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Abstract 

The mining industry is highly dependent on electricity or other forms of energy converted 

into electricity. Here, one of the common forms of electricity distribution is through underground 

cables, but the electricity systems regularly confront contingencies due to cable breakdowns or 

defects. Depending on fault types, detective tools, and cable position, it may take several hours to 

days to detect the exact fault location with existing methods and tools, which affects the entire 

mining operation with financial losses and safety issues. Besides, industrial fault localization 

platforms are very expensive and seldom tailored for the mining industry. To locate such faults, 

the online fault localization platform has drawn wide attention but is limited in functionalities and 

applications.  

This research aims to develop a cost-effective double-ended online fault localization 

platform while proposing solutions for data synchronization and accurate traveling wave arrival 

time detection problems. At first, extensive market research has been done on available platforms 

to access those platforms’ functionalities and costings. Then, a hardware setup has been developed 

by combining appropriate sensors, a data acquisition unit, a computational platform, and other 

necessary components. Furthermore, to establish communication between remote platforms, a 

Python-based software program has been developed. Besides, query-based server management has 

been introduced to handle and manage huge amounts of data. Combining the hardware and 

software, the overall cost of a single platform is CAD $ 2,850.00, which is at least ten times less 

than the least expensive market option.     

The chosen double-ended traveling wave-based online fault localization method requires 

accurate synchronized time to properly compute the traveling wave arrival time difference. Thus, 

coordinated universal time alignment of acquired time series data is needed. Global Positioning 

System (GPS) based universal time synchronization is one of the popular ways. There are several 

other techniques, but all of these have some practical difficulties and dependencies. To solve this 

problem, a cost-effective novel zero-crossing point-based data synchronization approach has been 

proposed. This approach doesn’t rely on GPS receivers or any other existing methods; rather, the 

measurement is synchronized by calibrating the zero-crossing points of the sinusoid measurements 

before the fault. In this way, appropriate synchronization has been realized.  
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The accuracy of traveling wave-based fault localization highly depends on how accurately 

its arrival times are detected from ends of cable. Accurate detections are achieved when signals 

sampling rates are high. Usually, a data acquisition system with a higher sampling rate may address 

the issue, but it increases cost. On the other hand, available interpolation-based up-sampling 

techniques have several constraints. Machine learning model can solve this problem if trained by 

real inputs and outputs with desired sampling rates for different types of faults. In this research, a 

machine learning-based up-sampling model has been presented, which improves the accuracy of 

traveling wave arrival time detection. Besides, it is cost-effective and outperforms interpolation 

techniques. 

Therefore, the proposed fault localization platform combines all the above solutions, which 

makes the platform very advance, reliable, and cost-effective. 
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Chapter 1: Introduction 

1.1. Underground Cable Fault Localization in Mining Industries  

 Electricity is the main power source of mining industry. In 2017, the total energy used in 

the Canadian mineral sector was 9.7% of the total energy used in Canada [1]. Just in 2015, the 

Canadian mining industry spent $ 2.7 billion on power sources [2].  This is almost half of the total 

wages paid for production and related workers. Other than general-purpose applications, mining 

industries are using electricity to power the equipment and systems for mining operations. There 

are several crucial equipment using electricity in mine sites, such as continuous electric miner 

machines, electric shuttle cars, electric roof bolters, longwall systems, etc. Besides, several 

operations in mines are also run by electric power, for example, conveyors, draglines, shovels, etc. 

The power distribution systems in mining sites are similar to those in conventional 

distribution systems. Here, one of the common forms of electricity distribution is through 

underground cables, which are buried under the soil or placed inside the ducts under the ground. 

These cables can be several kilometers long. Electricity distribution through underground cables 

is the most feasible way for mining sites, because underground cables are reliable and safe due to 

not being very much affected by calamities and outer environments.  

Though underground cable is one of the reliable ways of power supply, it is not entirely 

safe. Usually, cable breakdowns or defects are caused because of poor installation, maintenance 

issues, and insulation degradation, which is led by many years of operations, overstresses from 

electrical, thermal, mechanical, and environmental reasons. Once a fault occurs in cable, modern 

power protection systems are used to isolate the faulty area in mining site. Generally, after the fault 

occurs, the primary task for the maintenance crew is to use fault localization kits to trace the entire 

faulty area to locate the fault position. But, due to the cables being several kilometers long and 

installed underground, it is difficult to trace the fault location. In these circumstances, it is very 

common to face delays for fault localization. The delay may reach hours to days. It eventually 

leads to the whole mining operations being suspended. Due to the shutdown operations, the mining 
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sites would suffer substantial economic losses. Moreover, power failure is directly related to safety 

issues for mine workers, which is one of the most critical factors in mining sites to consider. 

Therefore, fast and accurate fault localization is essential for mining sites, and this is the major 

focus of this thesis.  

1.2. Fault Localization Techniques 

Fault localization is a challenging task though it is among the most common issues. 

Researchers are continuously working to develop better and easier ways to solve the above 

problems [3]-[11]. Generally, fault localization techniques are divided into offline and online-

based methods. The following sections illustrate details on both methods.  

1.2.1. Offline Fault Localization Methods 

The most common fault localization platforms are based on offline method and are widely 

used in commercial packages [3].  The offline method is a post-fault localization method that 

requires the line to be tripped and de-energized. It follows a multi-step process as shown in            

Fig. 1-1.  

 

Figure 1-1: Process flow diagram of the methodology of offline fault localization method. 

The offline fault localization method is a combination of terminal and tracer techniques. In 

the terminal technique, the approximate location of the fault is assumed based on measurements 

at either one or both ends of the underground cable [4].  Since the faulted cable differs in electrical 
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characteristics compared to the non-faulted cable, the fault localization is made based on the 

change in electrical characteristics. The terminal technique is divided into several localization 

methods, such as the bridge method, radar method, resonance method, etc.  

The bridge method is subdivided into the Murry loop bridge and the capacitance bridge 

methods. In Murrey loop bridge, faulted cable and non-faulted cable are combined to form a loop 

to make a proportional measurement to approximate the fault location. But open circuit faults can’t 

be measured in Murrey loop. On the other hand, comparisons of capacitance from one end between 

faulted and non-faulted cable are the main criteria of fault localization in capacitance bridge.  

The Radar method is quite different from bridge because it calculates the time difference 

of the injected radar pulse to reach a fault point and then reflect back, but faces difficulties for 

nonlinear faults. In resonance method, a frequency generator is connected at the end of the faulted 

cable. The resonance frequency is observed by changing the frequency because there is a relation 

between frequency and fault distance. Resonance method also faces same ineffectiveness in 

detecting nonlinear faults.  

However, these above terminal-based methods do not pinpoint faults, only approximates 

the fault location. So, in the second step of offline fault localization, for more accurate pinpointing 

of the fault location, tracer technique takes measurements along the approximate fault area found 

in terminal technique. This approach is divided into different methods, such as tracing current, 

audio frequency, impulse/thumper, time domain reflectometry, earth gradient, etc.  

The tracing current method is divided into DC and AC-based current injections to one ends 

of the formed circuit between faulted conductor and the ground. Then electromagnetically coupled 

circuits or current transformers are used to take the measurement on the other side manhole 

location to calculate the fault location. Cables that are buried underground with shorted to the 

ground is the main focus of this method, but is not very effective for other types of faults.  

In the audio frequency method, audio frequency is injected into the faulty cable, which 

creates a magnetic field at the fault point. Then, magnetic loop antennas are used to detect the fault 

location. This method is particularly designed for the low-voltage system. On the other hand, there 

is impulse/thumper method which uses charger capacitors to transmit high resistance pulses in the 

faulty cable, and causes arcs at the fault point, which eventually heats up the surrounding air and 
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transmits audible thumps. Afterword, this thump is traced by listening or using magnetic field 

detectors but faces accuracy problem.  

One of the most famous methods is time domain reflectometry (TDR), which is a low-

voltage method used for locating low-resistive faults, open-circuit faults, short-circuit faults, etc. 

It is also useful to measure the cable length. Similar to radar, high frequency pulse is injected into 

the faulty cable. Depending on the discontinuity or differences of TDR impedance due to the fault, 

a portion of the pulse or full pulse reflects back. Comparing the sending and receiving pulse in the 

time axis, the fault location can be determined. Additionally, depending on the shape of the pulse, 

the fault type can be determined. However, this method is not used for insulation and sheath-to-

ground fault localization. Similar to this, the arc-reflection method is a combination of TDR 

method with an impulse generator. High voltage impulse breaks down the high resistance fault to 

act like a short circuit fault, then the TDR method is used. The velocity propagation constant of 

the cable fault distance is measured in this method. This method is mostly applicable to in the 

secondary distribution system with insulated cable for cable-to-ground faults.  

Despite the offline methods can find the fault location, the main issues of offline fault 

localization methods are the cost, complexities, multi-step process using several test equipment, 

and the long localization time [6]. Depending on the cable structure and types of faults, the 

localization can take several hours to days. A set of multiple equipment work together as a whole 

setup. According to the type of faults, combinations of separate equipment are used, as listed in 

table 1-1. Moreover, considering several sets of multiple equipment are used, the costs can exceed 

a couple of hundred thousand dollars for a single unit, which is a substantial amount for mining 

companies who have many sites. So, it can be easily understood that offline fault localization a 

time consuming, complex, and expensive solution. Last but not least, it is not feasible and practical 

to be able to use the mentioned methods without adequate experience and training provided to a 

dedicated team. In total, it is a big burden for any industry to manage all these tasks together.  
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Table 1-1: A list of most needed equipment for offline fault localization 

Cable Identifier Cable and Phase Identifier 

 

 

Cable Localization Device 

 

Cable Fault Localization 

Device 

 

Cable Fault Pin Pointer Sheath Fault Locator 

 

Cable Ground Fault Locator 

 

Portable Cable Fault 

Location System 

 

Time and Frequency 

Domain Reflectometers 

 

1.2.2. Online Fault Localization Methods 

Online methods are based on acquiring voltage, current or other electrical parameters in 

real-time so that the data can be utilized to calculate the location once the fault occurs [3][6]. These 

data go through processes to pinpoint the fault [7]. This method can be divided into two different 

categories, which are the impedance-based method and the traveling wave-based method [12].  

As the name suggests, the impedance-based method calculates the fault location by 

observing the change in impedance during fault with pre-fault condition impedance. The 
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calculation of the impedance can be done by single-ended or double-ended techniques. Estimating 

fault location by the measurement from one end is known as the single-ended technique. The same 

can be done by both end measurement through double-ended technique. However, the impedance-

based method accuracy depends not only on values of all phase-to-ground voltages and currents 

but also on how accurately the system impedance is measured. This impedance measurement can 

be affected by inaccurate relay measurements, system homogeneities, and mutual coupling of zero 

sequence, etc. [13].  

The other online method is the traveling wave-based method, which depends on the 

calculation based on the arrival times of traveling waves at ends of the cable. These traveling 

waves are the voltage and current surges that travel toward the ends of the line. The traveling 

waves arrival times at ends are directly related to the fault distance, and it is the main base of 

traveling-waved-based fault localization method. These measurements can also be done from a 

single or double ends. But the single ended method suffers accuracy problems. To improve the 

accuracy, traveling-wave-based online fault localization mostly uses double-ended measurements. 

So, data from both ends of the cable is necessary in such a case. So, in this double-ended set-up, 

current sensors are installed at the ends of each cable. Readings from these sensors are monitored 

and analyzed to localize the fault. Figure 1-2 shows the typical set-up of a double ended online 

fault localization platform. 

