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Abstract

In recent years, deep learning applications have shown promise in tackling social value tasks such as

hate speech and misinformation in social media. Neural networks provide an efficient automated solution

that has replaced hand-engineered systems. Existing studies that have explored building resources, e.g.

datasets, models, and NLP solutions, have yielded significant performance. However, most of these systems

are limited to providing solutions in only English, neglecting the bulk of hateful and misinformation content

that is generated in other languages, particularly so-called low-resource languages that have a low amount

of labeled or unlabeled language data for training machine learning models (e.g. Turkish). This limitation is

due to the lack of a large collection of labeled or unlabeled corpora or manually crafted linguistic resources

sufficient for building NLP systems in these languages.

In this thesis, we set out to explore solutions for low-resource languages to mitigate the language gap

in NLP systems for social value tasks. This thesis studies two tasks. First, we show that developing an

automated classifier that captures hate speech and nuances in a low-resource language variety with limited

data is extremely challenging. To tackle this, we propose HateMAML, a model-agnostic meta-learning-based

framework that effectively performs hate speech detection in low-resource languages. The proposed method

uses a self-supervision strategy to overcome the limitation of data scarcity and produces a better pre-trained

model for fast adaptation to an unseen target language. Second, this thesis aims to address the research

gaps in rumour detection by proposing a modification over the standard Transformer and building on a

multilingual pre-trained language model to perform rumour detection in multiple languages. Specifically, our

proposed model MUSCAT prioritizes the source claims in multilingual conversation threads with co-attention

transformers. Both of these methods can be seen as the incorporation of efficient transfer learning methods

to mitigate issues in model training with small data.

The findings yield accurate and efficient transfer learning models for low-resource languages. The results

show that our proposed approaches outperform the state-of-the-art baselines in the cross-domain multilingual

transfer setting. We also conduct ablation studies to analyze the characteristics of proposed solutions and

provided empirical analysis outlining the challenges of data collection to performing detection tasks in multiple

languages.
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1 Introduction

Social media websites like Twitter and Reddit, where people communicate online, are a part of our

daily lives. The opportunity to get connected from anywhere anytime and freely has changed our ways of

communication and is now deeply rooted in our personal and social lives. For example, Facebook is the

most popular social media platform, with roughly 2.93 billion monthly active users as of the first quarter

of 2022.1 With such integrated and widespread use of online communications, the significance and role of

social media in society have become unprecedented. A 2016 study shows that a majority of U.S. adults

(62%) turn to social media for news, with 18% doing so often [4]. A recent headline in BBC noted that

TikTok (another popular social media platform) had become a major political battleground for Colombia’s

presidential election candidates.2 Not only recent events, but the role of fake news in social media in the

2016 US election has also led to the rethinking of social media influence in political events [5].

Online social platforms (OSPs) allow users to post freely, express whatever they want, and share with

anyone even anonymously. The misuse of these platforms are also typical, i.e. offensive attacks on other

users or proliferation of false news. There are reports that social media now plays a larger role in hate-

related attacks, radicalization, and coordinated spread of misinformation.3 Fake news in social media can

have potential realworld consequences on a large scale since fake news is more widespread in those than

mainstream news media.4 Vast online interactions without proper safeguard can challenge meaningful and

healthy communication on both personal and social levels, leading to more critical societal problems. Two of

the major challenges in OSPs are: tackling hate speech and preventing misinformation. Offensive language

troubles sound online communication, hate speech and stereotypes attack and disparage individual or minority

groups, and misinformation could create discord in society and lead to violence. Due to the societal concern

and how widespread the problems are on the Internet, there is a need for automatic detection[6, 7].

Most online interaction between users is in the form of natural language such as speech, text, etc. Natural

language data are now widely processed by Natural Language Processing (NLP) systems. An NLP system

like content filtering at Facebook responds to rapid live interactions in a fraction of a second and at a billion-

user scale. It can provide an efficient and intelligent solution to problems such as hate speech at scale. Recent

claims that NLP has revolutionized the field of Artificial Intelligence(AI) by leveraging the abundance of web

data and modern computing (GPUs) [8]. For instance, Facebook is now using super efficient AI models to

1https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
2https://www.bbc.com/news/av/world-latin-america-61634206
3https://www.cnn.com/2021/12/07/tech/facebook-myanmar-rohingya-muslims-intl-hnk/index.html
4https://www.buzzfeednews.com/article/craigsilverman/viral-fake-election-news-outperformed-real-news-on-facebook
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filter 94% of online content before anyone reports it, whereas early systems were heavily reliant on reports

from users.5 AI and big data-driven approaches is an active area of research for understanding harms in

OSPs and developing systems for tackling online misuse.6 When it comes to the accessibility of NLP systems

for global languages, there is, nevertheless, a significant gap. Current systems are brittle and a lot of progress

is yet to be done to make them safe and trustworthy, but for some multilingual communities, the algorithms

can reportedly contribute to critical harms such as “human rights violations”.7 The study of NLP for

societal benefits comes within the broad category of “AI for social good,” an emerging area that examines

the aforementioned issues, as well as justice and ethical issues in AI [9].

1.1 Social Value Tasks in NLP

Machine learning is an approach that teaches computer to learn from experience. The experience in our case

is an instance of text data (e.g. Tweets). We explored text-only NLP systems that are powered by deep

learning, a modern approach to machine learning (ML). In this chapter and subsequent discussions, we will

consider machine learning tasks that are closely related to online abuse, misinformation, and harm as social

value tasks. There are several social value tasks involving text data, for example, tackling hate speech in short

texts and early detection of rumour in online conversations. They can be categorized as text classification

tasks in NLP, where a machine learning model predicts the class label from a set of discrete labels.

Hate speech or offensive language is intended to offend or attack a person or group based on race, identity,

ethnicity, gender, religion, etc [10]. The machine learning challenge is detecting offense and hatred of diverse

forms, ones with lexical cues, e.g. slurs, or the others that are indirect forms such as stereotypes. There

are many existing works on detecting hate speech in social media (e.g. Twitter) [10, 11], commonly studied

in text classification of short texts. One of the key challenges in hate speech detection is the adaptation of

machine learning models to diverse domains and forms of hate speech with limited available data.

Detecting misinformation in social media is another challenging task. Social media platforms may con-

tain both misinformation and disinformation. False or erroneous information is referred to as misinformation.

Rumours, insults, and practical jokes are a few examples. Disinformation is malicious content that is pur-

posefully spread, and it includes hoaxes, spear phishing, and propaganda. Both of them could spread fear

and suspicion among the population. We focus on misinformation detection, specifically detecting rumours

in social media. The goal of automated rumour detection is to detect rumours accurately to curb their spread

and debunk rumours early before they reach a wider audience. For example, the task of rumour detection

on Twitter detects the veracity of an input conversation. Given a conversation thread containing a source

post and corresponding replies is input to a classifier that predicts the veracity labels. A conversation on

Twitter typically has a long context length and contains multi-level user interactions which can form a tree

5https://ai.facebook.com/blog/how-facebook-uses-super-efficient-ai-models-to-detect-hate-speech/
6https://ec.europa.eu/research-and-innovation/en/horizon-magazine/can-artificial-intelligence-help-end-fake-news
7https://time.com/6217730/myanmar-meta-rohingya-facebook/
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structure [12, 13]. The key aspect to this problem is processing long-range interactions of users and making

predictions accordingly [14]. This is a relevantly new research interest and the problem is studied mostly by

investigating breaking news events in US domains.

1.2 Deep Learning for NLP

Deep learning has become ubiquitous in NLP for many tasks including text classification, machine translation,

question answering, and text summarization. Deep learning models leverage rich representations of neural

networks to produce high-quality features and can learn a task well, provided sufficient training data is

available [15]. Recent work in deep neural networks has demonstrated substantial gains on many NLP tasks.

The core to this substantial progress in NLP comes from a technique called language modeling [16, 17].

Powerful pre-trained language models such as Bidirectional Encoder Representations from Transformers

(BERT), Robustly optimized BERT approach (RoBERTa) have already reached near-human performance

on General Language Understanding Evaluation (SuperGLUE) leaderboard[18], a suite of 11 benchmark

NLP tasks. Large-scale pre-training on internet scale data can lead to “super-human” performance that was

thought impossible a few years ago. One notable example is Generative Pre-trained Transformer (GPT3)

[19], a language model with 175 billion parameters that can solve many language tasks with very little or no

task-specific supervision. It is important to keep in mind that a significant portion of these language models

are created using internet-scale data and computing resources that are far larger than the typical university

budget. Large-scale modeling as it is now requires a lot of resources, and many of them are impossible to fit

for regular usage with standard compute such as personal computers and GPUs.

Where early research in text classification mostly focused on identifying useful features in a corpus [20] (i.e.

lexical cues for hate speech detection), the focus is now shifted to the use of learned neural representations

as automated feature vectors. A de-facto standard choice of neural networks for NLP tasks is pre-trained

language models. The current paradigm in many sentence classification tasks involves creating downstream

classifiers on top of the pre-trained knowledge, perhaps most famously BERT [21] fine-tuning on the task-

specific training data.

Research in hate speech and misinformation are relatively recent interests among researchers. Existing

work investigates hate speech with a focus on specific types of hatred or target groups, identifying bias in hate

speech models, and a recent interest in multilingual methods [10, 11, 22]. State-of-the-art methods are based

on deep neural networks; most of them leverage pre-trained language model’s fine-tuning [23]. However,

they are limited to a few high-resource languages and domains, which limits their wider use under limited

resources. Moreover, hate speech can be expressed in several nuanced forms, such as stereotypes which neural

nets struggle to understand [24]. Detecting hate speech of diverse and changing forms poses a major challenge

for automated hate speech classifiers. Work in rumour detection is rather limited to a smaller domain, for

example, breaking news events in a particular region [25]. One bottleneck is the lack of available datasets
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due to the nature of the task. Dataset collection for rumour detection heavily relies on fact-checking websites

and information on the real-time proliferation of rumours on social media. For both the task of hate speech

and rumour detection existing work is limited to a few high-resource languages, warranting a recent interest

in the democratization of resources i.e. datasets and models to many world languages.

1.3 NLP for World Languages

Multilingual NLP systems can comprehend a variety of languages. The economy, society, and international

information exchange can all benefit from systems with multiple natural language processing (NLP) capa-

bilities. The development of NLP for world languages faces two main challenges. i) Linguistic diversity:

there are more than 6500 spoken or signed languages in the world, which belong to over 14 different language

families. ii) Uneven distribution of linguistic resources: labeled and unlabeled resources vary across languages

for training machine learning models. Based on their available resources, we can divide the world’s languages

into two categories. Languages having large collections of labeled or unlabeled corpora or manually crafted

linguistic resources sufficient for building statistical NLP solutions referred to as high-resource languages.

English, for instance, or Chinese. Low-resource languages lack these resources and are underrepresented

both in academia and industry. Languages with limited resources include Turkish and Swahili. In this thesis,

we aim to develop deep learning systems detect hate speech and rumours for underrepresented languages.

1.4 Solving Value Tasks in Multiple Languages

There is much community interest in NLP was given to high-resource languages (e.g. English). Decades

of work led to the creation of machine learning tasks, text corpus, training data, evaluation benchmarks,

software packages, and other resources for a few languages only. The diversity of language systems is little,

thus discriminating against many languages and leaving them under-explored and resource-poor [26]. The

advances in deep neural language modeling should also be made available to the people of the low-resource

community. There is untapped potential and more to be done to make deep learning systems available in

low-resource languages (e.g. Hindi). Recent deep multilingual models take a viable step towards multilingual

development of NLP systems. Recently researchers have released datasets and methods for tackling hate

speech in many low-resource languages [23, 27, 28, 29]. Leveraging pre-trained knowledge and supervised

datasets can help improve the hate and rumour detection tasks. However, an important dimension of the

real-world challenge remains to make these resources accessible to the overlooked multilingual community,

for example, the global south. The studies in this thesis explored developing NLP systems for social value

tasks with a focus on the low-resource community. We mainly investigated hate speech in short texts and

misinformation in conversation threads. The remainder of this chapter summarizes our contributions.

Research objectives. This thesis is about developing a deep learning model that can detect either hate

speech or rumours in multiple languages using limited training data. Our goal is to support underrepresented
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languages in tackling social value tasks. Our primary research interests are hate speech and rumour detection,

two challenging OSP problems. We investigated multilingual hate speech detection while faced with diverse

domains and forms of hate speech due to language variety and model development in small or no training

data. We investigate an alternative approach to limited data fine-tuning to improve transfer learning in

multilingual modeling. We propose a meta-training-based low-resource adaptation framework and show that

meta-learning has better cross-lingual transfer performance over standard fine-tuning. Our research indicates

that meta-training, as opposed to limited data fine-tuning, could be a more effective approach for multilingual

hate speech. Research in multilingual rumour detection is very limited, with machine learning models and

datasets only available in English and Chinese. Our goal is to build the first multilingual rumour detection

system for South East Asian languages. We start by building a dataset for four SEA languages to support

the development of multilingual NLP systems for rumour detection. Towards multilingual modeling, we

made efforts to adopt English-only baselines in multilingual training and provided a starter evaluation tool.

