation models (Krige, 1951).

This spatial interpolation technique estimates the ABM response over the full
parameter space from a finite sample of ABM evaluations to generate the best un-
biased linear predictor through knowledge of the true variogram or true degree of
spatial dependence in the data. In the case of spatially homogeneous data, kriging
only requires 30 points to estimate the spatial structure. However, when the spatial
distribution of the data is unknown, as is often the case with ABMs, kriging requires
specialist knowledge of variography to empirically estimate the spatial dependence
of the data. This generally requires a large number of ABM evaluations and ex-
tensive exploratory data analysis that increases with the size of the parameter space.
Unfortunately, the performance of any kriging model depends on the accuracy of es-
timating this true variogram, as the empirical variogram asymptotically converges
to the true one when the number of ABM evaluations reaches infinity.

Very recently, Lamperti et al. (2018) have shown that reducing computational
time can be achieved in a meaningful way by efficiently training a surrogate model
over multiple rounds to approximate the mapping between ABM inputs and the re-
sponse of the ABM output to a user-defined calibration criterion. In the latter, krig-
ing meta-modeling is replaced by XGBoost, a surrogate machine-learning approach,
allowing to overcome above-mentioned kriging limitations at negligible computa-
tional costs. That procedure has some similarities to the one of Dawid et al. (2014),
where penalized splines methods are employed to shortcut parameter exploration
and unravel the dynamic effects of policies on the economic variables of interest.
However, Lamperti et al. (2018) especially focuses on computational efficiency and
therefore builds on two pillars: surrogate modelling and intelligent sampling. In
particular, no parametric assumptions or knowledge of the topology governing the
spatial distribution of the data is required. Just to give a flavour of the procedure pre-
sented by Lamperti et al. (2018), it can be summed up in the following manner: first,
by drawing a relatively large pool of parameter combinations using any standard
sampling routine, where each combination contains a value for each initial condi-
tion. This pool acts as a proxy for the full parameter space. Next, a small random
subset of combinations are drawn without replacement from the pool to initialize the
learning procedure. The ABM is then evaluated for each of these initial combinations
and its outputs receive a label. Those outputs satisfying a user-defined calibration
criterion are assigned to a positive category, otherwise to a negative one. A surro-
gate is then learned over the combinations using the selected surrogate algorithm.
The first surrogate is used to predict the probability that unlabeled combinations
in the pool belong to the positive category. This concludes the first round. In the
second and subsequent rounds, a very small subset of the pool is drawn according
to the predicted positive probability. These selections are evaluated in the ABM to
learn their true labels and aggregated to the set of all other combinations that have
been sampled during the previous rounds. This continues over multiple rounds a
predefined level of performance is achieved.

Many works form different fields enhanced discussions on sensitivity analysis
tools, coming to very powerful methods, also in case of input dependance; up to
now, the latter is the most difficult case to interpret. For example, the well-known
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Sobol” indices, which are based on the functional variance analysis, present a diffi-
cult interpretation in the presence of statistical dependence between inputs.

3.2.2 Sensitivity Analysis

Sensitivity Analysis (SA hereafter) are precious tools when one builds and uses nu-
merical methods. They allow to study how the uncertainty in the output of a model
can be apportioned to different sources of uncertainty in the model input (A Saltelli
and Scott, 2000). Through the identification of the parameter or set of parameters
that have the greatest influence on the model output, SA is very useful for the de-
termination of the most contributing input variables to an output behavior as well
as the non-relevant inputs and also the assessment of interaction effects within the
model. The purposes of SA are numerous; few examples could be: model verifi-
cation and understanding, model simplifying and validation of a computer code
(Iooss and Lemaitre, 2015). Sensitivity analysis has been widely used in many fields
such as risk assessment, economics, engineering, biology and so on; its application
can be summarized as four main steps: (i) understanding the input-output rela-
tionship, (ii) determining to what extent uncertainty in structural model parameters
contribute to the overall variability in the model output, (iii) identifying the impor-
tant and influential parameters that drive model outputs and magnitudes, and (iv)
guiding future experimental designs (Iooss and Lemaitre, 2015; Kiparissides et al.,
2009; Zhang, Trame, Lesko, and Schmidt, Zhang et al.). From model builders and
users perspectives, it is also a useful tool to check the model structure, uncertainty
around the input parameters and feedback into the model refinement to gain addi-
tional confidence in the model. Especially in a very complex model, the results of
sensitivity analysis will help the model builders to focus on the critical parameters
that determine the model output (Zhang, Trame, Lesko, and Schmidt, Zhang et al.).

Moreover, these tools have obtained large interests by numerical model users
and modelers for industrial and environmental applications, taking full advantages
of the advent on computing materials and numerical methods (E de Rocquigny and
Tarantola, 2008; Helton, 1993). According with A Saltelli and Ratto (2004) and F Pap-
penberger and Vandenberghe (2010), before making a SA, the following goals need
to be plainly specified (Iooss and Lemaitre, 2015): identify and prioritize the most
influential inputs; identify non-influential inputs in order to fix them to nominal
values; map the output behavior in function of the inputs by focusing on a specific
domain of inputs if necessary; calibrate some model inputs using some available in-
formation (e.g. real output observations, constraints). Three kinds of SA methods
can be distinguished:

e screening: rough sorting of the most relevant inputs among a large number of
them;

e local : importance measures of input variables for small perturbations, basen
on partial derivatives;

o global: deep exploration of the model behaviour by ranking input random pa-
rameters with respect to their effects in the output uncertainty.

Screening methods refer to a discretization of the inputs in levels allowing, in this
manner, a fast exploration of the code; their aim is the "screening" of non-influential
inputs with very few model calls while making proper hypotheses on the model
complexity. The local approach, instead, is the first historical approach to Sensitiv-
ity Analysis. Local sensitivity analysis evaluates changes in the model outputs with
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respect to variations in a single parameter input. The input parameters are typically
changed one at a time in relatively small increments and the effect of this individual
parameter perturbation on the model output is calculated using local sensitivity in-
dices. It consists fundamentally in calculating or estimating the partial derivatives
of the model at a specific point (Iooss and Lemaitre, 2015) Local sensitivity analysis
may only be used when the model output is linearly related to the parameters near a
specific nominal value (the mean of a random variable for instance). The main limi-
tation of a local sensitivity analysis is that it evaluates parameters one at a time, and
it does not allow for the evaluation of simultaneous changes in all model parame-
ters. In addition, the interaction between parameters cannot be evaluated using a
local sensitivity analysis Zhang, Trame, Lesko, and Schmidt (Zhang et al.).

From the late eighties, to overcome the limitations of local methods, such as lin-
earity and normality assumptions, a new class of methods has been developed in
a statistical framework. It is referred to as global sensitivity analysis since it takes
into account the whole variation range of the inputs, in contrast to local sensitivity
analysis (A Saltelli and Scott, 2000). In this paper, I am particularly interested in the
latter. In a global sensitivity analysis, by varying at the same time all parameters
over the entire parameter space, simultaneous evaluations of the relative contribu-
tions of each individual parameter, as well as the interactions between parameters,
can be carried out, in order to investigate the model output variance. However,
for a wider overview about global sensitivity anaylsis I suggest looss and Lemaitre
(2015). Among global SA methods, variance-based ones are a class of probabilistic
approaches that measure the share of variance of the model output which is a con-
sequence of the variance of a particular input Benoumechiara and Elie-Dit-Cosaque
(2018). The latter were popularized by Sobol (1993) who introduced the famous
tirst-order Sobol” indices.

The first-order Sobol index of X;, denoted S;, represents the amount of the output
variance solely due to X;. The second-order Sobol index (S;;) expresses the contribu-
tion of the interactions of the pairs of variables X; and X, and so on for the higher
orders. Thereafter, Homma and A.Saltelli (1996) introduced the total-order Sobol’
index: it measures the contribution to the output variance of X; taking into account
any possible interaction, of any order, with any combination of other input vari-
ables. However, it is worth to underline that Sobol” sensitivity analysis is not aimed
at identify reasons of input variability; it just shows impact and size on model out-
put. As a matter of fact, it cannot be used to identify sources of variance. One of the
main points to be well-established in any sensitivity analysis, either local or global,
is the definition of the model output to be used. Sobol SA’s major advantages are, for
instance, the feature that no assumption is needed between model input and output
and the opportunity of evaluating the full range of each input and their interactions.
At the contrary, the main drawback is the high computation request (Zhang, Trame,
Lesko, and Schmidt, Zhang et al.).

As it will be well-explained in ??, these sensitivity indices are built on the func-
tional ANalyse Of VAriance (ANOVA), which is unique only under the assumption
of independence between the input variables. Anyhow, this hypothesis is some-
times not verified, letting their interpretation much harder to understand. Few
works dealt with this issue and extended Sobol” indices to the case of a stochastic
dependence among input variables, as Benoumechiara and Elie-Dit-Cosaque (2018);
Kucherenko et al. (2012); Mara and Tarantola (2012); Mara et al. (2015). As a matter
of fact, very commonly input variables related to one another through a statistical
dependence structure; it could be imposed, for example, either by a probabilistic de-
pendence function (Kurowicka and Cooke, 2006), like a copula function, or physical
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constraints upon the input or the output space (A Lopez-Benito, A Lopez-Benito;
S Kucherenko, 2017). The estimation and interpretation, in similar cases, are not
easy at all; there were several suggestions in literature but, unfortunately, they are
not always easy to interpret (A Saltelli, 2002; S Da Veiga, 2009).

3.2.3 Local Sensitivity Analysis
One-factor-at-time (OFAT)

One-factor-at-time sensitivity analysis refers to locate a benchmark parameter com-
bination and varying one input at a time while keeping fixed all the other ones (see,
for example, Campolongo et al. (2007)). The latter is the reason why is referred to
a local procedure. The main and crucial use of this sensitivity analysis method lies
in uncovering form and shape of the relationship between the varied input and the
model output, keeping all the other parameters at their benchmark values. For ex-
ample, the latter may show whether the model response is linear or not, or whether
there exists tipping points where the model response changes dramatically even for
small input variations. Moreover, a benchmark parameter combination may be the
one matches the most with observed data in order to calibrate a model describing
real world as in my case. For this reason, a local analysis in this direction is worth it
and I perform it in the first place. In order to locate a benchmark parameter combi-
nation, I draw 10000 samples and I choose the one closest to observed data features.

3.24 Global Sensitivity Analysis
Sobol’ indices

Let us consider the input vector of the model X = (Xj,...,X,) € RY, where the
variables are mutually independent; each input is considered to range over some
finite interval which can be assumed, after rescaling, to be in [0,1]. I restrict the
study to a scalar output Y € R of a deterministic model f(-):

Y = f(X); (3.1)

in my model, f(.), is a square-integrable function and it is defined on the unit hy-
percube [0,1]%. In my context, X is a random vector defined by a probability dis-
tribution p(X) which follows a d-dimensional uniform distribution; for simplicity, I
have dropped the pdf’s. However, these results can be extended to any marginal
distributions.

The main idea of Sobol” method consists of variance decomposition into contri-
butions from effects of single inputs, joint effects of input pairs etc. The Hoeffding
decomposition, introduced in Hoeffding (1948) and known also as high dimensional
model representation (HDMR), allows to decompose f(X) as a sum of elementary
functions:

d d
fX)=fo+ Y filX)+ Y fi(Xi, Xj) + -+ + fo.a(X) , (3.2)
iz i<

for some fg, fi,..., f1,.4 set of functions. In this expression, f is decomposed in 24
terms. Due to the infinite possible choice for the latter, the expansion (Eq. 3.2) is not
unique. Thanks to the following orthogonality constraint, shown in Sobol (1993), the
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unicity condition is ensured by:

1
/0 fil._,is(xil,..., xis)dxik =0 , 1 S k S S, {il,..., Zs} Q {1,,d} .