 

Figure 1-2: Typical set-up of a double ended online fault localization platform. 
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Online methods are far more promising for underground cable fault localization than 

offline methods. Online methods are quick to localize faults and less complex by reducing multi-

step processes. Taking into account the quick restoration; the highest priority is to repair the feeder 

cables as soon as possible. Besides, based on the observed signals from the cable, the prediction 

of fault can also be made before it turns into a permanent fault. In this regard, a suitable online 

fault localization platform is very desirable for quick, easy, and accurate fault localization. 

1.3. Problem Statements and Research Objectives 

Industrial fault localization platforms are being used for decades but seldom of them are 

tailored for the mining industry. At potash mining sites, substations are connected with HV feeder 

cables which may exceed several kilometers from a supply point. The mining industry feeder 

protection system is mostly focused on worker safety which is tailored to operate in low fault 

currents. Also, a medium-high resistance grounding is usually used due to the safety of workers in 

hazardous work conditions. But, this medium-high resistance grounding limits fault currents in a 

range of ~25-50 Amperes. Because of fault current is so low, it becomes a challenge to detect it 

by conventional analysis. Besides, because of following the usual electrical standards, multiple 

cables are incorporated with a single relay for power protections in mining sites. This makes exact 

fault localization a very difficult task in mines.  

The double-ended traveling wave-based online method is the most feasible option due to 

being able to realize fault location with a weak fault current, and also it is independent of system 

parameters. However, one major challenge is that it requires high frequency data acquisition with 

accurate time reference to detect the traveling wave arrival times from the weak signals. So, the 

set-up becomes quite costly. Also, these are not very available in the market. Only a few 

manufacturers offer similar platforms with limited functionality, non-customizable analysis 

options, and very high amount of costs.  

The primary goal of this thesis is to develop a modernized low-cost double ended online 

fault localization platform. The platform needs to handle high frequency data for traveling wave-

based fault localization. Moreover, it should be able to send and receive data from remote ends of 

mining sites to perform fault localization algorithms. In addition to that, big data analytics 

combined with advanced machine-learning tools, such as deep learning, ensemble trees, tools can 
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be useful for accurate fault location of the low fault current conditions in mines. Considering the 

importance of using advanced machine-learning algorithms, the platform should provide the 

option of performing advance machine learning algorithms.  

Apart from that, the double-ended measurement-based online fault localization platforms 

generally use costly Global Positioning System (GPS) time receivers to synchronize the data 

acquired at both ends, while GPS would face problems due to satellite invisibility, atmospheric 

condition, and installation constraint in deep underground mines. This thesis also focuses on 

solving data synchronization problem with a novel low-cost data synchronization technique.  

Lastly, the accuracy of traveling wave-based fault localization is dependent on how 

accurately its arrival time is detected. So, highly sampled information is needed for the accurate 

detection of traveling waves arrival times. Focusing on cost effective solution, this thesis aims to 

solve this problem by developing a machine-learning model for the predictive up-sampling of fault 

data.  

To address all the mentioned issues, the following research objectives were set to meet the 

goal of developing an affordable system: 

• Develop an online fault localization platform in a more advance and affordable 

way. 

• Develop necessary software algorithms for bi-directional communication 

establishment and sever management in fault localization platform. 

• Develop a novel data synchronization technique without reliance on GPS. 

• Develop necessary algorithm to perform data synchronization in fault localization 

platform.  

• Develop a machine learning model for predictive data up-sampling to accurately 

detect traveling wave arrival time. 

• Develop necessary algorithm to perform data up-sampling in fault localization 

platform. 
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1.4. Structure of the Thesis  

The chapters are organized as follows: 

Chapter 2 presents the development of an online fault localization platform. To begin, 

extensive market research on available online fault localization platforms with cost is presented. 

Then, a low-cost hardware set-up is presented with cost and necessary details. Afterward, the 

development of software to establish bidirectional communication and server management are 

explained elaborately. Finally, in the experimental setup the developed software algorithms are 

tested.  

Chapter 3 presents a noble low-cost synchronization technique. First, the available 

synchronization techniques and drawbacks are discussed. Afterward, a zero-crossing point-based 

algorithm is presented with the necessary simulation model and Python-based algorithm. Cost-

effectiveness of the proposed technique is also justified comparing with the available GPS 

modules. Finally, the simulation results are discussed elaborately. Then, the developed algorithm 

is tested in the experimental setup. 

Chapter 4 proposes a machine learning-based approach for predictive data up-sampling. 

The necessity of data up-sampling and different up-sampling approaches are described at first, and 

then, a machine learning model is presented where pre-processed datasets are used to train the 

model. Subsequently, in the validation study, the simulation model for data generation process is 

presented. Then, the feasibility of the machine learning-based up-sampling approach is examined 

through comparative analysis. Finally, the developed machine earning model is loaded and tested 

in the experimental setup. 

Chapter 5 concludes the findings of this research work and provides direction for future 

works to upgrade the system.  
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Chapter 2: Underground Cable Online Fault Localization Platform 

Development 

An underground cable fault localization platform is developed in this chapter. First, section 

2.1 presents market research on the available online fault localization platforms with costs. Based 

on the observation on market available options and project goals to achieve, the overall design 

requirements are highlighted in section 2.2. Then following the design requirements, in section 

2.3, the developed hardware setup with connection overviews and cost are given in details. This 

section also describes each setup component with required details. As an important part of fault 

localization platform, in section 2.4, developed python software programs related to bi-directional 

communication establishment and database management are presented. These algorithms are 

tested in experimental hardware setup in the section 2.5. Finally, this chapter is summarized in 

section 4.6. 

2.1. Market Research on Available Online Fault Localization Platforms  

In this section, market research on available online fault localization platforms is presented. 

The purpose of the market research is to understand and know the functions, specifications, costs 

and drawbacks of available options. Besides, it may provide a guidance for developing an online 

localization platform. In the market research, the focus has been made on the platform’s capability 

of acquiring high frequency data online. It has also been checked that whether the available 

platforms permit to implement advance machine learning algorithms for more accurate fault 

localization. 

A list of the most suitable market available online fault localization platforms with costs is 

given in the following table 2-1. 
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Table 2-1: Available fault localization platforms with costing 

Ser. Manufacturer and Model 

 

 

Bandwidth 

 

 

Voltage 

Level 

 

Cost/set 

1.  HVPD Kronos® KPM Condition 

Monitoring [14] 

 

 
 

 

50 MHz 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HV and 

MV 

 

 

 

 

 

 

 

 

 

 

 

 

 

$48,843.00 

CAD 

2.  
Omicron MONTESTO 200 [15] 

 

 

 

40 MHz 

 

 

 

 

 

 

 

 

 

 

 

HV and 

MV 

 

 

 

 

 

 

 

 

 

 

$94,720.00 

CAD 

3.  Rugged Monitoring HPM601-P [16] 

 

 

100 MHz 

 

 

 

 

 

 

 

 

 

 

 

HV and 

MV 

 

 

 

 

 

 

 

 

 

 

$27,490.00 

CAD 
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From the market research, it has been found that very few companies have solutions 

specific to online fault localization and these are very expensive. Even a single unit can cost 

hundreds of thousand dollars. These solutions generally come with limited functionalities. Most 

of these don’t comply with installing customized algorithms by restricting any manipulation of 

their products. Moreover, due to acquiring high frequency data, the available platforms use 

expensive data acquisition units with higher sampling rates, which leads to high costs. Besides, to 

synchronize the data from both ends of the cable, GPS-based synchronization is used with added 

cost. Additionally, these platforms are not very easy to use, and almost all of the companies suggest 

training with additional cost.  

Manufacturers are offering the whole platform by combining all separate parts but making 

it more expensive than it should be. In these platforms, the most important part is the data 

acquisition units and the analysis software. The main function of the data acquisition unit is to 

convert the signals to digital values. So, further market research has been done to find suitable data 

acquisition units to incorporate it in the development of customized fault localization platform at 

a lower cost. 

Table 2-2 shows the costs of most suitable data acquisition units in the market. Prices vary 

depending on the maximum frequency range along with different functions such as the number of 

available input channels, input bandwidth, output resolution and sampling rate, different analysis 

options, capability to incorporate various types of sensors, etc.  
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Table 2-2: Available data acquisition units with prices 

Ser. Manufacturer and Model Bandwidth Cost/set 

1.  AlazarTech ATS9352 PCI Express Digitizer [17] 

 

250 MHz 

 

 

 

 

 

$ 7,000.00 CAD 

2.  Keysight DAQ970A Data Acquisition System [18] 2 GHz 

 

 

 

 

$ 3364.00 CAD 

 

3.  Dataman 522 USB Oscilloscope [19] 

 

 

60 MHz 

 

 

 

 

$ 810.00 CAD 

4.  MP720646 US Multicomp Pro PC Oscilloscopes 

[20] 

 

100 MHz 

 

 

 

 

$ 650.00 CAD 
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It is clear from the market research that a DAQ unit is far less expensive than a whole setup. 

It will be cost-effective to develop a localization platform combining cheaper DAQ unit, 

computational platform, and software programs. So, with this understanding, design requirements 

are set in the following sections to develop an online fault localization platform. 

2.2. Fault Localization Platform Design Requirements 

According to the discussion in Section 2.1 and the goals to achieve, the following design 

requirements are set for the development of a fault localization platform: 

• The platform should be able to acquire data from both ends of the cable. 

• High frequency data acquisition compatibility is required to acquire high frequency 

fault information. 

• The computational platform should be capable of performing advanced machine 

learning algorithm for more accurate fault localization.  

• Remote fault localization platforms should be capable of communicating with 

server bi-directionally to transfer and receive data while each platform should be 

running standalone. 

• The platforms should have proper data management facilities for data analysis from 

stored data. 

• The whole system should be low cost compared to the market available options.  

The platform combines both hardware and software to achieve the design requirements, 

which are discussed in the following sections.   
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2.3. Full Hardware Design of the Online Fault Localization Platform 

The proposed prototype is depicted in Fig. 2-1 and designed according to the set 

requirements. In this platform, current transformers are placed at the ends of the cable to acquire 

current signals. Data acquisition (DAQ) units are connected to corresponding current transformers 

and convert data from analog to digital. Standalone embedded AI computing devices are used as 

computational platforms and server. Each computational platform is connected with a DAQ unit 

to acquire data and then analyzes data for fault localization. Computational platform installed at 

remote ends sends information to the server through internet-based communication.    

 

Figure 2-1: Total setup of an online fault localization platform 
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2.3.1. Hardware Connection Overview of the Proposed Setup 

The connection diagram for the standalone computational platform is shown in Fig. 2-2. 

The selected DAQ unit has two input channels to incorporate two different sensors. Here, the 

sensors are connected via BNC cables to the inputs of the DAQ unit, where 5V DC power is 

provided to the DAQ unit from the power supply. Dedicated USB port is used to connect the DAQ 

with Jetson TX2 computational platform with a male-to-male USB cable. Computational platform 

is also powered by the same power supply, where the power supply itself is powered by 60 Hz 120 

VAC power source on the site. The touchscreen display is connected by a male-to-male HDMI 

cable using the provided HDMI ports in the display and the Jetson TX2. 5V DC power is shared 

among Display and DAQ unit from channel 1 of the power supply. To add an additional SSD 

storage device with Jetson TX2, a male-to-male SATA connector is used. Jetson TX2 can be 

connected to internet via ethernet port from a router or it can be connected through WIFI. To 

acquire information from DAQ unit, the SDK software of the DAQ unit is used in Jetson’s Linux 

platform. Date can be stored in sequential orientation for further query-based data fetching by 

SQlite3 based database management system. Developed python programs establish the connection 

with server by socket based bi-directional communication management while also manage the 

query-based SQLite3 database. The programs also display acquired information. This platform has 

enabled the options to further install advance machine learning-based algorithms to pinpoint the 

fault location more accurately.  