Existing systems are inefficient in processing a long conversation thread. We propose a new multilingual

model that deals with prioritizing the source claim while processing long-range replies, which helps to jointly

focus on salient parts of both the source claim and replies for rumour verification. Future work in this

direction can benefit from our contribution to datasets, modeling, and evaluation.

1.5 Contributions

The contributions of this thesis are summarized as follows:

• We were among the first to investigate efficient knowledge transfer in limited-data multilingual hate

speech detection. In particular, we propose HateMAML, a domain-adaptive model-agnostic meta learn-

ing (MAML) algorithm for hate speech detection in low-resource languages. One of the novelties of

HateMAML lies in the efficient utilization of available training samples in the source and auxiliary

languages.

• We made effort to understand better low-resource hate speech detection in data scarce and domain

adaptation scenarios. We investigate efficacy of transfer in multiple languages in varying configurations

and implementation of pre-trained models for hate speech detection. We concluded that meta-training

over all available language training data is promising and meta-learning could be an alternative to

standard fine-tuning that yields superior performance.

• Another focus in this thesis was tackling misinformation in social media i.e. detecting rumours in

Twitter conversations in low-resource languages. We set out to develop rumour detection resources for

low-resource languages, for example, South East Asian (SEA) languages. In particular, we construct

first multilingual rumour detection corpus in two languages from both real-world and synthetic data.

We believe that this dataset is a first but important step to building rumour verification systems in
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low-resource languages.

• Finally, we implemented several existing approaches to rumour detection in English, making efforts

to adapt them to detect rumours in multiple languages using a single model. We observed that parts

of a conversation thread need to be attended well along with the source post in a thread to verify a

rumour event. To tackle this, we propose multilingual source co-attention transformer (MUSCAT),

a transformer-based model that uses co-attention Transformer to focus on both the source post and

replies in order to verify a rumour event.

1.6 Outline

This chapter provides an introduction to the research problems explored. In Chapter 2, I will present related

backgrounds on neural networks and transfer learning for multilingual NLP. Chapter 3 will outline effective

transfer learning for low-resource hate speech detection. Chapter 4 will detail our investigation on multilingual

rumour detection with a focus on South East Asian languages. Chapter 5 will provide a conclusion on the

findings and some notes on future work.
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2 Background

Neural networks are powerful tools for modeling complex data, and have been successfully applied to a

variety of tasks in NLP [16, 30]. In this chapter, we will start by giving an overview of neural networks. Fol-

lowing that, we will discuss how neural networks can be used to model sequences of data, such as in recurrent

and long short-term memory networks [31, 32]. The development of general-purpose language representations

using Transformers, a self-attention based model [3], has revolutionised recent NLP advancements [21, 33].

Transfer learning is an effective technique for efficient learning by using information from a general-purpose

pre-trained model. However, knowledge transfer learning can be challenging in low-resource environments.

We also discuss current strategies that help overcome these challenges.

2.1 Neural Networks for NLP

NLP tasks have been traditionally solved using machine learning classifiers such as Support Vector Machines

(SVM) and logistic regression [34]. Given a task of interest, task-specific features are extracted manually

from expert knowledge about language that seems to be useful for the given task. Those features are used for

training a machine learning classifier using a suitable learning algorithm. Take for example a classification

task p(y|x) where goal is to classify input x into a target y. The traditional statistical approaches in NLP often

design hand-crafted features to represent x and then apply a linear statistical model to learn the classification

function. These traditional systems have some major challenges: not only is hand-crafted feature engineering

labor intensive and requires expert domain knowledge, but the systems making use of them have not been

able to perform well on most challenging language tasks [35].

Deep learning models learn high-dimensional latent feature vector representations via a deep neural net-

work [36] and then learn the classification function on top of the latent features. Recently, the re-emergence

of deep neural networks (DNN) provides a compelling but simple way to learn hierarchical representations

to handle complex tasks. In pioneering work in NLP, Collobert et al. [35] showed deep neural networks

can learn various natural language processing tasks almost from scratch including part-of-speech tagging,

chunking, named entity recognition, and semantic role labeling. Researchers have shown that neural meth-

ods outperform traditional statistical learning techniques [37]. The learning algorithm for neural networks

avoids hand-crafted feature engineering leading to the versatility of learnable tasks and therefore disregards

the need for a lot of prior knowledge. Specialized networks such as recurrent neural networks are commonly

used for sequence modeling tasks. Recurrent networks and their variants such as long-short term memory
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networks are powerful learners but limited for successful training of modern deep learning models [38] due

to lack of parralelization in the network. Recent alternative architectures such as attention mechanisms are

proposed to power state-of-the-art NLP systems. Most importantly successful learning in deep networks is

heavily dependent on supervised training using a large dataset.

Note that the latent representations for each new NLP task need to be learned from scratch. In many

cases, this becomes problematic since, for many tasks, supervised training data is limited, and the quality

of the latent feature representation deteriorates. A common approach to mitigate this problem is to find

a generic task and learn transferable feature representations that can be shared across all NLP tasks. One

way to build such a model is language modeling, where the task is predicting the next word given previous

words is one such task that takes advantage of semi-supervised learning and an abundance of web corpus for

training. In fact, the latest paradigm shift in NLP is based on this simple idea of pre-trained language models

where pre-trained features can be leveraged to learn any new NLP task with limited task-specific training

data. Today’s state-of-the-art NLP systems are mostly based on pre-trained models. For instance, pre-

trained BERT [21] and GPT [19] have surpassed human-reported accuracy on challenging natural language

understanding (NLU) benchmarks.

A deep learning model is generally a neural network with many stacked layers. In this section, we will

briefly introduce several neural network models that are commonly used in NLP and that are essential to

the work done in this thesis. Recent advancements in sequence modeling, for example, self-attention based

Transformers will be discussed in detail which provide a basis for pre-trained language models and their

transfer learning to be discussed in subsequent sections.

2.1.1 Deep Feedforward Neural Networks

A neural network is made of artificial neurons. A neuron is a computational unit which has much of the same

mathematics as logistic regression. A single layer neural network has multiple neurons. A Deep Feedforward

Neural Network (DNN) consists of multiple layers. Core to a neural network is the additional layers in the

middle, called hidden layers. The stack of hidden layers maps the relationship between the input and output,

where each hidden layer receives input from its previous layer. The multilayer feedforward networks are also

called multilayer perceptrons (MLP).

A Deep Feedforward Network defines a mapping y = f(x; θ). During training, the parameters θ are

learned so that y results in the best approximation of the original function f∗(x). Information flows from the

input x through some intermediate steps, all the way to the output y. There are no Feedback connections.

Any feedforward neural network with L layers, can be seen as a composition of functions f l corresponding

to each layer l:

f(x) = fL(fL−1(...f1(x)...)). (2.1)

The parameters of a single hidden unit are a bias and a weight vector. We represent parameters in a layer
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as a single matrix W and bias vector b by combining weights vectors and biases of each units in the layer.

By this choice, we can make the required computation efficient in a single layer with matrix operations. The

output of the hidden layer h is computed as follows:

h = σ(Wx + b). (2.2)

Each hidden layer applies a linear transformation to the input data, followed by a non-linearity (e.g.

sigmoid) function σ. For units in the hidden layer, this translates to each hidden unit taking a weighted

sum of its input data from the previous layer and then applying an activation function. The non-linearity is

critical to neural networks’ representation learning [39].

Deep neural networks are the foundation of deep learning models that have achieved state-of-the-art

results in many supervised and unsupervised NLP tasks. They are powerful learners compared to logistic

regression classifiers. The universal approximation theorem states that a feedforward neural network can be

shown to represent any function with a single hidden layer and a finite number of neurons [40].

Training Neural Networks

Deep neural networks are trained using two steps: forward propagation and backward propagation. Forward

propagation takes an input x and produces an output ŷ; information flows forward through the hidden layers.

During training, forward propagation terminates in the final output layer and produces a scalar loss value by

comparing labeled target y and predicted ŷ. The backpropagation algorithm [41], also known as backprop,

propagates the loss through the network to the input layer in order to compute the gradient. While backprop

is responsible for computing the gradient, another learning algorithm is used to update the weights of neurons

to the margin of error, most famously the stochastic gradient descent (SGD) algorithm.

The weights of neurons are randomly initialized at first [42]. The training process continues until a

stopping criterion is met. This essentially performs learning in neural networks by finding a set of weights in

neurons that worked best.

Deep learning algorithms take advantage of optimization in many contexts. The goal of machine learning

algorithm is to reduce the expected generalization error, which means how well a model performs on unseen

data. This quantity is known as the risk [43]. Towards this goal, a machine learning problem can be cast as

an optimization problem - minimize the expected loss over a training set. In practice, neural networks are

trained using many optimizers including Adam, RMsProp, Adadelta, etc. Variants of Adam optimizer[44] are

commonly used in well-known NLP tasks [18]. Another important training technique is regularization, which

mitigates overfitting in neural networks and allows to generalizae well to unseen data even when training on

a finite training set.
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2.1.2 Recurrent Neural Nets

Most natural language has a sequential form i.e. words in a sentence form a sequence, and audio has a

temporal sequence. Recurrent neural networks are designed to process natural language data in a sequential

manner, for example, by reading one word after another in a sentence. A recurrent neural network (RNN)

is a feedforward neural network, that unfolds a recurrent computation unit across time t [45]. The input to

an RNN is a sequence denoted as (x1, x2, ..., xt) where each data point is a real-valued vector. Similarly, the

target or output sequence is (y1, y2, .., yt). An RNN can process a sequence of arbitrary length by recursively

applying a transition function to its internal hidden state vector ht of the input sequence.

ht =

0 if t = 0

f(ht−1, xt) otherwise

(2.3)

The state-to-state transition function f is commonly composed of an element-wise nonlinearity with an

affine transformation of both xt and ht−1. The output hidden state activation of the previous input sends

feedback to its next state, thus creating a feedback loop in the chain of input sequences.

Figure 2.1: Recurrent neural network model, viewed as a “unrolled” computation graph.

At each time step t, an RNN takes two inputs, the input is xt and the hidden previous state ht−1. The

forward propagation begins with the initial state h0. Then, for each time step from t = 1 to t = N , we

update following equations:

ht = tanh(Whxxt + Whhht−1 + bh), and

ŷt = softmax(W yhht + by),
(2.4)

where the parameters are the bias vectors bh and by and the weight matrices Whx,Whh and W yh,

respectively, for input-to-hidden, hidden-to-hidden and hidden-to-output.

Figure 2.1 is an example of a recurrent network that maps an input sequence to an output sequence of the

same length. The last hidden state stores the information of the complete sequence. Traditionally, a simple
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strategy for modeling a sequence is to map the input sequence to a fixed-sized vector, and then feed the vector

to a softmax layer for classification or other tasks [31]. The total loss is computed by summing over all the

time steps for a given sequence x paired with y. The backpropagation algorithm applied to RNNs is called

backpropagation through time (BPTT). It iterates gradients backward in time to back-propagate gradients

through time, from t = N − 1 down to 1 [46]. Similar to other neural networks, RNNs use their internal

representation to perform a high-dimensional interpolation between training examples [47]. The result is

that RNNs can successfully be applied to many complex sequential tasks such as machine translation, text

classification, name entity recognition, etc.

However, RNNs are unable to store long-range dependency information and are prone to instability during

training [48]. In practice, vanilla RNNs struggle to learn dependencies between more distant input tokens.

As long-term dependency arises, they suffer from a well-known problem called vanishing gradients problem

[32, 49] – the gradients shrink during the backpropagation for a long sequence length. As the gradients

become smaller, the learning becomes difficult since the long-range structure is being ignored. However, for

many NLP tasks, a long-range dependency is desired to solve the task coreference resolution. This limitation

is addressed by altering architecture that prevents vanishing gradients during training.

2.1.3 Long Short Term Memory Networks

The long short-term memory (LSTM) network is a variation of the recurrent neural network, designed to

overcome the problems of traditional RNNs, such as the vanishing gradients problem. The LSTM network

has the same structure as the RNN, only the repeating module in the hidden layer is replaced by a memory

cell, which can store information for long periods. The memory cell is a recurrently-connected unit that has

an input, output, and forget gate. This cell is updated at each time step. The forget gate decides what

information to keep or forget from the previous time step. The input gate controls what new information to

add to the cell. The output gate decides what information from the memory cell will be output and flows

out into the rest of the network.

The LSTM memory cell has many variations. Figure 2.2 is an example of the most commonly adopted ver-

sion. It has four components, consisting of three gates and one cell state. Each gate updates the information

in the cell state by the following composite function:

it = σ(xtW
xi + ht−1W

hi),

ft = σ(xtW
xf + ht−1W

hf ),

ot = σ(xtW
xo + ht−1W

ho),

C̃t = tanh(xtW
xC + ht−1W

hC),

Ct = ft ⊗ Ct−1 + it ⊗ C̃t, and

ht = ot ⊗ tanh(Ct),

(2.5)
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Figure 2.2: Long short term memory network.

where xt is the input at the current time step, σ denotes the logistic sigmoid function, ⊗ is elementwise

multiplication, i, f , o, and C are the input gate, forget gate, output gate, and cell state. The W ’s are the

weight matrices for input, forget, output gates and memory cell, all of which are the same size as the hidden

vector h.