This implies that fy is a constant. Furthermore, the crucial consequence of this condi-
tion is that all the terms in (Eq. 3.2) are orthogonal each other. This property means
mutually independence among random variables X; and let us express the functions
fi,..i. in Eq. 3.2 in the following way:

fo =E(Y), (3.3)
fi(Xi) = Ex_, (Y[Xi) —E(Y), (3.4)
fl',]'(Xh X]) = ]Exfij(Y‘Xif X]) - fi - f] - ]E<Y) (3.5)

where X_; is the vector (Xj, - - - , X;) not containing X;. As a result of the uniqueness
condition above, by squaring and integrating both sides of Eq. 3.2, a functional
decomposition of the variance (often called ANOVA) is available (Efron and Stein,
1981):

d d
Var(Y) =) _ Di(Y)+) Djj(Y)+ -+ D12a(Y) (3.6)
i= i<

where D;(Y) = Var[f;(X;)], D;j(Y) = Varl[f;;(X;, X;)] — Di(Y) — D;(Y) and so on
for higher order interactions (Ilooss and Prieur, 2018). The Sobol sensitivity indices
(Sobol, 1993) are now deduced by dividing with Var[Y] both sides of Eq. 3.6 :

_ Di(Yy) ~_ Dy(Y)
" Var(Y)” Y7 Var(Y)’

(3.7)

For example, the first Sobol” index S; means the first-order contribution from iy, in-
put to the variance of Y; the second one, instead, expresses the second-order con-
tribution from interaction between iy, and jy, inputs. Finally, total-order sensitivity
indices, introduced by Homma and A.Saltelli (1996), are defined as the sum of all
the indices as follows:

STi:Si+ZSij+ Z Sijk+---+51 ..... d

i<j jAi kAL <k 28
_, Vang [Ex (VX )] Ex[Vary, (YX )] 9
B Var(Y) N Var(Y)

The last identity is due to a known result coming from the law of total variance
(Mood et al.,, 1974). In practice, it measures the first and higher order effects, the
interactions, of input X;. One manner to visualize this is by taking into account
that Varx_ [Ex, (Y|X_;)] is the first order effect of X_;, so that V(Y) minus it has to
give the contribution of all terms in the variance decomposition which do include
X;. As a matter of fact, given that the number of variance shares due to ANOVA
decomposition with d inputs grows as 29, one usually compute only the d first-order
effects and the d total ones, in that way giving a good information on the model
sensitivities (Iooss and Prieur, 2018). As mentioned befofe, Eq. (3.6) holds only if the
X;s are independent; different approaches exist to deal with the case of dependent
input. Just to give the idea about one of them, in T.Mara (2015), for example, the
authors propose a strategy based on the estimation of four sensitivity indices per
input, namely S(Z-), ST(,-)/ Si(rl.‘)d and SiTr;iC)‘. S(Z-) = S; and Siﬁc} = Srt, are the classical
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Sobol’ indices, while ST@ and Si(?)d are new ones that can be expressed by means
of Rosenblatt transform (M.Rosenblatt, 1952). In particular, two different types of
indices are identified:

o the full Sobol” indices, S(Z-) and ST(f)’ which include for each iput its dependen-
cies with other inputs;

e the independent Sobol’ indices, Si(rl.‘)‘jl and Siﬁg, which describe the impact of each

input without its dependencies with other ones.
Note that Si(rl.‘)c1 < Siﬁg = Sy, and that S; = S(;) < Sr,, but other inequalities are
not known. In order to obtain a more detailed discussion about dependent Sobol’
indices I send to thw works of looss and Prieur (2018) and Benoumechiara and Elie-
Dit-Cosaque (2018).

In order to compute the above-mentioned two indices, from the practical point
of view, it’s due to Saltelli et al. (2010) the most comprehensive comparison among
different Monte Carlo based estimators, experimental designs and sampling meth-
ods, testing all of them by numerical simulations. In particular, Saltelli et al. (2010)
discusses existing estimators to compute in a single set of simulations, that is an in-
dividual output value of a sampled input set, compares them, show the best design
and proves that Jansen’s method Jansen (1999) is the best among the available ones.
For exploring the input factor space in this case, moreover, the most suitable sam-
pling method is an updated version of Sobol” quasi-random sequence (Saltelli et al.,
2010; Sobol, 2001). The latter is specifically designed to generate samples of input
variables as uniformly as possible in the unit hypercube. Unlike random numbers,
successive quasi-random points take into account the position of previously sam-
pled points and draw the new ones into the gaps between them (they are not ran-
dom then). Sobol” sequences, characterized by what is called low “discrepancy’, out-
perform raw Monte Carlo sampling in my particular case (Sobol and Kucherenko,
2009).

The just described optimal operational way to compute S;) and Siﬁg is the one

taken into account for my analysis, shown in the Section 3.3, within SAlib, a collec-
tion of sensitivity analysis libraries in Python (Herman and Usher, 2017).

Shapley effects

The aim of Sobol’ indices is the decomposition of Var(Y) allocating to a subset of
inputs while the Shapley effects decompose the total variance and allocate it to each
single input. This distinction allows to consider any inputs without taking account
of their dependence with the other ones. In cooperative games theory, an important
issue is to define a significant way to distribute the earnings for each player. Shapley
(1953) proposed a fair allocation of earnings between d players. According to E Song
(2016), a d-player game is defined as a real-valued function which maps a subset of
D players (D = {1,2,...,d}) to its related cost; i.e., c : 2P +— R with ¢(@) = 0.
Hence, ¢(]) represents the cost that results from the participation of ] players to the
game. The Shapley value of player i with respect to the cost function c(-) is :

si= y &0 md._l)””! (cqu{ih)—c() - (3.9)
JED\{i} ’

In other words, it is the incremental cost of including player i in set | averaged over
all sets ] C D {i} for a given data instance 4. In order to clarify the connection with
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my aims of learning and prediction: the ‘'game’ is the prediction goal for a single
instance of the dataset (i.e. a certain parameter configuration, a sample); the "gain’
is the real prediction for the instance minus the average prediction of all samples;
the "players’ are the feature values of the instance, which work together to obtaining
the gain (i.e. predict a certain value). Considering the set of inputs of f(-) as the set
of players D, Eq. 3.9 can be applied to global sensitivity analysis (Owen, 2014). In
order to do that, I need a cost function that verifies ¢(®) = 0 and ¢(D) = Var(Y)
and, for ] C D, ] C D, ¢(J) must coincide to the part of variance of Y caused by the
uncertainty of the inputs in J.

E Song (2016) proved that it is equivalent to define c(-) as E[Var(Y|X_p)]/Var(Y)
or as Var(E[Y|Xp])/Var(Y). The Shapley effects rely on a well-balanced allocation
of a variance share of the output to each input. Then, it is not any linear combina-
tion of Sobol” indices; actually, the primer equitably shares interaction effects of a
subset of inputs with each individual input within the subset. Results of this share
allocation are that Shapley effects are non negative and sum up to one, allowing, in
this manner, an easy interpretation for ranking inputs. The Shapley value is the only
attribution method that meets the following properties, allowing to think about it as
a fair distribution way:

e Efficiency: Y-/, Si¥ = f(x;) — Ex(f(X)); the effects of a feature have to sum
up to the difference of prediction for a certain instance and the average.

e Simmetry: the contribution for two features doesn’t change if they contribute
in the same way to all possible coalitions.

e Dummy: a feature which does not change the predicted value has got a null
Shapley value.

o Additivity: for a game with combined cost functions, also the respective Shap-
ley values have to behave in that manner.

The Shapley value works for both classification and regression. A common way
to make the primer into action could be to use the Shapley value to analyze the
predictions of a random forest model predicting a certain event like, for example,
a particular economic scenario. For estimating a Shapley value, all possible sets
have to be estimated, with and without the feature of interest in order to calculate
the Shapley value for one certain feature value. Unfortunately, just few features
involved and the purpose of obtaining an exact solution becomes computationally
unfeasible, since the number of possible coalitions increases exponentially with the
number of features. In that respect, the necessity of an "intelligent" way of sampling
is crucial for calculating Shapley values: tentatives in that direction could be found
in Strumbelj and Kononenko (2014) where the authors propose an approximation
with Monte-Carlo sampling, in Lundberg and Lee (2016) they suggest a computation
method that includes weight kernels and regularised linear regression and, finally,
in Lundberg et al. (2018), deriving an algorithm for tree ensambles like XGBoost
and LightGBM. The latter is very recent and it allows to reduce the complexity of
computing exact Shapley values from O(TL2F) to O(TLd?) where T is the number
of ensamble trees, L is the maximum number of leaves for every tree, k is the number
of features, and d is the maximum tree depth. This kind of reduction in complexity
allows forecasts from models which were not possible to work on before. I take
advantage of the version leveraging XGBoost for my computations in the following.
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TABLE 3.1: Brock and Hommes (1998a): Theoretical support ranges
for the parameters involved in the model.

Parameter Description Support
B Agent 1 intensity of choice [0; +00)
n initial share of Agent 1 [0.0;1.0]
b1 Agent 1 bias (—o0; +00)
by Agent 2 bias (—00; +00)
st Agent 1 trend component (—o0; 400)
0 Agent 2 trend component (—00; 400)
C cost of obtaining type 1 forecasts [0; +o0)
w weight to past profits type 1 traders [0.0,1.0]
log asset volatility (0; +0)
v risk aversion [0; +-00]

r risk-free return (1; +00)
€ Random Normal Dividend u 0;1)
€ Random Normal Dividend ¢ (0;1)

p* fundamental price R
X0 Initial price deviation from the fundamental price R
Yo Initial dividend R
TpH number of periods N

3.3 Results

3.3.1 Choice of ABMs output

The two illustrative examples of ABM are: the asset-pricing model of Brock and
Hommes (1998a) and the limit-order book model Franke and Westerhoff (2012a).
Very briefly, Brock and Hommes (1998a) is an asset pricing model where hetero-
geneous population of agents trade a generic asset according to different strategies
(fundamentalists, chartists, etc). Franke and Westerhoff (2012a) is instead a limit-
order book where there are two types of traders, chartists and fundamentalists. The
fundamental is fixed and known. There is a market maker clearing mechanism
which adjusts prices according to excess demand. Finally, there is an adaptive mech-
anism that moves agent densities to better performing strategies. This will be a key
component which is adjusted across many of the different market mechanisms con-
sidered. Since both of them are financial markets, their simulations produce time se-
ries of price. In terms of model comparisons, one way could be to combine the latter
with a kind of output which would have a consistence about what I am working for.
Even better, the goal would be to make synthetic historical data match with the one I
actually observe in real world through some features. In this regard, I choose to use
as outputs for my illustrative ABM models some of the empirical properties of as-
set returns widely agreed in finance (Cont, 2001). This procedure is clearly inspired
by Methods for Simulated Moments (MSM), in line with Lamperti (2018). MSM
are usually employed in order to point out those parameter values that "calibrate"
the model, within certain confidence bounds, matching some financial stylized facts
considered particularly crucial. In the latter, a loss function which combines dis-
tances between simulated and empirical moment values is minimized. In my case, I
suggest to use as outputs of ABMs four stylized facts. That is remarkably useful for
some reasons: in first place, it is an easy way to get meaningful and expressive out-
puts for the meta-modeling process later on. Secondly, it is an automatic procedure
to calibrate data coming from simulations. It lets me quickly skim meaningless pa-
rameter combinations automatically, ruling out those parameter combinations with
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even only one output larger that an order of magnitude with respect to the empiri-
cal one. Therefore, I achieve two goals at the same time: I obtain solid and reliable
outputs for the models for surrogate models training and I calibrate ABMs through
stylized facts. The following are the stylized facts employed in my analysis:

Absence of autocorrelations :
Linear autocorrelations of asset returns are insignificant, in particular regard-
ing my time scales. They would have them for very small intraday time scales
only, around 20 minutes, for which peculiar effects, known as microstructure
ones, take place.

Heavy tails :
Returns distribution appears to show a tail like power-law or Pareto-like. From
data sets studied in Cont (2001), it seems tail index of returns is difficult to
determine precisely, but however, it is finite, higher than two and less than
five. As a matter of fact, this excludes stable laws with the normal distribution
and infinite variance. This evidence translates in measuring kurtosis of returns
distribution.

Volatility clustering :
It was pointed out a positive autocorrelation in several measures of volatility,
letting us think that high-volatility events tend to cluster in time.

Long-memory returns :
It is referred also to slow decay of autocorrelation in absolute returns; it mea-
sures the decay of autocorrelation of absolute returns as a function of time lags.
I employed Hurst exponent as measure to calculate it.

In particular, I rely on 502 observations totally, daily adjusted closing prices for the
S&P 500 going from December 09, 2013 to December 07, 2015; this number of ob-
servations comes from consideration on relaxation time for obtaining asymptotic
quantities of the four stylized facts mentioned above. This opportunity may be seen
either as a measure of how far the simulated model is from its realistic counterpart
or to calibrate the model on producing realistic price series and, consequently, ob-
taining the parameter set matching this scenario. In Table 3.2, I report the values
obtained on the historical observed data (i.e. S&P 500).

TABLE 3.2: Return autocorrelation, kurtosis (i.e. a measure for fat
tails), absolute return autocorrelation and Hurst exponent (i.e. a mea-
sure for memory) computed on historical data of S&P 500 index.
These values are employed to calibrate the illustrative ABMs I em-
ployed in my analysis; 502 observations totally, daily adjusted closing
prices for the S&P 500 going from December 09, 2013 to December 07,
2015. Such number of observations is enough for obtaining asymp-
totic quantities of the four stylized facts mentioned above.

Return autocorr. | Price series kurtosis | Abs. return autocorr. | Hurst exp.