 

17 
 

 

Figure 2-2: Connection overview of the proposed computational platform. Sensors are connected 

to the CH 1 and CH 2 of the DAQ unit. Via USB connection, DAQ unit and Jetson TX2 is 

connected. These devices are powered by a dual-output switching mode power supply. Display is 

connected to Jetson TX2 by HDMI and USB connection, while SSD storage is connected by SATA 

cable. Ethernet connection provides internet to the Jetson device. 

Server communicates with the computational platforms to fetch data by using the bi-

directional communication program. The server hardware connections are depicted in Fig. 2-3. It 

also incorporates SQLite3 based database to store information. Due to continuously fetching data 

from both computational platforms, it requires a large storage space. So, as like as computational 

platforms, additional data storage facility is added via a SATA connection to the solid-state drive. 

A power supply of 12V is used as the power source of the server. Server is also capable of running 

machine learning algorithms based on acquired data to pinpoint faults. Besides, users will be 
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notified about the fault and the location of the fault from the server. Also, access can be granted 

from remote locations to the server to see related information.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3: Connection overview of the server. Powered by a 12 V DC power supply while 

additional SSD storage is connected via SATA. 

2.3.2. Cost of the Platform 

Based on the set-up in the previous sections, the basic prototype will cost around                        

CAD $ 2,850.00, as calculated in December 2022. The breakdown is presented in the following 

Table 2-3. 
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Table 2-3: Cost of one computational platform setup 

Component Name Approximate Cost (CAD) 

HFCT Sensor [21] $ 644.00 

BNC Extension Cable [22] $ 12.00 

Power Supply [23] $ 32.00 

Data Acquisition Unit [20] $ 650.00 

Jetson TX2 Development Kit [24] $ 1,170.42 

10.1inch Touch Screen LCD Display [25] $ 129.99 

500 GB SSD Drive [26] $ 54.99 

Male to male USB cable X 2 [27] $ 8.99 X 2 = $ 17.98 

Male to male HDMI cable [28] $ 12.00 

SATA Connection Set [29] $ 26.62 

Accessories and Manufacturing $ 100.00 

Total $ 2,850.00 

 

In the following sections, the components used in the design are described in details.  

2.3.3. Sensor 

A split core high frequency current transformer from HVPD (HFCT 100 HCP) is used to 

measure high frequency information [21], which is shown in Fig. 2-4. The sensor is suitable for 

placing around high voltage (HV) and medium voltage (MV) underground power cables. The 

Aluminum enclosure improves its sensitivity to online Partial discharge (PD) measurements in 

noisy environments, which makes it a better choice. Its frequency bandwidth is within 0.30 to 60 

MHz, which is adequate for PD signals or high frequency measurements. The standard unit has an 

inner dimension of 46 mm, where width x depth x height are 115 mm x 24 mm x 117 mm. Different 
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sensor models can be adopted depending on the cable size and requirements. There is a female 

BNC port to transfer the sensor output via BNC cable, while the other end of the BNC cable is 

connected to the DAQ unit. Due to being a split core, sensor can be split into two parts to wrap 

around the cable without cutting the cable.  

 

Figure 2-4: HFCT Sensor, Model-HVPD (HFCT 100 HCP) 

2.3.4. Data Acquisition Unit 

Here, the basic requirement of the data acquisition unit is to acquire high frequency data 

from sensors within Hz to MHz range and then to convert analog data from sensors to digital 

format. So, the main use of the DAQ unit is to function as an analog to digital converter. The 

selected DAQ unit is a 2-channel PC-based oscilloscope from Multicomp (MP720646 US), with 

maximum bandwidth of 100MHz and sampling rate of 1 GS/s, which can perfectly incorporate the 

HFCT/CT sensors [20]. The operating voltage of the DAQ is 5-15 VDC. 5 V DC power is provided 

to the DAQ from the power supply. The selected computational platform has Linux operating 

system, and this DAQ unit is supported on Linux platform. It also provides secondary development 

support via a software development kit. This DAQ unit transfers acquired data to the computational 

platform via USB Device (type-C) or USB host, or LAN.  
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Figure 2-5: Data Acquisition Unit, Model-Multicomp (MP720646 US) 

2.3.5. Computational and Server Platform 

The Jetson TX2 developer kit is selected as computational and server platforms. It helps 

developing a hardware and software a system in fast and easy way. It has quad-core ARM A57 

processor and dual-core Denver 2 CPU, 256-core NVIDIA GPU [24][30]. It has an opensource 

SDK (Linux Based) that includes software libraries for machine and deep learning, GPU 

computing, multi-processing, etc. Installed units at the both ends of the cable work as 

computational platforms. Apart from that, a separate unit is used as a server at a remote location. 

Besides working as computational and server platforms, it is capable of saving high volume data 

in SD card and SATA storage. Ethernet/wireless peripherals make it capable of transferring 

information over internet and performing remote operations. As a standalone platform, HMI 

interface can also be added to display information and to enable users to navigate through manus. 

Following Tables 2-4 and 2-5 describe its capability to work as a standalone computational or 

server platform.  
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Table 2-4: Specifications of Jetson TX2 Developer Kit  

Processing Components Ports & Peripherals Form-Factor 

• Dual-core NVIDIA 

Denver2 + quad-core 

ARM Cortex-A57 CPU 

• 256-core Pascal GPU 

• 8GB LPDDR4, 128-bit 

interface 

• 32GB eMMC 

• 4kp60 H.264/H.265 

encoder & decoder 

• Dual ISPs (Image Signal 

Processors) 

• 1.4 gigapixel/sec MIPI 

CSI camera 

• HDMI 2.0 

• 802.11a/b/g/n/ac 2×2 

867Mbps WiFi 

• Bluetooth 4.1 

• USB3, USB2 

• 10/100/1000 BASE-T 

Ethernet 

• PCIe gen 2.0, 1×4 + 1×1 

or 2×1 +1×2 

• Sdcard & SATA 

• UART, SPI, I2C, I2S, 

GPIOs 

• Dimensions: 50x87mm 

(1.96" x 3.42") 

• Thermal Transfer Plate 

(TTP), -25°C to 80°C 

operating temperature 

• Mass: 85 grams, 

including TTP 

• 5.5-19.6VDC input 

power (consuming 7.5W 

under typical load) 
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Table 2-5: Pinouts of Jetson TX2 Developer Kit 

Pinouts NVIDIA Jetson TX2 

 1.  Gigabit Ethernet 

port 

2.  SD card slot 

3.  HDMI (Type-A) 

4.  USB3.0 port 

5.  Micro USB port 

6.  Antenna connector 

7.  Power jack 

8.  M.2 key A 

interface 

9.  Display interface 

10.  Camera 

11.  30PIN GPIO 

expansion header 

12.  40PIN GPIO 

expansion header 

13.  UART interface 

14.  Fan connector 

15.  Power button 

16.  Recovery button 

17.  Audio button 

18.  Reset button 

19.  JTAG connector 

20.  Debug interface 

21.  SATA connector 

22.  JetsonTX2 

23.  PCIE connector 

 

 

 

2.3.6. Display 

Jetson TX2 has MIPI DSI/HDMI based display interface to directly connect a MIPI or 

HDMI display. Shown in Fig. 2-6 is a 10.1-inch capacitive touchscreen LCD display with 

resolution of 1024×600 from Waveshare (SKU: 18096) [25]. This display requires 5V/3A power 

supply to run with the Jetson device. The purpose of this display is to show real-time data or saved 

data, outputs from performed algorithms and to navigate to different menus of the computational 

platform.  
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Figure 2-6: 10.1inch capacitive touch screen LCD display 

2.3.7. Power Supply 

As a power supply, dual output switching power supply (Model- MEAN WELL RD-50A) 

is used, which is shown in Fig. 2-7 [23]. It takes universal AC as input. Due to the requirement of 

two separate voltage levels, it is chosen, as it has two separate output channels of CH 1-5V 6A and 

CH 2-12V 2A with a combined maximum output power of 54W. 5V from CH1 is used as a 

common power source for data acquisition unit and display, on the other hand, 12V from CH2 is 

dedicated to Jetson TX2 board. This power supply has built-in short circuit, overload, and over 

voltage protection facility, with withstanding capacity for 5s for 300 VAC surge. 

 

 

 

 

 

Figure 2-7: Power Supply. A dual output switching power supply is used as the power source. 
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2.3.8. Additional storage  

Jetson TX2 can avail additional storage capability by using SD Card or Serial advanced 

technology attachment (SATA) based disks. Here, a 500 GB (Western Digital-Internal Solid-State 

Drive) is selected primarily, as additional storage which is shown in Fig. 2-8  [26]. If needed, a 

higher capacity storage can be used. The selected solid-state drive has read speed of up to 560MB/s 

and has very low power draw. This high speed will help faster handling of acquired data. The 

dimension of the SSD is 1.08 (W) x 0.27 (H) x 0.03 (D) inch, which makes it a slim storage disk 

to use with the platform. 

 

 

 

 

 

 

Figure 2-8: Solid state drive. Additional storage for computational platform and server. 
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2.4. Software Design 

To perform the double ended fault localization algorithm, it is required to have data from 

both corresponding ends. In underground mining, cables are several kilometers long (>5 km), so 

no physical connection is present between the installed computational platforms at remote ends. 

Here, only Ethernet/Wi-Fi/GSM based internet communication is the most feasible way. Besides, 

continuous high-volume data need to be stored at each computational platform. So, sophisticated 

software programs are required to establish reliable communication and database management. 

So, to build a fault localization platform, application-specific software programs are equally 

important as hardware.  

Here, the data volume is large and continues real-time transfer to the server can create data 

transmission problem and will require constant communication facility with higher bandwidth. 

Additionally, there is a high risk of losing data in case of network interruption, as systems installed 

underground have more network redundancy issues. Also, there is no need to pass continuous data 

to the fault localization algorithm or to the server unless there is a fault or doing fault prediction. 

But there should always be a communication established between the server and computational 

platform whether or not data needs to be transmitted and fetched. To address these issues, a python-

based software program is developed to establish bi-directional communication between server 

and platforms. 

Besides, managing high-volume data is problematic and requires large data storage. In 

addition to that, the management of data is very crucial as those need to be saved in a structured 

manner with proper time stamps. So, a query-based data management is required, where data can 

be pulled out later from the saved database with specific timeframe and can be passed to the fault 

localization algorithm. All these reasons create the requirement to develop python-based software 

programs for reliable query-based database management.  

The following sections describe the developed python-based programs to establish socket 

based bi-directional communication and SQlite3 based database management. 
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2.4.1. Python Based Software Program for Bi-Directional Communication Establishment 

The developed python-based program establishes communication between the server and 

computational platforms; the procedures are depicted in Fig. 2-9 [31]. The developed program has 

two separate parts, one for the server and another for computational platforms. To begin, both 

server and computational platforms initiate the separate parts of the program. Communication 

between separate machines or platforms can be established by using Socket based two-way 

communication process [32]. So, each program incorporates socket-based approach. In the second 

step, separate IP addresses and port numbers are initiated for both server and computational 

platforms, and then server starts listening for incoming connections [34]. Subsequently, 

computational platforms as TCP clients initiate the connection with server by dialing IP address 

and port number of the server. As soon as the communications are established, either way, data 

requests can be sent; thus, it establishes the way for simultaneous reading and writing of data. 

Multiple clients can be added from remote locations to the server for concurrent operation.  

Figure 2-9: The process flow chart of python-based software program allowing bi-

directional communication between computational platforms and server. 
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Python program is designed in such way that if the client losses it’s connection with the 

server, it keeps trying to re-connect until the connection re-establishes. In the meanwhile, due to 

the interruption of the network, if the requested data is not received, it can be retrieved again from 

the client database. The following Figures 2-10 to 2-12, present how the server looks for 

connections and further client establishes the connection.  