LSTMs have been shown to be very successful at many tasks, such as machine translation [50], speech

recognition [51], name entity recognition [52], and text generation [53]. While LSTMs are very successful

at many tasks, they are not perfect. LSTMs are often slower and more resource intensive than standard

recurrent neural networks [54]. This is due to the fact that LSTMs have more parameters than RNNs and

the training process for LSTMs is more computationally intensive. Additionally, LSTMs are not always able

to accurately learn long-range dependencies [49]. This is because the gates in LSTMs can occasionally block

information required for the network to learn the dependency.

2.1.4 Bidirectional RNNs

Bidirectional RNNs (BRNNs) are a type of recurrent neural network that processes information from both

the left and right sides. BRNNs can be seen as two stacked RNNs, one going forward and the other going

backward. Such bidirectional information processing gives context to a computational unit from both the

left and right sides. More formally, at time step t, a BRNN unit receives context from both t− 1 and t + 1.

Bidirectionality is also being applied in long short-term memory (LSTM) networks [32].

BRNNs were first proposed by Schuster and Paliwal [55]. Since then, BRNNs have been shown to

outperform traditional RNNs on a variety of tasks, such as speech recognition [56], machine translation [57]

and sequence tagging [58]. BRNNs have also been applied to other areas such as time series analysis [59],

and computer vision.

13



2.1.5 Seq2seq models

In many NLP applications, RNNs are used in sequence-to-sequence (seq2seq) modeling where input and

output are both comprised of sequences [1, 31]. For instance, the neural machine translation task takes an

input sequence (e.g. English) and outputs a target translation sequence (e.g. French). The seq2seq model

follows an encoder-decoder structure, where an encoder reads and encodes an input sequence x, and the

decoder outputs the target sequence y. Both the encoder and decoder are RNNs. Each cell block can be an

LSTM or GRU unit. We show an example of seq2seq model in Figure 2.3.

Since the last state of the RNNs encoder network summarizes all the past inputs, it acts as the context

vector for the decoder in the early implementation of the seq2seq model. The decoder is initialized with the

fixed context vector and it generates output translation conditioning on all the previously predicted words.

For instance, one RNN encodes a variable-length source sentence into a fixed length vector and the second

RNN decodes variable length target sentence. At each step, the decoder is autoregressive meaning the model

emits output one step at a time [47].

In a machine translation task consisting of an encoder-decoder for a language pair, the training objective

is jointly maximizing the probability of correct translation given a source sentence, i.e. argmaxyp(y|x). The

whole encoder-decoder system is trained in an end-to-end manner using backpropagation.

Figure 2.3: Sequence-to-sequence model [1].

The basic encoder-decoder approach works well for short sequences. Given a long input sequence, this

becomes problematic. The encoder network information is squashed/compressed into a fixed context vector

which the encoder transmits to the decoder as the contextual summary of the input. A potential issue is

that the decoder network tends to forget the early information found in the encoder. This degrades the

neural network training, especially for longer input sequences [50]. To address the problem of fixed context

transmission, the attention mechanism was proposed [2, 60].

2.1.6 Attention Mechanism

The encoder-decoder framework with an attention mechanism separates the encoder from the decoder by

a fixed context [2]. This fixed context acts as a bottleneck since it represents absolutely everything about

the meaning of the source text. The attention mechanism is a solution to the bottleneck problem, a way of

attention mechanism allowing the decoder to get information from all the hidden states of the encoder, not

just the last hidden state. This allows for a much richer context for the decoder to consider.
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The content-based attention mechanism is built on top of recurrent networks. It incorporates a distinct

context vector for each decoder step. An alignment model lets the decoder put importance on parts of a

source sentence by assigning attention weights to encoder hidden states. Intuitively, the attention mechanism

allows the decoder to refer back to and attend to the relevant parts of an input sequence for target prediction.

An example of content-based attention mechanism is shown in Figure 2.4.

x1 x2 x3 xT

+
αt,1
αt,2 αt,3

αt,T

yt-1 yt

h1 h2 h3 hT

h1 h2 h3 hT

st-1 s t

Figure 2.4: Attention mechanism [2].

In an RNN encoder-decoder network, we can decompose the target output probability as follows:

p(y) =

T∏
t=1

p(yt|{y1, ..., yt−1}, c), (2.6)

where c is the fixed context vector and target y = y1, ..., yT . We can parameterize the probability of

decoding each word yt:

p(yt|y<t, c) = g(yt−1, st, c), (2.7)

where g is a non-linear, possibly multi-layered transformation function that outputs the probability of yt and

st is the RNN hidden state.

In the content-based attention architecture, si the hidden state of time step i is computed by

si = f(si−1, yi−1, ci), (2.8)

where f can either be a vanilla RNN, or LSTM unit or GRU unit. It is worth noting that, unlike the

vanilla encoder-decoder architecture, here ci is distinct and dynamically computed (see Equation 2.9) for

each conditional probability at time step i.
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Let’s assume encoder hidden states h1, ..., hT map the source sentence. A hybrid RNN is used to store

high-dimensional representations hi for i-th word along with surrounding information, both left and right

side as shown in Figure 2.3. We need access to h1, ..., hT to compute the context vector ci.

The key aspect of the context vector here is that it can focus on parts of the input by assigning weights to

the words seen in the encoder layer. Then, context vector ci is computed as a weighted sum of precomputed

his:

ci =

Tx∑
j=1

αijhj (2.9)

where each weight αij is a probability and computed using an alignment model.

αij =
exp(eij)∑Tx

k=1 exp(eik)
(2.10)

where

eij = a(si−1, hj)

(2.11)

The alignment model eij is also called scoring function or energy function which scores the match between

the output i and inputs around position j. The alignment model is a key component and is parameterized

using feedforward neural networks. The encoder hi’s are precomputed, and all the components of the encoder-

decoder including the alignment model are jointly trained using back-propagation.

Intuitively, this allows the decoder to have an attention mechanism while emitting output at each step.

The decoder decides to focus on the parts of the input sequence by assigning high probability in Equation 2.9.

By incorporating an attention mechanism in the decoder, the constraint of having a fixed length context vector

is mitigated. The seminal work of attention mechanism has driven remarkable progress in neural machine

translation and several NLP tasks [2].

2.1.7 Attention Variants

Attentions have applications in a diverse set of NLP and Computer Vision tasks including image captioning,

visual question answering (VQA), document classification, and speech recognition. There are several variants

of attention mechanism [60, 61, 62, 63, 64]. The variants are not mutually exclusive and often have task-

specific modifications. A hierarchical attention network [63] is applied for document classification that consists

of word attention and sentence attention. [61] proposed a co-attention model for VQA that jointly reasons

about image and question attention. [62] proposed soft and hard attention for neural image captioning. [64]

proposed a deep variant of the attention mechanism, stacked attention networks (SANs) that allow multi-step

reasoning for image QA.
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Variants of deep RNNs and state-of-the-art approaches in encoder-decoder architecture have established

compelling performance in sequence modeling problems such as language modeling and machine translation

[1, 2]. Since then language modeling has become a central research focus in NLP to push the boundary of

recurrent and sequential modeling. The fundamental constraints of recurrent modeling in the modern com-

puting era lie in its inherent nature of sequential processing on training data which precludes parallelization

of underlying computation. Some works proposed tricks and recipes for efficient training that mitigates the

problem to some extent, however, they do not solve the core problem of chained computation [65]. Recently

proposed attention mechanisms can disregard the sequence distance information, but in most cases, attention

mechanisms are typically coupled with RNNs [2, 60].

2.2 Transformers

Deep sequence models learn contexual representations with locality bias and have difficulties in modeling

long-range interactions between symbols. Due to sequential processing, the utilization of modern parallel

computer hardware is limited in variants of recurrent networks. To overcome the drawbacks in existing deep

learning models, Vaswani et al. [3] proposed a deep learning model called Transformers which is completely

based on self-attention. Self-attention allows for extensive parallelization compared to RNNs and can easily

model long-term contexts as every token attends to all the tokens in the input sequence. The standard

Transformers model consists of a deep encoder and decoder, each of which is a stack of identical blocks.

With the help of deep encoder-decoder blocks composed of self-attention and feedforward network layers,

Transformers can learn complex language representations. The NLP research community has produced

impressive natural language understanding systems by leveraging the power of deep Transformers and self-

supervised training on internet-scale unlabeled data. For an NLP task, the supervised data is very limited

and it is very challenging to build large-scale labeled dataset. Unlabeled data is abundant on the internet,

however they can easily be re-purposed for network training in a self-supervised fashion.

The training instability issue in RNNs was a bottleneck for large-scale self-supervised learning on text

data. Transformers on the other hand can overcome instability issues faced in training large recurrent models,

and can process sequences longer than traditional RNNs thanks to no recurrence computation bottleneck,

and can be scaled efficiently thanks to their parallelization on modern GPUs and successfully used for deep

network training on internet-scale data that was not possible with RNNs. As a consequence, Transformers

have become established as a breakthrough in modern deep neural networks. This has created a virtuous

cycle in deep learning, deep networks, and larger models leading to better systems than previous ones by

virtue of scaling that has no sign of reaching a plateau yet [19, 21, 66]. For instance, scaling from millions to

billions of parameters in language modeling has now become a norm in NLP.
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Figure 2.5: The Transformers architecture [3].

2.2.1 Transformers Architecture

The overall architecture of the vanilla Transformer is shown in Figure 2.5. Transformers follow an encoder-

decoder architecture. The encoder block has a stack of N = 6 identical layers. Each layer has two sub-layers:

i) a multi-head self-attention mechanism and ii) position-wise feed-forward networks. Similarly, the decoder

has 6 identical layers. Each layer in the decoder block copies two sub-layers as found in the encoder and adds

a cross-attention layer for building the connection between the decoder and encoder output representations.

The number of identical layers can vary in different model sizes i.e. larger models can have more layers.

Multi-head Self-attention

In self-attention, every input token can attend the other tokens, creating a flow of information from each

tokens and concurrently attending to them. The Transformer model adopts self-attention with Query, Key,

and Value (QKV) layers, shown in Figure 2.6. The self-attention is a function that takes packed input

matrices Q, K, and V with dimension dk and outputs the attention matrix. First, a dot product is carried

out with all queries and keys, scaled by
√
dk. Then, a softmax function assigns the weights to the values.
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Figure 2.6: The Multi-head self-attention [3].

The scaled dot-product attention matrix is computed as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.12)

There are two common approaches to attention computation: i) additive and ii) multiplicative. The

dot-product attention applied here is faster and more space efficient. However, dot-product attention in large

dimensions (dk) can cause vanishing gradients problem for the softmax function. The scaling factor
√
dk is

applied to alleviate the vanishing gradients.

Transformers model use multi-head self-attention (MHSA). Instead of applying single attention, multi-

head attention is used where Transformers linearly project the original dm-dimensional queries, keys, and

values h times with different sets of learned linear projections to dk, dk and dv dimensions, respectively. The

model computes the attention matrix on the projected keys, values, and queries in parallel, for each head,

according to the identical function in Equation 2.12.

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO. (2.13)

The resulting dv dimensional output values for each of the heads are first combined and then projected

19



back to dm-dimensional final values:

headi = Attention(QWQ
i ,KWK

i , V WV
i ). (2.14)

Position-wise Feed Forward Networks

Position-wise Fully-connected Feedforward Network (FFN) are sub-layers in each encoder and decoder block.

FFN is applied to each position separately and identically. This consists of two linear transformations with

a ReLU activation in between.

FFN(x) = RELU(xW1 + b1)W2 + b2. (2.15)

Residual connection and Normalization

As seen in Figure 2.5, a residual connection [67] followed by layer normalization[68] is applied around each

of the two sublayers in Transformers, as follows:

x′ = LayerNorm(x + Sublayer(x)), (2.16)

where Sublayer(x) can either be SelfAttention() or FFN() implemented in the encoder-decoder block and

LayerNorm() denotes standard layer normalization operation in neural nets.

Position Encodings

Unlike RNNs or convolutional networks, Transformers do not have sequence order information. To facilitate

positional information in a sequence, the Transformers model injects some information about the relative or

absolute positions of the tokens in the sequence.

It is easy to verify that recurrent or convolutional neural networks are not permutation invariant; output

should depend on the order of the inputs. However, both self-attention and feed-forward networks are

permutation invariant. This becomes problematic for most NLP tasks since the structure of inputs is desired.

For instance, word order matters for modeling a sequence of text, and Transformers must encode the position

of words. To facilitate this, “positional encodings” vector is infused into the input embeddings vector of both

the encoder and decoder. In vanilla Transformers, positional encoding corresponds to a sinusoidal (sin/cos)

function. However, there are several choices for positional encoding in subsequent literature [21, 69, 70].