S&P 500 —0.001169 2.5067 0.004125 —0.0072579

3.3.2 Requirement of robust parameter space exploration
Sampling the parameter space

One of the main goals of this Chapter is to refine robust and at the same time compu-
tationally cheap methods for the sensitivity analysis of realistic ABMs that otherwise
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would be prohibitive to explore, since the high number of inputs involved. In prin-
ciple, surrogate models may offer a solution to this computational burden Lamperti
et al. (2018); I explore the opportunity of their usage for sensitivity scopes. First of
all, it may sound trivial but I believe it is worth to point out that meta-models (i.e.
surrogate models) need a representative and reliable pool of parameter combina-
tions (and, accordingly, their corresponding model responses) in order to be trained
and working as a trustworthy "proxy” for an ABM. Once trained on a large part of
the data set (i.e. training set), the goodness of a meta-model is then quantified by
prediction accuracy measures (e.g. RMSE, MSE, MAE, etc), by testing its results on
a small data set not employed for model training (i.e. test set). Usually a 10/20% of
the whole data set is reserved for serving this purpose and the remaining amount
of data as training set. Since my illustrative examples are two financial ABMs, so
that the main endogenous response is an ideal stock price series, I use as output the
combination of the four stylized facts of financial markets mentioned above: zero
autocorrelation, fat tails, cluster volatility and memory (Hurst exponent). A rele-
vant advantage of their employing relies on serving as model response that may be
calibrate with observed data values; I drew the latter from the historical series of
S&P 500 index. In particular, I rely on 502 observations totally, daily adjusted clos-
ing prices for the S&P 500 going from December 09, 2013 to December 07, 2015; this
number of observations comes from consideration on relaxation time for obtaining
asymptotic quantities of the four stylized facts mentioned above. This opportunity
may be seen either as a measure of how far the simulated model is from its real-
istic counterpart or to calibrate the model on producing realistic price series and,
consequently, obtaining the parameter set matching this scenario. Just to go back,
in order to train a surrogate model, a wide parameter space sampling is required.
Here one faces the first ambiguity between the theoretical model and its numerical
counterpart: how theoretical model supports translate into numerical ones? A wide
sampling of the parameter space by combining all the possible values along all the
whole parameter ranges is necessary. This is a first obstacle that may require com-
putational effort. By the way, a first screening may be to set order of magnitudes for
the parameter ranges because of inherent model proportionality coming from inter-
action relationships of parameters. I perform several sampling methods and the first
consideration coming up from my analysis is the following: gridded sampling meth-
ods (e.g. LHS, NOLH, etc) may not work for ABMs. The reason why mainly lays on
the fact that ABMs are stochastic and, then non-linear systems; for specific param-
eter combinations the model may not exist at all or dynamically tends to a tipping
point. In practice, the simulation may not start or stop after a few time steps. Since a
gridded sampling algorithm requires precise parameter combinations because of its
planned parameter space partitioning, one or more parameter combinations which
don’t generate a meaningful model response would make the gridded sampling al-
gorithm not working, completely meaningless and even misleading if working. The
output surface of an agent-based model may be imagined as pitted; gridded sam-
pling methods may choose those points (i.e. parameter combinations) for which the
model is not defined. In order to overcome the latter and collect only meaningful
parameter combinations, I propose the following intelligent sampling algorithm: I
perform a random sampling on all the possible combinations of parameter ranges
and, in order to admit them, I combine a double check of the existence of the model
for that parameter combination, , through the four outputs (i.e. if the model dy-
namic is taking place and outputs are "meaningful"). I perform a deep analysis of
parameter ranges, in line with One-Factor-A-Time sensitivity analysis. In particu-
lar, I set as benchmark the parameter combination which better match all the four
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values computed from empirical price series (i.e. through observed stylized facts
of S&P 500 index historical data, see Table 3.2). In order to locate it for each ABM
employed in the analysis, I explored over 100000 samples generated according to
random sampling and double check of model existence, as I mentioned above. It is
worth to remark that although local sensitivity analysis is meant to be working with
local minima/maxima, on the other hand it may be possible to assess the robustness
of the benchmark parameter combination chosen. As a matter of fact, I studied the
latter by drawing a ranking list of the best calibrated parameter combinations and
I noticed that there exists a sort of smooth progressive tendencies towards the fist
ranked one (i.e. my benchmark). The latter is pretty reassuring; even if I cannot
state for certain that my benchmark is a global minimum, I can state that the local
minima I find are coherent one another.

Non-stability areas of parameter ranges

The procedure mentioned above (i.e. random sampling and double checking of
model existence) is still not enough for the goodness of sampling selection, either
in the perspective of building a reliable surrogate model or in the exploration of the
model itself. As I ascertained by simulating the two illustrative ABMs employed in
this chapter, even by choosing through random sampling those parameter combina-
tions for which the model shows satisfying outputs (i.e. the simulation is matching
observed data) may be misleading. I further elaborate this point, since it it crucial.
I notice that, for a given parameter combination, depending on the Monte Carlo
replica I account for (i.e. the random seed set for the model simulation), the ABM re-
sponse could produce time series of price either pretty calibrated with observed data
or very far from it. This cannot be admissible for many crucial reasons. In partic-
ular, in my case surrogate models usage means to let algorithms train input-output
pairs in order to reproduce the functional form which would approximate the ABM.
Agent-based models are stochastic systems; they may observe strong variability of
their response, for particular parameter range areas; this is due to the presence of
randomness sources. In light of that, they require robustness assessing of thier re-
sponse by Monte Carlo raplicas next to their sampling: each experiment (i.e. the
simulation of a certain parameter combination) needs to be repeated through dif-
ferent MOnte Carlo replicas (i.e. different random seeds) in order to obtain the sta-
tistical robustness whichi is necessary for testing hypotheses and discerning mul-
tiple scenarios (Lee et al., 2015). The "random seed" uniquelly characterizes the
pseudo-random sequences employed for a given experiment. Monte Carlo disper-
sion over many random seeds naturally comes from the presence of stochastic vari-
ables into the agent-based model. Fixed a certain parameter combination, a Monte
Carlo replica is a model simulation featured by a unique random series which fea-
ture model randomness. Each parameter combination identifies a precise model
setting; I refer to such model setting as stable if different Monte Carlo replicas bring
to the same outputs. For a given parameter combination, if the system dynamics
of different Monte Carlo replicas bring to very different scenarios (i.e. very differ-
ent outputs), I refer to the model as non-stable. What does it mean for me? Without
a robust checking of Monte Carlo replicas for the same parameter combinations,
calibration and training a meta-model would dramatically bring to misleading and
meaningless results. Hence, performing sensitivity analysis on a surrogate model in
this way would be totally meaningless.
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3.3.3 My proposal of sensitivity analysis: Monte Carlo-One-Factor-At-a-
Time (MC-OFAT)

Inspired by bifurcation diagrams (crucial in dynamical systems analysis for physi-
cal systems), I propose a procedure which either shows how choosing reliable pa-
rameter combinations to ensure robustness or allows operationally the employment
of surrogate models to perform sensitivity analysis. What I propose may be seen
in some ways as a modified version of One-factor-at-time (OFAT) local sensitivity
analysis method: Monte Carlo-OFAT (MC-OFAT). OFAT is one of the simplest and
most common local sensitivity analysis approaches and consists of moving One-
Factor-At-a-Time fixing a parameter combination of baseline values; it is widely em-
ployed for macro and financial ABMs. My proposal is somehow enriching OFAT
of Monte Carlo replicas: I extended OFAT sensitivity analysis by performing Monte
Carlo replicas for each parameter combination computed by OFAT (i.e. for each
OFAT computed point). I explore each parameter throughout its own support range
(i.e. the thoeretical support within the mathematical model exists) in the same way
I would do for OFAT, extending it by replacing each OFAT point (i.e. a parameter
combination) with 1000 Monte Carlo replicas of the same parameter combination. In
case the MC-OFAT curve (i.e. one of the four outputs and one parameter) collapses
on the standard OFAT curve, the model dynamics is stable for that parameter setting,
so it makes sense to account it for surrogate model training and model exploration.
On the contrary, in case the MC-OFAT curve features dispersed output values for the
same parameter combination, then the model dynamics is non-stable and a training
of the surrogate model has no meaning.

I lay out one of the main results of this chapter: I find out that for some input
ranges I observe a very large dispersion for the same parameter combination that
makes the output response surface extremely ambiguous. In some cases, I even ob-
serve Monte Carlo replicas splitting into different "areas of attractions". The latter
is a very tricky issue to solve, both for simulating the model and even worse for
meta-modeling it. Moreover, even in a calibration setting, or making a skim of the
most relevant parameter combinations (i.e. those ones which generate output val-
ues the closest to empirical ones), I may be deceived. In particular, in those areas
it would be "by chance" to have picked a MC replica which match or not empirical
values. Monte Carlo replicas "dispersion" results in a dramatic performance for any
kind of surrogate model that can may be employed. Every meta-model trying to
replicate the dynamics of an agent-based model would definitely fail for those areas
in which different Monte Carlo replicas result in very far away output values. The
main restriction comes up from the fact that surrogate models are trained on one or
a few MC replicas. The possibility to run many MCs is directly proportional to how
much the ABM into question is computationally expensive; moreover, that is the
same trade-off which actually brings a researcher/ practitioner to look for a cheaper
proxy (i.e. surrogate model) to simulate the ABM. Furthermore, another limitation
comes from the fact that the benchmark I choose is a local minimum; it may not
be the global one. As I mentioned before, this problem may be partly overcome by
looking at the input values distribution of a ranking list of local minima. That said,
my procedure aims to define a a general approach to ensure meaningful training of
surrogate models, in order to employ them for global sensitivity analysis purposes.
In Fig. 3.1 I report four stylized facts as outputs for the three main parameters of
Brock-Hommes agent-based model which present strong instability with different
random-seeds. In the first line I report the outputs for by, i.e. the bias of the sec-
ond agent: for values less then zero, kurtosis can either match calibrated values (i.e.
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toward 10) or quite far form it, even more than 200. Moreover, the two spikes that
are present distribute from the bottom till 800; this are two points to be avoided for
sure. It can be due to the particular combination I chose as benchmark. About the
other two inputs, g; and g», which are the trend components of both type of agents,
I have a much more representative example of the problem I explained before. For
example, in g I can easily notice that for all 4 plots there is an area (form about —13
to about 30) which conserves stable with a admissible variance around the mean; in
the remaining part of the range values can be very far one another, in some cases
there are even discrete steps on which random seeds distribute. The last parameter
g2 looks like the more dangerous, having real independent patterns followed by dif-
ferent random seeds; here I had to dramatically reduce the range. As I can notice, it
is strongly unstable and it could take to considerations strongly depending from the
random seed on which I are relying.

T

b

|

(a) by, autocorrelation (b) by, kurtosis (c) by, clustered volatility (d) by, memory

| —
(e) g1, autocorrelation (f) g1, kurtosis (g) g1, clustered volatil- (h) g1, memory

ity

> E

(i) g2, autocorrelation () g2, kurtosis (k) g2, clustered volatil- (1) g2, memory
ity

FIGURE 3.1: MC-OFAT sensitivity analysis for Brock & Hommes

ABM. Examples of three parameters in which montecarlo realizations

crucially matter: bias b, of one trader and trend components g1, g2 of
both two traders.

Regarding Franke-Westerhoff ABM, the two main parameters showing similar
behaviors are x and ¢, i.e. the strength at which the two type of agents (chartists
and fundamentalists) respectively react. In Fig. 3.2 I show the latter, according to
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(a) x, autocorrelation (b) x, kurtosis (c) x, clustered volatility (d) x, memory

(e) ¢, autocorrelation (f) ¢, kurtosis (8) ¢, clustered volatility (h) ¢, memory

FIGURE 3.2: MC-OFAT sensitivity analysis for Franke & Wester-

hoff ABM. Two parameters, x and ¢ in which the exploration of MC

different replicas crucially matters. One thousand MC replicas have
been performed on each parameter combination

MC-OFAT.

The detection of a regime in which there is Monte Carlo dispersion (i.e. non-
stability) for a given parameter quantifies the uncertainty of the parameter and its
impact (then in a sensitivity analysis sense) on the model output. It is very rele-
vant for the model understanding and that crucially requires an ex-ante economic
question. Furthermore, in light of all the considerations above, it would seem pretty
clear that a non-stable area of the parameter range doesn’t give any room to work
on it, from a surrogate modeling perspective. As mentioned above, in order to work
properly and keep being computationally cheap, a surrogate model should train
on robust parameter combinations (and then ranges) which produces unambiguous
model response. In light of the latter considerations, the need which arises is to
locate those parameter areas where the stability regime holds, for the possible pa-
rameter combinations; in other words, I need a robust procedure in order to locate
the meaningful parameter areas and to rule out the non-stable ones. I have tried sev-
eral methods for assessing the stability of a given parameter window of the explored
range and I found out that a meaningful observable for this task is the normality dis-
tribution of Monte Carlo replicas. Since the two illustrative ABMs I am employing
reach after few time steps the steady-state, the only non-stability source come from
random sources sequences. In a stable world, the average of an observable (i.e. a
model output) over the phase space must identify its time average. In my case, the
phase space is determined by all the possible Monte Carlo replicas. A Monte Carlo
replica is identified by a unique set of random variables which participates the ABM
in the form of random sources. That said, what I expect from a stable regime is that
the model responses of MC replicas behave as i.i.d. variables and hence, for a num-
ber of MCs which tends to infinity and in line with the Central Limit Theorem, they
distribute normally. This intuition has been confirmed numerically. Normality tests
have been performed on MC-OFAT, as in Fig.3.1 and Fig.3.2; I noticed that the more
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MC replicas are, the better normality tests perform. Moreover, Jacque-Bera normal-
ity test turns out to be the best choice for my needs, matching those areas I can notice
they are stable graphically.

