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Market liquidity is a latent and dynamic variable. We propose a dynamical linear price impact model
at high-frequency in which the price impact coefficient is a product of a daily, a diurnal, and an auto-
regressive stochastic intraday component. We estimate the model using a Kalman filter on order book
data for stocks traded on the NASDAQ in 2016. We show that our price changes estimates conditional on
order flow imbalance explain, on average, 82% of real price changes variance. Evidence is also provided
on the fact that the conditioning on filtered information improves the estimate of the LOB liquidity with
respect to the one obtained from a static estimation of the price impact. In addition, an out-of-sample
analysis shows that our model provides a superior out-of-sample forecast of price impact with respect to
historical estimates.
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1. Introduction

Statistical modeling of centralized limit order books, or LOBs, is a well established and active area
of research. Central to this topic is the concept of price impact, or “the correlation between an
incoming order and the subsequent price change” (Bouchaud 2010). Grounded in the economic
intuition that price changes should reflect the aggregate imbalance between supply and demand,
Cont et al. (2014) introduce the Order Flow Imbalance, the sum of signed volume of all incoming
orders at the best quotes over a time interval. The authors prove that, at the minute time-scale,
price change is a linear function of the order flow imbalance, and identify the price impact of order
book events with the regression coefficient of this linear relationship.

This papers makes two contributions to the price impact literature. First, we provide empirical
evidence of the auto-regressive nature of price impact at short time scales. Second, leveraging this
statistical feature, we describe an econometric model for conditional high frequency estimates of
price impact. While the order flow imbalance is a strong predictor of price change at the minute
time-scale, at a higher-frequency, the discreteness of the price change variable becomes a dominant
feature, weakening the linear relationship between price changes and OFI, and thus the explanatory
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power of a simple regression model. We prove that, over short time scales, price impact has a
statistically significant auto-correlation, even after controlling for the presence of the intraday
pattern. This statistical feature has important consequences for estimation purposes: at a high
frequency, price impact has a weaker dependence on OFI, but a higher dependence on recent LOB
activity. By using a filtering approach, where price impact is modeled as a latent auto-regressive
variable with noisy observations, we can exploit past information to form a prior on the current
level of price impact, and lower the estimation error.

Precisely, we introduce a model where price impact at time ` of day i is determined by the product
of three components: a daily price impact component βi, a deterministic intraday pattern π`, and
a stochastic auto-regressive component qi,`. This type of modeling is reminiscent of analogous
models in the conditional variance literature (cfr. Engle and Sokalska 2012, among others). The
resulting price impact process βi,` describes the time dependent relationship between price change
– normalized by the tick size δ – ∆Pi,` and the order flow imbalance OFIi,`. In particular, our
model can be thus written as:

∆Pi,` “ βi,`OFIi,` ` εi,` εi,` „ NID
`

0, σ2
ε

˘

(1)

βi,` “ βi πt qi,` (2)

qi,` “ 1` ρ pqi,`´1 ´ 1q ` ηi,` ηi,` „ NID
`

0, σ2
η

˘

(3)

We refer to Appendix B for the details on how we set the initial values for the parameters and
for the process pqi,`q. In the setting in (1), price impact is linear in the order flow and permanent,
but its value at a given day/time of the day is determined by the price impact process (2)-(3).
Some observations are in order. The model postulates that even at the time-scale considered in the
present paper, i.e. 1 minute, the contemporaneous OFI is the main determinant of price changes
and, in particular, it does not describe the joint dynamics of price changes and OFI. Importantly,
we empirically verify, the reliability of this exogeneity assumption on OFI by performing a study
following the lines of Hasbrouck (1991). Also, the model assumes no commonality in the OFI of
assets i and j with j ‰ i (Capponi and Cont (2020)); the accounting for such a factor in our time-
varying model represents an interesting direction for future research. Admittedly, the Gaussian
assumption in (1) may be suspect because the price change variable may be confined on a discrete
price grid. However, we reassure, through some classical diagnostic testing for Kalman filter, that
the forecast errors are (mostly) normal. Finally, the model suggests – and the empirical analysis
verifies – that variation in intraday liquidity is not caused only by a deterministic and recurrent
diurnal pattern, but also by a stochastic auto-regressive component, which can be associated with
transitory phenomena. In other words, the predictable diurnal pattern of market depth (Cont et al.
2014) is not sufficient to explain all the auto-correlation of price impact. The model described in (1)-
(3) has a linear Gaussian state-space representation that can be easily estimated using a Kalman
filter (Durbin and Koopman 2012) and standard maximum-likelihood methods.

Our model has interesting applications for execution. Execution strategies typically slice an
order into child orders, which are then executed within a given time window according to a trading
schedule. Tactical execution of child orders could benefit from the real-time price impact forecast
provided by our model. For example, a trader could defer a trade when the price impact is higher
than the expected average level, waiting for market conditions where the likelihood of moving the
price against her are lower.

For example, our model could be used to design an optimal execution schedule by generalizing
the approach of Almgren and Chriss (2001). We remind that in this framework there are two kinds
of market impact: a temporary impact and a permanent impact. In our model we account only for
the permanent market impact given by βi,`OFIi,`; see (1). The trading volume v` due to the optimal
execution (either with limit or with market orders) will bring an additional contribution to the OFI
and the variations of βi,` influence the impact of both OFI and v`. In particular, the permanent
impact of the latter will be βi,`v`. Thus the main difference with Almgren and Chriss (2001) is that

2



June 20, 2021 Quantitative Finance Draft˙to˙resubmit˙V1

the pre-factor of permanent impact is now time varying and must be filtered during execution.
For this reason, differently from Almgren and Chriss (2001), the optimal execution schedule is not
statically determined, but requires the use of stochastic optimization. Notice also that one could
make the model more complex by adding a dynamic equation for the OFI in a spirit similar to
Cartea and Jaimungal (2016). Also, we mention the works of Casgrain and Jaimungal (2019) and
? where authors consider the optimal execution problem and market impact games, respectively,
in the presence of order flow models driven by latent elements. These are potentially interesting
applications of our modeling framework that we leave for future research.

We select five stocks listed on the National Association of Securities Dealers Automated Quota-
tion System (NASDAQ) 100 index and we filter intraday time-series of price impact estimates. Our
analysis leads to the following results: i) the auto-regressive coefficient ρ is statistically significant
with an average value of approximately 0.5, suggesting a half-life of 1 minute for the process q;
2) conditioning on real time information improves the estimate of the LOB liquidity with respect
to the one obtained from the deterministic intraday pattern alone. 3) The variance of the price
changes explained by βi,`OFI as in (4) is significantly larger than the one explained by both a
model in which βi,l is statically computed and a model in which βi,l is book-reconstructed and set
equal to half the inverse of the depth (as in the stylized LOB model Cont et al. (2014)). Moreover,
it turns out that the price impact is much higher after the opening auction than during the rest of
the trading day in which it exhibits a flat behavior followed by a decline before the closing auction.

The paper is organized as follows. Section 2 is a literature review. Section 3 describes the data.
Section 4 introduces the model of Cont et al. (2014) and provides a descriptive analysis of the
price impact coefficient constructed with their methodology. The focus is on the performance of
the model on different estimation timescales. Ultimately, the empirical findings presented in this
section are used to justify the assumptions of our model. In Section 5 we present our model and
describe the estimation methodology in detail. We study the dynamics of price impact, we perform
an out-of-sample exercise, and we investigate the relation between price impact and market depth
in Section 7. Section 8 concludes. Technical details and furthers investigations are confined in the
Appendix.

2. Literature Review

Market liquidity is one of the key characteristics of financial markets. Given its relevance, both
from a theoretical (e.g. for price formation (Datar et al. 1998, Chung and Chuwonganant 2018))
and a practical perspective (e.g. for the optimal liquidation of institutional orders (Bertsimas and
Lo 1998, Almgren and Chriss 2001)), an extensive body of literature has been written in the
effort to define, measure, and understand liquidity (see Foucault et al. 2013, for an authoritative
introduction on the subject and its ramifications). Also, market liquidity is a slippery and elusive
concept with various dimensions. One of them, which is the focus of this paper, is price impact
(known also as “depth” or “resiliency” in the language of Kyle (1985)), i.e. the reaction of
prices to trades. In his foundational paper, Kyle (1985) derives an equilibrium solution in a
framework where price fluctuations and traded volumes are linearly related. Moreover, he shows
that the reciprocal of the coefficient of this linear relationship (i.e., the notorious Kyle’s lambda)
is a measure of the depth of the market. Since then, several models of market impact have
been proposed (cfr. Glosten and Milgrom 1985, Glosten and Harris 1988, Madhavan et al. 1997,
Bouchaud et al. 2004, Hasbrouck 2007, Bouchaud et al. 2009, Cont et al. 2014, among many others).

Although price impact can be derived from an equilibrium solution, it can be seen also as the result
of the arrival and cancellation of orders in the market. Over the last two decades, the increasing
availability of high quality granular data has motivated a stream of studies focused on the modeling
and measurement of the price impact of orders. The impact of market orders has been extensively
investigated in Lillo et al. (2003), Farmer et al. (2004), where the connection between the state of
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the LOB and price fluctuations has been elucidated. Moreover, it has been shown that limit orders
and cancellations also have a significant price impact (Eisler et al. 2012, Hautsch and Huang 2012).

Our model builds on that of Cont et al. (2014). The main innovations of our model with respect
to theirs are the following: i) the price impact coefficient is considered a latent and dynamical
variable; ii) we are able to disentangle and quantify the contribution of the different components
(daily component, time-of-the-day pattern and intra-day variance) of the price impact coefficient
estimates; iii) we can describe the statistical properties of the stochastic intraday component
qi,`, such as its persistence. We point out that a previous version of this model appeared in a
preprint written by one of us. Here we add several changes to that model, the most important
one is the disentangling of the periodic intraday component, which is responsible of a significant
fraction of the persistence in price impact. Our model is broadly in line with the class of History
Dependent Impact Models (HDIM) (Lillo and Farmer 2004, Eisler et al. 2012) in which the price
impact is permanent but variable. Indeed, although in our methodology the price impact is not
explicitly history dependent (i.e., it does not depend explicitly on previous values of the OFI), its
dynamics is filtered out through the use of Kalman Filter (see Section 5.1). As a consequence of
this procedure, it becomes dependent on previous values of the OFI.