 

Figure 2-10: Server listening for client after running the program 

 

Figure 2-11: Client connecting with sever  

 

 

\ 

 

 

 

Figure 2-12: Connection established with the client with IP and Port number. 



 

29 
 

2.4.2. Sqlite3 Based Database Management 

Data are fetched continuously from sensors, but usually, data will be analyzed after the 

fault happens. The fault localization algorithm may only analyze the data which are around the 

fault time. But there is a huge amount of data continuously stored in the database. So, to retrieve 

the data around the fault time from the database, there needs to be a time-specific query-based data 

read and write process. So, it is necessary to incorporate a database management system to address 

the query-based process. Additionally, the contents should be updated continuously and 

automatically in a structured way so that little or no data is lost in any failure. Additionally, this 

process is desired to be simple, lightweight, and faster. Also, it should be compatible with Python 

programming language, as the developed platform is based on Python. 

Based on the above requirements SQLite3 based database management system has been 

found to be the most suitable option in this case. SQLite3 is not only an open-source database 

management system but also a simple, lightweight file-based SQL Database [35]. Here, data with 

values and types are stored sequentially with time in a structured manner. Usually, database 

management requires a separate server process, but it is not required for SQLite3 based database 

management. Besides, nonstandard formats of commands from SQL query language are enough 

to work with this database management system. The most important factor is that without any 

additional procedure or software installation, it works seamlessly with Python programming 

language [36]. The database files are portable across all available operating systems, so the data 

can be read in any platform for analysis with no need of changing or converting to other formats. 
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Figure 2-13: The data sharing process between computational platforms and server. 

The SQlite3 based data storage procedure is depicted in Fig. 2-13, which consists of both 

local and server storage. In order to transfer data, the server will request data for a certain time 

frame from the computational platform. The computational platform has a local storage unit that 

saves the data which are being received from DAQ unit in real-time. When requested by the server, 

the module on the computational platform extracts the data from the local database and sends to 

the server. In the same way, computational platforms can request data from the server if needed. 

Similar to the computational platforms, the server also has a local storage unit to store data 

which are being received from the remote computational platforms. The database stores data with 

timestamps. In the following Fig 2-14 shows how, data are saved on computational and server 

platforms with proper time stamps. 
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Computational platform local database auto 

updates with acquired data 
 

 

 

 

 

 

 Server local database auto updates with 

acquired data  

 

 

 

 

 

Figure 2-14: Pictures show local databases in computational and server platform with stored 

information in structured format. 

2.5. Tests in Experimental Setup 

In the experimental setup, one computational platform and one server platform were set in 

the lab to test the developed software programs in real-time, which are shown in the following 

figures 2-15 and 2-16. Each setup was combined with a JetsonTX2 device along with a display 

monitor, keyboard, mouse, internet, and power connection.  

First, the Linux operating system was installed in both Jetson TX2 devices. Then those 

were configured to connect to the internet. Here, separate internet connections were used for each 

platform, so that remote communication algorithms could be verified. 
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Figure 2-15: Computational platform generating data and sending to server. 

 

 

 

 

 

 

 

 

 

 

Figure 2-16: Server platform getting data from computational platform for analysis. 
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After both platforms were connected to separate internet connections, platform-specific 

remote communication algorithms were installed and initiated. Each platform had separate IP 

address and port number. By dialing the server IP address and port number, the computational 

platform initiated the connection process with the server. After the sever accepted the request from 

the computational platform, bi-directional communication was established.  

In the second step, the computational platform was generating data by using a random data 

generation algorithm to mimic that the data are coming from current sensors on the cable. At the 

same time, these data were being saved sequentially with timestamps in the local storage by the 

sqlite3 based database management algorithm. In the meanwhile, the server was requesting data 

from the computational platform within a specific time frame.  Data were fetched and being 

showed in the server platform, as in Fig. 2-16. All these data were saved in the local database of 

the server as well.  

In the same way, the computational platform requested data from the server, and those were 

successfully fetched too. Communication redundancy was also tested by disconnecting one 

platform from the internet for a while. The computational platform kept trying to reconnect as long 

as the connection with the server was not re-established. In the meanwhile, the data generation 

process was going on. After the connection re-established, with time-specific requests, the server 

fetched the data from the computational platform, which were generated during the network 

disconnection.    

2.6. Summary  

In this chapter, the total fault localization platform has been developed along with the 

Python based software programs. The developed hardware platform is cost-effective and has the 

capability to acquire, process, and analyze data. Furthermore, it is an open platform that gives the 

facility to perform advance machine learning algorithms for better fault localization. Additionally, 

the developed software programs are capable of establishing reliable bi-directional communication 

and data management. As a whole, the setup addresses all the design requirements that were set to 

accomplish. The following chapter focuses on developing a low-cost data synchronization 

technique which will be incorporated into the developed online fault localization platform. 
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Chapter 3: Low-cost Data Synchronization 

This chapter describes a novel idea of low-cost data synchronization. Section 3.1 

introduces the problem background, available synchronization techniques, and drawbacks. Section 

3.2 presents the methodology of the zero-crossing point-based algorithm. A data analysis and 

synchronization algorithm are developed in section 3.3. The simulation model is described in 

section 3.4. In the subsequent section 3.5, results are discussed, which validates the idea with 

different fault conditions. The cost-effectiveness of the proposed technique is compared with the 

available GPS synchronization modules in section 3.6. The developed algorithm and proposed 

technique are tested in experimental hardware setup in the section 3.7. Finally, section 3.8 

summarizes the chapter. This chapter was presented in 2022 IEEE Electrical Power and Energy 

Conference (EPEC 2022) and published in IEEE Xplore.  

3.1. Introduction and Available Synchronization Techniques 

When a fault occurs, voltage and current surges will travel toward the ends of the line, 

known as the traveling wave; its arrival time at both ends is directly related to the fault distance, 

which is an effective index to locate the fault [37]. This approach is widely recognized in the 

industry as the double-ended traveling wave-based fault localization method [38]. However, this 

method requires accurate synchronized time to properly compute the traveling wave arrival time 

difference [39]. So, coordinated universal time alignment of acquired time series data is needed 

when aggregating data from different measurement or logging units [37]. Global Positioning 

System (GPS) based universal time synchronization is one of the most popular ways to do that 

[40]. GPS receiver chip consists of clocks, and it synchronizes the time in data acquisition 

platforms on both ends [41]-[42].   

Despite the time synchronization provided by GPS, there are a number of practical 

difficulties in achieving the required data synchronization. One of the critical issues is the 

reliability of GPS signal due to affected by various unpredictable and uncontrolled factors, such 

as loss of signal, satellite invisibility, electromagnetic interference, atmospheric disturbances, 
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jamming, failure of the GPS antenna, weather change, etc. [43]. Even though the antennas are 

located in places with an unobstructed view of satellites, GPS receivers face occasional loss of 

signals. Due to these reasons, the quality of synchronized measurement data is influenced. For 

underground cables, the effects are severe due to cables being laid deep under the surface [41]. All 

these circumstances make GPS time synchronization-based fault localization a costly and 

complicated technique. GPS time synchronization devices are integrated with each measurement 

unit placed at ends, which syncs time with the satellite, as shown in Fig. 3-1. 

 

Figure 3-1: Time synchronization by GPS time receivers 

Other than synchronizing by GPS, using phasor-based synchronizing technique can 

estimate the synchronization error aiming at subsequent compensation [44], it relies on the 

extraction of fundamental-frequency components, but the distortion of fundamental components 

reduces the accuracy. Besides, some research proposed compensation of time synchronization 

errors by analyzing line energization or fault records, where the synchronization factor is computed 

to align the remote times for synchronization. However, this factor solely depends on fault records 
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with high sampling rates [39]. On the other hand, studies on locating the fault without data 

synchronization have been carried out in recent years, but certain constraints are brought in, such 

as only being applicable for metallic faults [45], or requiring both voltage and current 

measurements [46]-[47].  

To deal with the above issues, a zero-crossing point-based data synchronization approach 

is proposed. This approach doesn’t rely on GPS receivers or other methods; rather the 

measurements are synchronized by calibrating the zero-crossing points of the sinusoid 

measurements before the fault. In this way, appropriate synchronization is realized, and the 

performance of the proposed method is evaluated by observing the results for different fault 

conditions. The maximum synchronization error found without noise is 0.02 ms, and with proper 

filtering or denoising, the same can be achieved for noisy signals. 

3.2. Methodology of Zero Crossing Point-Based Algorithm 

A cable with a certain length of 𝑙 is considered and installed underground. In the ideal 

condition, the acquired signal is considered to be sinusoidal. 

Under fault conditions, traveling waves will be generated at the fault position and 

propagate along the line from the fault point to both ends [39], [48]-[49]. Propagations of traveling 

waves are shown in Fig. 3-2. With acquired traveling wave arrival time, the fault location problem 

can be formulated as follows [37]-[38],[42]:  

𝐿 = 1
2⁄ (𝑙 + ( 𝑡𝑎 − 𝑡𝑏)𝑣) … … … … … … … … … … … … … (3.1)  

where L is the location of the fault, 𝑡𝑎 and 𝑡𝑏 are the arrival times of the traveling waves at 

each end, 𝑙 is the length of the cable, and 𝑣 is the propagation velocity. 
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Figure 3-2: Propagation of traveling waves at ends of the cable 

The calculated location depends on the accurate arrival time of the detected traveling 

wavefronts, so accurate time synchronization is essential. To synchronize the measurements at 

both ends, the idea is to calibrate the zero-crossing points of the sinusoidal measurements before 

the fault occurs. The pre-fault component is a sinusoidal signal, which will not be interfered by the 

traveling waves. As a result, this pre-fault component should have a fixed phase lag between ends 

as shown in Fig. 3-3, and the data synchronization at both ends can be realized by calibrating the 

pre-fault zero crossing points. 

To locate the pre-fault zero-crossing points, an overcurrent criterion is utilized for 

activation as expressed in the following: 

| 𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  | > | 𝐼𝑠𝑒𝑡 | … … … … … … … … … … … … … (3.2) 

 

where 𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is the observed current amplitude when fault happened. 𝐼𝑠𝑒𝑡 is the 

threshold. It is mentionable that the activation is not limited to the overcurrent criterion, other 

criterion can be applied. 
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Figure 3-3: Lag observed in the same phase between ends 

 

 

Figure 3-4: Waveforms indicating zero crossings to align 

After the activation, the synchronization will be based on aligning the pre-fault zero 

crossing points as indicated in Fig. 3-4. The offset between the unsynchronized measurement at 

both ends is calculated as follows: 

𝑡𝑜 =  𝑡2 − 𝑡1 − 𝑡𝛼 … … … … … … … … … … … … … … (3.3) 

where 𝑡0 is the time offset that leads to synchronization error; 𝑡1 is the zero-crossing time 

from sending end; 𝑡2 is the zero-crossing time from receiving end; 𝑡𝛼 is the constant phase lag due 

to the non-resistive cable transmission. 
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3.3. Data Analysis and Synchronization Algorithm Development 

A program has been developed based on Python programming language, which analyzes 

data from both ends of the cable. The procedures are depicted in Fig. 3-5. First, to find the 

approximate fault time, an overcurrent criterion is utilized for activation as mentioned in equation 

(3.3). And then, it identifies all the zero crossing points before the fault. Subsequently, it pinpoints 

the exact pre-fault zero crossing point. The same program is applied to the data from both ends to 

find the corresponding pre-fault zero crossing point. Finally, the measurements are synchronized 

by offsetting the calculated 𝑡0. The same procedures are applied to synchronize data for all phases.    