3.3.4 MC-OFAT as a tool to screen parameter ranges before surrogate
model training

A meta-model needs a pool of parameter combinations and model response pairs to
train on, in order to produce a functional approximation of the model. This means
that if a parameter combination of a non-stable regime is used to train the meta-
model, the latter will build up its function (i.e. the functional input-output form to
replace the ABM) on that MC replica, regardless the fact that in such area the model
response be very different for another MC replica. In principle, I could also train the
meta-model with different replicas of the same parameter combination but it would
require much more computational effort and no gain is guaranteed. First of all, the
goal of surrogate modeling is to save computational expense and, secondly, even
feeding the meta-model with some MC replicas, the latter will consider mean and
variance of the model output proportional to which particular MC replicas came up
by chance; this doesn’t assure any improvement with respect to the surrogate trained
on a single MC. The strength of meta-modeling lies on extracting a general cheaper
proxy for the model, valid wherever, trained "on a few" simulations of the model
right because the ABM is computationally expensive and I choose to surrogate it.
But in case I would need so many more simulations of the ABM to train the meta-
model, the sense of using it would be missing and I experience only the drawbacks
of meta-modeling. By absurd, in case I would be able to draw a huge number of MC
replicas, I'd rather perform my analysis on the real model than on its surrogate. As
a matter of fact, the drawbacks of meta-modeling may easily overcome the benefits:

e meta-models will never reproduce in a satisfying way the output surface of
an ABM (since it is strongly non-linear and present tipping points); in general,
the more random sources there are, the less it will be working;

e singularity points and other non-linear effects cannot be reproduced fairly; the
interpolation of points in the training set may result very misleading in the
model response surface reconstruction;

e it is almost unfeasible to reproduce the uncertainty of the model by meta-
modeling;

e using a parameter combination of a non-stable area to train the meta-model
may result in very misleading surface reconstruction by the latter.

A way to take advantage of meta-modeling is to directly bound the parameter ranges
for its training to the only ranges in which the model is stable, assessing them
through Jacque-Bera normality test. In this way, I expect that meta-model perfor-
mances increase. In order to measure an eventual improving in performances, I use
Mean Absolute Error assessment before and after applying my procedure MC-OFAT.

Surrogate model performances of my procedure MC-OFAT

The surrogate models I employ and compare each other are: the decision tree-based
XGBoost and three different implementations of Kriging. For the latter, I employed
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different covariance functions: Matérn model with v = 5/2, Matérn model with
v = 3/2 and exponential model, all together with a constant covariance basis (with
dimension equals to number of inputs). Very briefly, in Kriging meta-model (Gaus-
sian process regression), the original model response for the unknown points can be
predicted by a linear combination of the responses at the closest known points, simi-
larly to an ordinary multivariate linear regression, but taking the spatial information
into consideration, in a Bayesian framework. XGBoost (Gradient boosting decision
tree) instead consists in a machine learning technique for regression and classifica-
tion problems. Such a model is an ensemble of simpler decision trees, which are
aggregated to improve the overall prediction performance. In order to calibrate XG-
Boost surrogate model, I optimized the so called pipeline; i.e. I tune the surrogate
model arguments (e.g number of estimators, learning rate, maximum depth of the
decision trees etc) by minimizing an objective cost function depending on them. The
results I present onwards are given for those optimized conditions in which Krig-
ing and XGBoost methods perform the best. Here I go through a comprehensive
comparison of XGBoost and Kriging meta-models predictions with respect to the
agent-based model prediction. In particular, I compute how the prediction quality
of the four surrogate models in question varies increasing the number of samples
(form 200 to 1000 samples) on which I train them. I perform the latter in both cases:
either before and after using my proposed procedure MC-OFAT (i.e. narrowing pa-
rameter ranges where to train the model according to a stable regime), for the four
stylized facts used as outputs. I compute the Mean Absolute Error for each stylized
fact, for each set of N samples and for 50 Monte Carlo iterations (i.e. initializing a
different random seed anytime). I show the average MAE of the 50 MC replicas with
two times their standard error of the mean. Hence, for each meta-model and each
stylized fact s, its Mean Absolute Error (MAE) is computed as follows:

N . .
=~ LYY (3.10)

where N is the number of samples, y§ is the surrogate prediction of the stylized fact

j for the sample i and v/, is the real data value for that stylized fact (the one com-
puted on the real price series). I report in Fig. 3.3 and in Fig. 3.4 the surrogate
models performances evaluated through MAE on, respectively, Brock and Hommes
(1998a) and Franke and Westerhoff (2012a) models. For each ABM, I show a com-
parison of surrogate models performances before and after applying my proposed
procedure (i.e. MC-OFAT sensitivity analysis and normality test assessing of stable
parameter ranges), for each of the four outputs (i.e. autocorrelation, fat tails, clus-
tered volatility, memory). For each set of MC replicas, I compute the mean of their
MAE values, together with twice their Standard Error of Mean (i.e. 95% confidence
intervals) and I show graphically each value of assessed performance. As I notice
analyzing the plots, there is always a relevant gain in adopting my procedure, with
Brock-Hommes ABM in particular (e.g. an order of magnitude for all the four out-
puts). Anyhow, I notice each output reacts differently and in some cases surrogate
models find the training very difficult. As I show in Fig. 3.3 and in Fig. 3.2, in
some cases Kriging happens to work better and in some others Xgboost, but still
none of them is exhaustively working properly. In general, I obtain the best MAE
values for Franke-Westerhoff model but it may be due to its lower number of in-
puts, 8 model parameters, compared to the 15 inputs for Brock-Hommes. Even for
Franke-Westerhoff, the results are not satisfying (i.e. comparing with the order of
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magnitude of the benchmark stylized facts reported in Table 3.2), in particular for
the output which takes into account the stylized fact of fat tails (i.e. kurtosis). More-
over, Xgboost keeps pretty wide standard errors of the mean for all cases, compared
to Kriging.

I refine a further limitation on the parameter combinations to take into account
for surrogate training. In a few words, the latter is a skim on the pool of parameter
combinations used for training a surrogate model, selecting as suitable for training
the only parameter combinations whose outputs don’t diverge beyond a certain dis-
tance from real data stylized facts (i.e. S&P 500 historical data benchmark). Along
this way, all the parameter combinations I take into account are implicitly relevant
from a calibration point of view, since they are very close to real data. In this direc-
tion, I could say to have set quantities that are either consistent measures for an ABM
output or measures of closeness to real world at the same time. In Fig. 3.5 and Fig.
3.6, I report for both agent-based models and for each output a box plot of surrogate
models performances through Mean Absolute Error. The results obtained are pretty
satisfying; looking at MAEs w.r.t. each output, I was able to make meta-models re-
produce model responses with relative small errors, compared to benchmark values
(see Table 3.2). Unfortunately, I don’t obtain one surrogate model overperforming
the others for all output choices but their results are roughly comparable.

3.3.5 Global sensitivity analysis

The sampling method which one uses in order to do any kind of other measure, like
surrogate modeling or sensitivity analysis, is quite crucial. There exist lots of way of
sampling ( e.g. Latin Hypercube Sampling, Random Sampling etc) and each one has
its relevance for precise purposes. In particular, regarding what concerns to me, sev-
eral methods for estimate SA indices have been implemented for a given sampling
method each; they are well-built only on a way of sampling. The latter because cov-
ering in a certain manner some distances in every parameter range would lead to do
a weighted assessing of their influence on the model response.

As laid out in Subsection 3.3.2, unfortunately I cannot take advantage of ordi-
nary gridded sampling methods in my case. As a matter of fact, this limitation rules
me out from usage of most of global sensitivity analysis method, either already im-
plemented (e.g. SA libraries, such as in python libraries like Openturns and SALib)
or to implement, since the regularity in parameter ranges slicing lets analytical and
numerical computations easier and more versatile. In light of that, I am prevented to
use the most employed global sensitivity analysis methods except the ones perform
sensitivity analysis of given data. In the following, I present global sensitivity anal-
ysis measures obtained through methods which allow to assess parameter impacts
from data I obtain with my ad-hoc sampling methods, before and after applying my
MC-OFAT procedure. These are: Sobol’ first indices (Sobol, 1993), Borgonovo’s Delta
values (Borgonovo, 2007) and Shapley values (Shapley, 1953; Song et al., 2016).

Borgonovo’s Delta and Sobol’ First Indices

In line with the work of Borgonovo (2007) and the one of Plischke et al. (2013), I
make usage of their derivations and compute the Sobol” indices for each parameter.
In particular, what I leverage are methods of estimating density-based indicators
from given samples. The main problem I deal with when using ‘standard” and ‘most
common’ sensitivity analysis measures is that they quite always require a given sam-
pling gridded partition. Such methods are totally calibrated on given distance for
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FIGURE 3.3: Brock & Hommes. Performances of Kriging and XG-

boost surrogate models for the four outputs. I compute different sam-

ple sizes, each of them repeated for 50 MC replicas, in the two cases:

on the left-hand side, before to apply the my procedure (i.e. param-

eter ranges are the ones of the theoretical support) and, on the right-
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any parameter. As mentioned before, since I am dealing with stochastic systems,
there may be some parameter combinations not available and they may match with
those ones required by gridded sampling approaches. For this reason, I have opted
for methods which are based on given data. Borgonovo (2007) and Plischke et al.
(2013) take advantage of a wide literature on distribution separation measurements
and they measure the separation between the distribution of the model output and
the same distribution conditioned to the decision maker’s degree-of-belief about the
model output Y. In the end, they come up defining the importance of a given input
X; on the model output Y through a function called 4(Y, X;). Moreover, Plischke
et al. (2013) defines a consistent estimator for 5(Y, X;) in order to provide an estima-
tion strategy. The kind of measure differs form the classical ones from the fact that
are denisty-based rather than variance-based. It has been shown in Plischke et al.
(2013) how this difference could bring to measures more inclusive towards depen-
dent interactions between inputs. In Fig. 3.7 I show the computation of Borgonovo’s
Delta indicators for the output kurtosis. I employ four surrogate models trained on
a set of 50000 samples and tested on 5000 and I compare their sensitivity analysis
results with the real model ones (i.e. my "ground truth"), before and after MC-OFAT
approach application. As can be seen from the plots in comparison, before MC-
OFAT application no surrogate model is able to reproduce the same input impacts
produced by the model, neither some proportionality among them. After MC-OFAT
application, all surrogate models are able to reproduce the impact of parameters on
the model response. I obtain the same satisfying result in applying MC-OFAT ap-
proach for Sobol’ first order indices, as shown in Fig. 3.8.

Shapley effects

As mentioned in Subsection 3.2.4, Sobol’ sensitivity indices and are based on a func-
tional, the ANalysis Of VAriance (ANOVA); its decomposition is unique only if the
input variables (that are random) are assumed independent. This also applies to Bor-
gonovo’s Delta indicators. The latter is a huge limitation since the nature and scope
of ABM, so that to model real world frameworks as complex evolving interacting
environments; it is much harder to imagine independent inputs in an ABM rather
than dependent one another. Anyhow, several works have been carried out to deal
with this issue. Some works as Kucherenko et al. (2012); Mara and Tarantola (2012)
propose an extension to the case of a stochastic dependence between inputs. Up to
that, it is still hard their estimation and interpretation as well. Owen (2014) threaded
the connection between Sobol” indices and Shapley values straight out game theory.
Recently, E Song (2016) establish a relation between the Shapley values, coming from
the field of game theory, and Sobol” indices. Furthermore, A Owen (2017) show rele-
vant Shapley features regarding dependent inputs. In that case, Shapley values can
be a good option to Sobol” dipendent input extensions. The study of Shapley effects
would require ideally the computation of all the possible combinations of the in-
puts; this requirement would rule out a feasible computation and surrogate models
come to its assistance. I will take advantage of a meta-model I employed before, XG-
Boost, that greatly takes over the model together with the application of MC-OFAT
approach, dramatically reducing the computational cost of the evaluation, as shown
in Fig. 3.5 and in Fig. 3.6. In this direction, my strong assumption is that XGBoost
is replacing the true model in a satisfactory way and thanks to the results shown in
Subsection 3.3.5, that could be roughlt stated. Since the computational constrains,
I cannot be given of a the true model sensitivity analysis impacts as in Subsection
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FIGURE 3.7: Delta measure on Brock & Hommes. In line with Bor-

gonovo (2007) and Plischke et al. (2013) Borgonovo’s Density-based

sensitivity analysis measures computed on three Kriging and XG-

boost surrogate models and the true model (in green), for the out-

put kurtosis, before and after applying my proposed procedure MC-
OFAT.
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3.3.5. In order to test the validity of computing Shapley values on XGBoost surro-
gate model, I may compare Shapley effects before and after MC-OFAT application.
I compute Shapley effects taking advantage of the estimation method proposed by
Lundberg et al. (2018) and their interpretation: the SHapley Additive exPlanations
(SHAP); it is an approach that aims to explain the output of any machine learning
model. In Fig. 3.9 and Fig. 3.10, I show force plots for Shapley affects (Lundberg et al.,
2018), for both illustrative ABMs. Force plots aim to represent which and how much
relevant parameters push the model response down or up from the base value. In-
puts which drive the model response down are drawn in blue and, conversely, those
ones which drive the model response up are drawn in red. This way of representa-
tion remind like "forces” which act on the whole model Lundberg et al. (2018).
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FIGURE 3.9: Force Plots of Shapley effects for Brock and Hommes
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FIGURE 3.10: Force Plots of Shapley effects for Franke and Wester-
hoff (2012a).

3.4 Conclusions

In this chapter, I propose a novel self-consistent approach to analyze parameter
ranges robustness of agent-based models in order to build up cheap but reliable
surrogate models to replace the true model for global sensitivity analysis purposes.



78 Chapter 3. Modern Tools for Agent-Based Model Sensitivity Analysis

To the best of my knowledge, such one is the first attempt in literature to propose a
general approach for constructing surrogate models with the purpose of performing
trustworthy sensitivity analysis on, in a financial and economic agent-based frame-
work.