Finally, we notice that the assumption of time varying liquidity is consistent with various
theoretical and empirical works in the literature (cfr.,for instance Saar 2001, Chiyachantana
et al. 2004, Pereira and Zhang 2010) for which price impact varies according to the underlying
economic environment. Moreover, other authors in the financial literature postulate an auto-
regressive dynamics for the price impact coefficient (Amihud and Mendelson 1986, Pástor and
Stambaugh 2003, Acharya and Pedersen 2005, Pereira and Zhang 2010). However, while models
for high-frequency intra-day conditional variance of financial returns are well-explored (cfr. for
instance Andersen and Bollerslev 1997, Andresen and Bollerslev 1998, Bollerslev et al. 2000, Giot
2005, Engle and Sokalska 2012, Stroud and Johannes 2014, and references therein), to the best
of our knowledge, price impact models in which the price impact has an its own (unobserved)
dynamics have not been subject of deep investigations. The main contribution of our study is
the introduction of an enhanced methodology for the characterization of security price dynamics
within the state-space models framework. Broader finance applications would include liquidity
effects on asset pricing, optimal trading strategies, or market design. Still, the latter applications
may represent an interesting direction for future research.

3. Data

We use data collected from the NASDAQ Historical TotalView-ITCH, and extracted through LOB-
STER (Huang and Polak 2011). The dataset contains the history of all trades, orders and can-
cellations submitted at the best quotes to the NASDAQ stock exchange during standard trading
hours1

On the NASDAQ platform each stock is traded in a separate LOB with price-time priority and
a tick size of δ “ $ 0.01. Although this tick size is the same for all stocks, the prices of different
stocks vary across several orders of magnitude. As it is customary within the financial literature,
we refer to large-tick stocks if the ratio between δ and the average stock price (i.e. the relative tick
size) is large and to small-tick stocks if this quantity is small. The framework of Cont et al. (2014)
is particularly suitable for large-tick assets because small tick stocks are characterized by small
queues and sparse LOB (Farmer et al. 2004, Lillo and Farmer 2005). Thus, all our developments
are illustrated on five specific examples of large-tick stocks from the NASDAQ 100 index: Microsoft
Corp. (MSFT), Comcast Corp. (CMCSA), Intel Corp. (INTC), Cisco Systems Inc. (CSCO), Apple

1NASDAQ standard trading hours are between 09:30 and 16:00 EST.
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Inc. (AAPL). The relative tick sizes spans between 4.27 and 1.36 basis points. Dates range from
January 4th, 2016 to June 30, 2016, for a total of 125 days. These stocks have been chosen as a re-
sult of a well-defined selection process. First, we ranked the NASDAQ 100 index by average market
capitalization. Then, we ranked the top 20 stocks (i.e., the largest 20 capitalization) by relative tick
size. Finally, the top five stocks from the list have been selected for the main empirical investigation
performed in this work. Whereas, the bottom five have been selected as “small tick” stock; the
Appendix discusses the results for small-tick stocks which have a relative tick size ranging between
0.36 and 0.06 basis points. The average mid-price of each stock along with its standard deviation
over the sample period is reported in the third column of Table 1. The fifth and seventh column
of Table 1 outline time-weighted bid-ask spreads in dollars and as a percentage of the prevailing
quoted midpoint.2. Table 2 presents a more detailed summary statistics for the LOB. Quantities
characterizing the latter (i.e. limit orders, market orders and cancellations) are reported both in
terms of number of events (# Ev.) and of average volume (Avg. Vol.). We observe significantly more
activities in limit orders and cancellations than in market orders. Moreover the activity on the ask
and the bid side of the LOB is quite symmetric. Notice that all averages in Table 1 and Table 2
are taken over the period considered in our data and are measured in event-by-event time-scale.

Relative
Stock Ticker Mid-price Spread Spread

Avg. Std Avg. Std Avg. Std
Cisco Systems Inc. CSCO 26.910 1.870 0.011 0.000 4.27 0.35
Intel Corp. INTC 30.994 1.209 0.012 0.000 3.74 0.21
Microsoft Corp. MSFT 52.150 1.819 0.012 0.000 2.35 0.10
Comcast Corp. CMCSA 59.779 2.896 0.013 0.000 2.10 0.14
Apple Inc. AAPL 99.502 5.463 0.013 0.001 1.36 0.11

Table 1.: Descriptive statistics of investigated stocks over the sample period. The sample period is
from January 1st 2016 to June 30th, 2016. Mid-price and Spread are reported in dollar unit ($). The
Relative Spread is reported in basis point unit. Stocks are sorted by average price (or by spread),
i.e. inversely by relative tick size.

Symbol BidQ1,` AskQ1,` BidQ1,c AskQ1,c BidQ1,m AskQ1,m

#Ev. Avg.Vol. #Ev. Avg.Vol. # Ev. Avg.Vol. #Ev. Avg.Vol. #Ev. Avg.Vol. #Ev. Avg.Vol.
CSCO 83746.38 1004.59 85574.85 1018.82 69306.98 809.28 71667.87 823.32 7481.11 54.04 10983.63 70.47
INTC 107735.19 1027.75 109450.99 1052.25 89663.46 824.30 91820.30 849.24 9429.46 60.24 12460.66 76.54
MSFT 190464.74 1776.54 190903.58 1755.47 154535.32 1351.72 156275.93 1355.95 18022.72 141.13 23296.63 196.48
CMCSA 90841.02 715.31 91874.22 724.14 74455.99 561.90 76142.54 575.87 9460.17 62.16 11637.26 80.69
AAPL 206612.51 2460.25 210055.42 2507.16 183007.70 2091.56 185826.46 2137.03 21011.42 247.76 25953.06 320.13

Table 2.: Main sample statistics of the limit order book averaged over the sample period. The
sample period is from January 1 2016 to June 30, 2016. The amount of limit orders at the best
bid (BidQ1,`) and ask (AskQ1,`), of cancellations (BidQ1,c and AskQ1,c) and of market orders
(BidQ1,m and AskQ1,m) for each stock is reported. Quantities are characterized in term of both
number of events (#Ev.) and average volume (Avg.Vol.) measured in number of shares.

2We note, however, that spreads calculated on displayed liquidity may overestimate the effective spreads actually paid or

received due to non-displayed orders. Remarkably, on NASDAQ non-displayed orders are not visible until executed.
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4. The model of Cont et al. (2014).

First, for sake of completeness and for fixing notations, we review the model of Cont et al. (2014).
In particular, we recall both the notion of order flow imbalance and price impact coefficient.

Cont et al. (2014) introduced a stylized model of the LOB leading to a simultaneous relation
between order flow and price change. More precisely, consider an equally-spaced partition I` “
rt`´1, t`q of length ∆` of the time interval r0, T s (i.e., a trading day) and denote respectively by Lb`,
Cb` and M s

` the total number of shares of limit buy orders, cancellation of buy orders, and market
sell orders that has occurred at the bid price within I`. Similarly, Ls` , C

s
` , and M b

` represent the
total number of shares of limit, cancellation and market orders that affected the ask price within
I`. Finally, let P b` , P s` and let P` be the bid, the ask and the mid price at time t`, expressed as
multiples of the tick size δ. Cont et al. (2014) define a stylized LOB whose dynamics are driven
by the following rules: 1) the number of shares at each price level of the order book beyond the
best bid and ask is given by D. 2) limit, market, and cancellation orders occur only at the best bid
and ask prices. iii) when the bid size reaches D the bid price moves upwards of one tick, when it
reaches 0 the bid price moves downwards of one tick. Specular rules hold for the ask price.
Under these assumptions, authors show that the mid price change is determined by

∆P` “ β` OFI` ` ε` ε` „ NID
`

0, σ2
ε

˘

(4)

where OFI` ”M b
` ` L

b
` ´C

b
` ´M

s
` ´ L

s
` `C

s
` is the order flow imbalance and β` ” 1{p2D`q is the

price impact coefficient relative to the `-th half-hour time window. In their work, authors assume
that β` is constant over each half-hour interval and estimate a separate β̂` via ordinary least squares
(OLS) regression in each 30-minutes window. To obtain a proxy of the intraday pattern of market

impact, they average β̂` for each half-hour interval across the days.

4.1. The Cont et al. (2014) model on different time scales

The estimation of the model proposed by Cont et al. (2014) relies on two distinct time scales. The
first one, ∆K , is the time interval over which a single β is estimated from the linear model, and
the second one, ∆`, with ∆` ă ∆K , is the frequency at which single realizations of price changes
and order flow imbalance are sampled. We use the following notation : days in our sample are
indexed by i pi “ 1, . . . , Nq and the trading day is divided in multiple non-overlapping intervals
(bins onwards) indexed by ` p` “ 0, . . . , Lq.

In the original paper, authors divided each day in 13 non-overlapping intervals of ∆K “ 30
minutes and considered time-series of ∆P and OFI with sampling frequency ∆` “ 10 seconds.
Since we are interested in modeling liquidity at a significantly higher frequencies (1 minute), we
conduct an empirical analysis in order to test the performance of the Cont et al. (2014) model on
different time scales. We estimate (4) for different values of ∆K and, for a fixed ∆K , for different
values of ∆`. Qualitatively, the results obtained from different stocks are highly comparable. This
allows us to display MSFT as a representative of the entire pool.