 

Figure 3-5: Flow diagram of the developed Python program. 
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3.4. Simulation Model 

In this section, PSCAD simulations are carried out. In the practical field, CT sensors are 

placed on cable ends to acquire current information. Instead of field measurements, the PSCAD 

simulation data are produced and then fed into the Jetson TX2 for analysis. Assuming the length 

of the 3 Phase 35 kV underground cable is 20 km, the fault can occur at any phase. In the model 

setup, different scenarios based on variations of fault at different phases, different fault resistances, 

different phase shifts, and the addition of different levels of white gaussian noises have been 

observed to validate the approach. The underground cable transmission system modeled in PSCAD 

is depicted in fig 3-6. 

 

Figure 3-6: 35 kV underground cable transmission system 

 

Phase to ground faults are set at 0.10 s to 0.15 s, where the simulation duration is 0.20 sec, 

the solution time and channel plot stamp are 10 us. 20000 samples in 0.20 sec are analyzed in the 

simulations. From simulations, the following effects in three-phase currents during fault have been 

observed from both ends, as shown in Fig. 3-7 and Fig. 3-8. 
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Figure 3-7: Observed signal waveforms from sending end 

 

Figure 3-8: Observed signal waveforms from receiving end 

3.5. Validation Results for Different Case Studies 

In the validations, at first, different fault resistances from 0.01 Ohm to 50 Ohm are 

considered for faults at different phases. Subsequently, different phase shifts from 0º to 40º are 

considered for similar fault conditions. Finally, the noise levels of 30 dB and 40 dB are 

superimposed to the measurement to observe the influence of noise. These parameter variations 

are considered to look for any possible effects on synchronization error in the proposed method. 

The online data analysis for synchronization have been done by the developed Python-based 

program. 
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3.5.1. Influence of Fault resistance 

The results due to faults at three separate phases with different fault resistances are given 

in Table 3-1, where 𝑡1, 𝑡2 are the zero-crossing points of the unsynchronized measurements at both 

ends. 𝑡0 is offset to synchronize the measurement, 𝑡𝑒𝑟𝑟𝑜𝑟 and 𝑆 are the synchronization errors in 

the format of time and sampling point, respectively. 

Table 3-1: Results for faults at different phases with different fault resistance 

Fault 

Condition 

Phase Unsynchronized 

Zero Crossing points 

𝐭𝟎 (𝒔) 
 

Synchronization 

Error 

𝒕𝟏(s) 

 

𝒕𝟐(𝒔) 𝒕𝒆𝒓𝒓𝒐𝒓 (s) S 

 Phase A 

R= 0.01 Ω 

A 0.10038 0.09755 0.00300 0.00000 0 

B 0.10580 0.10299 0.00298 0.00002 2 

C 0.10324 0.10041 0.00300 0.00000 0 

Phase A 

R= 5 Ω 

A 0.10063 0.09477 0.00603 0.00000 0 

B 0.10605 0.10021 0.00601 0.00002 2 

C 0.10349 0.09763 0.00603 0.00000 0 

Phase A 

R= 10 Ω 

A 0.09610 0.09801 0.00174 0.00000 0 

B 0.10152 0.10345 0.00176 0.00002 2 

C 0.09896 0.10087 0.00174 0.00000 0 

Phase A 

R= 20 Ω 

A 0.09795 0.09509 0.00303 0.00000 0 

B 0.10337 0.10053 0.00301 0.00002 2 

C 0.10081 0.09795 0.00303 0.00000 0 

Phase A 

R= 50 Ω 

A 0.09576 0.10058 0.00465 0.00000 0 

B 0.10118 0.10602 0.00467 0.00002 2 

C 0.09862 0.10344 0.00465 0.00000 0 

Phase B 

R= 0.10 Ω 

A 0.10202 0.09869 0.00350 0.00000 0 

B 0.10744 0.10413 0.00348 0.00002 2 

C 0.10488 0.10155 0.00350 0.00000 0 

Phase B 

R= 5 Ω 

A 0.09727 0.09961 0.00217 0.00000 0 

B 0.10269 0.10505 0.00219 0.00002 2 
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Fault 

Condition 

Phase Unsynchronized 

Zero Crossing points 

𝐭𝟎 (𝒔) 
 

Synchronization 

Error 

𝒕𝟏(s) 

 

𝒕𝟐(𝒔) 𝒕𝒆𝒓𝒓𝒐𝒓 (s) S 

 C 0.10013 0.10247 0.00217 0.00000 0 

Phase B 

R= 10 Ω 

A 0.09588 0.09646 0.00041 0.00000 0 

B 0.10130 0.10190 0.00043 0.00002 2 

C 0.09874 0.09932 0.00041 0.00000 0 

Phase B 

R= 30 Ω 

A 0.09823 0.09485 0.00355 0.00000 0 

B 0.10365 0.10029 0.00353 0.00002 2 

C 0.10109 0.09771 0.00355 0.00000 0 

Phase B 

R= 50 Ω 

A 0.09937 0.09635 0.00319 0.00000 0 

B 0.10479 0.10179 0.00317 0.00002 2 

C 0.10223 0.09921 0.00319 0.00000 0 

Phase C 

R= 0.01 Ω 

A 0.09838 0.09754 0.00101 0.00000 0 

B 0.10380 0.10297 0.00100 0.00001 1 

C 0.10124 0.10040 0.00101 0.00000 0 

Phase C 

R= 5 Ω 

A 0.10263 0.09973 0.00307 0.00000 0 

B 0.10805 0.10516 0.00306 0.00001 1 

C 0.10549 0.10259 0.00307 0.00000 0 

Phase C 

R= 10 Ω 

A 0.10046 0.10088 0.00025 0.00000 0 

B 0.10588 0.10631 0.00026 0.00001 1 

C 0.10332 0.10374 0.00025 0.00000 0 

Phase C 

R= 20 Ω 

A 0.09887 0.10211 0.00307 0.00000 0 

B 0.10429 0.10754 0.00308 0.00001 1 

C 0.10173 0.10497 0.00307 0.00000 0 

Phase C 

R= 50 Ω 

A 0.09450 0.10134 0.00667 0.00000 0 

B 0.09992 0.10677 0.00668 0.00001 1 

C 0.09736 0.10420 0.00667 0.00000 0 
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From Table 3-1, it is observed that the offset 𝑡0 can be obtained successfully, and the 

maximum error for synchronized measurements is within 0.02 ms or 2 sampling points, which 

demonstrates that the proposed approach has great synchronization capability. Additionally, it is 

found that variations of fault resistance at different phases have no influence on synchronization 

error. 

Here, only phase B shows some errors, which are believed to be associated with non-

constant phase lag in PSCAD software. The phase lag 𝑡𝛼 is due to the non-resistive cable 

transmission which is found as 0.00017 seconds from the PSCAD simulations for both A and C 

phases. On the other hand, it has varied between 0.00017 seconds to 0.00019 seconds for phase B. 

Thus, it is kept as constant value of 0.00017 seconds to calculate the offset 𝑡0. So, the resulted 

offsets 𝑡0 showed deviations for phase B, thus associate synchronization errors.  

3.5.2. Influence of Phase shifts  

In different systems, the phase shifts of the feeding sources can be different. The proposed 

approach should be applicable to all systems. Therefore, phase shifts from 5º to 40º are applied on 

top of the fault conditions similar to the previous analysis, and the results are given in Table 3-2. 

Table 3-2: Results for faults at different phases with different fault resistance & phase shifts (φ) 

Fault 

Condition 

Phase Unsynchronized 

Zero Crossing points 

𝐭𝟎(𝐬) 
 

Synchronization 

Error 

𝒕𝟏(s) 

 

𝒕𝟐(𝒔) 𝒕𝒆𝒓𝒓𝒐𝒓 (𝒔) 

 

S 

 Phase A 

R= 0.30 Ω 

Φ= 10º 

A 0.09711 0.09437 0.00291 0.00000 0 

B 0.10262 0.09989 0.00290 0.00001 1 

C 0.10002 0.09728 0.00291 0.00000 0 

Phase A 

R= 10 Ω 

Φ= 10º 

A 0.10131 0.10093 0.00055 0.00000 0 

B 0.10682 0.10645 0.00054 0.00001 1 

C 0.10422 0.10384 0.00055 0.00000 0 

Phase A 

R= 20 Ω 

Φ= 20º 

A 0.09686 0.09467 0.00236 0.00000 0 

B 0.10247 0.10028 0.00236 0.00000 0 

C 0.09981 0.09762 0.00236 0.00000 0 
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Fault 

Condition 

Phase Unsynchronized 

Zero Crossing points 

𝐭𝟎(𝐬) 
 

Synchronization 

Error 

𝒕𝟏(s) 

 

𝒕𝟐(𝒔) 𝒕𝒆𝒓𝒓𝒐𝒓 (𝒔) 

 

S 

 Phase A 

R= 30 Ω 

Φ= 30º 

A 0.09389 0.09637 0.00231 0.00000 0 

B 0.09958 0.10207 0.00232 0.00001 1 

C 0.09688 0.09936 0.00231 0.00000 0 

Phase A 

R= 50 Ω 

Φ= 5º 

A 0.10047 0.10082 0.00018 0.00000 0 

B 0.10594 0.10630 0.00019 0.00001 1 

C 0.10336 0.10371 0.00018 0.00000 0 

Phase B 

R= 0.20 Ω 

Φ= 5º 

A 0.09458 0.09934 0.00459 0.00000 0 

B 0.10005 0.10482 0.00460 0.00001 1 

C 0.09747 0.10223 0.00459 0.00000 0 

Phase B 

R= 5 Ω 

Φ= 10º 

A 0.09574 0.09978 0.00387 0.00000 0 

B 0.10134 0.10539 0.00388 0.00001 1 

C 0.09869 0.10273 0.00387 0.00000 0 

Phase B 

R= 10 Ω 

Φ= 10º 

A 0.09485 0.10174 0.00672 0.00000 0 

B 0.10036 0.10726 0.00673 0.00001 1 

C 0.09776 0.10465 0.00672 0.00000 0 

Phase B 

R= 20 Ω 

Φ= 30º 

A 0.09978 0.10043 0.00048 0.00000 0 

B 0.10547 0.10613 0.00049 0.00001 1 

C 0.10277 0.10342 0.00048 0.00000 0 

Phase B 

R= 50 Ω 

Φ= 5º 

A 0.09527 0.09963 0.00419 0.00000 0 

B 0.10074 0.10511 0.00420 0.00001 1 

C 0.09816 0.10252 0.00419 0.00000 0 

Phase C 

R= 0.40 Ω 

Φ= 20º 

A 0.09604 0.10084 0.00463 0.00000 0 

B 0.10164 0.10645 0.00464 0.00001 1 

C 0.09899 0.10379 0.00463 0.00000 0 

Phase C 

R= 5 Ω 

Φ= 10º 

A 0.09702 0.09713 0.00006 0.00000 0 

B 0.10253 0.10265 0.00005 0.00001 1 

C 0.09993 0.10004 0.00006 0.00000 0 
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Fault 

Condition 

Phase Unsynchronized 

Zero Crossing points 

𝐭𝟎(𝐬) 
 

Synchronization 

Error 

𝒕𝟏(s) 

 

𝒕𝟐(𝒔) 𝒕𝒆𝒓𝒓𝒐𝒓 (𝒔) 

 

S 

 Phase C 

R= 10 Ω 

Φ= 10º 

A 0.10087 0.10180 0.00076 0.00000 0 

B 0.10638 0.10732 0.00077 0.00001 1 

C 0.10378 0.10471 0.00076 0.00000 0 

Phase C 

R= 20 Ω 

Φ= 20º 

A 0.09636 0.09863 0.00210 0.00000 0 

B 0.10196 0.10424 0.00211 0.00001 1 

C 0.09931 0.10158 0.00210 0.00000 0 

Phase C 

R= 50 Ω 

Φ= 5º 

A 0.09991 0.09627 0.00381 0.00000 0 

B 0.10538 0.10175 0.00380 0.00001 1 

C 0.10280 0.09916 0.00381 0.00000 0 

 

From the results in Table 3-2, it is observed that the errors are all within 0.01 ms or 1 

sampling point, which is almost same as in the previous analysis. Therefore, it validates that the 

proposed approach is also feasible for different phase shifts and is not influenced by it. 