The results yielded with two illustrative financial agent-based models, i.e. the
Brock and Hommes (1998a) asset pricing model and the limit-order book model of
Franke and Westerhoff (2012a), show that my proposed procedure (i.e. MC-OFAT)
to analyze parameter ranges robustness before the surrogate training provides a re-
liable dramatically cheaper replacement for the agent-based models which lets per-
forming sensitivity analysis with an high level of confidence. The key advantage of
my approach lies on its practical usefulness. As a matter of fact, the meta-model can
be trained at very low computational cost and it needs a little amount of time to pre-
dict the impact of parameters on model response the researcher/ practitioner should
rely on with satisfying good results. As I show in Section 3.3, MC-OFAT approach
lets the design of solid, resilient and trustworthy surrogate models. I show they can
reliably replace the original model for assessing the most impacting parameters in
the model though global sensitivity analysis methods (see Subsection 3.3.5). Letting
replace the original ABM by its cheap meta-model version in a delicate task like per-
forming sensitivity analysis gives enormous room of manoeuvre to a researcher or
practitioner in a policy making perspective.
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Chapter 4

How A/B testing changes the
dynamics of information spreading

4.1 Introduction

The online ecosystem has been an exceptional ground for private companies to build
choice environments that draw people’s attention in order to make and increase
profits. Although their goal may vary from influencing political opinions to selling a
pair of shoes, the methods which are involved often share the same algorithmic prin-
ciples. One example in that respect is A/B testing, a method that optimizes pieces
of the online environment to some goal function via a randomized experiment with
two variants, the currently used version A (control) and its modification in some
respect B (treatment). By testing a subject’s response to A against B, this method-
ology aims to determine which one is more effective in optimizing to the set goal
function. A/B tests are generally performed by private companies to increase user
engagement and satisfaction about online features. Large platforms like Facebook,
Instagram, Google, Groupon, LinkedIn, Microsoft, Netflix, Yahoo and Amazon use
A/B testing to make user experiences more profitable and as a way to streamline
interface of their services (Kohavi et al., 2014; Xu et al., 2015). Surfing the web, users
undergo A /B tests without awareness; for example different users may see different
versions of the same web page at the same moment.

Through A/B testing, private companies, online newspapers etc, may shape
users’ online experience, in an adaptive way. bias and polarise individual opinions
with commercial or political contents etc. In general, the online environments they
set up can undermine user autonomy and even spread mis- and dis- information.
These concerns coming up are pretty natural given a bunch of remarks. Thereby,
the A/B testing machinery is far from being transparent; private companies don’t
share their data, their methods, their direct purposes and, particularly, the different
versions they are testing. Moreover, the nature of A/B testing of allocating different
variants to different people adds an even more complex layer to the issue: it makes
it impossible to keep an overview of who is seeing what version of a website or a
story on the internet. A/B testing implications on decision-making and effects on
collective dynamics academically underresearched.

The motivation of my work presented in this chapter’ may identify two lev-
els of impact: the way A/B testing influence individual decision making and the
way how it scales up to collective behavior. Changing environments with respect to
users’ profiling actually let A/B test’s author to pursue same goals by adapting to
individual decision-making. The first research question that I address here in this

Ottaviani M., Nickl P. L., Herzog S., P. Lorenz-Spreen (2021). "How A /B testing changes the dy-
namics of information spreading", forthcoming.
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Chapter aims to find out which are the most relevant features that A/B testing is
typically amplifying. In order to do that, I leverage real world data from a partic-
ular field of application of A/B testing. In the second research question I ask how
and under which conditions A/B testing affects the distribution of content on the
collective level, specifically on different social network structures. A third research
question extends the latter in finding out measures which aim to dampen potentially
unwanted outcomes of A/B testing and may be implemented in a policy perspec-
tive. Understanding the impact A/B testing has on the online ecosystem and the
mechanisms at work may help to develop intervention and tools that dampen po-
tentially unwanted outcomes of A/B testing and help to promote “user autonomy”
(Kozyreva et al., 2019; Lorenz-Spreen et al., 2020). For my analysis, I leverage a cru-
cial case study regarding the effectiveness of A/B testing: the Upworthy archive
Matias and Munger (2019). In November 2019 Good & Upworthy and a team of
researchers announced a dataset of 32,487 A /B tests carried out by Upworthy from
January 2013 to April 2015 (Matias and Munger, 2019). The company conducted its
A/B tests on its own website, randomly varying different presentations for a sin-
gle story. Presentations were packages of news/story headlines that were randomly
assigned to people on the website as part of a test. A/B test machinery compared
package “success” to pick winners employing the click-through rate (CTR; i.e. the ra-
tio of clicks to impressions). The present data set is by definition a clickbait dataset:
The different headlines where designed and tested in an effort to maximise clicks
(Blom and Hansen, 2015; Chen et al., 2015). This data is particularly suitable for
systematically analyzing which linguistic features successfully attract clicks and are
then amplified through A/B testing.

Linguistic cues occur on different levels. Particular attention in each package
should be paid on the lexical or semantic level, the structural or grammatical one
and the formal or formatting one. For example, different words may recall different
emotional reactions, some topics could have been more successful than others, a
specific text and word lengths may impact in a certain way. Particular attention
should be drawn on the characteristics of clickbait style: it is a specific way of writing
messages with the only purpose of maximizing the number of their views and the
Upworthy dataset belongs to it. It is worth to point them out because of what kind
of linguistic features either to expect or to follow up on.

I combine rule-based and machine learning methods to extract linguistic fea-
tures. For the semantic analysis I use a topic model and a text analysis tool that
incorporates a number of freely available sentiment dictionaries. I use topic model-
ing to detect the presence of semantic topics (e.g. feminism, racial equality, LGBT+
issues, etc). For the topic modelling I use Latent Dirichlet Allocation (LDA). LDA
is an unsupervised learning algorithm that detects the co-occurence of words across
documents (e.g. a headline) in a corpus (the collection of all headlines). Words that
cluster together form a “topic,” which may or may not be an interpretable seman-
tic topic. In order to detect the presence of emotion, arousal etc. I use Sentiment
Analysis and Cognition Engine (Crossley et al., 2017), a freely available text analysis
tool that embeds a number of sentiment dictionaries. Mainly I am using SEANCE
to analyze headlines in terms of valence, arousal and specific emotions. Once I ob-
tained linguistic features characterizing packages, I associate to each package an in-
put vector made of its extracted features. The decision-making model DM I assume
is a simple linear relationship that binds the linguistic features present in a generic
package with its probability to be clicked, i.e., the click-through rate of that package.
I assume that the decision-making model holds globally for each package of the Up-
worthy data set. The continuous outcome for each package (i.e. the click-through
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rate), together with the latter assumption, allows for a linear regression method.
Therefore, I perform a LASSO regression (Least Absolute Shrinkage and Selection
Operator). The regression coefficients coming from its training quantify the over-
all impact of each linguistic feature on click-through rate; they serve the decision-
making function for simulating an individual interacting in front of an hypothetical
(e.g. clickbait) headline. Therefore, I put forward a data-driven human decision-
making model for clicking headlines online, based on linguistic/semantic features
as cues. An agent is modeled as a click rate made up by linearly compounding the
impact of linguistic features present in the package. To asses the global impact of
A/B testing on the distribution of content, I compare two situations: (1) clicks on
headline refer to a social sharing process, thereby no global actor has an agency and
just the attractiveness of linguistic features plays a role in the distribution and (2) a
global A /B tester is introduced who is aiming to additionally maximize the clicks by
systematically varying the headlines following an A/B testing scheme. Let us con-
sider the case of simulating an ideal social environment in which individuals interact
sharing contents to their friends and acquaintances. The two main assumptions of
my agent-based model lay on:

o all agents are equal: each of them reacts to a given package following the same
decision-making model (mentioned above);

o the click for an agent means “sharing” a package (partially of entirely) to the
nearest neighbors (with a friction parameter: the infection rate).

In order to mimic an online discourse I couple agents via a stylized social network
structure, along which they can share information (headlines in this case). I em-
ploy several network topologies (e.g. Albert-Barabasi, Erd6s-Rényi, Stochastic Block
Model) and tune their densities ( i.e. sparsity of the network). I consider synthetic
randomly generated headline, which consists of a random combination of a fixed
number of linguistic features. I have tested the procedure mentioned above. It has
been achievable thanks to the availability of an exploratory data set from the Up-
worthy Research Archive Matias and Munger (2019). In particular, the final distri-
butions of feature distribution from my agent-based model, either in a pure social
spreading scenario or in the A/B testing condition. I could observe that the A/B
testing mechanism increases the homogeneity of information that is spread. In other
words, I observe that A/B testing performed on a social network structure reduces
the exploration and amplifies exploitation of successful features of early pieces of
information, ignoring others.

4.1.1 Brief literature review on attention economy

People have never been so cognitively impoverished to the extent that a "wealth of
information creates a poverty of attention" (p. 41, Simon (1996)). Large web plat-
forms like Google and Facebook act as hubs, distributors and curators (Kalogeropou-
los et al., 2019; Lorenz-Spreen et al., 2020). Their algorithms are essential to navigate
the immense digital landscape and enable bottom-up engagement in the production,
dissemination and spreading of information. Data curation companies exploit this
crucial role to secure the most valuable resource in the online marketplace: human
attention. Using algorithms that learn people’s behavioural patterns (Boerman et al.,
2017; Kosinski et al., 2013; Ruths and Pfeffer, 2014), these companies target their cus-
tomers with advertising and shape the users” information and choice experiences
(Lorenz-Spreen et al., 2020). There is a deep asymmetry in the relationship between



82  Chapter 4. How A/B testing changes the dynamics of information spreading

platforms and people: platforms have extensive knowledge about the behaviour
of users, while users are unaware of how their data is collected, how it is used for
political or commercial purposes, and how their data and the data of other people
are managed to design their online experience.

Such asymmetries in the business model of big tech have generated an opaque
information ecology that undermines user autonomy. The web is permeated by mul-
tiple troublesome social phenomena, such as the spread of misinformation (Lazer
et al., 2018; Mocanu et al., 2015; Vargo et al., 2018; Vosoughi et al., 2018). The lat-
ter may include disinformation, i.e. deliberately created untruths, and misinforma-
tion, i.e. unintentional spread of untruths, such as under-checked content or already
partisan/biased reporting, and attitudinal and emotional polarization (Abramowitz
and Saunders, 2008; Baldassarri and Gelman, 2008), political sorting (Fiorina and
Abrams, 2008) and polarisation on controversial debates (Cota et al., 2019; McCright
and Dunlap, 2011).

The role of research (and behavioural sciences in general) should be not just to
drive active scientific discourse about the sources and extent of misinformation (Bar-
bera et al., 2015; DiMaggio et al., 1996; Guess et al., 2020; Lorenz-Spreen et al., 2020)
or increasing mass polarisation (Del Vicario et al., 2016; Evans, 2003; Lelkes, 2016). It
would be desirable to explore new approaches to foster the potential of the internet
to support, rather than undermine, democratic societies (Watts, 2017). Solving global
challenges, from pandemics to climate change, requires a strong highly coordinated
collective response in contrast with private companies which would just exploit any
kind of new technology channels in order to make their own profits.

4.2 A/B testing

Private companies which sell their products online, including Amazon, eBay, Etsy,
Facebook, Google, Groupon, LinkedIn, Microsoft, Netflix or Yahoo (Kohavi et al.,
2014; Xu et al., 2015), have been using online controlled experiments (i.e. A/B test-
ing) for at least two decades, in order to shape their platforms. However, in their
words, the aim that drives them is the continuous improvement of users” online ex-
periences. Companies run and analyse thousands concurrent experiments per day
in order to validate new ideas, which materially translate in changes in the online
environment shown to customers. The latter range from entire redesigns and in-
frastructure changes (e.g. a post on a social network, mobile app interface, etc) to
bug fixes. Finally, the whole collection of successes and failures is then employed
in learnings on customer behaviour (Kaufman et al., 2017; Xu et al., 2015). Private
companies are used to build in-house experiment infrastructures to maximize their
products’ success, strongly relying on A/B testing (Kaufman et al., 2017; Xu et al.,
2015).

As briefly mentioned before, A/B testing is a randomised controlled trial for as-
sessing the causal effect of introducing a new idea (i.e. treatment) on some wished
output. Traditionally, the effect of the treatment is estimated on the whole intended
population, since the outcome for a given individual cannot be computed for both
versions A and B. It is referred to as the Average Treatment Effect (ATE; Rubin, 1974):
it measures the difference in the randomized treatment and control groups as follow-
ing: ATE = E[Y = 1] — E[Y = 0]. The ATE is then the difference in the expected
values of the treatment and control group’s output. For a given causal effect of in-
terest, the ATE value would suggest the effectiveness of some treatment applied.
Statistical inference is usually employed to determine whether an ATE estimate is
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statistically consistent (either positively or negatively; Kaufman et al., 2017). How-
ever, since ATE is a measure of the average effect, a positive or negative ATE does
not assess whether and how a particular individual would react to a given treatment.
In the last years, much more attention has been focused on the latter requirement.
In particular, the rising of huge data sets containing personalized treatments, along
with their individual profiles, has allowed to explore how treatment effects vary
across individuals. Accordingly, a new measure has been put forward: Conditional
Average Treatment Effect (CATE, 7(x) = E[Y(1) — Y(0)|X = x]) which is the treat-
ment effect conditional on observed covariates. Meta-algorithms are employed in
order to compute CATE. The most common of them takes two steps: it employs the
so called “base learners” to measure the conditional expectations of the outcomes
both for control and treatment groups, separately; afterwards, it takes the difference
between these estimates. To date, most used meta-algorithms include:T-learner, S-
learner and X-learner (Kiinzel et al., 2019).