2.2.2 Transformer Usage, Analysis and Comparison to Other Network Types

Transformer architecture is decomposable and can be used in three ways based on the use cases: i) encoder-

decoder, ii) encoder only and iii) decoder only. The encoder-decoder represents full Transformers architecture

depicted in Figure 2.5, commonly used for seq2seq modeling tasks such as language modeling and machine

translation. For classification or sequence labeling tasks only the encoder representation is used. A common
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Table 2.1: Maximum path lengths, per-layer complexity and minimum number of sequential oper-
ations for different layer types. n is the sequence length, d is the representation dimension, k is the
kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length

Operations

Self-Attention O(n2 · d) O(1) O(1)

Recurrent O(n · d2) O(n) O(n)

Convolutional O(k · n · d2) O(1) O(logk(n))

Self-Attention (restricted) O(r · n · d) O(1) O(n/r)

choice is to feed the output of an encoder’s last layer as an input to a task-specific classification layer.

The decoder-only architecture is typically used for sequence generation tasks (e.g. language modeling).

Transformers was first invented in machine translation, later their success has spanned to diverse domains:

NLP [21], computer vision [71] and reinforcement learning [72].

The Transformers model has quadratic time complexity O(n2) with respect to sequence length [3]. There

are recent studies that try to linearize the attention mechanism for computation efficiency. The comparison

to other network types is presented in Table 2.1.

2.3 Neural Language Models

Language models are a fundamental component of many NLP tasks, including sentence classification, sequence

labeling, question answering and language generation [73]. A language model (LM) can be used to learn the

structure of language by predicting the next word in a sequence, and produce general-purpose language

representations [16]. In this section, we will discuss the current state-of-the-art language models, including

BERT [21], GPT-3 [19], and encoder-decoder variants of LMs [74]. These models are typically neural networks

that are trained on large amounts of data based on some self-supervised pre-training objectives. We will also

briefly discuss some applications of language models in transfer learning of downstream NLP tasks.

2.3.1 Language modeling

A language model predicts the probability of next word given previous words. In other words, a language

model assigns probability to a sequence of words. Let’s assume we want to model a sentence x1, x2, .., xT

that consists of T tokens.

p(x) = p(x1, .., xT ) (2.17)
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Here p(x) is the probability distribution over strings or sentences in a fixed vocabulary V . Using the product

rule of probability we can write as follows:

=

T∏
i=1

p(xi|x1, .., xi−1).
(2.18)

The probability is decomposed into conditional probabilities of predicting each word given the previous

words. Here, we modeled a left-to-right language model where each word in the sequence is predicted from

left to right.

As in Equation 2.18 a neural language model needs two things: i) process context (i.e previous words)

and ii) generate probability distribution for the next token. The context processing can be done with RNNs

since they can model sequences and the next token probability assignment is a classification task over the

giant vocabulary set. We can use an RNN to learn a probability distribution over a sequence by training

it to predict the next symbol in a sequence. The dependencies between words are characterized by the

dependencies between states in the RNN model. The parameters in an RNN are shared in different positions

(time steps of the sequence), also know as weight sharing, which helps it to generalize to sequence of varying

length. The training objective for neural LMs is pretty straightforward – we want to maximize the probability

a model assigns to the correct next word.

2.3.2 Pretrained language models

Language modeling has a rich history, connecting to works done by Andrew Markov, Claude Shannon, and

Noam Chomsky [75, 76]. In 2001, Yoshua Bengio and his co-authors proposed one of the first neural language

models [16]. The neural LM proposed by Bengio et al. improves n-gram language models by learning a

distributed representation for words and opened a new era of language modeling. Their n-gram model has

an MLP architecture and can model only a small context window. Later, a representative set of language

models are developed that can capture long-term contexts using variants of recurrent networks, including

LSTMs [32].

A language model can be used to generate language (symbols, tokens, words) by random sampling from the

language model. This makes tasks such as machine translation, dialogue generation, and text summarization

most plausible to be based on language modeling. Moreover, the conditional language modeling can be

transformed as a sequence-to-sequence learning problem [1]. A successful seq2seq model is Transformers

architecture, which is widely adopted to develop many state-of-the-art pre-trained LMs [19, 21, 74, 77] for

several architectural benefits (see discussion in section 2.2).

The basic idea of a pre-trained language model is as follows. First, a language model is implemented, for

example, following the encoder-decoder architecture in Transformers [3]. The model learns in two phases:
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pretraining and fine-tuning. A pre-training phase trains the model using some self-supervised learning ob-

jectives on a large corpus, and fine-tuning adapts the pre-trained model by supervised learning on a small

amount of labeled data for a specific task. A large-scale pre-training helps to produce general-purpose and

transferable distributed representation for words [16, 21].

In this section, we briefly introduce the three most common types of pre-trained language models: encoder-

decoder language models, encoder only language models, and decoder only language models. We discuss the

strengths and weaknesses of each model and provide examples of each.

• Encoder-Decoder LM. The encoder-decoder language model is the most common type of language

model (e.g. T5[74], BART[77]). The encoder-decoder language model consists of two parts: an encoder

and a decoder. The encoder encodes the input sequence of words into a fixed-length vector. The

decoder then decodes the vector into an output sequence of words. They are typically used for tasks

such as machine translation and speech recognition.

• Encoder only LM. BERT[21] is an example of an encoder only language model. Encoder only

language models only have an encoder; they do not have a decoder. They are mostly suitable for

classification and sequence labeling tasks.

• Decoder only LM. Decoder only language models only have a decoder. They cast language modeling

as a text generation problem. The most notable example of a decoder only language model is GPT-3

[19].

2.3.3 BERT: Bidirectional Encoder Representations from Transformers

In seminal work [21], Devlin et al. proposed BERT: a pre-trained deep bidirectional transformer for language

understanding. BERT is a large pre-trained model trained on large-scale web data using semi-supervised

pretraining objectives. The two pretraining objectives used are masked language modeling (MLM) and next

sentence prediction (NSP).

In MLM, the model is given a sentence with some words masked and is tasked with predicting the masked

words based on the context. NSP predicts whether the second sentence is the next sentence given a pair of

sentences. MLM allows the model to learn general-purpose language representations, while NSP helps the

model learn representations that are useful for tasks that require understanding of the relationship between

two sentences, such as question answering and natural language inference.

Fine-tuning BERT, a paradigm shift in NLP

The BERT paper is a paradigm shift in NLP. The pre-trained BERT learns powerful language representations

that can be successfully applied to many NLP tasks. The knowledge learned in the pretraining stage can be

transferred to solve an NLP task (such as sentence classification, and question answering) by an approach

called fine-tuning [78]. This is done by adding a classifier layer on top of BERT layers and training further

23



using task-specific labeled data. The fine-tuning of BERT has reached wide applications in NLP where

labeled data is limited such as biomedical, health, and economy domains. Since then ‘pre-train fine-tune’ has

become a de-facto standard for solving language tasks [79].

The method of pre-training language models on a large neural network with internet-scale unlabeled data

and fine-tuning in downstream tasks has made a breakthrough in several natural language understanding tasks

in recent years [19, 74]. For instance, state-of-the-art language models have already achieved performance

better than reported human accuracy on two widely used language understanding (NLU) benchmarks, GLUE,

and SuperGLUE. A large collection of work now established that as the model grows bigger benchmarks

become obsolete. By simply improving the language modeling recipes found in BERT and building on deep

Transformers networks, we now have billions to trillions scale of parameters in language models. Such general-

purpose language models have shown to be a zero-shot learner, solve a task ‘in-context’ without requiring

any labeled data [19]. However, this requires large-scale data, increased parameters in deep neural networks,

and millions of dollars of GPU computation in training which might not be feasible except for a few industry

labs.

2.3.4 Multilingual Pre-trained Language Models

The success of pre-trained language models mostly contributed to progress in NLP for English and a few

high-resource languages. A natural question is how to integrate such benefits toward low-resource languages

and bridge the gap of systemic inequality in language technology across the world’s languages [26]. One

alternative which gained popularity in recent years is to train a multilingual pre-trained model (MPLM)

that comprises training datasets from many languages – both high and low-resourced ones. Multilingual

modeling typically uses a shared vocabulary across languages built from sub-word tokenization [80]. A

representative set of state-of-the-art multilingual pre-trained language models are: mBERT[21], XLM[81],

and XLM-R[82]. They differ mostly in the architecture (number of layers, parameters, etc), pre-training

objective (monolingual masked language modeling, translation language pair), size and sources of pretraining

data (Wikipedia, CommonCrawl), and number of languages involved (ranging from 10 to 100). For instance,

in mBERT, authors trained a BERT model sourcing training data from the top 100 languages with the largest

Wikipedia entries.1 Multilingual pre-trained LMs are more efficient (one model to support all languages) and

inclusive (more languages included in training). Studies that investigate MPLM’s effectiveness in benchmark

tasks suggest that shared multilingual models improve performance in resource-lean languages, specifically

in limited data settings [83, 84]. A shared subword across languages and joint multilingual training are the

key components of mBERT’s surprising generalization capacity across languages.

1https://github.com/google-research/bert/blob/master/multilingual.md
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2.4 Transfer learning in NLP

Transfer learning is a method of using a pre-trained model to initialize a model for a new task [85, 86].

Transfer learning can be used to improve the performance of a model on a new task, or to reduce the amount

of data needed to train a model on a new task. Transfer learning stirred up immense success in computer

vision with deep ConvNet models after 2012. A pre-trained ResNet model trained on the popular ImageNet

dataset is used as pre-trained weight initialization for solving image recognition tasks of varying nature and

domains [15]. Starting with early pre-trained word embeddings, transfer learning in NLP became ubiquitous

with the rise of large pre-trained LMs [21, 78, 87]. Substantial improvements over previous state-of-the-art

results on the GLUE benchmark tasks have been obtained by recent works on the large language models such

as BERT, and GPT-3 with task-specific fine-tuning. Though transfer learning is not a recent phenomenon

in NLP, for the sake of discussion here, the focus is mainly on transfer learning by leveraging pre-trained

language models.

2.4.1 Word embeddings and contexualized representations

Early successful transfer learning in NLP is found in the use of word embeddings. Word embeddings, also

known as word vectors are lookup tables that represent the meaning of a word in some abstract manner,

typically a vector of weights for each word in a predefined vocabulary. Word vectors compute semantic

similarity in a fixed dimension over a large vocabulary set. These word vectors provide rich distributed

representations for words and can be used as features in a variety of applications including information

retrieval, parsing, and named entity recognition [87]. The embeddings provide static features on an input

sentence for the first layer of a neural network. It is then combined with further neural network layers (e.g.

RNN) which enables contextualized learning of a task using supervised data. An extension to this direction

is presented in learning contextualized word representations in Embeddings from Language Model (ELMO)

[17]. Where early embeddings are static, contextualized representations of embeddings can be learned using

a language modeling approach. Such contextualized representations have achieved superior performance in

many NLP tasks [17, 78].

2.4.2 Recipes for Successful Fine-tuning of a Pre-trained Language Model

There are several choices for effective knowledge transfer of pre-trained language models. There is no single

all-rounder method for transferring effectively. It conditionally depends on the specific tasks and choice

of pre-trained models. Howard et al. [78] proposed several fine-tuning methods called ULMFiT with an

extensive analysis of language models fine-tuning in sentence classification tasks. It provides rules-of-thumb

lessons while fine-tuning a language model for downstream applications. Some approaches studied in seminal

ULMFiT are discriminative fine-tuning where learning rates are different for each layer of the network, target

task classifier fine-tuning with gradual unfreezing where network layers are unfrozen gradually, full fine-tuning
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of all the network layers, and fine-tuning only the last few layers. All of these tactics bring some improvement

over training from scratch with varying success. Catastrophic forgetting is a common problem in sequential

(full) fine-tuning. Fine-tuning tricks such as freezing some network layers and training only the last few

layers might be beneficial to mitigate the catastrophic forgetting problem. Similar fine-tuning approaches

can be applied to BERT-like models [79]. The standard BERT model has 12 layers and freezing can be done

on a subset of layers. A detailed analysis on fine-tuning for text classification shows top layers are more

transferable than lower layers and suitable learning rates are critical for functional transfer [79] .

2.4.3 Cross-lingual Transfer Learning

Most world languages are considered low-resource in NLP. Languages that have limited resources such as

corpus, datasets, models, and research are deemed low-resource. This has led to systematic inequalities in

language technology and more attention is needed to tackle the gap – which is also one of the core motivations

of this thesis. Pre-trained language models such as BERT, and GPT-3 have shown to be effective in many

downstream NLP tasks. The success of large pre-trained models also surfaced in multilingual arenas with

the promise of zero-shot cross-transfer generalization for low-resource languages. Multilingual modeling

usually comprises high-resource (source) and low-resource (target) languages enabling knowledge transfer

from source to target languages. It involves a cross-lingual representation learning setting where high-

resourced information can be transferred to learning low-resource tasks. This notion is called ”interlingua”

which enables cross-lingual transfer generalization. Recently, many attempts have been made to learn cross-

lingual representations with increased interest. Notably, mBERT[21] is the early work in this area where

the authors trained a deep transformer-based BERT model for 100 languages. In recent years, mBERT-

like models were successfully applied to zero-shot cross-lingual transfer yielding research focus on machine

translation to entity linking, word sense disambiguation (WSD), Natural language inference (XNLI), Question

Answering (TyDiQA), paraphrase reasoning (XCOLA), etc [83]. Learning from small or no data, respectively,

few-shot and zero-shot learning is a notable research inquiry in the multilingual NLP community. We present

some discussion below on the limited data learning approaches using large pre-trained models.