3.5.3. Influence of Noise 

The measurements in practical projects often come with noise; therefore, it is also 

important to consider the noise in the analysis. Considering more realistic scenarios, white 

Gaussian noises with SNR 30 dB and 40 dB are added to the acquired data before analysis. The 

results are given in Table 3-3. 
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Table 3-3: Comparison of results for different noise levels 

Fault 

Condition 

Phase Error for 30 dB Error for 40 dB 

𝒕𝒆𝒓𝒓𝒐𝒓 (s) 

 

S 

 

𝒕𝒆𝒓𝒓𝒐𝒓 (s) 

 

S 

 Phase A 

R= 5 Ω 

 

A 0.00088 88 0.00007 7 

B 0.00015 15 0.00002 2 

C 0.00010 10 0.00005 5 

Phase A 

R= 50 Ω 

 

A 0.00013 13 0.00005 5 

B 0.00001 1 0.00009 9 

C 0.00001 1 0.00000 0 

Phase B 

R= 0.01 Ω 

 

A 0.00013 13 0.00005 5 

B 0.00000 0 0.00010 10 

C 0.00081 81 0.00002 2 

Phase B 

R= 30 Ω 

 

A 0.00149 149 0.00004 4 

B 0.00007 7 0.00004 4 

C 0.00017 17 0.00006 6 

Phase C 

R= 20 Ω 

 

A 0.00027 27 0.00006 6 

B 0.00018 18 0.00005 5 

C 0.00008 8 0.00000 0 

Phase C 

R= 50 Ω 

 

A 0.00006 6 0.00010 10 

B 0.00018 18 0.00005 5 

C 0.00013 13 0.00002 2 

 

From Table 3-3, it is observed that the synchronization error increases with stronger noise. 

For the noise level of 40 dB, synchronization errors are within .10 ms or 10 sample points. 

Considering the wave velocity is 180 m/us, the localization error for 10 sampling points is 1.8 km, 

which is relatively high. But, when 30 dB noise is considered, the synchronization error can reach 

149 sampling points. It is because the noise results in multiple zero-crossing points around 

amplitude zero, which are shown in Fig. 3-9 and Fig. 3-10 within the blue rectangle, and the 

influence is more significant when the noise becomes stronger. Thus, finding the exact zero-
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crossing point is more difficult in noisy signals than that without noise, which makes 

synchronization a challenging task for noisy scenarios.   

However, the synchronization error can be as low as zero if the zero crossings are detected 

accurately. The noise influence on the accurate detection of zero-crossing points can easily be 

solved by using filters or denoising techniques, which should be applied at the time of acquiring 

data before applying it to the proposed approach. With proper filtering or denoising techniques, 

the proposed approach will work perfectly as it has been without noise. 

 

Figure 3-9: Signal waveform with added Gaussian noise of SNR 30 dB 

 

Figure 3-10: Signal waveform with added Gaussian noise of SNR 40 dB 
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3.6. Cost-Effectiveness of the Proposed Technique 

Generally, each GPS synchronization module consists of a GPS receiver and an antenna.  

An industrial GPS synchronization model requires additional processes and software integration 

in the measurement platform. Besides, these modules are quite expensive depending on different 

functions and capabilities. In the following Table 3-4, few available industrial GPS time 

synchronization modules with prices are given.  

Table 3-4: Industrial GPS time synchronization modules with prices 

Ser. Manufacturer and Model Cost/set 

1.  GPS NTP Network Time Server (TM1000A) by Time Machines [50]. 

 

 

$ 470.00 CAD 

2.  GPS Receiver Module I-87211W by ICP DAS [51]. 

  

$ 617.00 CAD 

 

3.   TIMENET Pro Master NTP Time Server with Antenna by Veracity 

[52]. 

 

 

 

 

 

 

 

 

$ 659.00 CAD 
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It is clear from the table that it is costly to add a GPS time synchronization module with a 

measurement unit. This cost can reach several thousands of dollars with added complexity to the 

hardware and software setup. However, the proposed approach completely eliminates the use of 

additional synchronization modules. So, it reduces the additional cost. Besides, in the proposed 

approach, very small calculations can do the synchronization.  

3.7. Test in Experimental Setup 

Testing of the developed algorithm was done on the similar experimental platform 

described in the previous chapter, section 2.5. Data from both ends were needed for 

synchronization. Since there were only two Jetson devices available, so, computational platform 1 

was pre-loaded with PSCAD simulated data of end 1 and the server platform was pre-loaded with 

PSCAD simulated data of end 2.  

Generally, PSCAD simulation data for both ends are synchronized. But to test the 

algorithm, data should be unsynchronized. So, using a software algorithm, random time offsets 

were added to the loaded data before analysis. Afterward, bi-directional communication was 

established between platforms, and data were fetched by the server as like as before. The, the 

server had both end data to perform synchronization. After initiating the developed algorithm in 

the server platform, it was seen that, the experimental setup perfectly synchronized data using the 

developed algorithm without any additional GPS synchronization module.  

3.8. Summary 

This chapter has presented a synchronization technique in a double-ended data acquisition 

approach without using external synchronization techniques, only by aligning zero crossing points 

for each phase before the fault time. The proposed approach is validated through PSCAD/EMTDC 

simulation and by a developed synchronization program. It is found that regardless of fault at 

different phases, different fault resistances, and different phase shifts, the proposed approach has 

accurately pinpointed zero crossing points before the fault with zero synchronization error for most 

of the cases, which proves that the approach is effective. Proper synchronization can be achieved 

by filtering or using denoising techniques in noisy scenarios, to help accurate identification of pre-

fault zero crossing points. With the characteristics of high accuracy and small calculation, the 
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proposed approach eliminates the necessity of external synchronization techniques to accurately 

and quickly detect faults in underground cables. 

The proposed method solely depends on finding exact zero-crossing points before fault, 

which is a pre-fault condition and is not affected by types of faults. So, the validations are done 

based on data from single line to ground faults with varying scenarios.  

The following chapter focuses on developing a machine learning-based approach for 

predictive data up-sampling for accurate detection of traveling wave arrival time.  
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Chapter 4: Data Up-Sampling by Machine Learning 

A machine learning-based data up-sampling model is developed in this chapter. First, 

section 4.1 introduces the necessity of up-sampled data for accurate traveling wave arrival time 

detection. Subsequently, available techniques for up-sampling and drawbacks are discussed. To 

solve the problems, the step-by-step process of the state of art machine learning model 

development is described in detail in section 4.2 along with data preprocessing steps. The 

validation study is carried out in subsequent section 4.3, where simulation and automated models 

for data generation are explained. Then comparative studies between interpolation and machine 

learning approaches are presented for different fault conditions. The developed machine learning 

model and data analysis algorithm are tested in experimental hardware setup in the section 4.4. 

Finally, section 4.5. concludes the chapter with an overall summary. 

4.1. Introduction and Available Up-Sampling Techniques 

The accuracy of traveling wave-based fault localization is dependent on how accurately its 

arrival time is detected. Recalling equation (3.1) from chapter 3, the fault location L is solely 

dependent on 𝑡𝑎 and 𝑡𝑏 , which are the arrival times of the traveling waves at each end. The length 

of the cable 𝑙 and propagation velocity 𝑣 are the known parameters.   

𝐿 = 1
2⁄ (𝑙 + ( 𝑡𝑎 − 𝑡𝑏)𝑣) … … … … … … … … … … … … (3.1)  

If the signals are acquired with low sampling rate, the signals will have fewer data points 

over time, which leads to inaccurate traveling wave arrival time detection. The following figures 

4-1 and 4-2 provide an overview of how signal with lower and higher sampling rates differ in 

finding accurate traveling wave arrival times. Here, sudden change in amplitude is the considered 

activation function for traveling wave arrival time detection. From the high-sampled data, the 

detected arrival time is at 1.2 seconds, whereas the detection time from lower-sampled data is at 

1.5 seconds. So, it is clear that with the higher number of samples in the signal, the detection of 

traveling wave arrival time is more accurate. 
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Figure 4-1: Sample signal with lower sampling rate 

 

Figure 4-2: Sample signal with higher sampling rate 

However, acquiring signals with higher sampling rate is not cost-effective; it requires 

expensive data acquisition units. Besides, acquiring high-volume data over time creates data 

processing and storage issues. There are cost-effective approaches for up-sampling based on 

interpolation techniques [53]-[54]. 

Interpolation is the process where a simple function is created based on the samples from 

given data to estimate samples or unknown points in between. There are a group of different 

interpolation techniques, such as nearest-neighbor interpolation, polynomial interpolation, cubic 

interpolations, quadratic interpolation, linear interpolation, etc. [55]-[59]. However, several non-



 

54 
 

negligible drawbacks exist in interpolation, such as predicted samples by interpolations may suffer 

smoothing effects on cliff or fault lines, difference in predicted minimum and maximum values 

with the input data set, estimation problems for above maximum or below minimum values, 

prediction problems in data with abrupt high/low values, poor performance due to extreme 

difference in values, etc. Especially, when the data patterns are unknown, such as in the case of 

fault, interpolation techniques may suffer to predict realistic samples. 

Machine learning model can solve the above-mentioned problems if trained by real inputs 

and outputs for different fault types [60]. The machine learning model can learn the fault patterns, 

which cannot be done by the conventional interpolation techniques. By learning from different 

fault patterns, predicted up-sampled data can be as realistic as actual, which leads to accurate 

detection of traveling wave arrival time.   

4.2. The Proposed Machine Learning Based Up-Sampling Model 

A machine learning-based up-sampling model is developed to transform 1 MHz data into 

5 MHz data by predictive up-sampling. The model is trained by real input and output samples. 

But, before training, the datasets need to be pre-processed to help the machine learning model to 

make reasonable correlations between features for better results. So, data pre-processing steps are 

first explained in detail in the following section. Then the step-by-step process of machine learning 

model development is illustrated elaborately.  

4.2.1. Data Pre-processing 

Generally, a machine learning model makes prediction based on the training by real input 

and output data. It learns correlation within the input parameters by defining the weights and biases 

to relate to the actual outputs. The datasets should contain at least multiple input features to learn 

the correlation to predict the outputs. Besides, input datasets should not have missing samples. But 

it is quite the opposite case here because, based on one input feature, the corresponding outputs 

need to be predicted. Also, the output size is five times more than the input samples, which is 

shown in Fig. 4-3; besides, the input datasets don’t have enough features and samples to make 

reasonable correlations in between. So, it is realized that in such conditions, it will be difficult to 

develop a good predictive model. 
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Figure 4-3: Single input sample has five corresponding output samples to predict. 

To help building better machine learning model, a few initial steps of data pre-processing 

are followed. The rate of up-sampling is a known parameter. For example, in 1 MHz data, between 

0.200000 seconds to 0.200001 seconds, there will be no more time stamps. But to make it 5 MHz 

data, in between, there will be four more-time stamps. With a defined rate of up-sampling, it is 

known how many extra time stamps is there. So, in the input dataset, desired time stamps are 

inserted as an initial step of data pre-processing, which is shown in Fig. 4-4. In this way, the 

machine learning model can have a better understanding to make reasonable correlations within 

available input samples and time stamps.  