The left panel of 1 shows the estimated value of β when ∆K is fixed and equal to 30 minutes
and ∆` varies from 300 to 0.5 seconds. The right panel, instead, displays a contour plot of the
coefficients of determination as a function of the length (in seconds) of the regression window ∆K

and of the sampling frequency ∆`. Reported statistics have been averaged across 100 days, starting
from January 4, 2016. The following observations are in order. The left panel shows that the average
value of β weakly depends on ∆`. A mildly divergence from this behavior occurs when ∆` is equal
to 5 minutes. On the other hand, as discussed in Cont et al. (2014), the R2 strongly depends on ∆`

(see the right panel). For a fixed ∆K , R2 is a non monotonic function of ∆`: it initially increases
and reaches a maximum around ∆` “ 10´ 30 seconds, which is the time scale used in Cont et al.
(2014). Moreover, it is a monotonically decreasing function of ∆K for a fixed ∆`.
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Figure 1.: Left panel represents averages across days of the price impact coefficient estimates β̂k
as in (4) for MSFT as a function of the time of the day for ∆K “ 30 minutes and ∆` equal to:
0.5 seconds (red), 5 seconds (blue), 10 seconds (green), 20 seconds (magenta), 30 seconds (gold), 1
minute (cyan) and 5 minutes (black). Right panel represents the contour plot of the averages R2

across days as a function of the regression window ∆K and sampling frequency ∆`.

This said, Figure 1 indicates that at short time scales the OFI regression is less accurate, thus
suggesting that the estimation of the price impact at a higher frequencies is likely to be quite noisy.
To overcome this problem, we propose a dynamical model of price impact (see Section 4), where β
is a latent variable estimated through a Kalman filter approach, over intervals of one minute. Before
introducing our model, we perform a standard regression analysis under the following settings: i) β
is estimated over a window ∆k “ 60 seconds and ii) time series of OFI and ∆P are sampled with
frequency ∆` “ 0.5 seconds. One of the main aim of this exercise is to obtain further insights on
the type of dynamical modeling that is appropriate for empirical data. Results are summarized in
Figure 2.

The top-left panel plots the histogram of the values β̂i, i “ 1, . . . , N obtained by averaging,
in each generic day i, β̂i,` over `. The significant variability range (i.e., between 2 and 4) of β̂i,`
calls for the introduction of a parameter that accounts for the average liquidity on a given day i.
Therefore, a proper account of the factors governing price impact must incorporate the (average)
daily level of price impact. The intuition behind our assertion is that there are some days in which
the market is globally more liquid than others.

The top-right panel displays the estimated price impact intraday pattern β̂`, ` “ 1, . . . , L. In the
same spirit of Cont et al. (2014), we retrieve the pattern by averaging the estimated price impact
across the trading days. In agreement with the empirical findings of Cont et al. (2014), the price
impact exhibits a pronounced intraday periodic component. This calls for a model specification that
explicitly takes it into account. A first visual inspection of the intraday pattern of price impact
reveals a characteristic shape. The largest price impact occurs at the open trade. Then, it tapers
through the interior period gradually, and fell rapidly at the end of the trading day. We will return
to this issue later.

Let β̂i,` be the estimates in (4) relative to day i and to the `-th one-minute slot. We compute
for each intraday one-minute interval the sample mean and the sample standard deviation of the
estimates across days and relate these quantities in the scatter plots presented in the middle-left
panel of Figure 2. The panel clearly shows a positive relationship between these two statistics.
This type of relationship, common for families of random variables with positive support (e.g. the
Gamma, the log-normal, and the Weibull are parametric families of random variables with this
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property), calls for a multiplicative process for market impact. Finally, we rescale each β̂i,` by

the intraday pattern; precisely, we divide each β̂i,` by π`, ` “ 1, . . . , L. We perform this further
step in order to eliminate the risk of accounting for spurious auto-correlations. We plot the ACF
of this normalized quantity (see the middle-right panel of Figure 2) for a specific day (May 12,
2016). There is evidence of some short-lived dependences. What type of phenomena can lead to
these dependences? We interpret this result as being symptomatic of transient phenomena, which
are not captured by the predictable intraday pattern (cfr. Cont et al. 2014) of the price impact.
In particular, this phenomena should exhibit different statistical properties with respect to the
time-of-the day effect. We claim that these fluctuations around the average level of price impact
should be unobserved (latent), similarly to what is assumed for the volatility of price returns in
the volatility literature.

In summary, we have identified four main dynamical properties that we will incorporate in the
model proposed in Section 5: 1) price impact varies across days, thus a global level characterizes the
average liquidity; 2) there is a pronounced intraday pattern1; 3) there is a linear relation between
the mean and standard deviation of price impact, suggesting that the price impact should be
modeled by a multiplicative process; 4) price impact is temporally (short-range) auto-correlated

5. A dynamical market impact model

Intraday equity returns (for a day i and time-of-the-day `) are described by the following process:

∆Pi,` “ βi,` OFIi,` ` εi,` (5)

βi,` “ βi π` qi,` (6)

qi,``1 “ p1´ ρiq ` ρiqi,` ` ηi,``1, (7)

where:

‚ εi,` and ηi,` are NIID and mutually independent with mean zero and variance respectively
equal to σ2

i,ε and σ2
i,η.

‚ The process π`, which is allowed to change within the day but is otherwise time-invariant
across days, captures the diurnal effect.

‚ βi is the daily average price impact component on day i, while
‚ qi,` denotes the remaining, potentially correlated, stochastic price impact component which

is described through an unobserved (latent) mean-reverting process; notice that the choice of
the drift in Equation (7) ensures that the unconditional mean of the process pqi,`q is equal to
one.

Note that, without additional restrictions, the components of Equation (6) are not separately

identified. Thus, we assume that
řL
`“1 π` “ L. Setting αi,` ” qi,` ´ 1 (i.e. αi,` measures the

stochastic component of the price impact deviation from the average level), we define a price impact
fluctuation to be a non-zero conditional expected value of the process βiπ`αi,`. The dynamics in
Equation (5) can be classified as a latent variable model and its estimation can be performed by
using the Kalman filter, as described in Subsection 5.1. We remind that details on how we set the
initial values for the parameters and for the process pqi,`q are given in Appendix B.

1In addition to the previous effects, price impact may exhibit large, sudden shifts around the release of important economic

news, such as macroeconomic information (see Andersen and Bollerslev 1998, for a discussion of a similar behavior of intraday
volatility). Should the price impact also explicitly account for economic announcements, one would multiply the price impact
coefficient for another factor representing the scheduled announcement effects. This further modeling is beyond the scopes of

the present paper, however, we strongly encourage this analysis in future works.
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Figure 2.: From left to right, from top to bottom: histograms of the average daily level of price
impact; estimates of the intraday pattern of price impact coefficient computed according to the
procedure of Cont et al. (2014) at a time scale of ∆K “ 60 seconds, ∆` “ 0.5 seconds. Scatter

plot of the sample mean versus the sample standard deviation across the days of estimates β̂i,`
computed for each intraday one-minute interval.

5.1. Estimation

Before showing the estimation procedure, we fix some notations, we introduce the general state-
space representation as in Durbin and Koopman (2012) and we derive the corresponding Kalman
filter recursions.

We denote the value of a generic variable X (e.g. OFI, price impact coefficient or hyper-
parameter) at day i and bin ` as Xi,`, i “ 1, . . . , N and ` “ 1, . . . , L. Our methodology is in-
dependently applied to each day of the sample, therefore, for the sake of simplicity, the index
i will be replaced by ¨. We denote the set of observations of the price adjustment up to time
`´ 1 with P¨,`´1 “ t∆P¨,1, . . . ,∆P¨,`´1,OFI¨,1, . . . ,OFI¨,`´1u and the hyper-parameters vector with
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Θ “ pβ¨, ρ¨, σ¨,ε, σ¨,ηq. We remind that our proposed model for price impact reads as follows

∆P¨,` “ q¨,` β¨ π` OFI¨,` ` ε¨,` ε¨,` „ NID
`

0, σ2
¨,ε

˘

(8)

q¨,``1 “ p1´ ρ¨q ` ρ¨ q¨,` ` η¨,` η¨,` „ NID
`

0, σ2
¨,η

˘

, (9)

which has a linear Gaussian state-space representation. This has two important implications: i)
the model can be treated with Kalman filter and ii) the log-likelihood function can be written in a
closed form. Denoting by q¨,`|` and P¨,`|` the conditional mean and variance of q¨,` given P¨,`, and by
q¨,``1 and P¨,``1 the conditional mean and variance of q¨,``1 given P¨,`, the Kalman filter recursions
can be written as follows (see e.g. Durbin and Koopman 2012)

v¨,` “ ∆P¨,` ´ Z¨,` q¨,`, Z¨,` “ β¨ π` OFI¨,` F¨,` “ Z2
¨,` P¨,` ` σ

2
¨,ε

q¨,`|` “ q¨,` ` P¨,` Z¨,` F
´1
¨,` v¨,` P¨,`|` “ P¨,` ´ pP¨,` Z¨,`q

2 F´1
¨,`

q¨,``1 “ ρ¨q¨,`|` ` p1´ ρ¨q P¨,``1 “ ρ2
¨ P¨,`|` ` σ

2
¨,η (10)

Once q¨,`, P¨,`, q¨,`|` and P¨,`|` are retrieved, one can compute the Kalman smoothing equations by
backward recursion. Precisely, we have (Durbin and Koopman 2012)

q¨,`|L “ q¨,`|` ` J¨,`

´

q¨,``1|L ´ q¨,``1

¯

P¨,`|L “ P¨,`|` ` pJ¨,`q
2 `P¨,``1|L ´ P¨,``1

˘

J¨,` “ P¨,`|`F
´1
¨,` P¨,``1 (11)

Given the Kalman filter recursions in (10), the log-likelihood function

log L p∆P¨,1, . . . ,∆P¨,Lq “
L
ÿ

`“1

log p p∆P¨,`|P¨,`´1q

can be computed in the prediction error decomposition form:

log L p∆P¨,1, . . . ,∆P¨,Lq “ ´
L

2
log 2π ´

1

2

L
ÿ

`“1

´

log F¨,` ` pv¨,`q
2 F´1

¨,`

¯

.