2.4.4 Transfer Learning Approaches on Limited Data

Zero-shot Learning

Zero-shot learning is a method of training a model on a new task without any labeled data for the new task

[88]. Zero-shot learning can be used to train a model on a new task without the need for a large amount of

labeled data. In many multilingual tasks, we may not have labeled data for a target language. In practice,

we train models using supervised data from high-resource languages collected from a task of interest. The

trained model is then used directly for predicting on test set of a target language without further fine-tuning.

Moreover, some autoregressive lagnuage models can directly be used without any task-specific fine-tuning
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[74]. This evaluation procedure is considered as zero-shot learning [27, 84, 89].

Few-shot Learning

Few-shot learning (FSL) is a method of training a model on a new task with a small number of labeled

data items [90, 91, 92, 93, 94, 95, 96, 97]. FSL is mainly constrained by the lack of available training data,

real-world scenarios where large supervised data is impossible to acquire due to privacy, safety or ethic issues.

Where standard deep learning model training requires large-scale datasets in a supervised setting, few-shot

learning specifically investigates learning from a few training samples. This setting is further popularized in

the ‘pre-train fine-tune’ paradigm under the assumption that large-scale fine-tuning produces a generalized

model and downstream tasks can be learned with few samples, imitating the notion of how humans learn

a task. There are several approaches to few-shot learning: metric learning [92], meta-learning [96] and in-

context learning [19]. Learning in a low-resource multilingual setting is also a reasonable real-world setting

for FSL as labeled data is scarce for many world languages.

Meta-learning

Meta-learning, “learning to learn,” is a few-shot learning paradigm for solving machine learning tasks with

small to zero-labeled data. Model-Agnostic Meta-Learning (MAML) [98], a gradient-based meta-learning

optimisation algorithm allows faster adaptation on novel tasks. It has an inner loop and an outer loop.

The inner loop learns a machine learning task in each iteration and the outer loop learns a meta-objective.

This meta-learner objective results in improved initialization for a novel task adaptation. It follows episodic

training and testing and mimics learning multiple tasks so that the meta-learner learns to deal with fast

adaptation to a novel unseen task. Meta-learning was successfully used for solving many vision tasks and

has also applied to some NLP tasks in the last few years.

Meta-learning is of recent interest for few-shot learning of multilingual NLP tasks. It is hard to achieve

sufficient labeled datasets for low-resourced languages. Usually, a model fine-tuned using small data on a

low-resource target task suffers from overfitting. Since meta-learning model allows faster adaptation, it is

expected to produce better initialization while adapting to a low-resource language using limited training

samples. Much of the work in multilingual NLP explored meta-learning as a training algorithm for solving

zero or few-shot classification tasks. X-MAML [99] uses MAML for meta-training cross-lingual NLP tasks

(e.g. Natural Language Inference (NLI) and Question Answering (QA)). The authors experiment with varying

auxiliary languages to find the best language pair composition to achieve the best performance in the target.

Gu et al. developed a Meta-NMT [100] system, the first attempt to use meta-learning in multilingual machine

translation. The authors applied MAML to low-resource machine translation by viewing language pairs as

separate tasks. The proposed model has two essential components: i) learn- the language-specific part which

is learning a language translation task from meta initialization. This is very similar to training any supervised

task in ML from an initialization point. ii) meta-learn - define a meta-objective and maximize using meta-
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gradient updates. Meta-learning powers this idea of a meta-objective to be defined and updated using SGD

which ensures better initialization of novel tasks. Specifically, it finds a better initialization on target by

repeatedly simulating low-resource translation scenarios using auxiliary, high-resource language pairs. The

resulting meta initialization (pre-trained model) will then be fine-tuned for low-resource translation of target

language pairs.

2.4.5 Multi-task Learning

Multi-task learning (MTL) has a rich history in machine learning [101]. Two categories of approaches are

frequently explored: a) multi-task feature learning, which learns a shared representation [102, 103, 104] and

b) multi-task relationship learning, which learns to task grouping or measures task covariance [105, 106, 107].

A general approach shares most parameters across tasks but assigns some task-specific parameters [102].

Natural language processing tasks can form a clear hierarchy, for instance, POS → NER→ Entailment.

A joint-many-task model [108] assumes such a hierarchy exists and develops a multi-task model guided

by a linguistic hierarchy of NLP tasks. The task hierarchies are POS tagging, parsing, relatedness, and

textual entailment respectively. The architecture is hand-designed, stacking LSTM networks at multiple

layers forming a hierarchy of inputs to the model at different layers in an incremental fashion. Another line

of work considers methods that share all the parameters across tasks to produce a general-purpose model.

This requires the model to have same the input and output space, as such, casting all the tasks into a form

of question answering (NLP Decathlon, McCann et al., [104]). The Multi-Task Deep Neural Networks (MT-

DNN) [103] model utilizes pre-trained BERT models for multi-task learning on several NLU tasks. The lower

layers are shared across all tasks, while the top layers represent task-specific prediction heads. However,

parameter sharing is an act of art in multi-task learning and has been explored frequently. We have many

choices when it comes to splitting the shared and task-specific components of a network. This requires a lot of

trials and model tuning to train successfully. Outside of the NLP domain, parameter sharing was extensively

explored in the computer vision community [86, 105, 106, 109].

Domain Adaptation

Domain adaptation is studied to build models that are robust to distribution shift problem, which arises when

a mismatch is found in source and target domain distributions. Studies on domain adaptation can lie in both

supervised [110, 111, 112], where labeled data is available for both source and target, and unsupervised

approaches [113, 114], where no target-labeled data is not found. The general assumption is a model trained

on source domain X fails to generalize on target domain Y . Source domain is the domain where a model

was initially trained on. The target domain is the case where we have very limited or no labeled data. This

research study approaches to learn under two kinds of shift e.g. label shift and co-variate shift. Early works

on domain adaptation focus on data augmentation, and semi-supervised learning. One common interest in

domain adaptation is to learn a shared representation (invariant) of both domains using neural nets and

28



use it for adapting to the target domain. A series of works address this problem via explicitly modeling

domain-invariant representation learning during training e.g. introducing kernel Hilbert space embedding for

task-specific layers [115], domain adversarial training of neural layers [116, 117]. Gu et al. [117] attempts to

match feature space distributions via adversarial training towards domain-invariant representation learning.
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3 Model-agnostic Meta Learning for Low-resource Hate

Speech Detection

3.1 Introduction

Motivation. Online hate speech that expresses hate or encourages violence towards a person or a group

based on characteristics such as race, religion, or gender is a growing global concern. The hateful content

has broken the cohesiveness of online social communities and resulted in violent hate crimes. 1 Therefore,

detecting and moderating hate speech in online social media is a pressing issue.

The gravity of the situation has motivated social media platforms and academic researchers to propose

traditional machine learning and deep learning solutions to detect online hate speech automatically [23, 118].

Among the solutions, large pre-trained language models (LMs), which have demonstrated their superiority in

many NLP tasks [21], have also shown excellent performance in the hate speech detection task [119]. However,

existing studies have predominantly focused on detecting hate speech in English and content from Western

cultures. This neglects the large portion of online hate speech from other languages and cultures. Low-

resource languages often have very limited or no training samples available. This can make it challenging to

develop supervised classifiers. We need models that can efficiently adapt with few training data, or methods

that can transfer knowledge from another dataset. To meet the challenge, a high-resource language can

augment the low-resource language by knowledge transfer. For example, Aluru et al. [120] proposed a

method to fine-tune a multilingual BERT model for hate speech detection in low-resource languages that

leverages cross-lingual transfer from high-resource pre-training.

In multilingual hate speech detection, English and a few high-resource languages are considered “source,”

and low-resource languages of interest are considered “target.” There are very few works that deal with

multilingual hate speech detection. A viable approach is to fine-tune pre-trained LMs, which is explored in

existing studies [119, 120, 121]. The underlying intuition is that the large LMs generate shared embeddings in

many languages, enabling cross-lingual transfer from supervised training in the high-resource languages such

as English. Such cross-lingual transfer can be achieved as follows: (i) training only in the source language and

evaluating in the target language, known as ‘zero-shot,’ or (ii) training in the target language only or joint

training of source and target languages, known as ‘few-shot’ learning. A source dataset is usually a magnitude

larger than a target dataset. However, fine-tuning pre-trained LMs also has several limitations [122]. An

1https://thewire.in/law/hate-speech-what-it-is-and-why-it-matters
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obvious issue is the data scarcity in target low-resource languages; it is challenging to capture hate speech

and its nuances with insufficient observations. Also, the performance of cross-lingual transfer learning may

adversely be affected if source and target languages are from distant language families [122, 123].

Hate speech datasets can come from many domains, which can be divided into two categories: one comes

from language shift, and the other is content in each language. For instance, a dataset in one language

may be collected from the Twitter platform, while another could be collected from Youtube. Standard

fine-tuning overfits the training languages and will face the difficulty of adapting to a new domain or an

unseen language [78]. Conneau et al. [82] show that adding more languages improves the performance on

low-resource languages but hurts the performance on high-resource languages. We adopt a meta-training

strategy for low-resource hate speech detection to address these concerns. Meta-learning has been successful

in low-resource settings and can be used to learn a good initial point for fine-tuning a new task, making the

fine-tuning process more efficient.

Research objectives. In this thesis, we aim to tackle the challenges of multilingual hate speech detection

and address the limitations of existing fine-tuned pre-trained LMs in hate speech detection. We propose

HateMAML, a model-agnostic meta-learning-based framework that performs hate speech detection in low-

resource languages. Unlike existing hate speech detection approaches that fine-tune LMs on the source and

target only, we focus on resource maximization by using resources in other auxiliary languages beyond source

and target. More specifically, we adopt the model-agnostic meta-learning (MAML) [98] strategy, in which

simulated training in few-shot meta-tasks produces a meta-learner that can learn a target task quickly. Recent

studies have explored adopting MAML in low-resource cross-lingual adaptation for NLP tasks [99, 100].

The underlying intuition of HateMAML is to train on auxiliary languages and adapt the LM to detect

hate speech in a target language in which there are few or no datasets available [99]. To address diversity and

nuance in detecting hate speech across languages and domains, the meta-learning loss function in HateMAML

is extended with a domain adaptation loss. Intuitively, a task-specific learner evaluates their own training

samples and samples from another language. This mimics the scenario we are interested in: training in one

language while evaluating an unseen language during test time. This training strategy forces the meta-learner

to generalize to a target language domain while learning from source domain samples.

Considering the data scarcity of non-English languages, we further propose a self-guided meta-learning-

based fine-tuning mechanism. This mechanism utilizes unlabeled examples of the low-resource target language

and generates pseudo-labels for fine-tuning the target. Using training data from high-resource English, we

first construct a multilingual predictor model. The predictor model predicts unlabeled samples in a target

language (e.g. Spanish). The predicted samples are filtered for quality. Each filtered sample has a pseudo-

label, and a subset of these is used as training data for the target language. We also adapt HateMAML into

an iterative self-refining loop that replaces and refines the current predictor model and improves the quality

of the adapted model in the target.

Finally, we investigate whether meta-training is better than standard multilingual fine-tuning in two
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scenarios: when training examples are only available for some languages and when both high and low-

resource languages have sufficient training data. The first scenario is a stress test for cross-lingual domain

adaptation, evaluating the trained model on a set of reserved low-resource languages. From a set of low-

resource languages, a subset is selected for training and the remaining is used for zero-shot evaluation. The

other scenario explores meta-training benefits over standard fine-tuning. In early studies, cross-lingual meta-

training was mostly limited to language pairs [99]. This setting is, however, not truly multilingual since we

need separate models for each target language. The effectiveness of meta-training is examined when training

data is available in more than one low-resource language. Though the early investigation was limited to one

auxiliary and target language, the current configuration allows us to investigate cross-lingual meta-training

for hate speech detection at scale. In other words, we adopt meta-training as a proxy for general multilingual

fine-tuning. Our results show that when training data is available from many languages, meta-training

HateMAML yields better performance than standard fine-tuning.

Contributions. To the best of our knowledge, HateMAML is the first model that adopts a meta-learning

framework for multilingual hate speech detection at scale. Our major contributions are summarized below:

1. We propose HateMAML, a domain-adaptive MAML algorithm for hate speech detection in low-resource

languages. Our algorithm outperforms state-of-the-art cross-lingual fine-tuning baselines. One of the

novelties of HateMAML lies in the efficient utilization of available samples in the validation set of source

and training data in auxiliary languages.

2. To mimic an extreme data-scarce scenario in the target language (zero-shot), we introduce a self-refining

variant of HateMAML. An iterative meta-learning approach is adapted to generate pseudo-labels from

unlabeled data in the target language.

3. Across eight different low-resource languages, we carry out extensive experiments in zero-shot and fine-

tuning settings. Our experimental results show that HateMAML consistently outperforms state-of-the-art

methods by more than 3% in the cross-lingual transfer settings.

4. Our ablation studies examines the contribution of an auxiliary language across each auxiliary-target lan-

guage pairs. We also assess the algorithm’s robustness by varying (i) the amount of meta-training samples,

(ii) cross-domain adaptation, and (iii) one model to support all language configurations.