 

 

 

0.2000000000 -0.1344585116 

0.2000010000 -0.1344181937 

 

               1 MHz input sample 

 

 

 

0.2000000000 -0.1344585116 

0.2000002000 Need to predict 

0.2000004000 Need to predict 

0.2000006000 Need to predict 

0.2000008000 Need to predict 

0.2000010000 -0.1344181937 

 

Four more-time stamps inserted 

Figure 4-4: Desired time stamps are inserted into input signals. 
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Output 2 
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After inserting the time stamps into the input datasets, there is only one sample value is 

available within five-time stamps. The other four samples remain as Nan values within the dataset. 

With 80% of missing values, still, it is not a good input dataset for prediction. To help preparing 

the dataset for better machine learning model creation, missing samples can be filled using 

interpolation techniques. Interpolation techniques have drawbacks, as discussed at the beginning 

of the chapter, but it is still a great idea to fill the Nan values with interpolation, as shown in Fig. 

4-5. So, different types of interpolation techniques are applied, such as backfill, forward fill, 

nearest interpolation, cubic, quadratic, linear interpolation, etc. Finally, these pre-processed data 

are fed into the machine learning model for prediction.  

 

 

 

  

 

 

 

Figure 4-5: Original 1MHz signal pre-processed to 5 MHz by interpolation. 

4.2.2. Machine Learning Model Development 

Supervised and unsupervised learnings are the two general categories in machine learning 

[61]. In supervised learning, there are labeled datasets. To predict the outputs accurately, the 

machine learning model is trained by these labeled datasets in supervised learning. In the training 

process, the model learns from real input-output datasets by keep measuring model accuracy over 

time. On the other hand, when datasets are not labeled, machine learning algorithms analyze 

patterns from datasets and try making co-relations to produce outputs. This is widely known as 

unsupervised learning. Here, supervised learning-based machine learning is the approach, as input 

data are to be increased into the higher sampling data by learning from labeled input-output 

datasets with actual fault patterns.  

Nan 

Value 

replaced 

Time 

stamps 

added 

Actual 1 MHz data 1 MHz data with added time stamps 1 MHz to initial 5MHz 

data with interpolated 

values 
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In the process of developing a machine learning model, it follows a sequential step-by-step 

process. These steps are dependent on the type of data and the goal to achieve. Here, the goal is to 

increase the number of samples. Here, this model is to transform the 1 MHz input dataset to 5 MHz 

output datasets containing fault data. So, the actual 1 MHz input dataset and corresponding 5 MHz 

datasets are organized for training the model. But, before that, the raw datasets are pre-processed 

in the way, as mentioned in the previous section. Then, starting with the training, these pre-

processed datasets go through data preparation steps such as multi-category encoding and 

normalizations to extract valuable information and features from datasets. Following that, neural 

network layers are created to make reasonable correlations and set trainable permeates. In between, 

there are non-linear layers that work as activation functions to speed up the process and increase 

computational efficiency. Finally, regression layers predict continuous output data from input 

variables. After the model is trained, whenever a 1 MHz signal goes through the model, depending 

on the type of fault in it, a realistic prediction is made from the knowledge of training, and the 

predicted data is an up-sampled 5 MHz signal. The developed predictive model is depicted in Fig. 

4-6, and subsequently, details of each step are illustrated. 

 

 

 

 

 

 

 

 

Figure 4-6: Step by step development of machine learning model. 
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a) Multi-Category Encoding  

As the very first step, the datasets go through a multi-category encoding process, which 

can also be derived as a data pre-processing step. The model needs to extract information from 

data and understand the pattern, but unless categorical variables are converted into numerical 

variables, the machine learning model can’t process the information [62]. So, before giving it for 

training the model, the primary step is to pre-process the data by converting into numerical 

variables.   

b) Normalization 

In the subsequent step, the normalization technique is applied for data preparation. When 

datasets have differences in the range of values, it becomes difficult for the machine learning model 

to extract features. Using a common scale can solve the problem while dealing with data having 

large differences in values, such as fault data [63]. In the common scale, data remains in shape 

without losing information, and it is done by normalizing the data within a common scale.  

c) Dense Layers 

One of the main parts of a neural network-based machine learning model is the dense 

layers. After the previous steps of data preparation, dense layers are created where every single 

layers of neurons are connected to all the previous input neurons to make a dense neural network 

[64]. This is important to manipulate or change the matrix vectors. These matrix vectors are 

trainable permeates. These get trained and updated by forward and backward propagations to 

produce accurate output data layers.  

d) Rectified Linear Unit (ReLU) 

The training input and output datasets contain a large volume of data with different fault 

patterns. To process this large volume of data requires a huge number of neurons which eventually 

leads to a long processing time to produce outputs. To solve this problem, an activation function 

is used to decide which neurons to activate by the weighted sums and biases. This can speed up 

the process. It also introduces non-linearity, so that the complex patterns of faults can be learned 

by the model. The chosen activation function is rectified linear unit (ReLU), which is a non-linear 
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function that activates the neurons to produce outputs only when input is positive, otherwise 

produces zero [65]. In this way, all the neurons are not activated at the same time, which is the 

main benefit of using ReLU. Eventually, the process of training becomes faster. Besides, due to 

only a certain number of neurons being activated at a time, it is more computationally efficient.  

e) Regression 

Predictive modeling in machine learning is divided into regression and classification-based 

approaches. When the requirement is to predict continuous data from input variables, regression 

algorithms are mostly used [66]. This algorithm creates an estimated mapping function combining 

inputs and outputs for continuous predictive output generation. On the other hand, in classification, 

the mapping function predicts discrete output variables with labels or categories. Here, the goal is 

to predict continuous discrete values in the form of integer numbers, so a regression-based model 

is the best fit. Co-relations are established by learning from variables in training datasets and 

estimating the effects of one variable on others. 

The developed machine learning model combines all the discussed steps to finally produce 

predicted up-sampled data. Finalizing all these steps required many trials and error analysis by 

keep correcting or adding different techniques in between.  

4.3. Validation Study 

To train the machine learning model, input and the corresponding output datasets are 

required. In the validations, PSCAD/EMTDC simulation model is used to generate data where 

different fault conditions are considered. Here, fault can occur anywhere within a 5 km long 

underground cable with different fault resistances and different phase-to-ground faults. A Python-

based program is developed to automate the simulation process to generate data for different fault 

conditions. In the subsequent stages of the validation study, to see whether the machine learning 

approach improves the accuracy of finding the traveling wave arrival time, comparisons are made 

between actual and predicted data. Then, comparisons are observed between interpolation and 

machine learning approach to understand whether machine learning approach works better than 

the conventional interpolation techniques or not.  
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4.3.1. Data Generation Model 

A PSCAD model has been created to generate 1 MHz fault data and corresponding higher 

frequency 5 MHz fault data for the same fault conditions. Here, 3 Phase 35 kV underground cables 

of 5 km are considered. The fault can occur at any phase, at any location within the 5 km, with 

varying fault resistances of 0.01 Ohm to 50 Ohm. The PSCAD model of the underground cable 

transmission system is depicted in Fig. 4-7. 

 

Figure 4-7: PSCAD model of a 35 kV underground cable transmission system. 

From 1 MHz and 5 MHz simulation data, observed signals due to single phase to ground 

faults are shown in Fig. 4-8. The 5 MHz signals are constructed with five times higher number of 

samples as shown in Fig. 4-8 (d). So, each sample in 1 MHz signal has corresponding five samples 

in 5 MHz signal. So, the machine learning model needs to predict 5 samples from one input sample. 

 

        (a) 

 

            (b) 
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        (c) 

 

           (d) 

Figure 4-8: (a) 1 MHz faulty signal, (b) Zoom in image of 1 MHz faulty signal, (c) 5 MHz faulty 

signal, (d) Zoom in image of 5 MHz faulty signal. 

4.3.2. Data Generation Automation Algorithm Development 

For each fault condition, the considered PSCAD simulation time is .25 seconds. In 1 MHz 

simulation, each simulation consists of 250000 samples with an average CSV file size of 29 MB. 

Each 5MHz file has five times more samples with an average CSV file size of 144 MB. So, it is 

easily understood that generating such amount of data by PSCAD for each case takes a long time. 

Besides, manually changing the fault conditions where fault can occur at different locations with 

varying fault resistances and phase-to-ground faults are not practically feasible and would be very 

time-consuming. To solve this problem, a Python-based program is developed. In this program, 

the automated algorithm can initiate the PSCAD software with predefined commands [67], where 

the fault conditions can be changed by setting different phase-to-ground faults, fault resistances, 

and locations of the fault. Subsequently, PSCAD model can be simulated automatically for 

different fault conditions and then the simulation results can be saved individually. The whole 

process is depicted in Fig. 4-9 as in the flow diagram below.  
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Figure 4-9: Flow diagram of the developed Python program for automated data generation. 
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4.3.3. Results and Comparisons Between Actual and Predicted Data 

The machine learning model increases the number of samples and mimics the pattern of 

the actual high-sampled signal. The model is trained by different fault conditions. Upon checking 

the comparative results between actual and predicted data, the arrival times of the traveling waves 

are found to be more accurate in predicted signals than in actual 1 MHz signals.  

Considering a single line to ground fault at 0.4 km with fault resistance of 10 Ohm, the 

detected traveling wave arrival time is 0.20067 s in an actual 1 MHz signal. But, when the predicted 

data by the machine learning model is observed, the detected traveling wave arrival time is               

0. 200612 s. In the actual 5 MHz signal, the observed traveling wave arrival time is 0. 20057 s. 

Here, the improved detection time by the machine learning model is = (0.20067- 0. 200612)=          

58 µs. Following figures 4-10 (a-f) show traveling wave arrival times for this fault condition.  

 

(a)   (b) 

 

    (c)                            (d) 

Traveling wave arrival time 

Traveling wave arrival time 
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   (e)                (f) 

Figure 4-10: (a) Actual 1 MHz signal (b) Zoom-in samples of actual 1 MHz signal (c) Predicted 

5 MHz signal (d) Zoom-in samples of predicted 5 MHz signal (e) Actual 5 MHz signal             

(f) Zoom-in samples of actual 5 MHz signal, for fault at 0.4 km with fault resistance of 10 Ohm. 

For different fault conditions, similar improvements are achieved. The maximum accuracy 

has been observed for several cases, where the predicted signal and actual 5MHz signal has the 

same traveling wave arrival times. As an example, for a fault at 0.6 km with fault resistance of 

0.01 Ohm, the traveling wave arrival times in the predicted signal and actual 5 MHz signals are 

the same, which is 0. 20081 s, where the arrival time in actual 1 MHz signal is 0.20091 s. The 

following figures 4-11 (a-f) show traveling wave arrival times for this fault condition. 

 

        (a)          (b) 

Traveling wave arrival time 

Traveling wave arrival time 
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                      (c)          (d) 

 

                      (e)           (f) 

Figure 4-11: (a) Actual 1 MHz signal (b) Zoom-in samples of actual 1 MHz signal (c) Predicted 

5 MHz signal (d) Zoom-in samples of predicted 5 MHz signal (e) Actual 5 MHz signal (f) 

Zoom-in samples of actual 5 MHz signal for fault at 0.6 km with fault resistance of 0.01 Ohm. 

More results due to different fault conditions are given in Table 4-1, where 𝑡1, 𝑡p5 , and 

𝑡5 are the detected traveling wave arrival times in actual 1 MHz, predicted 5 MHz and actual 5 

MHz data respectively. 𝑡𝑖𝑚𝑝 is the improved traveling wave arrival time due to machine learning-

based prediction. 