As the diurnal pattern is not practically observable, we propose a “two-stage” approach. In the
first stage, the diurnal factor is pre-estimated. In the second stage, the estimator is included in
the estimation procedure. In the conditional variance literature there are several methodologies
that capture the intraday unobservable pattern. For instance, Andersen and Bollerslev (1997) and
Andresen and Bollerslev (1998) employ Fourier transform techniques, whereas Müller et al. (2011)
use functional data analysis methods. Instead, the approach that we propose in this work can be
related to the one introduced by Engle and Sokalska (2012)1.

In our setting, the daily price impact component βi belongs to the hyper-parameters vector
Θ, (i.e. it is an output of the estimation procedure). To capture π`, ` “ 1, . . . , L, we proceed as
follows. First, we set π` “ 1 for each ` “ 1, . . . , L and we run the Kalman filter for each day i
in our sample to obtain a first estimation of both the hyper-parameters vector, say ΘpIq, and the

smoothed state process, say q
pIq
i,`|L. However, at this stage, the latter incorporates also the diurnal

1Engle and Sokalska (2012) propose a model for high-frequency intraday financial returns, ri,`. They decompose the conditional
variance of the latter as a multiplicative product of daily, hi, diurnal, s`, and stochastic, qi,` with E

“

qi,`
‰

“ 1, intraday volatility.
To proxy the daily variance component hi, authors use commercially available volatility forecast. Thus, once a proxy for hi is

obtained, they simply calculate s` as the variance of returns in each bin after deflating by the daily variance.

10
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price impact pattern in a multiplicative way. Therefore, the estimated diurnal pattern π̂` is obtained

by computing the sample mean of q
pIq
i,`|L across days i.

In the second step, pπ` is embedded into the Kalman filter recursions in (10), thus leading to the
final estimates.

6. Econometric and modeling issues

In this section, we discuss both the modeling and the statistical properties of our model.

6.1. Exogeneity of the OFI

The OFI introduced in Cont et al. (2014) provides a simple tool to account for both the price
impact of trades, i.e., market orders, and orders, limit order placements and deletions. The authors
proposed a simple linear regression model of the relationship between OFI and price fluctuations
which successfully captures multiple empirical regularities of intraday market liquidity. However,
the extreme simplicity of their model limits the study of this relationship to the contemporaneous
effects between the two variables. It is worth asking whether this is the case even at one-minute
time horizon, i.e. whether the data, at this time-scales, require the OFI to be endogenous. If this
were the case, it would be necessary to model the joint dynamics of price changes and OFI. In
what follows, guided by the seminal paper of Hasbrouck (1991), we apply a vector auto-regressive
(VAR) model as a validation of the exogeneity assumption. In particular, we introduce the following
model1:

„

1 b0
0 1

 „

∆P`
OFI`



“

„

a1 b1
c1 d1

 „

∆P`´1

OFI`´1



`

„

v1,`

v2,`



, (12)

where the immediate effect of the OFI on price fluctuations is measured by the b0 coefficient. The
goal is to test whether at the time scale of 1 minute a joint dynamics for OFI and price changes
is necessary. In line with Hasbrouck (1991), v1 and v2 are jointly and serially uncorrelated with
zero mean. We assert that the settings of the model introduced in (12) capture the fact that
the price fluctuations and OFI are, by construction, not determined simultaneously: the change
in the mid-price follows the last update of the OFI whereas ∆P` cannot contemporaneously
influence the OFI. In addition, we truncate the potentially infinite order of the VAR representation
at one lag. The purpose of the present analysis is to assess whether some lagged effects exist
even at a relatively low (in a micro-structure perspective) frequency (one minute). We assert
that the eventual presence of serial dependencies is likely to be caused by some micro-structure
imperfections, such as price discreteness and delays in the reception of newly released information.

Table 3 displays the regression coefficients associated with contemporaneous and lagged effect
along with the corresponding t-statistics (between brackets). We report averages of the estimated
parameters over the sampling period. Also, we check that the reported results are in line with
day-by-day estimates. We observe that the contemporaneous effect of the OFI (i.e., ´b0) is
positive and significant. On the other hand, the lagged effects are not significant with the
notable exception of AAPL. This analysis supports the conjecture that there is a significant
instantaneous dependence of price fluctuations on the OFI, but the latter does not display any
significant auto-correlation and therefore it is reliable to consider it as exogenous. Ultimately, this
findings confirms the validity of the adopted dynamics even at a sampling frequency of one minute.

1Note that for the sake of consistency the following VAR is conducted in calendar time
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Parameters’ values (t-stats)
Ticker b0 a1 b1 c1 d1

CSCO -2.59e-06 0.040 -5.61e-08 -27661.86 0.02
(-26.85˚˚˚) (0.17) (0.005) (-1.19) (0.34)

INTC -5.50e-07 -0.005 1.75e-08 -124098.13 0.04
(-28.81˚˚˚) (-0.025) (0.14) (-0.84) (0.50)

MSFT -1.23e-06 0.054 -9.18e-08 -65617.70 0.08
(-30.83˚˚˚) (0.27) (-0.23) (-1.02) (1.00)

CMCSA -1.03e-04 -0.012 2.115e-08 -15320.32 0.034
(-12.05˚˚˚) (-0.15) (0.05) (-0.86) (0.48)

AAPL -2.94e-06 0.135 -8.86e-07 -38559.31 0.25
(-22.98˚˚˚) (0.68) (-0.90) (-1.48˚) (2.23˚˚)

Table 3.: VAR parameter estimates. Coefficients which result to be significant at 10%, 5% and 1%
confidence levels are marked, respectively, with one, two and three stars.

6.2. Is Kalman the right filter?

From an estimation perspective, the appealing feature of the proposed model is that it can be
estimated via Kalman filter, and part of the appeal of Kalman filter comes from its robustness. It
is well known (see, for instance Hamilton 1994) that it is the optimal filter (minimum mean-square
error) if the innovations are normal. In (8) and (9) the disturbances are i.i.d. normal. The normality
assumption in (8) is not justified because of the discrete nature of price changes at one minute
time horizon. In particular, the disturbances have to be uncorrelated with the regressors, so, at
first sight, normality seems to be implausible. We address this concern explicitly and we quantify
the severity of the misspecification. Precisely, we follow the literature (Durbin and Koopman 2012)
and we look, for any generic day i, at the time series of the standardized one-step ahead forecast

errors: ε̂¨,` “ v̂¨,`{
b

pF¨,`, ` “ 1, . . . , L obtained after the estimation of the model. They should be

i.i.d. normally distributed. In Appendix D we show sample auto-correlations of ε̂¨,` and ε̂2¨,`, as well
as quantile-quantile plots for ε̂¨,`. We only note some very weak heteroskedasticity of pε¨,` and a
slight deviation from normality in the tails. We argue that the proposed framework represents an
optimal trade-off between a model with a perfect statistical fit of the data and a model that have
clear advantages in terms of practical implementability.

6.3. Statistical issues in the two-step estimation procedure

In this subsection, we discuss the statistical properties of the two-step estimator of the model
introduced in Section 5. The proposed estimation methodology relies on a two-steps procedure.
We are aware of the the facts that errors emerging in the first phase might propagate through
the second stage. We perform a numerical experiment in order to address this statistical concern
explicitly. Precisely, Appendix E reports a numerical exercise based on Monte Carlo simulations
confirming that embedding π` into the Kalman filter recursion has no discernible impact in the
estimation.

7. Empirical Results

We estimate the model in (1)-(3) by applying the procedure presented in Section 5.1 to the dataset
described in Section 3. We recall that our dataset contains the order book activity of five NASDAQ
100 Index stocks over 125 days. We split each trading day in L “ 390 non overlapping time windows
from which we sample the mid-price change and OFI time series as described in Appendix A. We

12
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divide the available data into a training set of 100 days and a test set of the subsequent 25 days.

7.1. In-sample analysis

The analysis on the training set is carried out by estimating the model via MLE through the two-
steps procedure discussed in Section 5.1. Hyper-parameter estimates of the training set are used
to construct the empirical distribution of the hyper-parameters vector Θ. Table 4 reports hyper-
parameter estimates after the second stage. Overall, estimates are statistically significant and their
inter-quantile ranges indicates that estimates have (on average) a small statistical dispersion.

Parameter: β
Ticker Median Mean Average t-statistic Q1 Q3

CSCO 3.883ˆ 10´5 3.835ˆ 10´5 41.07 3.414ˆ 10´5 4.368ˆ 10´5

INTC 6.455ˆ 10´5 6.515ˆ 10´5 35.06 5.285ˆ 10´5 7.979ˆ 10´5

MSFT 1.404ˆ 10´4 1.443ˆ 10´4 40.95 1.213ˆ 10´4 1.613ˆ 10´4

CMCSA 3.022ˆ 10´4 3.124ˆ 10´4 37.36 2.576ˆ 10´4 3.522ˆ 10´4

AAPL 3.392ˆ 10´4 3.472ˆ 10´4 46.32 2.974ˆ 10´4 4.015ˆ 10´4

Parameter: ρ
Ticker Median Mean Average t-statistic Q1 Q3

CSCO 0.3323 0.3505 11.62 0.1167 0.5084
INTC 0.2714 0.3553 12.13 0.1232 0.5271
MSFT 0.4016 0.4603 14.10 0.2419 0.7513
CMCSA 0.3287 0.3855 11.57 0.147 0.6463
AAPL 0.4122 0.4262 14.01 0.1700 0.6203
Parameter: σε
Ticker Median Mean Average t-statistic Q1 Q3

CSCO 0.0035 0.0036 17.52 0.0027 0.0045
INTC 0.0045 0.0050 20.21 0.0039 0.0056
MSFT 0.0096 0.0115 19.34 0.0080 0.0133
CMCSA 0.0103 0.0135 15.05 0.00870 0.0150
AAPL 0.0274 0.0316 20.58 0.0200 0.0400
Parameter: ση
Ticker Median Mean Average t-statistic Q1 Q3

CSCO 0.2547 0.3364 10.29 0.1958 0.3341
INTC 0.2561 0.2941 16.36 0.1942 0.3611
MSFT 0.2752 0.2666 21.06 0.1736 0.3496
CMCSA 0.3091 0.2981 18.79 0.2002 0.3758
AAPL 0.4089 0.3753 24.64 0.2889 0.4639

Table 4.: Summary of estimation results of model in (1)-(3) on order book data of five NASDAQ 100
Index stock over 100 days in 2016. For each parameter we report: 1) the median (second column),
2) the mean (third column), 3) the average t-statistic (fourth column), 4) the lower and the upper
quartile.