4.3 A case of study: Upworthy.com

I took into account a crucial case study regarding the effectiveness of A/B testing;:
Upworthy Archive. Upworthy.com is a company founded in 2012 by the author
of The Filter Bubble (Pariser, 2011) and cofounder Peter Koechley; their aim was to
reach large audiences with pieces of news (in their words “stuff that matters”) which
would have drawn most of people’s attention on the web. A key component of their
strategy was to setting up attractive “packages,” each of them consisting of a head-
line, a subheading and an image, similar to the one individuals were shown when
an article was posted on a social media. In order to establish which package would
influence the most, Upworthy adopted A/B testing practices. They were already
popular among technology industry and political campaigns. The company opti-
mized content to deliver packages, measure responses, and compute probability of
a viewer clicking on different versions of the same story. In the history of American
media, Upworthy was a leading actor from 2013-2015; people associated its suc-
cess to the idea of “clickbait.” Speaking at The Guardian’s Changing Media Summit
in March of 2015, the cofounder Koechley apologized for the just three-years-old
online platform saying: ‘sorry we kind of broke the internet last year” (O'Reilly,
2015). Upworthy carried out its experiments on its website Upworthy.com, both
on the homepage and the article pages, randomly allocating and/or recommend-
ing different (usually four) versions (i.e. packages) of the same story to different
readers. Editors and website engineers reported that they set only one experiment
per page in order to reduce correlations and/or dependencies among experiments.
The system recorded the number of individuals that were shown a given package
(i.e. impressions) and the number that clicked on the package (i.e. clicks). After a
while, editors decided either to choose the best performing package for finalizing or
to keep modifying packages for increasing performance (Matias and Munger, 2019).
In November 2019 Good & Upworthy (Upworthy merged with Good Worldwide in
2017) and a team of researchers composed by J. Nathan Matias (Cornell University),
Kevin Munger (Penn State University), and Marianne Aubin Le Quere (Cornell Uni-
versity) announced The Upworthy Research Archive, a dataset of 32,487 A /B tests car-
ried out by Upworthy from January 2013 to April 2015. In their words, the release of
the dataset aimed to enhance knowledge in many fields, including: communication,
political science, psychology, statistics, and computer science (Matias and Munger,
2019).
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4.3.1 The Upworthy Research Archive

The Upworthy Research Archive dataset consists of 32,488 tests carried out from
January 24, 2013 through April 14, 2015, just after an editorial shifts was announced
by the company. For each test, the dataset includes viewer reactions to each pack-
age in an experiment; there is a median of 4 packages per test. The dataset contains
over 150 thousand packages. These packages altogether received over 538 million
impressions and over 8 million clicks. Each test includes a median of 14,342 impres-
sions and a median of 201 clicks per test. Each package consists of: the experiment
ID; the headline; the subhead, the social media summary (where Upworthy used
them); the preview image; the number of impressions and clicks received by the
package during the test (see Fig. 4.1; Matias and Munger, 2019).

«created_at: time the package was created
*test_week: week the package was created
eclickability_test_id: test the package was in
cheadline

seyecatcher_id: image ID (we don’t have images)
eexcerpt: article excerpt (not shown in tests)
*slug: internal name (not shown in tests)

eshare_text: social media description (not shown
in tests)

eimpressions: # who viewed the package
clicks: # who clicked the package

FIGURE 4.1: An example of package features from the Upworthy Re-
search Archive, as described in Matias (2020).

4.3.2 Clickbait: definition and characteristics, linguistic features

Potthast et al. (2018) distinguish between four definitions of clickbait by: emergence,
intention, effect and perception. I may define clickbait by its effect (as whatever at-
tracts the most clicks) or as a certain style (e.g. anything being perceived as sensa-
tionalist). A New York Times headline might be very effective without employing
clickbait style. It is worth distinguishing between clickbait in the effective definition
and “clickbait style.” It could be that clickbait style actually is not the most effective
way of grabbing a reader’s attention, or that it even annoys some people—for exam-
ple the makers and users of downworthy (ZOT), a browser extension that changes
clickbait style elements, replacing words like “Awesome” and “WHOA.” While I
expect my present dataset to fulfil all four definitions of clickbait, it is important to
keep in mind the distinction between clickbait as a certain style and clickbait as a
click-optimised piece of text.

4.3.3 Clickbait style

The present data set is by definition a clickbait dataset: It is the result of an effort
to optimize for number of clicks. Though the effectiveness of any headline may
not be due to clickbait style, it is worth examining this style in the context of the
Upworthy dataset, as it actually coined much of what I think of as “clickbait style.”
In fact, studies on clickbait actually take material from upworthy (Blom and Hansen,



4.4. Methods 85

2015; Chen et al., 2015). Clickbait style includes formal features (the two-sentence
headline, the listicle, unusual punctuation) as well as semantic features (colloquial,
overly emotional language). I cast a wide net: I try to include as many clickbait
characteristics from the literature as possible.

44 Methods

In Fig. 4.2 I show a broad outline of the main steps of the procedure I follow. After
employing linguistic methods on the data set in order to infer linguistic features, I
convert my data set in input-output relationships for each package, where the fea-
tures presented in each bundle are linked to its click-though rate. By performing
LASSO regression over the latter, I infer feature coefficients which serve us their
overall impacts (negatively or positively) on the click-though rate. My first research
question about what are the linguistic features most mattering in an A/B testing
can be addressed with this procedure. For the second research question I assume
a simple linear model for decision making that binds the linguistic features present
in a generic package with its probability to be clicked, directly linking to the click-
through rate of that package. LASSO regression coefficients are part of this individ-
ual decision-making model to quantify the feature impacts. In order to pursue my
second research question, i.e. under which conditions a message enhanced by AB
testing spread in a social network structure, I need to set up a general framework
in which I can ideally "switch on” the A/B testing machinery and make a compar-
ison afterwards. Therefore, I design a simplistic agent-based model, where I can
distinguish between two scenarios. In the first one, messages shared by individuals
undergo a pure social spreading; in the second one, instead, A /B tests influences the
message selection dynamics. In the following I go through a full description of all
methods that I employ for achieving this.

Synthetic package made

of n linguistic features
Upworthy dataset AGENT BASED MODEL .

Aze"tder:';:'l‘ making 1. Pure social spreding 2. A/B testing led social spreading

Topic model (e.g. DLA) Sentiment Analysis (e.g.
SEANCE)

" " packages are chosen by
packages are randomly Al testing mothod over

Linguistic time
features
Assuming linear
contribution of feature
impacts on click-through
rate. Linguistic
feature
Assessing impacts impacts
through LASSO regression

click-through rate

FIGURE 4.2: Broad round-up of the temporal order of my procedure.

4.4.1 Linguistic features extraction

I combine rule-based and machine learning methods to extract formal and semantic
linguistic features. Most linguistic features are extracted by the application of an
explicit rule, e.g. the presence of a certain character or word. For the topic modelling,
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I employ a data-driven approach, by capturing the underlying semantic structure
of the corpus. All code is implemented in python. For preprocessing I employ a
separate pipelines based on the python libraries nltk, and spaCy separately, as they
come with different functions for tokenization, lemmatization and different word
lists e.g. for stop word recognition. The output of the feature extraction process is a
pandas dataframe. It is a headline-feature matrix with the headlines as rows and the
extracted linguistic features, as well as the click-rate as columns. I use this matrix
both to describe the upworthy corpus linguistically as well as to see how features
are associated with the click rate.

Formal Features

Clickbait style is characterised by formal features, such as a preference for fully
formed sentences as titles. This entails overall more words, a higher stop-word to
content-word ratio and longer syntactic dependencies in comparison to the succinct
headlines of established newspapers, while average word length might be low. Such
features are easy to operationalise. For my feature extraction, I take inspiration from
Kuiken et al. (2017) and Zheng et al. (2017) who list these and more features (see
table 1 for their respective lists). As formal features Safran (2013) lists five headlines
types: normal, Question (headline forms a question), How to (headline starts with
“how to”), Number (headline introduces a listicle), and reader-addressing (contains
a form of “you”). I would like to include the feature of forward referencing (Blom
and Hansen, 2015), another characteristic of clickbait style: In headlines like “She
Did Not Expect THIS,” or “What Happened Next Will Blow Your Mind.” Here, one
has to click the article to resolve what these headlines are referring to. I am still
working on an adequate operationalization of this feature, perhaps simplifying it to
the presence of a demonstrative and/or pronoun.

Zheng et al. (2017)

Kuiken et al. (2017)

Presence/number of exclama-
tion mark

Presence/number of question
mark

Presence of pronoun

Presence of interrogative
Number of words

Number of dots

Stop words ratio

tf-idf weight of words

tf-idf weight of bigrams

Number of characters
Number of words

Average word length
Number of sentences
Number of sentimental words
Readability score

Containing question
Containing quote

Containing signal words
Containing pronouns
Containing number

First word type

TABLE 4.1: Clickbait feature lists to compute a clickbait score.

Semantic features

Emotional valence (positive / negative) and arousal (strong / weak) are important
factors for reading behavior (Chen et al., 2015). Clickbait is further associated with
overly positive sentiment. For sentiment analysis, I use the Sentiment Analysis
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and Cognition Engine (Crossley et al., 2017). SEANCE is a large knowledge base
including many word lists for nuanced sentiment analysis (251 core indeces). Since
SEANCE includes word lists that are interpretable as a topic (e.g. “politics, eco-
nomics, and religion,” “Dominance, respect, money, and power,” “social relations,”
“Arts and Academics”), it may also serve as a knowledge base to detect these topics.

In addiction, I employ topic modeling to detect the presence of semantic topics
(e.g. feminism, racial equality, LGBT+ issues). For the topic modelling I use Latent
Dirichlet Allocation (LDA). LDA is an unsupervised learning algorithm that detects
the co-occurence of words across documents (e.g. a headline) in a corpus (the col-
lection of all headlines). Words that cluster together form a “topic,” which may or
may not be an interpretable semantic topic. For the LDA, I define a document as
each unique story plus all its different headlines, i.e. I combine the unique “lede”
with all its unique headlines. This yields larger, more semantically coherent docu-
ments, which give LDA a better chance of picking up semantically related words.
This means that I perform LDA on the story-level, not the headline level. Since I aim
to detect semantic topics, preprocessing for the LDA include lowercasing, lemmati-
zation, stopword removal, punctuation removal. While I may lose potentially infor-
mative formal features by removing formal features as “noise,” I amplify the seman-
tic signal. I retrieve information about stopwords, uppercasing and punctuation in
other feature extraction steps.

4.4.2 Assessing linguistic features importance in the data set

Through the linguistic methods mentioned above, I obtain in total M linguistic fea-
tures extracted along with their relative weights. In other words, for each package
k and for each feature i included in it, a relative weight FF is measured. Each pack-
age k identifies an online environment and it can be formally described as follows:
{Ff, ..., F&}, where FF is the weight assigned by linguistic methods to the linguistic
feature i for the package k; F¥ = 0 if the linguistic feature i was not found in the
package k.

Individual decision-making model

My main purpose is to build up a decision-making model able to surrogate the in-
teraction of an individual with a news headline presented online. The latter may
be thought of consisting of a set of linguistic features: OE; = {j,n,...,s}, where
j.n,...,s are the indices belonging to the linguistic features present in the headline
k; k = 1,..,K, K is the total number of packages available. Let us call Y the click-
through rate value for package k.

The decision-making model DM I assume is a simple linear relationship that
binds the linguistic features present in a generic package k with the click-through
rate of that package. Formally:

DM = ) wi=Y; « px (4.1)
i€cOEy

where w; are the coefficients quantifying the overall impact of feature i and p, €
[0,1].

In order to assess features importance w;’s, let us assume that my decision-
making model (Eq. 4.1) holds for each package of the Upworthy data set, that is a
simple linear relationship which binds the linguistic features present in the package
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with its click-through rate. Since I am provided of a continuous outcome for each
package (i.e. the click-through rate), together with the latter assumption, then a
linear regression method fits these requirements.

LASSO

In order to measure parameters for all features, I perform a Lasso regression (Least
Absolute Shrinkage and Selection Operator). It is a modification of linear regression.
In Lasso, the loss function is modified to minimize the complexity of the model by
limiting the sum of the absolute values of the model coefficients (also called the
I1—norm).

Formally, the estimates of LASSO coefficient (w1, ..., wy) are the quantities that
minimize:

M

K . 2 M
Z Y — | wo+ ZwiFi + A Z \wl\ (4.2)
k=1 i=1

i=1

where wy is the regression intercept and A is a tuning parameter which to be deter-
mined apart. The LASSO regression searches for the best coefficient estimates that
fit the data set.

LASSO differs form other regulation methods in this context (as Ridge, OLS, etc)
thanks to its second term, which is called “shrinkage penalty;” it has the effect of
shrinking the coefficient estimates towards zero. While several regression methods
tend to generate a model involving all features, the LASSO not only shrinks pa-
rameter estimates but it also pushes some of them to zero. I could say that LASSO
performs variable selection, in a certain sense (Georges and Pereira, 2019).