 

 

Traveling wave arrival time 

Traveling wave arrival time 
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Table 4-1: Results and comparisons between actual and predicted data 

Fault Condition 

 

Actual 1 MHz  Predicted 5 MHz Actual 5 MHz 𝒕𝒊𝒎𝒑 (µs)  

 𝒕𝟏 (s) 

 

𝒕𝐩𝟓 (s) 

 

𝒕𝟓 (s) 

 0.4 KM 30 Ohm 0. 200670 0.200612 0.200570 58 

1 KM 20 Ohm 0. 200910 0.200810 0.200810 100 

1.2 KM 1 Ohm 0.201470 0.201390 0.201370 80 

2.2 KM 1 Ohm 0.200910 0.200810 0.200810 100 

2.4 KM 30 Ohm 0.201711 0.201662 0.201611 49 

4.2 KM 30 Ohm 0.202110 0.202040 0.202010 70 

 

From the above observations, it is clear that the accurate finding of traveling wave arrival 

time improves when the machine learning-based predicted up-sampled signal is used. Detection 

time improvement can reach the highest accuracy of 100 µs when predicted and the actual 5 MHz 

signal has the same arrival times. Any influences due to different fault conditions are not found.  

4.3.4. Comparisons Between Interpolation and Proposed Method 

The developed machine learning model helps finding traveling wave arrival times more 

accurately by predictive up-sampling. The model is developed by a rigorous training process with 

actual input-output fault datasets to make the predictions more accurate. There are interpolation 

techniques to perform the up-sampling as well. So, a comparative study has been done to 

understand how much improvements can be achieved by machine learning. Here, evaluation 

matrices are based on time error comparisons and mean squared error comparisons between 

interpolation and machine learning approaches. First, for both approaches, differences between 

detected traveling wave arrival times in predicted and actual 5MHz signals are observed. Then, 

average squared differences are calculated.  

Looking at the predicted signals in graphs as shown in Fig. 4-12 for fault at 0.4 km with 

fault resistance of 10 Ohm, if samples are very closely observed, differences between the two 

approaches are found. The followings are the observations in this fault condition.  
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Detected traveling wave arrival time in predicted 5MHz signal by interpolation = 0.20045 s  

Detected traveling wave arrival time in predicted 5MHz signal by machine learning = 0. 200612 s  

Detected traveling wave arrival time in actual 5 MHz signal = 0. 20057 s  

Time error in interpolation = (0. 20057 - 0.20045) s = 120 µs 

Time error in machine learning = (0. 200612 - 0. 20057) s = 42 µs 

 

 

 

Traveling wave arrival time 

Traveling wave arrival time 
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Figure 4-12: (a) Actual 1 MHz signal (b) Zoom-in samples of actual 1 MHz signal (c) Predicted 

5 MHz signal by interpolation (d) Zoom-in samples of predicted 5 MHz signal by interpolation 

(e) Predicted 5 MHz signal by machine learning (f) Zoom-in samples of predicted 5 MHz signal 

by machine learning (g) Actual 5 MHz signal (h) Zoom-in samples of actual 5 MHz signal for 

fault at 0.4 km with fault resistance of 10 Ohm. 

More comparisons are presented in the following table 4-2. It is clearly seen that the 

machine learning approach performs better in all observed fault conditions. The maximum time 

error found in the machine learning approach is 85 µs. On the other hand, it reaches up to 283 µs 

for interpolation. Besides, the machine learning approach can achieve the highest accuracy with a 

null time error. But the lowest time error observed in interpolation is 120 µs, which is higher than 

the highest time error found in the machine learning approach. This undoubtedly proves that the 

machine learning approach performs better while finding accurate traveling wave arrival time.   

Traveling wave arrival time 

Traveling wave arrival time 
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Table 4-2: Results and comparisons between interpolation and machine learning based prediction 

Fault Conditions 

 

Interpolation 

Machine 

Learning Interpolation 

Machine 

Learning 

Time Error (S) Time Error (S) MSE MSE 

0.2 KM 50 Ohm 0.000245 0.000085 2.0645834E-05 8.4430360E-07 

0.4 KM 10 Ohm 0.000120 0.000042 2.0575682E-05 6.3892130E-07 

0.4 KM 30 Ohm 0.000120 0.000042 2.0575682E-05 6.3892130E-07 

0.6 KM 0.01 Ohm 0.000120 0.000000 2.0439455E-05 8.6522120E-07 

0.8 KM 1 Ohm 0.000240 0.000080 2.0444513E-05 1.6121558E-06 

1 KM 20 Ohm 0.000121 0.000000 2.0508724E-05 8.6525980E-07 

1.4 KM 40 Ohm 0.000241 0.000081 2.0512562E-05 8.4422476E-07 

1.8 KM 1 Ohm 0.000120 0.000042 2.0378651E-05 2.7949795E-06 

2.2 KM 1 Ohm 0.000120 0.000000 2.0508724E-05 8.6525980E-07 

2.8 KM 30 Ohm 0.000120 0.000000 2.0301228E-05 4.4875733E-06 

3.2 KM 25 Ohm 0.000283 0.000163 2.0178124E-05 8.9751320E-06 

3.8 KM 0.01 Ohm 0.000239 0.000080 2.0247096E-05 6.5568847E-06 

4 KM 15 Ohm 0.000241 0.000081 2.0242860E-05 8.4408470E-07 

4.4 KM 1 Ohm 0.000235 0.000080 2.0650004E-05 6.5571040E-06 

 

By comparing predicted signals for both approaches in terms of average squared 

differences, the machine learning approach reaches the lowest MSE of 8.6525980E-07, where the 

lowest MSE in interpolation is 2.0650004E-05. Even the lowest MSE in interpolation is higher 

than the highest MSE 1.6121558E-06 in the machine learning approach, which proves that the 

machine learning approach makes better overall predictions. 
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4.4. Test in Experimental Setup 

Once the machine learning model is developed, the model can be saved to be loaded later. 

Similarly, after a rigorous training process in personal computer, the developed model was saved 

as HDF5 format with a .h5 extension. Then this saved model was loaded into the experimental 

setup.  

First, the computational platform was loaded with 1 MHz fault data of different fault 

conditions. Then, these fault data went through the loaded machine learning model in the 

computational platform to increase the sample five times. It was found that the model works 

perfectly in the computational platform to increase samples. Afterward, the data analysis algorithm 

traced out the improved arrival times of traveling waves.  

4.5. Summary  

This chapter has presented a machine learning-based data up-sampling approach to detect 

the traveling wave arrival times more accurately. To validate the approach, PSCAD/EMTDC 

simulation data for different fault conditions have been used for training and testing. With pre-

processed training data, the machine learning approach has followed a step-by-step development 

process to finalize the data up-sampling model. It has been found that machine learning-based data 

up-sampling improves the accuracy of finding traveling wave arrival times. In the comparative 

analysis between conventional interpolation and machine learning, it has been observed that the 

machine learning approach performs better. The machine learning approach has less time errors 

than interpolation while finding accurate traveling wave arrival times. Similarly, mean squared 

errors are less in the machine learning approach, which prove that overall signal predictions are 

better by the machine learning. In a nutshell, the proposed machine learning model is suitable and 

feasible for finding the traveling wave arrival times more accurately. However, the machine 

learning model will produce realistic outputs for different fault conditions if initially trained by 

similar fault conditions.   
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Chapter 5: Conclusion and Future Work 

5.1. Conclusion 

Fault localization in underground cables in mining industries calls for improvement of 

existing localization platforms due to these platforms are not solely tailored for the mining 

industry. These are not fast enough and cost-effective also. Traveling wave-based double ended 

online fault localization platforms are able to solve these problems with advanced hardware and 

software setup. With development of fault localization platform, this thesis has majorly contributed 

to the following developments: 

1) Finding available fault localization platforms and corresponding equipment with 

costs.   

2) A Low-cost double ended online fault localization platform development.  

3) Development of five separate software algorithms.  

• Bi-directional communication establishment algorithm.  

• Sever management algorithm.  

• Data analysis algorithm for data synchronization.  

• PSCAD data generation automation algorithm.  

• Machine learning model training and data analysis algorithm. 

4) A novel low-cost data synchronization technique development. 

5) Development of a machine learning model to improve the accuracy of finding 

traveling wave arrival times. 



 

72 
 

5.2. Case Specific Accomplishments  

In this thesis, a low-cost double ended online fault localization platform has been 

developed. It is capable of running advance machine learning algorithms for more accurate fault 

localization. The features of the developed localization platform are given below.  

• It can acquire data from both ends of the cable. 

• It has high frequency data acquisition capability. 

• It can perform advanced machine learning algorithms for faster and more accurate 

fault localization. 

• The developed software establishes bi-directional communication to transfer and 

receive data from remote platforms for analysis. 

• The software also provides a query-based data management facility for data 

analysis from stored data. 

• The overall cost of a single platform is CAD $ 2,850.00 which is less than ten times 

of the available market options. 

Secondly, a novel low-cost data synchronization technique has been proposed in this thesis. 

In a nutshell, the proposed synchronization technique has the following features: 

• It doesn’t rely on external synchronization devices, which reduces cost. 

• Regardless of fault at different phases, different fault resistances, and different 

phase shifts, the proposed approach is effective. 

• In noisy scenarios, with filtering or denoising, it can achieve proper 

synchronization. 

• It contains very small calculations for accurate and quick synchronization. 

• It depends only on a pre-fault condition and is not affected by types of faults. 
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Finally, a machine learning model is developed in this thesis to do predictive up-sampling 

of fault data. This model has the following features: 

• The developed model up-samples data, which improves the accuracy of finding 

traveling wave arrival times. 

• The model eliminates the necessity of costly data acquisition units with high 

sampling rates.  

• The model performs better than conventional interpolation techniques in terms of 

increased accuracy in finding traveling wave arrival times and better overall 

predictions. 

The combination of all the above approaches makes the fault localization platform a well-

rounded cost-effective solution for underground cable fault localization. However, there are scopes 

of future work, and more developments can be made.  

5.3. Future Work 

Although the proposed fault localization platform has solved the main problems, there are 

possible scopes to improve the platform, such as: 

• Implementation of the platform in real sites may give more practical aspects to 

improve the hardware-software platform.  

• The server platform can be integrated into an online-based server application to 

remotely accessed and manage via web application.    

• The data acquisition unit is not limited to the use of one type of sensor rather it is 

an open platform. Other sensors can be used and tested for different scenarios. The 

following sensors can also be incorporated with the platform for PD based fault 

localization; Transient Earth Voltage (TEV) for on-line PD measurements in 

decibels [68], High Voltage Coupling Capacitor (HVCC) sensors to measure PD 

pulses occurring in the machine’s stator winding [69], Airborne Acoustic (AA) 

sensors to detect airborne acoustic PD signals [70], Bushing Tap Sensor (BTS) to 

detect, measure and monitor PD in HV transformers and bushings[71], etc. 
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• More input channels can be incorporated to measure from many cables at a time. It 

will reduce setup costs, as well as can improve the setup functionality.  

• Here, the computational platform and the data acquisition unit are separate units. 

There are scopes to combine these into a single circuit design.   

• The synchronization approach depends only on a pre-fault condition. Here, single 

line to ground faults with different conditions have been examined. But further 

studies can be done on line-to-line and multiple-phases-to-ground faults to observe 

whether there are any effects due to other types of faults. 

• Single line to ground fault is the most likely fault that occurs in underground cables. 

So, the machine learning model has been trained with these fault conditions. It can 

be trained by more different fault conditions to get desired results for diverse fault 

conditions.    

• Both the synchronization approach and machine learning approach have used 

simulation data. Using practical field data will definitely improve the platform for 

practical aspects.   
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