We now focus on the parameter ρ describing the persistence of price impact. Coherently with the
preliminary descriptive investigation presented in Subsection 4.1 and with the numerical exercise
displayed in Appendix E, we note that the proposed two-steps procedure successfully captures and
filters out the auto-regressive stochastic dynamics from the intraday pattern. More precisely, the
auto-regressive coefficient ρ at stage two is significantly smaller than the one estimated at stage
one (shown in Table 5). The difference highlights that ignoring the pervasive diurnal effect of the
market impact would turn the process pq`q`“1,...,L in an almost integrated process (cfr. Table 5).
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In particular, this would support the statement that the price impact is strongly auto-correlated.
When the intraday pattern is properly taken into account, the value of ρ significantly decreases.
Nonetheless, estimates remain statistically significant. The reduction of the auto-correlation co-
efficient has notable implications for the persistence of liquidity fluctuations. For instance, while
values for ρ around 0.98 and 0.99 represent a process with a half-life ranging between 30 minutes
and 1 hour, values of ρ below 0.5 suggest that the process has a half-life of 1 minute. Thus, the
liquidity fluctuations predicted by our model are, on average, short lived (but significant).

Parameter: ρ
Ticker Median Mean Average t-statistic Q1 Q3

CSCO 0.8671 0.7771 32.73 0.6983 0.9470
INTC 0.9218 0.8513 43.51 0.8491 0.9627
MSFT 0.8880 0.8198 40.76 0.7818 0.9548
CMCSA 0.9163 0.8597 48.07 0.8406 0.9598
AAPL 0.6507 0.6109 20.62 0.3744 0.8758

Table 5.: Estimation results for the parameter ρ after the first stage. We report: 1) The median
(second column), 2) The mean (third column), 3) The average t-statistic (fourth column), 4) the
lower and the upper quartile.

Figure 3 displays the estimates β¨,`, ` “ 1, . . . , L, averaged across days. From left to right panels
show the price impact process for four stocks (CMCSA, MSFT, INTC, CSCO, AAPL). The dy-
namics of price impact is interesting and presents a clear intraday pattern. It peaks right after the
opening auction, then it quickly decreases to lower levels where it hovers around an average value
for most of the trading day and, finally, it decreases again right before the closing auction. The
shape of the pattern has an intuitive explanation: the high level of market impact at the beginning
of the day is likely to be the consequence of heterogeneity of traders’ opinions and adverse selection.
The low levels observed at the end of the day can be linked to the market practice of requesting
the completion of a parent order within the trading day, a phenomenon that increases the available
liquidity right before the closing auction1.

Figure 4 provides a closer look at the dynamics of the price impact process. It combines Kalman
smoothed estimates of price impact (black line), Kalman filtered estimates of price impact (green
line) and averages across days of the price impact process β¨,`, ` “ 1, . . . , L, (blue line) in specific
days and normalized by the average daily level. Panel A displays CSCO on January 27th 2016, Panel
B AAPL on June 15th 2016 and Panel C INTC on April 27th 2016. In these days three different
meetings of the Federal Open Market Committee (FOMC) have taken place. The behavior of
the price impact significantly diverges from the average price impact around 1400 EST, which
is the time in which economic information is released, showing how investors promptly react to
the announcement by updating their positions. This empirical result suggests that our model
successfully captures real time variations of the price impact.

7.2. Out-of-sample performance

We now discuss the out-of-sample performance of our model. As a benchmark for the true price
impact on a given day we select the ex-post smoothed estimates of market impact. Note that
Kalman smoothing estimates are computed by using the hyper-parameters estimated from real
trading data for the considered day; hence they represent the best ex-post estimates of market

1We point out a recent article on the topic, “The 30 minutes that have an outsized role in US stock trading”, recently appeared

(April 24,2018) on the Financial Times.
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Figure 3.: (From left to right, from top to bottom) Price impact process β¨,`, ` “ 1, . . . , L, averaged
across days for CMCSA, MSFT, INTC, CSCO, AAPL.

impact. We perform two out-of-sample exercises.
In the first one, we show that the conditioning on real time information improves the estimate

of the LOB liquidity with respect to the one obtained from the deterministic intra-day pattern
alone. More precisely, we first estimate our model over an in-sample period of 100 days. Figure 5
presents Kalman filtering performed on out-of-sample data. Precisely, the hyper-parameters values
are set equal to the median values of the hyper-parameter distributions computed in the in-sample
analysis. Blue lines represent the historical average market impact, green lines the filtered real-time
estimation of market impact and, finally, black lines represent the ex-post smoothed estimates of
market impact. The picture clearly shows that the filter successfully captures the intraday dynamic
of market impact. To support our statement, we compute 1) the mean squared error (MSE) of the
historical marked impact (resp. of the filtered estimates) with respect to the smoothed one, which is
denoted by MSE1 (resp. by MSE2) and 2) the gain in signal extraction as pMSE1 ´MSE2q {MSE1.
Table 6 reports the average gain (Average Gain 1) across the 25 out-of-sample days2. On average,

2Daily values for MSE1 and MSE2 and gain are available upon request.
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Figure 4.: Kalman smoothing estimates of price impact process of CSCO on January 27th 2016, INTC
on April 27th 2016 and APPL on June 15th 2016 (black line), together with the correspondent Kalman
filtered estimates of price impact (green line) and averages across days over the in-sample period (blue
line).

real-time monitoring reduces the MSE of market impact by a factor ranging between 0.22-0.83,
thus confirming a significant reduction in the MSE when the price impact is dynamically filtered.

In the second one we show the importance of the filtering procedure by comparing our model
with the static model of Cont et al. (2014) (the yellow line in Figure 6). For our model, we use the
estimates over the in-sample period of 100 days to obtain (an estimation of) the diurnal pattern.
Note that in our model the latter is allowed to change within the day but it is otherwise time-
invariant across days. Then, for each of the subsequent 25 days we compute the mean squared
error of the filtered estimates of price impact with respect the smoothed one (MSE2). The diurnal
pattern used in all the out-of-sample period is the one estimated over the in-sample period, i.e.,
it will not be updated as the experiment proceeds beyond the 100-th day, whereas the values of
the hyper-parameters in each day are the one of the day before (e.g., at day 113 we use the ones
obtained on day 112). We compare this mean square error with the one of the static model of Cont
et al. (2014) with respect the Kalman smoothing (MSE1). More precisely, we estimate in each of
the out-of-sample days the model of Cont et al. (2014) with a ∆k “ 1 minute and ∆` “ 0.5 seconds.
It is important to emphasize the difference between the two modelling approaches. The Kalman
approach uses the predictive filter, i.e. the expected value of q` conditional to the past history until
` ´ 1 and we use for the daily average βi the daily average price impact of the day before βi´1.
On the contrary, for the static model we perform at each interval ` the regression (in this sense
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Figure 5.: Out-of-sample Kalman filtering of market impact. Panels display three distinct estimates: 1)
average market impact (blue), 2) real-time filtered market impact (green) and 3) the ex-post smoothed
market impact (black). Left panel: INTC. Right panel: MSFT.

there is no prediction here) and clearly the level of β will be automatically determined by the
estimation. Despite these differences, the second column of Table 6, which reports the average gain
over the out-of-sample period, shows that the MSE for Kalman filter is smaller than the one for
the static approach. By looking at Figure 6 it appears that Kalman estimates might have a bias
due to the use of the one-day-before level βi: the average level for impact in a specific day can be
quite different from the one of the day before. The static estimates have instead a large variance
due to fluctuations, which contributes significantly to the MSE. One could easily improve the
performances of the filtering approach, for example by estimating the hyper-parameters (especially
βi) in the first hours of the day and then use it afterwards. This would reduce the above bias,
while keeping the variance small. This is beyond the scope of this comparison and we will not be
investigated further.

In particular, at this point, one might ask to her/himself what is the correlation between our
dynamic measure of the price impact and the static one. To answer this question, we compute
the Pearson correlation between the former (i.e. β`,K “ qi,`βiπ`, with qi,` the filtered estimates)
and the static market impact of Cont et al. (2014), say β`,S , with a ∆k “ 1 minute and ∆` “ 0.5
seconds, for each day i, i “ 1, . . . , 100, over the in-sample period. Figure 7 displays the box-plots
of the measured correlations for each stock in our sample. The two measures of market impact are
moderately positively correlated; the correlation coefficient is, in all the cases, around 60%. This
moderate level of correlation might be symptomatic of the fact that in our model price impact
becomes history dependent because of the use of the Kalman filter and, as a consequence, is
capable of grasping different dimensions of the price impact with respect to those captured by β`,S .
We will return on this point when discussing the results in Section 7.3, Table 7.
We conclude this section by observing that in a recent paper (Xu et al. (2019)) authors show
a reduction of the out-of-sample MSE when comparing their model with the one of Cont et al.
(2014). Their model is a generalization of the static model of Cont et al. (2014) which employs a
multi-level OFI (i.e. a vector quantity that measures the net flow of buy and sell orders at different
price levels in a (LOB)) instead of the OFI1. The authors of this work performed a comparison
also with our model and the performance of their model is in line with ours.

1More precisely, in order to calculate the out-of-sample RMSE, they use a methodology similar to 5-fold cross-validation. For
each stock, they first split their data set into 5 separate folds. For a given fold, they use all the data in the other 4 folds to fit

the parameters of the multi-level OFI via OLS or Ridge regression. Then they calculate the RMSE of the fitted model on these
same 4 folds and they call this the in-sample RMSE. Then they use the same fitted parameters to estimate the RMSE for the
other fold (which was not used in the regression fit) and call this the out-of-sample RMSE. They repeat this process for each

of the 5 folds separately, and record the mean out-of-sample RMSE across these 5 repetitions.