5. We conduct cross-domain hate speech detection to address data set diversity in various languages and

show that HateMAML achieves a significant domain adaptation. Our experiments on meta-training over

all available language training data suggest that meta-learning could be an alternative to standard fine-

tuning that yields superior performance.

3.2 Related Work

Multilingual hate speech detection In the last few years, hate speech detection has gained significant
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attention, with the majority of work dedicated towards monolingual hate speech [23, 118]. This skew in

attention has naturally led to the majority of datasets being in English [10, 11, 124]. However, hate speech

is a global phenomenon, and increased diversity in available resources is critical for developing automated

systems. Recent efforts addressed this issue, including multiple shared tasks (such as SemEval 2020 [28],

HASOC 2020 [125], Evalita 2018 [126] and HateEval 2019 [22]). Such efforts helped in bringing much-needed

traction toward multilingual hate speech research. Additionally, recent development in transformer-based

large multilingual LMs (mBERT [21], XLM-R [82]), pre-trained on more than 100 languages, has aided in

developing state-of-the-art classifiers in resource-lean languages. Prior studies on multilingual hate speech

detection have explored: (i) resource development such as creating datasets [22, 28, 29, ?], shared tasks and

organizing workshops, (ii) cross-lingual transfer learning with multilingual shared embeddings and pre-trained

LMs [120, 121], (iii) utilization of additional features from relevant domains [127] (e.g., emotion, sentiment),

and (iv) data augmentation techniques including use of external service (e.g., translation APIs) for supervised

training [121, 128, 129].

Cross-lingual and multilingual transfer. Knowledge transfer from a high-resource language (i.e.,

English) to a low-resource one (i.e., Hindi) has been shown to be an effective resource optimization technique.

Ranasinghe and Zampieri [119] used a two-step training method: first training multilingual transformer

models in English, and then the resulting model is fine-tuned on the low resource target language. Such

multi-phase training was found to be a better model initialization for fine-tuning the target. Aluru et al.

[120] conducted an extensive study on state-of-the-art multilingual embeddings including LASER [89] and

MUSE [81]. Another line of studies [121, 130, 131] utilized translation-based solutions to alleviate the shortage

of data in low-resource languages in hate speech. These models rely heavily on translation APIs, which might

be susceptible to producing low-quality translations. Moreover, the translation of a large source corpus can

be expensive.

Majority of the studies on cross-lingual and multilingual hate detection fall into pre-trained model fine-

tuning [130, 132, 133]. However, Nozza [122] found that due to the domain shift of hate speech across

languages, standard fine-tuning methods are less effective for both zero-shot and few-shot settings. To address

the limitation of low-resource language fine-tuning, we develop HateMAML for fine-tuning hate classifiers with

limited data and an improved mechanism for domain-adaptive cross-lingual transfer.

Meta-learning. Meta-learning, also known as “learning to learn,” is a few-shot learning technique geared

toward learning few-shot tasks and fast adaptation. Unlike standard supervised fine-tuning on downstream

tasks that result in a final classifier, meta-learning focuses on producing a rich initialization point from

where an unseen target task can be learned quickly. Some common meta-learning approaches include (i)

optimization-based [98, 134], and (ii) metric-based [135, 136]. Finn et al. [98] introduced model-agnostic

meta-learning (MAML), an optimization-based meta-learning framework for few-shot tasks. Several recent

studies have explored gradient-based meta-learning for few-shot text classification [90, 94, 97]. Meta-learning

for domain generalization is also studied to handle domain shift during training in diverse problems, including
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supervised learning and reinforcement learning [137]. Meta-learning has also been explored in zero-shot and

few-shot cross-lingual settings. [100] successfully adapted MAML for low-resource neural machine translation

(NMT) tasks using auxiliary languages and achieved competitive performance using only a fraction of training

data. Gu et al. [99] proposed X-MAML for meta-training cross-lingual NLU tasks. Similar to our interest,

X-MAML experimented with varying auxiliary languages to find the best composition for zero-shot cross-

lingual transfer. However, most multilingual hate speech datasets comprise training data in only two or three

languages, making searching for a good auxiliary language extremely difficult.

Data augmentation/self-training. Data augmentation approaches can be divided into three cate-

gories: (i) rule-based [138], (ii) interpolation-based [139, 140, 141], and (iii) model-based [142, 143, 144]. In

cross-lingual hate speech, translation techniques [121, 130, 131] are commonly used for data augmentation

during training. Rather than collecting and annotating new hate speech data, bootstrapping on unlabeled

samples to create pseudo-labeled data provides a way for data augmentation and fine-tuning on low-resource

languages. We draw inspiration from Bigoulaeva et al. [128] to devise a bootstrapping-based self-training

approach for HateMAML.

How is our approach different? We explore cross-lingual meta-training in the domain of hate

speech for both zero-shot and fine-tuning configurations. Our proposed method of zero-shot meta-training,

HateMAML, is a novel idea that can be further adapted for languages with no availability of labeled data.

The proposed modeling focuses on resource maximization and domain generalization while transferring task-

specific knowledge to low-resource languages. We carry out a large-scale study in multilingual hate speech

detection across diverse domains on available hate speech datasets.

3.3 Multilingual Hate Speech Detection

We devise a gradient-based meta-learning algorithm named HateMAML for multilingual hate speech detection.

Our proposed algorithm is tailored to improve cross-lingual transfer in target low-resource languages. We

create a set of meta-tasks from samples for both high- and low-resource languages and simulate episodic meta-

training similar to MAML [98]. The goal is to produce better initialization of model parameters that can

adapt to a low-resource target language task using (i) none (i.e., zero-shot) or (ii) only a small number (i.e.,

few-shot) of labeled examples. An auxiliary language is selected to (meta-)train the model in the zero-shot

setting. In the few-shot setting, we meta-train the model on the target language. We assume some labeled

data (e.g., 2024 samples) is available for supervised fine-tuning on the target language. Hate speech datasets

from different languages often comprise several domains and topics. For example, while many English datasets

capture the domain of racism-related hate, hate speech datasets in Hindi are more religion/politics-oriented.

Here, the term ‘domain’ is loosely used, referring to different datasets and languages. Therefore, the task

of cross-lingual hate speech detection implicitly encompasses cross-domain adaptation. The objective is to

adapt quickly to both target language and domains. To account for this, the proposed meta-adaptation model
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includes a domain generalization loss. The idea is to produce a good initialization that can perform well on

diverse domains.

3.3.1 Model Agnostic Meta-Learning (MAML)

MAML assumes a probability distribution p(T ) of tasks {T1, T2, · · · , Tm}. A meta-model fθ(·) with param-

eters θ is learned through episodic meta-training over sample tasks T ∼ p(T ). MAML has two loops: (i)

an inner loop for task-specific adaptation and (ii) an outer loop to meta-learn that fast adapt to an unseen

novel task.

MAML fine-tunes the meta model fθ to a particular task Ti through gradient descent:

θ′i ← θ − α∇LTi(fθ), (3.1)

where α is the step size, and L is the classification loss. The task-specific training outcome is evaluated on

the associated test set.

The meta-learner optimization objective is to minimize the meta loss computed from all the training

tasks:

min
θ

m∑
i=1

LTi(fθ′) =

m∑
i=1

LTi(fθ−α∇θLTi
(fθ)). (3.2)

The meta parameter θ is then updated:

θ = θ − β∇θ

m∑
i=1

LTi(fθ′
i
), (3.3)

where β is the meta-learner learning rate. Multiple episodes can be accumulated to update θ. Though MAML

training requires double gradient descent optimization, a first-order approximation is used in practice. Unlike

standard fine-tuning, meta-training does not result in a final model. However, it is a reasonably good starting

point (initialization) from which learning a new task can be executed quickly. Intuitively, training across a

set of meta-tasks can be seen as auxiliary; fast adaptation on the unseen target task is the main goal. A

few recent studies build on this motivation [99, 100] where supports from auxiliary languages are used in

cross-lingual meta-training. This is also a key inspiration for the model.

3.3.2 Proposed Model: HateMAML

The training of the proposed HateMAML model facilitates hate classifier adaptation and cross-lingual transfer

in target languages while requiring only a small number of samples for model fine-tuning. HateMAML can be

used for training with/without labeled data, only requiring access to training data in the source language for

the initial fine-tuning. Any multilingual encoders that have shared embeddings, such as mBERT and XLM-R

can be used as the base model. To further improve cross-lingual transfer, a few labeled samples is used in the

target language (few-shot training), which helps quick adaptation. Additionally, HateMAML benefits from
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Figure 3.1: Proposed HateMAML model sketch. (Left) Model training in zero-shot and few-shot
setups. We use an auxiliary language validation set in zero-shot learning, and target language labeled
data is used in few-shot. In both cases, we include a source language validation set and create a (virtual)
domain set that helps us to mimic target domain performance evaluation during meta-training. We
sample a batch of triplets (S,Q,Q′) and simulate episodic training. (Right) Self-training procedure
with HateMAML, which produces pseudo-labels from unlabeled data in the target language, model
training on those, replace base model. Repeat the procedure N times.

task-specific training evaluation on a (virtual) domain test (query) set at each episode that mimics target

domain evaluation during meta-training [137]. The intuition of the domain query set is to achieve training

generalization in unseen target languages and domains. We discuss training datasets accumulation, meta-

tasks generation, and domain loss in HateMAML and present a concise training procedure in detail below. A

rough sketch of HateMAML can be found in Figure 3.1.

HateMAML Training Data. A set of support and query batches is sampled from D, where D refers

to available training data from training languages, generally small in size. Suppose we have samples in

source (Dsrc), auxiliary (Daux ) and target (Dtgt) languages. The training data D consists of the tuple: (i)

(Dsrc ,Daux ) in the zero-shot setting, and (ii) (Dsrc ,Dtgt) in the few-shot setting. To this end, we split the

training set for each language into a support (Dlangsupport ) and query (Dlangquery ), where lang ∈ {src, aux , tgt}.

We randomly sample a (virtual) domain set Ddomain−query from either Dquery
aux or Dquery

tgt . By doing so, we

can mimic real train-test domain shifts so that over many iterations, we can train a model to achieve better

generalization on the target language’s final test set.

Meta-Tasks Generation. HateMAML requires episodic training on meta-tasks containing support

(meta-training) and query (meta-testing) sets. For each episode, three subsets of examples are sampled

separately: the support set S, the query set Q, and the (virtual) domain query set Q′.

S ← S ∪ ∧(X,Y ) ∈ D,

Q← Q ∪ ∧(X,Y )S ∈ D, and

Q′ ← Q′ ∪ ∧(X,Y )(S ∪Q) ∈ D.

(3.4)

We repeat this process multiple times. Suppose we have a total of D training samples in a given language

and K samples used for support, and L for both query sets in each episode. In total, we will have D/K + L
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episodes. Note that Q′ is virtual and selected randomly.

(Virtual) Domain Query Loss. We add a query loss term in Equation 3.3 that accounts for domain

generalization. The meta-update in Equation 3.3 is computed as follows:

θ = θ − β∇θ

m∑
i=1

L(Qi,Q′
i)

Ti
(fθ′

i
). (3.5)

It is a variation of standard MAML training that addresses supervised training limitations such as domain

shift in low-resource languages. The effectiveness of our proposed training method is demonstrated by

comparison with MAML.

3.3.3 HateMAML Algorithm

HateMAML training requires a base classifier. A base classifier can be any multilingual encoder, such as

mBERT, XLM-R, fine-tuned on a source language such as English. The choice between zero-shot and few-

shot training is then made based on the availability of training data. The training choice is passed to

Algorithm 1 along with the base model parameters. For the zero-shot scenario, an auxiliary language is

selected for model training, and the resulting meta-model will be evaluated on the selected target language.

Meta-learner parameters θ are initialized from a fine-tuned base model (line 2 ). Now, we sample a batch of

pseudo-tasks Ti. Each task contains a triplet (S,Q,Q′) representing the support, query, and domain query

for model training, respectively. We take one inner loop gradient step using training loss on S (line 10 ) and

adapt model parameters to θ′. Now, we evaluate task-specific training outcomes using Q and Q′, and save

it for outer loop update (line 12). Each task has its own task-adaptive model parameters θ′i. At the end of

iterations of all tasks, the meta-learner parameters θ are updated (line 13 ). One outer loop is completed

at this point. If model training is not finished, lines 8 through 13 are repeated. After training completion,

based on the earlier choice of zero-shot or few-shot, the resulting model’s performance is evaluated on the

target language’s final test set.

3.3.4 Self-refinement and Zero-shot Learning

We now present a semi-supervised self-training procedure shown in Figure 3.1 (left) for hate speech classifier

adaptation while no target or auxiliary language is available. Our proposed approach requires the availability

of the source language. As before, a ‘base model’ is developed by fine-tuning source language training data.

Now, the trained model can be used to make predictions on unlabeled samples from the target language. We

want to use these predicted samples for supervised training. Directly including all the predicted samples in

training may not result in a good classifier, as training samples are noisy and do not represent ground-truth

labels. Samples with low prediction confidence are filtered out using a threshold value to keep it balanced.