LASSO tuning parameter selection

LASSO implementation needs a way to selecting the tuning parameter A. Cross-
validation (CV) provides a simple method to achieve this task and it is consistent
with the goal of minimizing overfitting. In particular, I employ k-fold CV that con-
sists in randomly splitting the set of observed data into k folds of equal size. The
first fold works as a validation set, and the LASSO regression is performed on the
remaining k — 1 folds. The fold kept out (i.e. the validation set) is used to compute
the mean squared error, MSE;. By iterating this procedure k times with a different
fold of data set used as the validation set, the process generates k estimates of the test
error, MSE;, MSE,, ..., MSE;. The average of the latter yields the k-fold CV error:

k
CVi = 2 )} MSE; . (4.3)

1
k pt
The choices of A and k are affected by a bias-variance trade-off. It has been shown
empirically that k = 5 and k = 10 values produce test error rate estimates with
relatively small bias and variance and it is then common practise to compute k-fold
CV employing them (Georges and Pereira, 2019). In light of this, I perform LASSO
with respect to a grid of A tuning parameters, I compute the cross-validation error
for each of them, and then I select the one for which the k-fold CV error is the lowest
value. Once the tuning parameter is chosen, I finally obtain the best set of LASSO
regression coefficients; they represent the overall impact of features on the click-
through rate. An illustrative example of the outcome of this procedure is Fig.4.3
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where they are shown the top ten impacting linguistic features on the click-though
rate.

linguistic features #137

linguistic features #106

linguistic features #68

linguistic features #144

linguistic features #59

linguistic features #163

linguistic features #37

linguistic features #50

linguistic features #159

linguistic features #165

linguistic features #105

linguistic features #12

linguistic features #182

—0.0010 —0.0005 0.0000 0.0005 0.0010
LASSO parameters

FIGURE 4.3: By having performed 10-fold CV for a bunch of A values,
I select the LASSO coefficients for the best performance and show the
first ten ranked in order of decreasing impact on the click-though rate.

Since the focus of my work is on the collective behaviour which emerges from the
A/B testing methodology employment in a social spreading framework, the results
coming from the most impacting linguistic are not shownin order not to focus on
hypothetical linguistic features and their meanings. All the procedure I described so
far remains unaltered. This choice is motivated by the fact that linguistic methods
settings depend on the data set. The latter exploration would make more accurate
the answer to the research question: what features of a written piece of news (e.g.
clickbait) make them gain more clicks or, in other words, what features an AB testing
mechanism may leverage.

4.4.3 Agent based model of messages social spreading

Once obtained from LASSO performance the impact of each feature on the click-
though rate, the decision-making function shown in Eq. 4.1 is fully working for
simulating an individual interaction in front of an hypothetical (e.g. clickbait) on-
line environment. Let us figure individuals in a social network which are given of
different stimuli (in the spirit of Upworthy); their social interactions may promote
sharing of popular messages (i.e. linguistic features). A synthetic reproduction of
that dynamics may be thought as following. In my simulation frameworks, N agents
are given. My first assumption lies on the fact that they are all equal: they behave
through the same decision-making function (Eq. 4.1) in front of a package, provided
of the same feature coefficients. The agents are linked one another with respect of a
network structure which reproduce social interconnections among them. In order to
mimic a social network structure, the best modeling tool which fits my requirements
is borrowed from graph theory; I am endowed with a stylized complex network
whose nodes are agents presented in the environment and whose edges are the pos-
sible interactions among different individuals. I employ several network topologies
(e.g. Albert-Barabasi, Erd6s-Rényi, Stochastic Block Model) and tune their densi-
ties (i.e. sparsity of the network). Let us consider synthetic packages generated by
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randomly picking n linguistic features. When an agent is given of a package, its in-
dividual decision-making generates an output with respect to the features presented
in the package. This response is then converted in a probability to click and a ran-
dom threshold determines if the agent clicks or not on the content. Once an agent
clicks, it shares the successful package to its directly connected nearest neighbors,
according to an infection rate € (0,1]. The latter is my second main assumption:
the click for an agent means “sharing” a package to the nearest neighbors (with a
friction parameter 7). In order to pursue my second research question, i.e. under
which conditions a piece of news enhanced by A/B testing spread in a social net-
work structure, I need to set up a general framework in which I can ideally "switch
on’ the A/B testing machinery and make a comparison afterwards. Therefore, I de-
sign the agent-based model and I can distinguish between two scenarios. In the first
scenario, messages shared by individuals undergo a pure social spreading; in the
second one, instead, A /B tests lead the message selection dynamics.

Pure social spreading scenario

The case of a pure social spreading is meant to be my benchmark scenario. The simu-
lation starts by drawing two randomly generated packages (i.e. packages are done of
n linguistic features randomly picked) and are randomly allocated to agents all over
the network, package A to half population and package B to the other half. Agents
click or not according to my decision-making model and the ones who clicked may
spread (according to the infection rate #) to those nearest neighbors of theirs who
were shown the other package. This spreading dynamics stops in a few steps, once
the opportunities of sharing a new content to neighbors saturate (i.e. each agent
may at most see both packages and share them around if it clicked). At this point,
a new two packages drawing takes place: one between the old A and B is kept and
the other one is partially reassembled according to a mutation rate y; i.e. u is the
percentage of package features which is randomly varied. Another test administra-
tion round starts again by randomly splitting the population in two and randomly
assigning the two packages to agents and so on.

A/B testing led social spreading scenario

The case of social spreading in which A/B testing is performed by a third party
(e.g. a private company) is a slight but pretty crucial modification of the benchmark
framework mentioned above. The A/B testing machinery takes place from the sec-
ond round package selection on. By comparing click results between A and B of
the previous round, it chooses for the new test administration the B package if its
performance overcomes A click-though rate and builds a new package by varying
B of a mutation rate. In the opposite case, A is kept for the new round and a new
package B is built by varying A package. Exploring A/B testing literature, several
statistical methods have been employed over time for assessing if B click-through
rate greater than A one is statistically consistent in an A/B test. Nevertheless, the
main difference is between frequentist and Bayesian approaches.

A/B testing methodologies In general, one performing an A/B test is basically
collecting click-through rates from the control A and the variation (B) and then uses
a statistical method to determine which of the two performed better. In a frequentist
world, one would use p-values and make a choice between the null hypothesis (i.e.
there is no relevant difference between A and B, then I keep A) and the alternative
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hypothesis that the variation B is better than the control A. As soon as the p-value
reaches statistical significance or large amount of data, the experiment is considered
done. The frequentist approach requires a wider difference in performances in order
to prefer B.

On the contrary, following the Bayesian methodology, the click-though rate of
each variant is modeled as a random variable with a probability distribution. Even
in case the improvement of a new variant is small, Bayesian statistics is more will-
ing to choose the variation B against the control A. On one hand, this means that
this methodology results more prone to false positive rate; on the other hand, it lets
either to control the magnitude of wrong decisions or to perform a quick series of ex-
periments so that one may accumulate small gains from incremental improvements
once making a lot of variations is effortless and free of charge (Frasco, 2018).

Since my aim is to simulate how a private company would perform A/B testing,
my choice of which methodology to reproduce solely depends on which choice they
would make. They actually depend on their purposes and their contexts. For exam-
ple, one may prefer the latter in situations in which the treatment requires relevant
expenses (e.g. engineering maintenance, disruption to the user experience, the costs
of implementing it, etc) which would only be offset by large benefits (i.e. wide dif-
ference between A and B click-through rates). On the contrary, for situations similar
to mine, a Bayesian approach is rather more preferred. Each small improvement is
very welcome since no additional expenses one incurs in choosing the variation B
against A, even if it is a false positive. It doesn’t worth putting effort against the false
positive rate; it is much more relevant administrate more tests (i.e. explore wider all
the possible combinations) and quickly.

Bayesian A/B testing

The Bayesian methodology for performing A /B testing lies in a nicety of the Bayes
theorem in combination with the nature of processes underlying A/B tests. It is
usually very hard or impossible in most of cases to obtain closed form solutions
to the Bayes theorem; for this reason approximation methods (e.g. Markov Chain
Monte Carlo) have been developed. An A/B test can be described by Bernoulli trial
since it is a random experiment with only two possible outcomes: “click” and “not
to click.” The Beta distribution is the conjugate prior of such process; that means
the posterior function of the Bayes Theorem lies in the same family of the prior one
and then a final function can be built with an iterative process. Therefore, an exact
solution of the Bayes formula (i.e. closed-form solution) exists. As just mentioned,
a convenient prior distribution form modeling a binomial parameter g is the beta
distribution. Starting from a flat, uninformative prior, defined by Beta(1,1), the dis-
tribution of p after C clicks and F failures (i.e. impressions minus clicks) is given by
Beta(C+1,F+1). C+1and F + 1 are the two parameters of the beta distribution
for the belief. Therefore, in my case I have two beta functions and accordingly their
two Bayesian beliefs; they are one for the experimental branch A and the other one
for B:pa ~ Beta(Ca +1,F4 + 1) and pp ~ Beta(Cp+1,F4 + 1).

In line with Miller (2015) and without explicitly report the calculation, the prob-
ability that B performs better than A in the long run is given by:

Beta(Ca +1i,Fg + Fa)
Fg +i)Beta(1+1i,Fg)Beta(Ca, Fa)

Cg—1
Pr(pg > pa) = ) ( (4.4)
i=0
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Let us define the uplift as how much B variation increases the click-through rate with
respect to the control A:

uplift = CBC‘ACA , (4.5)

where c4 and cp are click-through rates. Let us suppose the latter is positive. In order
to assess how trustful is the result, Eq. 4.4 estimates the probability that B option to
perform better than A. Note that in the frequentist approach there is no way to
calculate this probability. In that case, one computes a p-value and in case it falls
under an arbitrary threshold, one would state that “within a certain percentage of
confidence level (i.e. the a value, usually 95%), the null hypothesis can be rejected.”
This is a way different from the Bayesian case here where one would state “this
hypothesis is better then the other with a certain probability percentage.”

4.5 Results

All the procedure explained in details above has been tested exploratory data set
from the Upworthy Research Archive (Matias and Munger, 2019). All the machinery
described above may be considered pretty general and, in principle, it could employ
successfully other similar data sets.

In the following I present some results obtained from my procedure’s perfor-
mance. In particular, I set up a social spreading framework according to the settings
previously described. I simulate N = 500 agents allocated according to the Albert-
Barabasi network structure for total T = 500 time steps. Each 5 time steps a new A-B
couple drawing takes place. I perform this simulation either the pure social spread-
ing framework or in the A/B led one. The first A-B couple drawing is common to
both of the settings: nr features (in the shown example nr = 7) are randomly picked
for generating the control package and the variation B is assembled varying the con-
trol. From the second drawing on, the two setting differ in the A-B couples way
of selection. In the pure social spreading case, one of the two previous packages is
chosen for the new round (new control A) and challenged against its varied version
(new variation B). In the A/B led social spreading setting, the Bayesian A/B testing
methodology is employed on the gathered click-through rates at the end of every
round; in case the variation B overperforms the control A with a probability greater
than a fixed threshold (in the shown simulation the threshold is set at 95%), then
the successful B becomes the new control A for the next round and a new variation
B is generated varying the control. Al the contrary, if successful conditions for the
A/B are not satisfied, the control A remains the same and a new variation is gen-
erated from it. In every case, generating the variation depends on a mutation rate
u(in the example shown, = 3/7). The simulation of every scenario was performed
for R = 100 Monte Carlo replicas. Every replica was built according to a unique set
of random seeds for pseudo-random generators; this guarantees either that replicas
differ one another in random drawings employed or simulation reproducibility.

A crucial measure has been assessing the dynamics of the most successful lin-
guistic features over time. I show a comparison of the two scenarios in Fig. 4.4. In a
pure social spreading, the ‘winning’ linguistic feature behavior over time (averages
over 100 replicas) shows an evolution roughly fitted by a third degree polynomial
function. At the contrary, in an A/B testing led scenario, the successful linguistic
feature behavior follows a trend which can be fitted by a linear function.
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winners dynamics with and w/out AB in Albert-Barabasi; N=500 mutation rate:0.71; infection prob<0.1
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FIGURE 4.4: Comparison of the fist-ranked linguistic feature dynam-

ics in both explored scenarios, a pure social spreading setting and an

A/B testing led one. The network structure employed in the simula-
tion is the Albert-Barabasi one.

The results coming up from this exploration are indicating that A /B testing has a
substantial influence on the qualitative dynamics of information dissemination on a
social network. Through measuring homogeneity and heterogeneity of final distri-
bution of successful messages in a social network framework, either in a pure social
spreading or in a AB testing-leaded one, I clearly observe (Fig. 4.5) that the A/B
testing-led framework changes the dynamics of the pure social spreading qualita-
tively, by drawing crowd attention on leading linguistic features. In other words, I
observe that A /B testing performed on synthetic social networks structure kills mes-
sage heterogeneity by promoting the most successful linguistic features identified
during the dynamics. In the subsequent data analysis, leveraging the full, confir-
matory upworthy data set, I am able to quantify specifically which of the linguistic
features are the ones particularly favoured by A /B testing strategies and allow infer-
ences about its potential impact on the online discourse. Due to the dramatic shifts
of the public discourse to algorithmically driven platforms, this assessment is of in-
terest for the future design of platforms and regulation that preserve an exchange of
arguments while content delivery stays relevant.