17



June 20, 2021 Quantitative Finance Draft˙to˙resubmit˙V1

0.00000

0.00025

0.00050

0.00075

0.00100

09
:3
0

10
:0
0

10
:3
0

11
:0
0

11
:3
0

12
:0
0

12
:3
0

13
:0
0

13
:3
0

14
:0
0

14
:3
0

15
:0
0

15
:3
0

16
:0
0

Trading time (hours)

AAPL, 2016−06−22

0.000

0.001

0.002

0.003

09
:3
0

10
:0
0

10
:3
0

11
:0
0

11
:3
0

12
:0
0

12
:3
0

13
:0
0

13
:3
0

14
:0
0

14
:3
0

15
:0
0

15
:3
0

16
:0
0

Trading time (hours)

CMCSA, 2016−06−23

Figure 6.: Out-of-sample Kalman filtering of market impact. Panels display four distinct estimates: 1)
average market impact (blue), 2) real-time filtered market impact as described in the second exercise
(green), 3) the ex-post smoothed market impact (black), 4) the static market impact of Cont et al.
(2014). Left panel: AAPL. Right panel: CMCSA.

Ticker Average gain 1 Average gain 2
CSCO 0.40 0.51
INTC 0.28 0.10
MSFT 0.22 0.02
CMCSA 0.83 0.28
AAPL 0.37 0.35

Table 6.: Average gain 1 : Average gain across the out-of-sample period (25 days), defined as
pMSE1 ´MSE2q {MSE1, where MSE1 (resp. MSE2) is the mean squared error of the historical
market impact (resp. of the filtered estimates) with respect to the smoothed market impact. Average
gain 2 : Average gain across the out-of-sample period (25 days), defined as pMSE1 ´MSE2q {MSE1,
where MSE1 (resp. MSE2) is the mean squared error of the static model Cont et al. (2014) (resp.
of the filtered estimates) with respect to the smoothed market impact.

7.3. Price impact and market depth

We now turn to an analysis of the relation existing between the proposed price impact measure
and market depth. Moreover, we look at the goodness of fit of (4) when three different proxies of
price impact are employed.

We remind that the baseline model for (4) is the model dubbed stylized order book, which mirrors
the following relation between price impact and market depth:

β` “
c

Dλ
`

` ν`, (13)

where c “ 1{2, λ “ 1 and ν` is a noise term. Thus, one can straightforwardly set β` equals to
the following identity: β` “ 1{p2D`q (i.e. to reconstruct the price impact directly from the market
depth. Technical details on the construction of market depth are discussed in Appendix A). Cont
et al. (2014) went a step further by computing price impact estimates through linear regressions
of price fluctuations on OFI (see Section 4 of the present paper). Relying on their vast universe of
stocks, they report the following results with ∆K “ 30 minutes and ∆` “ 10 seconds (see (17) and

(18) in the original work): ĉ “ 0.56 and λ̂ “ 1.08. Thus, at these time scales estimates of ĉ and λ̂ are
very close to values predicted by the stylized order book model. We now ask what would happen
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Figure 7.: Box-plots of the Pearson correlation between our dynamic measure of the price impact
(β`,K “ qi,`βiπ`, with qi,` the filtered estimates) and the static one (β`,S , i.e. the one of Cont et al.
(2014) measured with a ∆k “ 1 minute and ∆` “ 1 second). Pearson correlation is measured for each
day i, i “ 1, . . . , 100, over the in-sample period.

to ĉ and λ̂ should one use either different ∆K and ∆` or the price impact time-series filtered out
through the use of Kalman filter. Is the price impact dynamics (almost) fully explained by quote
size alone also in these in the aforementioned cases?

To answer this question, we estimate c and λ in (13) when price impact is constructed by
employing the methodology of Cont et al. (2014) with p∆K ,∆`q “ p30 min, 10 secq and p∆K ,∆`q “

p1 min, 0.5 secq, and when price impact is replaced with Kalman estimates. Incidentally, we notice
that a percentage (although very low, of the order of 0.10%) of price impact estimates are negative.
We thus fit, every month, (13) with a non-linear regression model by robust methods (i.e. by using

iterated re-weighted least squares)1. Table 7 reports average values of ĉ and λ̂. The grand mean
and median value of these parameters reported in the second and third column are in line with
that found in Cont et al. (2014)2, thus confirming that at these time scales there exists a tight
relation between price impact and the reciprocal of the market depth, as suggested by the stylized
order book model. Estimates in the fourth and fifth column indicate that the latter is still a good
approximation when p∆K ,∆`q “ p1 min, 0.5secq. Finally, the sixth and seventh column indicates
that (13) is inadequate if c “ 1{2 and λ “ 1 when βi,` are Kalman estimates. This implies that,
in this case, the price impact dynamic cannot be fully explained by (a deterministic function of)
quote size alone. Again, we postulate that this might be linked to the auto-regressive nature of
our price impact measure, which is capable to grasp different dimensions of the price impact in
addition to the market depth only.
To support this assertion, we look at the goodness of fit of (5) at a time scale of 1 minute for
three different proxies of price impact βi,`: 1) the book-reconstructed price impact βi,` “ 1{p2Di,`q;
2) the “static” price impact obtained by setting p∆K ,∆`q “ p1 min, 0.5 secq; 3) the (Kalman)
filtered estimates of price impact. We run regressions of returns ∆Pi,` on βi,`, i “ 1, . . . , N and

1We also implement the two-step linear regressions employed in Cont et al. (2014), by ignoring negative estimates. However,
no sensitive differences on estimates emerge.
2Notice that the data set examined by the authors refers to the month April 2010.
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Cont et al. (2014) Cont et al. (2014) Kalman filter
p30 min, 10 secq p1 min , 0.5 secq

Parameter: ĉ Mean Median Mean Median Mean Median
AAPL 0.251 0.216 0.283 0.158 0.008 0.006
CMCSA 0.64 0.71 0.92 0.93 0.07 0.06
CSCO 0.18 0.17 0.35 0.40 0.048 0.045
INTC 0.19 0.21 0.29 0.32 0.04 0.04
MSFT 0.126 0.125 0.157 0.170 0.018 0.016
Grand mean 0.456 0.289 0.02

Parameter: λ̂
AAPL 0.985 0.990 0.987 0.938 0.47 0.46
CSCO 0.97 0.96 1.06 1.04 0.82 0.81
CMCSA 1.14 1.17 1.209 1.213 0.818 0.810
INTC 0.97 0.99 1.03 1.05 0.799 0.806
MSFT 0.91 0.91 0.94 0.96 0.66 0.64
Grand mean 0.91 0.83 0.50

Table 7.: Estimates of parameters c and λ in (13) when βi,` is: 1) estimated employing the
methodology of Cont et al. (2014) with p∆K ,∆`q “ p30 min, 10 secq (first column) and with
p∆K ,∆`q “ p1 min, 0.5 secq (second column); 2) estimated through the Kalman filter (third col-
umn).

` “ 1, . . . , L:3

∆Pi,` “ α` γ βi,`OFIi,` ` νi,`, (14)

where νi,` is a random error. Table 8 reports the results and confirms what we have noticed so far.
Precisely, in the stylized model introduced by Cont et al. (2014), price changes are a mechanical
consequence of the provision and depletion of volume at the best quotes. In particular, this allows
to express price impact (see (13)) as a function of the size of the best quotes. If this model for price
impact was accurate, the utility of alternative estimation methods would then be restricted to the
case where order book data are not available. The clearly superior results obtained by price impact
estimates based on price change and OFI suggest that this is not the case. Price impact dynamics
cannot be fully explained by quote size alone. The method proposed by Cont et al. (2014) already
captures some of the variation not explained by quote size, as proven by the higher coefficient of
determination, but additional improvements can be achieved by introducing a dynamic for price
impact as in the model we have proposed in this paper.

3Notice that in this regression is present also the intercept; this explain why the γ̂ coefficient in the case of the static model is

not equal to one.
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book-reconstructed “Static” βi,` Kalman filtered βi,`
α̂ γ̂ R2 α̂ γ̂ R2 α̂ γ̂ R2

Ticker

AAPL 4.72 10´3 0.29 0.48 5.84 10´3 0.800 0.64 4.14 10´3 1.063 0.82
(22.09) (212.26) (32.52) (289.31) (32.9) (467.4)

CSCO 6.7210´4 0.44 0.83 4.7410´4 0.94 0.86 3.7610´4 1.01 0.96
(21.81) (488.43) (16.95) (544.62) (24.59) (1055.29)

CMCSA 2.0510´3 0.46 0.64 1.8910´3 0.92 0.69 1.4310´3 1.03 0.89
(18.71) (294.07) (18.68) (331.71) (23.9) (635.9)

INTC 8.3410´4 0.41 0.80 6.0610´4 0.95 0.85 4.6110´4 1.02 0.96
(20.13) (437.41) (17.06) (526.22) (23.6) (1013.1)

MSFT 2.1610´3 0.39 0.74 1.8010´3 0.91 0.81 1.4110´3 1.02 0.91
(25.86) (366.00) (25.14) (445.67) (29.07) (700.08)

Table 8.: Linear regression estimates as in Equation (14) along with the adjusted R2 of Equation
(14) for three different proxies of price impact βi,`. First column: the book-reconstructed price
impact βi,` “ 1{p2Di,`q. Second column: the “static” price impact obtained by setting p∆K ,∆`q “

p1 min, 0.5 secq. Third column: the (Kalman) filtered estimates of price impact.

8. Concluding remarks

In this paper we introduced a model in which price impact is linear and permanent, but the price
impact coefficient is a latent state of the limit order book subject to its own dynamics. In particular,
we define the price impact coefficient to be the product of three components: 1) a daily price impact
level, 2) a deterministic intraday pattern, and 3) a stochastic auto-regressive component.

An important characteristic of our model is that we do not study price impact components in
isolation. This is critical for real-time analysis and decision making. In particular, traders should
recognize and quantify the interactions and contributions of the various price impact components
as they simultaneously affect the dynamics of the price. Besides, such a decomposition is necessary
since factors display widely different statistical properties.