The pseudo-labels from the filtered results are used to generate a new training dataset. HateMAML few-shot

training algorithm is used for model training. The meta-training needs a smaller sample size than fine-tuning,

which reduces noise injection. After completing one full training on the pseudo-labeled training data, the
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Algorithm 1: HateMAML

1 Training choice C, high-resource language h, set of low-resource languages L, Meta-learner M, fast lr α, meta lr
β

2 Fine-tune θ on h (base model)
3 Initialize θ ← θ
4 if C is zero-shot then
5 Select auxiliary from L to get D = (Dsrc,Daux)
6 else
7 Select target language get L to form D = (Dsrc,Dtgt)

8 while not done do
9 Sample batch of tasks T = {T1, T2.., Tm} ∼ D

10 for all Ti = (S,Q,Q′) in T do
11 Compute ∇θLTi(Mθ) on S

12 Compute adapted parameters with gradient descent: θ
′
= θ − α∇θLTi(Mθ)

13 Compute LTi(Mθ′ ) using Q, Qd for outer loop meta-update

14 Update θ ← θ − β∇θ

∑
i LTi(Mθ′ )

15 Perform test set evaluation on the target language using Mθ

Table 3.1: A summary of the multilingual hate speech datasets.

Dataset Language Size of training

set

Size of test set Domain

Founta-EN[124] English (EN) 80000 — Twitter stream

HatEval19 [22] English (EN), Spanish

(ES)

EN: 9000, ES:

4500

EN: 2971, ES:

1600

Immigrant, Woman

SemEval20 [28] Arabic (AR), Danish

(DA), Greek (EL), Turk-

ish (TR)

AR: 8000, DA:

2961, EL: 8743,

TR: 31756

AR: 200, DA: 329,

EL: 1544, TR:

3528

Twitter, Facebook, Red-

dit, News

HASOC20 [29] English (EN), Hindi (HI),

German (DE)

EN: 3708, HI:

2963, DE: 2373

EN: 1628, HI:

1326, DE: 1052

Twitter stream

HaSpeeDe [145] Italian (IT) IT: 6839 ITtweeter: 1263,

ITnews: 500

Immigration, Roma, Mus-

lims

new classifier is expected to have better target language knowledge. To make it work in practice requires

self-refinement with multiple iterations. We repeat this procedure by treating the resulting model as the

base for generating pseudo-labels again, replacing the old base model. The number of iterations needed for

effective meta-training is explored empirically.

3.4 Experiments

We consider three training setups: (i) zero-shot with no fine-tuning in the target, (ii) domain adaptation in

which we consider training on a set of auxiliary languages and test on a held-out language set, and (iii) full

fine-tuning using the training samples from all languages. Our experimental setup also requires a base model,

acquired from a pre-trained model, which is fine-tuned on the source (English) language.
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Table 3.2: A summary of the multilingual hate speech datasets.

Dataset Language Size of training set Domain

Founta-EN English (EN) 80000 Twitter stream

HatEval19 English (EN), Spanish (ES) EN: 9000, ES: 4500 Immigrant, Woman

SemEval20 Arabic (AR), Danish (DA),

Greek (EL), Turkish (TR)

AR: 8000, DA: 2961, EL:

8743, TR: 31756

Twitter, Facebook, Reddit,

News

HASOC20 English (EN), Hindi (HI),

German (DE)

EN: 3708, HI: 2963, DE:

2373

Twitter stream

HaSpeeDe Italian (IT) IT: 6839 Immigration, Roma, Muslims

Table 3.3: List of languages and their ISO codes used in our experiments.

Language ISO 639-1 code Family

Arabic AR Afro-Asiatic

Danish DA IE: Germanic

German DE IE: Germanic

Greek EL IE: Greek

English EN IE: Germanic

Hindi HI IE: Indo-Aryan

Spanish ES IE: Italic

Turkish TR Turkic

Eight low-resource languages and one high-resource language (English) are used in our experimentation

for the cross-linguistic analysis. The base model for the experiments on HASOC20 and HatEval19 is trained

using the English samples from the training set. Since there are no English training data available, we use

Founta-EN for the experiments on SemEval2020 and HaSpeedDe20.

The cross-domain experiments train of aggregated training data from a set of languages and test the

trained model on target reserved language set. The languages in the selected languages families, namely EN,

DA, DE, ES, and IT, are considered auxiliary and used in the training set. The trained model is evaluated

on the held-out languages. We use training samples in increasing order to evaluate the model performance

in the order of available data. Each language’s varying training data size has three values (1024, 2048, and

4096). However, if a language does not contain the selected number of samples (e.g. DE has only 2373

training samples), the maximum of found training samples is used in training.

The meta-training samples are retrieved from the source languages’ validation sets as well as the auxiliary
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and target languages’ training sets. The source languages’ training sets are used to train the base model.

Samples from each language are combined, and the resulting training set is used to generate meta-tasks.

Task triplets are sampled with a specified number of shots, K = L, where K = 32.

We utilize two multilingual transformer-based encoders as base models: (i) mBERT [21] (bert-base-

multilingual-uncased), and (ii) XLM-R [82] (xlm-roberta-base). For both models, the output from the

pooler layer is fed to a 2-layer FFN classification head.

3.4.1 Evaluation

In this section, we outline the primary building blocks of the metrics used in the evaluation of classification

models. We will define accuracy, precision, recall and F1 score metrics that are commonly used. For binary

classification:

• A true positive (TP) result is one where the model correctly identified the positive class.

• Similar to a true positive, a true negative (TN) is a result where the model accurately predicted the

negative class.

• A false positive (FP) is an outcome where the model incorrectly predicts the positive class.

• A false negative (FN) is a result when the model predicts the negative class incorrectly.

Precision is defined as follows:

Precision =
TP

TP + FP
(3.6)

Recall is defined as follows:

Precision =
TP

TP + FN
(3.7)

F1 score is a harmonic mean of precision and recall:

F1 score = 2 ∗ precision ∗ recall
precision + recall

(3.8)

Accuracy has the following definition:

Accuracy =
Number of correct predictions

Total number of predictions
(3.9)

We report the performance of classification models on the test set as the macro-averaged (unweighted

mean) F1 score. To alleviate the randomness of the scores, the mean and standard deviation of five different

runs are reported.

3.4.2 Baselines

We investigate the following baselines in our experiments:
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• Fine-tuning: Standard LM fine-tuning is adapted as a baseline for both zero-shot and few-shot scenarios.

Here, we fine-tune on mBERT and XLM-R.

• X-MAML [99]: Cross-lingual episodic meta-training using auxiliary language composition, including

pairs. Meta-learner weights are initialized from the base model obtained from English fine-tuning. The

meta-learned model is then evaluated on the test set in the target language. Our implementation only

considers one auxiliary language.

3.4.3 Variations of HateMAML

Besides benchmarking the baselines, we formulate and evaluate different variations of HateMAML:

• HateMAMLzero: Simulated meta-training on a batch of tasks created from aggregated samples in source

language ‘validation set’ and ‘training set’ from auxiliary language. It provides zero-shot as training choice

in Algorithm 1 ( subsection 3.3.3).

• HateMAMLself-training: Choose a target language for self-training on pseudo-labeled data. First, we gen-

erate pseudo-labels and keep only 300 samples. Next, HateMAML is applied in an iterative manner to the

pseudo-labeled data from the target language as explained in subsection 3.3.4.

• HateMAMLft: Meta-task is generated from a set of available languages and HateMAML is trained using

the aggregated training samples. This is similar to fine-tuning on aggregated training examples from the

selected language set.

3.4.4 Implementation Details

We implement our proposed model using the HuggingFace transformers library. The chosen pre-trained

model is initialized from pre-trained weights provided in the transformers library.2 The classification heads

are implemented using the pytorch linear layers, initialized randomly.3 We use the learn2learn library to

implement the meta-learning features, such as first-order approximation.4

3.5 Results and analysis

3.5.1 Zero-shot Experiments

Experiments in the zero-shot setting can be found in Table 3.4. The mBERT initialization uses the ♣ sign,

and ♠ refers to XLM-R initialization. The reported results of all the experiments are average values across

five random runs. HateMAMLzero outperforms baseline models including X-MAML with both initializations

2https://huggingface.co/transformers/
3https://pytorch.org/
4https://github.com/learnables/learn2learn
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Table 3.4: Zero-shot evaluation on target low-resource languages in several multilingual hate speech
datasets. Empty cells (−) indicate that meta-learning experiments are impossible due to the unavail-
ability of the required auxiliary language. In each cell (xy), x and y denote the mean and standard
deviation of macro-F1 values across five runs by varying the random seed initialization.

Model Aux lang
HatEval19 SemEval20 HaSpeedDe20 HASOC20

AVG

ES AR DA EL TR ITnews ITtweets HI DE

mBERT - 0.4990.025 0.4480.000 0.6500.000 0.4570.000 0.4520.010 0.4360.023 0.4890.25 0.4260.000 0.4140.000 0.4730.007

♣X −MAML ✓ - 0.5620.024 0.6540.017 0.5010.040 0.5850.002 - 0.4550.015 0.6290.032 0.5640.021

♣HateMAMLzero ✓ - 0.5830.010 0.6680.017 0.5320.004 0.6010.005 - 0.4480.073 0.7450.046 0.5920.026

♣HateMAMLself training - 0.5250.033 0.5290.019 0.6570.046 0.5470.021 0.5860.002 0.5690.031 0.6620.056 0.5090.029 0.5720.048 0.5620.028

XLM-R - 0.4210.064 0.5240.000 0.6830.000 0.5290.000 0.4780.000 0.4570.028, 0.5930.039 0.4480.000 0.5760.000 0.5230.014

♠X −MAML ✓ - 0.6470.007 0.6990.007 0.6040.023 0.5270.014 - 0.4730.010 0.6720.007 0.6040.011

♠HateMAMLzero ✓ - 0.6510.007 0.7350.006 0.6190.003 0.5800.028 - 0.4970.017 0.6500.013 0.6220.012

♠HateMAMLself training - 0.4360.0846 0.6210.048 0.6880.036 0.6350.042 0.6000.016 0.4920.020 0.6370.021 0.5980.003 0.6610.005 0.5910.031

Table 3.5: Fine-tuning and meta-training evaluation on multilingual hate speech datasets. F1 score
is reported. Here, first block means the pre-trained model is initialized with BERT and the second
block refers to XLM-R initialization.

Model data
HatEval19 SemEval20 HaSpeedDe20 HASOC20

AVG

ES AR DA EL TR ITnews, ITtweets HI DE

♣FT 1024 0.6630.009 0.7210.016 0.7120.027 0.7000.080 0.6100.053 0.6290.039, 0.6860.009 0.5900.029 0.7600.017 0.6750.064

♣FT 2048 0.7180.024 0.7650.020 0.7370.028 0.7170.041 0.6520.050 0.6520.037, 0.7080.021 0.6090.054 0.7960.012 0.7060.065

♣FT 4096 0.7170.017 0.7850.024 0.7470.037 0.7220.007 0.6700.035 0.6800.045, 0.6840.068 0.5840.071 0.8030.004 0.7120.077

♣HateMAMLft 1024 0.6930.015 0.7260.025 0.6920.018 0.6850.044 0.6260.018 0.5930.026, 0.7020.020 0.5830.020 0.7430.023 0.6710.059

♣HateMAMLft 2048 0.7350.013 0.7790.011 0.7160.013 0.7320.026 0.6650.007 0.6700.019, 0.7300.011 0.6270.006 0.7890.013 0.7160.052

♣HateMAMLft 4096 0.7570.018 0.8160.012 0.7520.010 0.7420.022 0.6890.012 0.6430.042, 0.7410.010 0.6270.016 0.7930.009 0.7290.063

♠ FT 1024 0.6300.063 0.6800.106 0.7740.028 0.5950.064 0.5930.077 0.6050.081, 0.6430.029 0.6210.036 0.7350.059 0.6530.085

♠ FT 2048 0.6840.019 0.7300.043 0.7820.022 0.6730.061 0.6710.032 0.6830.039, 0.6290.058 0.6410.043 0.8000.006 0.6990.067

♠ FT 4096 0.7040.015 0.8060.021 0.7740.008 0.7050.021 0.6840.013 0.6510.033, 0.6790.023 0.6320.022 0.8060.011 0.7160.064

♠HateMAMLft 1024 0.7280.004 0.7810.016 0.7360.001 0.7030.004 0.6950.001 0.6080.015, 0.7410.018 0.6640.010 0.7890.000 0.7160.056

♠HateMAMLft 2048 0.7420.012 0.8030.002 0.7330.003 0.6920.018 0.6950.024 0.6520.015, 0.7480.007 0.6720.005 0.8230.009 0.7290.057

♠HateMAMLft 4096 0.7550.005 0.8320.010 0.7360.022 0.7110.019 0.7060.033 0.6940.036, 0.7380.022 0.6570.016 0.8120.008 0.7380.056

(♣ and ♠). We achieve the best overall score with an average of 11% over mBERT, 7% over XLM-R, 7% over

♣ X-MAML. Baseline models, mBERT and XLM-R, have poor zero-shot performance. The use of auxiliary

language to obtain the best meta-learner produces rewarding outcomes for all the experiments. Even though

X-MAML uses a similar cross-lingual, auxiliary language-based, meta-training setting to ours, HateMAML

gives superior performance, likely due to the domain-adaptive training in HateMAML. To summarize, in

most cases, HateMAML’s auxiliary to target transfer improves the results of zero-shot learning substantially

compared to the standard fine-tuning baselines.