4.6 Conclusions

The following Chapter tackles a methodology generally performed by private com-
panies to increase user engagement and satisfaction about online features: A /B test-
ing. Their usage is far from being transparent and may undermine user autonomy
(e.g. polarizing individual opinions, mis- and dis- information spreading). More-
over, it has been profoundly under-researched academically, in particular collective
behavior effects. For my analysis I leverage a crucial case study dataset (i.e. Upwor-
thy) where news headlines were allocated to users and reshuffled for optimizing
clicks. My center of focus is to determine how and under which conditions A/B
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Final distributions with and w/out AB in Albert-Barabasi; N=500, MC=100, mutation rate:0.71; infection prob<0.1
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FIGURE 4.5: Comparison of the final ranking distributions of mes-

sages in both explored scenarios, a pure social spreading setting and

an A/B testing led one. The network structure employed in the sim-
ulation is the Albert-Barabasi one.

testing affects the distribution of content on the collective level, specifically on dif-
ferent social network structures. In order to achieve that, I set up an agent-based
model reproducing social interaction and an individual decision-making model. I
employ several network topologies (e.g. Albert-Barabasi, Erd6s-Rényi, Stochastic
Block Model) and tune their densities ( i.e. sparsity of the network). I consider
synthetic randomly generated headline, which consists of a random combination
of a fixed number of linguistic features. My results indicate that A/B testing has a
substantial influence on the qualitative dynamics of information dissemination on
a social network. In particular, the final distributions of feature distribution from
my agent-based model, either in a pure social spreading scenario or in the A/B
testing condition. I could observe that the A/B testing mechanism increases the
homogeneity of information that is spread. In other words, I observe that A/B test-
ing performed on a social network structure reduces the exploration and amplifies
exploitation of successful features of early pieces of information, ignoring others.
Moreover, my modeling framework promisingly embeds conjecturing policy (e.g.
nudging, boosting) interventions.
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Appendix A

Market selection and learning
under model misspecification

A.1 Proof of Proposition 1.2.1

Solving the problem in (1.1) by Lagrangian method, the system of agent i First Order
Conditions is:

ui(cio) = pi o)

/ _ Hig\o
u;(Ci,t((T)) - ﬁf Pi(Ut) (A1)
tgo argth(o-t) (eit(0) —cip(0)) =0,

where y; is the Lagrange multiplier associated with agent i’s budget constraint and
q(c?) = 1. Defining

1 t—1

_ pi(c')
xit(0) = W/ q(

q(c ‘ =1y
, pilstle ™) = pi(ot=1)”

q(c!)

St ’ O.tfl) —
the marginal utility dynamics for agent i can be derived from Eq. A.1 and reads:

. t—1
xit(0) = Bi % xXip—1(0) . (A2)

From the Inada condition at 0 for u; stated above, the following limit must hold
for each agent i and time ¢, along a given path o

lim x;;(0c)=0. (A3)

Cit ((7)%0+

By iterating Eq.A.2, I can express the ratio of the marginal utility dynamics of two
agents j and i for any path ¢ at time ¢, that is

Xt (0) _ Yo (,3]>t pi(a') (A4)
xip(@)  xjo \Bi/) pild!)
Taking the logarithm and dividing by ¢ on both sides of eq. A.4, one obtains
1. xii(0) 1 Xi0 Bi 1 -1 -1
+1og i) ;log% +log g+ ;T;l (log pj(sclo™") —log pi(sc|o )) :
(A.5)

Adding and subtracting t ' ! _; log p(s¢|cT 1) at the right hand side of eq. A.5, tak-
ing the limit for t — oo, and invoking the strong law of large numbers for martingale
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differences, one has

lim * log 224(%)
ot 08 xi(0)

= (logBj = Dp(p;)) — (log Bi = Dy(pi)) p-as..  (A6)

Eq. A.6, together with eq. A.3 and the boundedness of aggregate endowments,
delivers the statement.

A.2 Auxiliary results

Lemma A.2.1. Assume 30 € AX~' such that 1 = YX_, {xm. Then, considering an
under-reacting agent i, it is

K
1) - kZ: gkﬁp (pi,kl U) =
-1

st S s
lim1 A Z Zn(s) <;)i(;T]((TT)—1)_1)_|O((1_Ai)2)|'

f=oo0 t T=T+1s=1

Proof. Applying the Taylor expansion argument of Dindo and Massari (2020)
Lemma 8 to log((A;p;(s|c'™1) + (1 — A;)7i(s)) /pi(s|et1)), one obtains Vo, t

S 1. (lot—1 'y
Y 7(s) log Aipi(sle’™) + (1 — Ai) () _

= pi(slo™=1)

s s
=(1-MN) Y 7(s) <pl(7;’|<((7tzl) — 1) —10((1 =A%),

s=1

with O(f(x)) such that limsup, |O(f(x))/f(x)| < . Since, by the definition of
relative entropy, one has VT € IN

5 Aipi(s|le™ 1) 4+ (1 — X)) (s _ _
3 (s)tog M U ZAIEE) b, 0) - Dy (o).
s=1 1

Multiplying on both sides of each equation k by the respective (; and summing up,
one obtains

K
pl/ EngP sz/ 1) =

S
1= 2) Y ) (5 —1) o=l

Multiplying both sides by 1/t and taking the limit for ¢ — oo, the statement follows.
O

A.3 Minimum A dynamics for a sub-Bayesian agent to over-
perform Bayesian one

According to sufficient and necessary conditions coming from the results in Propo-
sition 3.1 of Bottazzi and Giachini (2019) and in line with my illustrative example
where two misspecified models 71, and 71;, are given, I notice that asymptotically
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two cases are possible: either the agent prediction converges to the best model or
a more accurate combination is adopted. Proposition 3.1 of Bottazzi and Giachini
(2019) provides a sufficient condition for such improvement in accuracy. In a two-
model sub-bayesian learning system, I can recover sufficient and necessary condi-
tions adapting the results in Proposition 3.1 of Bottazzi and Giachini (2019). In par-
ticular, there exists a A; such that for A; < A; I have the convergence to the best model
and for A; > A; I have the emergence of the more accurate mixture. The conditions,
however, are implicit in A;. there exists a A; € [0,1) such that, if A; > A;, a sub-
Bayesian agent observing A; overperforms a Bayesian one. In K-L distance terms:
Dp(/\ina/\b + (1 - Ai)nb/\a) < min{Dp(rcu),D,,(nb)}.

Let us consider the setting 7, < p < 71, and let us call 77, < p the value which
satisfies the equation: Dy (7t,) = Dp(7); the inequality D,(7t,) < Dp(7,) always
holds for 77, < 7t,. However, a more accurate mixture may perform better that being
Bayesian and following the misspecified model 77;. In other words, there exists a
A; € 0,1) such that, if A; > A;, a sub-Bayesian agent observing A; overperforms the
Bayesian on 71,; in K-L distance terms: D, (A7, 4 (1 — A;)7,) < Dp(73). Then, the
value A; solves the equality:

=0 . (A7)

Aty 4+ (1= Aj) 1, +(1-p) logl—iﬂb‘i‘(l—ﬁi)ﬂa

1
P08 7Ty 1—7'(1,

Let us set 71y, = A7y + (1 — A;)7,; by investigating A; as a function of 7, for the
implicit function theorem:

p_1-p dA N
(”Ai_l—ml) <(n"_””)m+(1—)‘z)>—0 ; (A8)

since A; # p, the first term in the parenthesis is never zero; this implies:

WA _ 17X hich can be written as: ~— log(1— A) = — 1
it~ o which can be written as: - og(l—Aj) = s og(mtp—114) .
(A9)
By writing explicitly the dependency from 7, (omitted above for simplicity) :
c c
log(1—Ai(m,)) = r— then: Ai(rm,) =1 — r— (A.10)

since I know from above that A;(77;) = 0, I easily obtain ¢ = 71, — 77,. The functional
form is then:

T, — 7T
A(m) = (A11)
a

In the end, it is worth to notice that the quantity in (A.7) is monotone in A;; i.e. its
partial derivative w.r.t. A; is:

( P 1_’?> (7tp — 714) > 0 . (A.12)

Ty M-y

If is mixing for some A;, there is also mixing for A; + J, where 6 > 0.
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Appendix B

The Grossman and Stiglitz model:
an agent-based extension

B.1 Rational expectations model derivation

I restrict the model to the case:
e agents are homogeneous and provided of rational expectations;
e zero supply of output shares (i.e. x; = 0 Vt).

Since agents are homogeneous, the strategy j is the only one performed, i.e. K' = K.
Relying on Muth’s concept of rational expectations, rational agents use publicly
available information efficiently. That means no systematic errors affect their expec-
tations. Moreover, they fully understand the structure of the economy (i.e. model)
and are able to rely on this knowledge when computing the expectations of vari-
ables. In this setting, Eq. 2.2 reduces to:

E:|P
p = l t+1R+ Yy ,_ (B.1)

{y:} is the dividend process and the agents are assumed to form correct expectations
about, then for any agent i:

Eilyiix] = Et[yisi] k=1,2,... (B.2)

In addiction, dividend payments are expected to grow at a constant rate s.t. :
Eilyik] = (14 )k y; k=1,2,.., (B.3)

where 0 < p < ris the positive expected dividend growth rate. Since expectation is
a linear operator, the pricing equation could be written:

1

p=——
! 1+7r

+ (Et[Pesa] + Elyi]) , (B.4)
which holds in all periods; under the assumption of rational expectation, agents
fully understand Eq. B.4 and then formulate their expectations consistently with it.
Since it holds in all periods, they devide the solution by repeated substitution. In
order to make it clear, let us write Eq. B.4:

1
Py = 11r (Etk[Prgks1] + Ergk[Virks2)) ; (B.5)
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iteratively substituting the latter in Eq. B.4 for 0 < k < N — 1 further steps, together
with the law of total expectations (which in my case implies: E;[E;k[Piixi1]] =

Et[Prris Et[EerklYerrr1]]l = EtYerria]), Eq. B.4 becomes:

N 1 k 1 N
P = k; (1—%—1’) Et[yei] + <1+1’) E¢[PtynN] . (B.6)

An assumption usually made in this context is that the last term tends to zero as N
tends to oo; this is also called "no-bubble condition", since it rules out the possibility
a bubble could occur for several reasons (e.g. negative bubbles, asset price with a
maximum, the present of risk averse investors etc). Then:

1 \VN
nggo(Hr) (PN =0 (B.7)
another explanation is that if I would set all future values of dividends to zero, the
asset price would be still positive; but an asset that never pays out should be inher-
ently worthless, so Eq. B.7 condition excludes this possibility.

What remains of Eq. B.6 states that equilibrium price should equal a discounted
present-value sum of expected future dividends; moreover, as I assumed dividend
payments are expected to grow (Eq. B.3), Eq. B.6 becomes:

- IS 1 k B 1 00 1+‘u k—1
F = k; <1+r> Eilyik] = 117 k; (1—|—r> Et[Yis1]- (B.8)

If the condition y < ris satisfied, then the term (%) < 1 and the summation of

infinite geometric series will converge. A fixed point for price has then been reached:

[ el DN/ (B.9)
r—u

As a matter of fact, taking over Eq. B.9 into Eq. B.4 I would obtain an identity. In
order to sum up, the latter is the price value the market would converge itself in case
I would have homogeneous rational agents trading a risk free asset and a risky asset,
with constant expected dividend growth. Actually, what I derived is in the spirit of
Gordon dividend growth model. Eq. B.9 also implies that:

Ei[Fax] = 1+ u)*E k=1,2,... (B.10)

B.2 Uninformed agent strategy

In line with Eq. 2.4, dividends {y;} and then fundamental prices {F;} are Geometric
Brownian motion (GBM) processes. Since uniformed agents fully understand the
structure of the economy, they are aware of these processes” nature as well. That
means they expect that percentage changes over equal non-overlapping intervals
are i.i.d., and if they observe a number k of y; realizations, vy, ..., yx, the ratios y’y—tl ,
0 <t <k —1, have to be independent and identically distributed Marathe and Ryan
(2005). Let us define u; = y’y—tl and take logs, one gets:

In(yr+1) = In(ye) + In(ue). (B.11)
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Let w(t) = In(yi+1) — In(y); if {y¢} is GBM then {w(t)} are i.in. variables with
mean fl; and variance 0y; k index states the sample size they are relying on when
they compute. Hence, at t = k, i.e. after having collected k dividend realizations,
uninformed agents will infer /iy by simply computing:

1 k—1

For t = k, once provided of fl;, they are able to form expectations about future div-
idend and fundamental price in their demand, Eq. 2.6. Their precision on mean
computation increases the more time goes on. Another way accounted for unin-
formed learning is leveraging Ordinary Least Square inference. Uninformed agents
suppose that dividend process is a linear function of time plus some random noise:

Yyt = Po+ P1or+ex. (B.13)
The parameters By and 1 can be estimated consistently by OLS:

{Bo, f1} = argmin i(yt — Bo—P16)” . (B.14)
{Bo.B1} t=1

Then, i = y;. Although the first method is pretty more accurate that the second one,
model dynamics doesn’t change qualitatively.
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