We calibrate the model on five stocks traded at NASDAQ using 1 minute data in 2016. We show
that 1) market impact dynamics should be taken into the account on out-of-sample estimation
performances, 2) the history dependent nature of our price impact measure, due to the use of
the Kalman filter, captures different dimensions of the price impact in addition to the market
depth only. In particular, we show that our model does not imply a square-root relation between
price changes and trading volume. This statement is true also when using the static estimates of
Cont et al. (2014) on smaller time-scales than in the original work. Finally, 3) our approach to
market impact estimation explains a greater dispersion of price fluctuations when compared to
other proxies. In the out-of-sample exercise we show that the MSE for Kalman filter is smaller
than the one obtained when using the static approach of Cont et al. (2014). Note that in the static
model the average daily level of market impact is automatically determined by the estimation. On
the contrary, the Kalman approach uses the predictive filter and, more importantly, it uses for the
daily average of market impact the level of the day before. In spite of this disadvantage, we obtain
a reduction in the MSE which is primarily due to the reduction of the variance of the dynamic
estimates.
As a by-product, our analysis allows for the estimation of the market impact intraday pattern. Price
impact is at its peak at the beginning of the day, right after the opening auction. The level decreases
in the next hour to an average daily level, and then drops again steeply in the last thirty minutes
of the trading day. We interpret this result as being symptomatic of higher opinion dispersion and
adverse selection at the opening of the market, which translates in a lower order book liquidity, or
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equivalently, in a higher market impact. As trading begins, the price discovery process takes place
and liquidity gradually reverts from this initial shock to equilibrium level, lowering market impact.

In summary, the main contribution of this paper is the introduction of an improved methodology
for characterizing security price dynamics within the just-cited type of models. Broader finance
applications would include liquidity effects on asset pricing, optimal trading strategies, or market
design. Still, the latter applications may represent an interesting direction for future research.
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Appendix

The present Appendix is divided into five parts. Section A describes the data processing, Section B
discusses some technical details for the estimation procedure, Section C discusses the performance
of the model when dealing with small tick stocks, Section E reports a simulation study, and Section
D reports sample auto-correlations of the one-step ahead forecast errors and of its squares, as well
as the corresponding quantile-quantile plots.
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Appendix A: Data processing

The logarithmic returns and OFI measures are obtained as follows. Each day, we remove the first
and the last 30 minutes of trading activity to filter out unusual events that are likely to occur
around the opening and closing auctions. We split the day into slots of 60 seconds starting at
0930EST and finishing at 1600EST. Slots are of semi-open form rt`´1, t`r, with t` indicating the
`-th bound. We do not abide by this rule in the last bin of the day, where a close interval is instead
used to cover the events that exactly occur during the closing time-stamp (1600 EST).

To construct the OFI, we first detect the submissions of limit orders, executions of market
orders, and cancellations/deletions of previously posted orders occurring within the considered
time interval. Then, in line with Section 4, we compute the following two metrics: 1) Cumulative
volume of submitted buy limit orders (Lb`), executed buy market orders (M b

` ), and cancelled/deleted
sell limit orders (Cb` ); 2) Cumulative volume of submitted sell limit orders (Ls`), executed sell market
orders (M s

` ), and cancelled/deleted buy limit orders (Cs` ). Finally, OFI` is defined as the difference
between 1q and 2q.

To construct returns, we first have to define a notion of mid-price. The latter is calculated by
taking the mid point between the best bid and ask prices reported in the LOB file provided by
LOBSTER. In this work, we look at each slot and sample the last recorded mid price before the
upper bound of the considered interval. Finally, we take the first order difference of the sampled
time series in order to obtain the price changes statistics ∆P`.

In rare circumstances (e.g. slow trading or data issues) it may happen that no LOB events are
recorded within a considered slot, say rt`´1, t`r. In this case, the OFI for that particular slot is
set to zero, whereas the sampled mid price is pegged to the value sampled from the previous time
interval, thus reflecting the fact that no transactions has occurred within rt`´1, t`r.

Finally, in order to construct the depth we introduce, for sake of convenience, the following
definitions.

Definition 1 We define an R-valued irregularly spaced time series Q to be a sequence pti, qiqiPI ,
where I Ă N is a set of indices, ti P r0, T s Ă R, with ti ď ti`1, and qi P R. We denote ti the time
stamps and qi the values of the time series.

Definition 2 Let Q be a time series over r0, T s, τ P R be the length of a time interval, n “ T {τ .
We define the τ -time grid associated to Q to be the set G “ tpnunPN where

pn :“ sup ti P I | ti ă nτu

Suppose we partition r0, T s in N uniform intervals of length τ . We observe that pn is the index of
the last time-stamp before the end of the n-th time interval.

Definition 3 Given an irregularly spaced time series Q and an associated τ -time grid G, we
define the averaged bin time series to be the series Q “ pQnqnďN defined as:

Q1 “
1

τ

˜

q1t1 `

p1´1
ÿ

k“1

qkptk`1 ´ tkq ` qp1pτ ´ tp1q

¸

Qn`1 “
1

τ

¨

˝qpnptppn`1q ´ nτq `

ppn`1q´1
ÿ

k“pn`1

qkptk`1 ´ tkq ` qppn`1q
ppn` 1qτ ´ tpn`1

q

˛

‚n ě 1

In our case, given the time series pti, biq and pti, aiq, with bi and ai the bid and the ask size at
time ti respectively, we define the depth as the uniform time series pD`q, ` “ 1, . . . , L defined as
D` “ pB``A`q{2, where B` and A` are the averaged bin time series of pti, biq and pti, aiq. In other
words, we define the depth over each the time interval rt`´1, t`r as the weighted average of the size
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at the best quotes with weight proportional to the time a given size was available.

Appendix B: Technical details on the estimation procedure

Kalman filter implementation is performed with the R package FKF (Fast Kalman Filter). The
package is mainly written in C and uses the FORTRAN LAPACK package to deliver fast computa-
tion of Kalman filtering and forecasting. Kalman smoothing was performed with an implementation
of the forward-backward smoothing algorithm given in Equation (11). Before performing the opti-
mization of log-likelihood (12), as suggested in Durbin and Koopman (2012), we re-parametrize the
volatilities in Equation (8) as s¨,ε “ log σ¨,ε and s¨,η “ log σ¨,η to get an unconstrained optimization
problem. In order to perform the optimization, we need a prior for the state space and an initial
value for the vector of parameters Θ. Initial values for β¨ and σ¨,ε are computed by performing an
Ordinary Least Squares (OLS) regression ∆P` “ β¨π`OFI¨,` ` ε¨,`, ε¨,` „ NIDp0, σ2

¨,εq; we set their
initial values to the corresponding OLS estimates. Instead, for ρ¨ and σ¨,η we perform a grid search
with ρ¨ P p0, 1q and σ¨,η P p0.1, 2q. Finally, the prior for the state space is chosen to be deterministic
and equal to q¨,1 “ 1 and P¨,1 “ 2; the former is the unconditional mean of the process, the latter
is chosen on empirical observations.

Appendix C: The performance of the model for small tick stocks

So far, we have analysed the performance of the large tick stocks. In this section we investigate the
performance of the model for small tick stocks which, as said, present features that are at odds
with the hypotheses of the model. In particular, we provide evidence for the latter thesis. The
stocks we consider are Amgen, Inc. (AMGN) Amazon.com Inc. (AMZN) and Alphabet Inc. Class
C (GOOG). Tables C1 and C2 collect some descriptive statistics for these stocks.

Relative
Stock Ticker Mid-price Spread Spread

Avg. Std Avg. Std Avg. Std
Amgen, Inc. AMGN 151.998 5.513 0.086 0.022 5.67 1.52
Amazon.com Inc. AMZN 622.819 69.093 0.416 0.107 6.84 2.22
Alphabet Inc. Class C GOOG 717.521 21.643 0.473 0.129 6.61 1.88

Table C1.: Descriptive statistics of investigated stocks over the sample period. The sample period
is from January 1 2016 to June 30, 2016. Mid-price and Spread are reported in dollar unit. The
Relative Spread is reported in basis point unit. Stocks are sorted by average price (or by spread),
i.e. inversely by relative tick size.

Symbol BidQ1,` AskQ1,` BidQ1,c AskQ1,c BidQ1,m AskQ1,m

#Ev. Avg.Vol. #Ev. Avg.Vol. # Ev. Avg.Vol. #Ev. Avg.Vol. #Ev. Avg.Vol. #Ev. Avg.Vol.
AMGN 16412.88 234.23 16186.08 232.55 10223.09 137.75 9922.26 134.91 4375.17 48.93 7486.83 83.74
AMZN 17863.07 780.85 17629.69 793.85 11593.60 432.32 11186.28 436.26 5108.44 178.90 11444.78 392.32
GOOG 19005.85 914.45 24914.89 1011.14 12355.18 514.16 17500.40 565.43 3580.73 136.56 7653.50 291.92

Table C2.: Main sample statistics of the limit order book averaged over the sample period. The
sample period is from January 1 2016 to June 30, 2016. The amount of limit orders at the best
bid (BidQ1,`) and ask (AskQ1,`), of cancellations (BidQ1,c and AskQ1,c) and of market orders
(BidQ1,m and AskQ1,m) for each stock is reported. Quantities are characterized in term of both
number of events (#Ev.) and average volume (Avg.Vol.) measured in number of shares.
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Figure C1.: Left panel represents averages across days of the price impact coefficient estimates
β̂k as in Equation (4) for AMZN as a function of the time of the day for ∆K “ 30 minutes and
∆` equal to: 0.5 seconds (red), 5 seconds (blue), 10 seconds (green), 20 seconds (magenta), 30
seconds (gold), 1 minute (cyan) and 5 minutes (black). Right panel represents the contour plot of
the averages R2 across days as a function of the regression window ∆K and sampling frequency
∆`.

Figure C1 displays the analogous quantities of Figure 1 for AMZN. We focus on the right panel,
which shows that the goodness of fit of the model for small tick stock is significantly smaller than
the one observed for large tick stocks.

Also, we conduct the VAR analysis of Subsection 6. Table C3 reports the regression coefficients of
model (12) along with the corresponding t-statistics between brackets. Again, since the estimation
is applied to each day in our sample, the outcome is five parameters values. Contrary to the large
tick stocks case, for two out of three stocks, both the coefficient c1 – which captures the effect of
past mid-price changes on the current value of OFI – and d1 – which captures the effect of past
OFI on the current value of OFI – are highly significant. We comment on each quantity.

1. (c1) The coefficients of lagged price change on the current level of OFI are negative and sig-
nificant. The intuition goes as follows. Suppose, for instance, that a cancellation order at the best
ask occurs by causing the depletion of the best ask queue and, as a consequence, a positive price
change. This leads to an increase of sell market orders, cancellations of buy limit orders, and an
increase of sell limit orders, i.e. to a decrease of the OFI. Moreover, even if the initial cancellation
order at the best ask does not cause the depletion of the queue, the same reasoning applies since
it is well known that the bid/ask queue imbalance in a LOB provides significant predictive power
for the direction of the next mid-price movement (see, for instance Gould and Bonart 2016, and
reference therein). Finally, we note that if one neglects the presence of limit orders and cancella-
tions, the negative lagged ∆P` coefficient in the OFI` specification implies Granger-Sims causality
running from quote revisions to trades, and it is consistent with findings in Hasbrouck (1991).

2. (d1) This parameter is related to the auto-correlation of the (aggregated) order flow imbalance
measure. To better understand why this coefficient for AMGN and AMZN is (statistically) signif-
icant we first define the following variables: ∆M` ” M b

` ´M s
` , ∆L` ” Lb` ´ Ls` , ∆C` ” Cb` ´ Cs` .

Then, we run the following regression:

OFI` “ β1 ∆M`´1 ` β2 ∆L`´1 ` β3 ∆C`´1 ` η`, (C1)

where η` is noise term. The following Table C4 summarises the results (results for large tick stocks
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are in line with those of GOOG). Therefore, for small tick stocks, the auto-correlation of the OFI is
induced from the Granger-Sims causality running from market orders (and cancellations) to order
flow imbalance.

In conclusion, in order to extend the model to small tick stocks, one should account for these
additional dependencies. A comprehensive exploration of this direction is beyond the scope of the
present paper, and is left for future work. For sake of completeness, we estimate also for AMGN,
AMZN and GOOG the proposed model: the following Table C5 reports the results of the estimation.
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Parameters’ values (t-stats)
Ticker b0 a1 b1 c1 d1

AMGN -2.87e-05 0.102 -8.97e-06 -5419.17 0.34
(-19.74˚˚˚) (0.78) (-1.24) (-3.22˚˚˚) (5.09˚˚˚)

AMZN -1.04e-04 0.092 -4.06e-05 -1265.3 0.42
(-15.20˚˚˚) (1.22) (-2.86˚˚) (-3.44˚˚˚) (7.64˚˚˚)

GOOG -3.31e-07 -0.01 1.84e-08 -112226.99 0.01
(-27.78˚˚˚) (-0.003) (0.15) (-0.46) (0.14)

Table C3.: VAR parameter estimates. Coefficients which result to be significant at 10%, 5% and
1% confidence levels are marked, respectively, with one, two and three stars.

Parameters’ values (t-stats)
Ticker β1 β2 β3

AMGN 0.212 0.13 -0.05
(2.02˚˚) (0.06) (-0.05)

AMZN 0.406 0.215 -0.171
(4.90˚˚˚) (0.06) (-2.02˚˚)

GOOG 0.008 0.030 -0.060
(0.03) (0.06) (-0.63)

Table C4.: Regression parameter estimates. Coefficients which result to be significant at 10%, 5%
and 1% confidence levels are marked, respectively, with one, two and three stars.

Parameter: β
Ticker Median Mean Average t-statistic Q1 Q3

AMGN 3.239ˆ 10´3 3.287ˆ 10´3 42.13 2.775ˆ 10´3 3.769ˆ 10´3

AMZN 10.92ˆ 10´3 11.28ˆ 10´3 30.41 9.158ˆ 10´3 13.30ˆ 10´3

GOOG 11.51ˆ 10´3 12.30ˆ 10´3 25.07 9.516ˆ 10´3 14.64ˆ 10´3

Parameter: ρ
Ticker Median Mean Average t-statistic Q1 Q3

AMGN 0.4262 0.4954 15.42 0.2587 0.7638
AMZN 0.4298 0.4815 13.45 0.2026 0.7821
GOOG 0.3634 0.4259 12.6 0.1454 0.6463
Parameter: σε
Ticker Median Mean Average t-statistic Q1 Q3

AMGN 0.0617 0.0719 22.43 0.0512 0.0864
AMZN 0.2891 0.3369 20.32 0.2433 0.3951
GOOG 0.2545 0.3106 19.09 0.2066 0.3694
Parameter: ση
Ticker Median Mean Average t-statistic Q1 Q3

AMGN 0.4151 0.4114 18.61 0.2553 0.5749
AMZN 0.5576 0.5333 16.34 0.3372 0.6624
GOOG 0.5435 0.5336 18.79 0.2002 0.3758

Table C5.: Summary of estimation results of model in Equations (1)-(3) on order book data of eight
NASDAQ 100 Index stock over 100 days in 2016. For each parameter we report: 1) The median
(second column), 2) The mean (third column), 3) The average t-statistic (fourth column), 4) the
lower and the upper quartile.
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Figure D1.: Examples of of sample auto-correlations of the standardized one-step ahead forecast
errors, of its squares, as well as of its quantile-quantile plots.

Appendix D: Diagnostic testing for Kalman filter

The following Figure D1 report examples of sample auto-correlations of the standardized one-step
ahead forecast errors, of its squares, as well as of its quantile-quantile plots.
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Appendix E: Simulation study

The robustness of the two-steps procedure proposed in Section 5.1 is tested numerically in the
present section. We choose a simulation setting that resembles as close as possible the main features
of our data. In particular, we assume a trading day of 6.5 hours and we simulateN “ 100 one-minute
time-series of L “ 390 from the model described by Equations (1)–(3). We use the following data
generating process (DGP). First, we keep from real data a representative time-series for the intraday
pattern and the OFI, as well as values for the hyper-parameters vector Θ “ pβ, ρ, σε, σηq. Then,
at each trading day, we sample the daily level of market impact from a positive uniform random
variable with support p0, 1.5βq, OFI¨,`, ` “ 1, . . . , L, from a zero-mean Gaussian random variable
with a standard deviation consistent with that found on empirical data1, the coefficient ρ from a
positive uniform random variable with support p0.2, 0.4q. Finally, ε¨,` (resp. η¨,`), ` “ 1, . . . , L, are
sampled from independent and identically distributed Gaussian random variables with a standard
deviation equals to σ̃ε (resp. σ̃η), where σ̃ε (resp. σ̃η) are sampled from a positive uniform random
variable with support p0.8σε, 1.2σεq (resp. p0.8ση, 1.2σηq). For sake of completeness, we perform
our simulation study with values of parameters, intraday pattern and OFI consistent with those
found in empirical data for both large (e.g MSFT) and small (e.g AMZN) tick stocks. We comment
now the results. Figure E1 reports the true and estimated time-of-the-day pattern. We see that in
the “large tick stocks” setting the estimated intraday pattern is basically indistinguishable from
the true one, whereas in the “small tick stocks” setting it is estimated with some bias, especially
in the last part of the (fictitious) trading day. Incidentally, we notice that in the latter case it may
happens that a non-negligible percentage of simulated price change and OFI have opposite signs
and estimates of the parameter ρ are negative. Table E1 reports results of parameter estimates
(computed by ignoring the just mentioned pathological cases). For sake of completeness, estimates
after the first stage are also reported. Parameters are estimated remarkably well and, as observed in
real data, the auto-regressive coefficient ρ is overestimated if the intraday pattern is not taken into
account in the “large tick stocks” setting. Remarkably, in both cases, accounting for the intraday
pattern reduces the dispersions of parameter estimates.
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Figure E1.: True (green line) and the estimated (blue line) intraday pattern in simulated data. Left
panel: typical situation for small tick stocks. Right panel: typical situation for a large small tick
stock.

1Here, we ignore the temporal correlation of the OFI. However, in first approximation, this is consistent with what observed

on real data.

30



June 20, 2021 Quantitative Finance Draft˙to˙resubmit˙V1

Parameter True value Estimated value I Estimated value II
Large tick setting

β
d
„ U p0, 1.5βq 1.140ˆ 10´6 1.256ˆ 10´6

β “ 1.413ˆ 10´6
`

5.784ˆ 10´7
˘ `

5.283ˆ 10´7
˘

σε
d
„ U p0.8σε, 1.1σεq 9.938ˆ 10´3 9.224ˆ 10´3

σε “ 9.628ˆ 10´3
`

1.224ˆ 10´3
˘ `

1.111ˆ 10´3
˘

ρ
d
„ U p0.2, 0.4q 0.78 0.33

p0.14q p0.15q

ση
d
„ U p0.8ση, 1.2σηq 0.198 0.248
ση “ 0.275 p0.115q p0.05q

Small tick setting

β
d
„ U p0, 1.5βq 7.83ˆ 10´5 7.87ˆ 10´5

β “ 9.739ˆ 10´5
`

4.195ˆ 10´5
˘ `

4.176ˆ 10´7
˘

σε
d
„ U p0.8σε, 1.1σεq 0.283 0.284
σε “ 0.301 p0.026q p0.0262q

ρ
d
„ U p0.2, 0.4q 0.36 0.33

p0.24q p0.12q

ση
d
„ U p0.8ση, 1.2σηq 0.532 0.498
ση “ 0.540 p0.285q p0.16q

Table E1.: Parameter estimates on simulated data. Top panel: Simulation setting for large tick
stocks. Bottom panel: Simulation setting for small tick stocks. From left column to right column:
True (distributional) value of the parameter; Estimated values of the parameter after the first
stage; Estimated values of the parameter after the second stage.
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