The XLM-R-initialized models perform better than mBERT in zero-shot prediction. Even the best

performing ♣HateMAML model has a small gap between XLM-R zero-shot performance. One explanation

is that XLM-R is trained on a relatively large corpus and a deeper transformer architecture, giving it a
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Table 3.6: Zero-shot experiments and results using auxiliary languages on SemEval2020 dataset. All
the results are produced from XLM-R initialization and average over 5 runs.

Model Auxiliary lang
Target lang

AR TR DA EL

HateMAMLzero AR - 0.5530.026 0.7180.011 0.5910.008

HateMAMLzero TR 0.6510.007 - 0.7380.012 0.6190.003

HateMAMLzero DA 0.6280.022 0.5800.028 - 0.5530.026

HateMAMLzero EL 0.5300.017 0.4940.021 0.6570.044 -

strong pre-training benefit for zero-shot transfer learning. We observe similar trends in performance with

HateMAML when initialized with XLM-R base models across all the datasets. For the SemEval20 Danish

(DA) test set, it is noted that the XLM-R model performs the best compared to other meta-learning models.

One reason could be that this dataset was created from Facebook, Reddit, and news sources, unlike the other

datasets that have been created from Twitter.

Language similarity and cross-lingual transfer. We analyze the support that each target language

receives from different auxiliary languages. The SemEval20 dataset, with the largest number of possible

(auxiliary, target) language pairs, shows the benefit of meta-training on auxiliary language for both X-MAML

and HateMAMLzero models. Meta-training helps in increasing the zero-shot performance for SemEval20 from

0.473 avg. F1 (mBERT) to 0.592 F1 (♣HateMAML). X-MAML also shows substantial improvement for both

initializations. We notice that SemEval20 Turkish (TR) tends to be the best auxiliary language dataset in

almost all cases for both base models (see Table 3.6). For HASOC20 experiments, we notice small gain in F1

score while training on auxiliary samples. The languages – German (DE) and Hindi (HI), do not seem to be

a good mix, coming from two distant language families (details of family languages is provided in Table 3.3).

Self-training improves zero-shot performance. For datasets that have no auxiliary language, i.e.,

HatEval19 and HaSpeedDe20, self-training HateMAML is a convenient algorithm to maximize the perfor-

mance. It mitigates the need for auxiliary language or a labeled target language training set. We find that

HateMAMLself−training produces comparable performance to meta-training in auxiliary HateMAMLzero. The

gain is achieved from meta-training on pseudo-labels of the target using multiple iterations of self-refinement.

Self-training also uses the source language validation set. The intuition is to have some gold-labeled samples

to balance between noise and ground truth. We observe a slight improvement given the source ground-truth

labels in training.

3.5.2 Domain Adaptation Experiments

Table 3.7 reports the results of domain adaptation experiments. We first select two language families for

training: Germanic and Romance. It can be seen that HateMAML produces superior results on average
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compared to fine-tuning. We find that domain-adaptive meta-training in HateMAMLft (♣ or ♠) has a

consistently better F1 score than fine-tuning. We achieve an overall improvement of 3% over mBERT, 24%

over XLM-R while training 2048 samples per language. Both baseline models face a performance drop in held-

out languages, in which XLM-R faces a significant performance drop. To summarize, standard fine-tuning

does not generalize well during training on the held-out target languages. On the other hand, HateMAML’s

domain-adaptive training helps retain consistent performance on both auxiliary and target languages.

Table 3.7: Domain Adaptation experiments on both fine-tuning and meta-training. We use languages
= EN,ES,IT,DA,DE for training and evaluate on all eight languages. Here, the first block means the
pre-trained model is initialized with BERT and the second block refers to XLM-R initialization.

Model data
HatEval19 SemEval20 HaSpeedDe20 HASOC20

AVG

ES AR DA EL TR ITnews, ITtweets HI DE

♣FT 1024 0.6840.022 0.4900.035 0.7110.020 0.5330.012 0.5040.027 0.6660.035, 0.7030.014 0.5370.023 0.7350.046 0.6180.098

♣FT 2048 0.7270.049 0.5170.041 0.7260.018 0.5150.022 0.5410.024 0.6670.035, 0.6950.031 0.4640.038 0.7810.010 0.6260.115

♣FT 4096 0.7530.024 0.4930.037 0.7530.021 0.5100.035 0.5460.030 0.6580.041, 0.7360.010 0.4620.041 0.8050.005 0.6350.130

♣HateMAMLft 1024 0.7090.006 0.4950.059 0.7230.022 0.5450.015 0.5390.032 0.6070.058, 0.7110.004 0.4980.030 0.7660.013 0.6220.106

♣HateMAMLft 2048 0.7370.019 0.5460.009 0.7240.019 0.5590.017 0.5560.014 0.6880.031, 0.7220.026 0.4740.021 0.7950.011 0.6450.108

♣HateMAMLft 4096 0.7460.018 0.5560.020 0.7480.025 0.5590.008 0.5670.009 0.6950.017, 0.7020.035 0.4750.009 0.8020.015 0.6500.109

♠ FT 1024 0.5210.154 0.5170.088 0.5740.111 0.4840.047 0.5170.079 0.5210.135, 0.4920.164 0.4920.072 0.5800.162 0.5220.113

♠ FT 2048 0.5610.180 0.4820.045 0.6230.149 0.5070.047 0.5270.077 0.5400.145, 0.5070.188 0.4380.025 0.6380.207 0.5360.137

♠ FT 4096 0.5790.191 0.4680.024 0.6260.146 0.5130.060 0.5000.060 0.5700.167, 0.5360.182 0.4310.016 0.6460.211 0.5410.142

♠HateMAMLft 1024 0.7250.011 0.6080.014 0.7160.030 0.5820.027 0.6240.004 0.6640.042, 0.7320.013 0.5520.018 0.7690.008 0.6630.075

♠HateMAMLft 2048 0.7260.022 0.6370.035 0.7490.019 0.6090.023 0.6140.029 0.6630.031, 0.6810.046 0.5100.032 0.8060.010 0.6660.088

♠HateMAMLft 4096 0.7380.021 0.5620.061 0.7450.043 0.5950.019 0.5860.017 0.7020.009, 0.7000.034 0.4810.025 0.8050.007 0.6570.104

3.5.3 Full Fine-tuning vs Meta-training

To make one model support all languages, we evaluate a meta-training strategy while training on data

available in eight languages. Meta-tasks are created by gathering support and query sets from eight languages.

Aggregated training data is also used for fine-tuning. By varying the size of the training data, we evaluate

model performance under increasing data availability. In Table 3.5, we show how HateMAMLft performs in

comparison to mBERT and XLM-R fine-tuning. Increasing the quantity of training data across all languages

generally shows an upward trend. As expected, the meta-learned initialized HateMAMLft models perform

better than the standard fine-tuning. HateMAMLft outperforms on average for increasing the order of

available data. We observe that HateMAMLft gains in F1 score for all languages – 2.4% and 3% improvement

over baselines mBERT and XLM-R using 4096 samples. Increasing the training data, if available, will help

performance even more. This suggests that meta-training can be an alternative to standard fine-tuning for

hate speech detection.
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3.6 Major takeaways

Our experiments show that HateMAML is able to perform well in both zero-shot and few-shot hate speech

detection by improving cross-lingual transfer in target languages. HateMAML can be trained with or without

labeled data. This model-agnostic approach supports multilingual encoders with shared embeddings such as

mBERT and XLM-R as base learners. The proposed zero-shot self-refining technique adapts a base learner

to be an effective predictor in the target, reducing the need for ground-truth labels in fine-tuning. To further

improve cross-lingual transfer, we use a few labeled samples in the target language (few-shot training), which

helps to adapt fast and boosts fine-tuning performance. Additionally, our method benefits from task-specific

learner evaluation on a (virtual) domain test (query) set at each episode that mimics target domain evaluation

during cross-lingual meta-training. The intuition of the domain query set is to achieve training generalization

in unseen target languages and domains. We also found that meta-learner adaptation effectively supports

all available languages using a single predictor model, making it highly suitable for detecting hate speech in

multiple languages and domains.
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4 Multilingual Rumour Detection

4.1 Introduction

Motivation. The rapid spread of unverified information (i.e., rumours) on social media creates discord in

society and reduces trust in the information shared online. To combat this fast-growing problem, debunking

services such as Snopes have attempted to debunk rumours by manually fact-checking the information.1 Man-

ual fact-checking however is inefficient in coping with the massive and viral spread of rumours disseminated

on social media platforms. Researchers have hence proposed machine learning solutions to automatically

detect and debunk rumours spread on social media platforms.

Towards automated solutions, researchers proposed the rumour verification task, which aims to determine

whether the source claim in a conversation thread is a false rumour, true rumour, or unverified rumour [146].

Rumour verification datasets were also created and made available to support such research. Examples of

commonly-used rumour verification datasets include PHEME [147] and Twitter15/16 [12], which contain

rumour and non-rumour Twitter conversation threads and tweets. These datasets have encouraged the

development of many rumour verification solutions [25, 146, 148, 149].

In spite of this, the existing rumour verification datasets are mostly in English and collected based on the

US context. This neglects the bulk of the rumours disseminated in other non-US communities and languages.

For instance, Figure 4.1 illustrates examples of two false rumour threads. The two threads are discussing

the same topic (i.e., cure for COVID-19) but in different languages. Existing rumour verification solutions

may not be able detect the rumour in thread (B) as they are not designed to detect rumours in multilingual

settings.

Research Objectives. We aim to address the existing research gaps by introducing the cross-lingual

and multilingual rumour verification tasks. We propose the Multilingual Source Co-Attention Transformer

(MUSCAT) model, which builds on a multilingual pre-trained language model (MPLM) to perform multilin-

gual rumour verification. Specifically, MUSCAT pivots the source claims in multilingual conversation threads

with co-attention transformers to attend the source claim and replies in a sub-thread. Subsequently, the

hidden states of all sub-threads are aggregated with a global context encoder before feeding the final thread

representation into a Softmax classifier for rumour verification. To support experimental evaluation, we col-

lected and annotated a multilingual rumour verification dataset in the Southeast Asian context. Additionally,

1https://www.snopes.com/
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Drinking strong liquor with over
40% alcohol volume can
significantly reduce the chance of
you getting COVID-19 virus! 

Source Post

I knew it! That's how I am
going strong! 

การดื�มสรุาเขม้ขน้ที�มปีรมิาณ
แอลกอฮอลม์ากกวา่ 40% สามารถลด
โอกาสที�คณุจะตดิเชื�อไวรัส COVID-19
ไดอ้ยา่งมาก!

Source Post

ฮา่ ๆ ๆ ๆ

lol cheers to that!

This is not true! Please stop
spreading fake news! 

Ridiculous! 

R1: Reply Post

R12: Reply Post

R2: Reply Post

R3: Reply Post

นี�จะตอ้งเป็นเรื�องตลก!

โปรด! คนกําลงัจะตาย! หยดุ
ทําเรื�องตลกเชน่นี�!

R1: Reply Post

R2: Reply Post

R21: Reply Post

Conversation A (English) Conversation B (Thai)

Figure 4.1: Examples of two rumour conversations in English (left) and Thai (right). Both conver-
sations are spreading falsehoods on COVID-19 cures.

we construct two other multilingual rumour verification datasets by translating the PHEME and Twitter16

datasets into four Southeast Asia low-resource languages (i.e., Bahasa Indonesia, Bahasa Melayu, Thai, and

Vietnamese).

Contributions. Our major contributions are summarized below:

• We introduce cross-lingual and multilingual rumour verification tasks and propose MUSCAT, that per-

forms rumour verification in multilingual settings. To the best of our knowledge, this is the first work

that proposes performing rumour verification in multilingual settings.

• We construct three multilingual rumour verification datasets to support our experimental evaluations

and encourage future research on multilingual rumour verification.

• We conducted extensive experiments to evaluate our proposed model and discussed the interesting

findings and challenges of performing multilingual rumour verification.

4.2 Related Work

4.2.1 Rumour Verification

The existing studies on rumour verification can broadly be categorized into two groups. The first line of

work explored training classifiers using a myriad of handcrafted features such as post content, user profile,

and propagation patterns [13, 150, 151, 152, 153]. The second line of work proposed using deep learning to

automatically capture useful latent features from the post content and propagation patterns [25, 148, 149,

154, 155, 156, 157, 158]. More recently, researchers have also explored adopting multi-task learning to perform

rumour verification along with stance classification [159, 160, 161]. For instance,Yu et. al., [161] proposes

a coupled hierarchical transformers (CHT) for multi-task learning that exploits inter-task dependencies of
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stance and rumour veracity. Most of the above-proposed rumour verification models were evaluated in a

monolingual setting. Specifically, existing rumour verification models are evaluated on the English rumour

datasets such as the Twitter15/16 [12] and PHEME datasets [147]. This neglects the bulk of the non-

English rumours disseminated on social media. We aim to fill this research gap by proposing datasets and a

multilingual Co-Attention Transformer model to support cross-lingual and multilingual rumour verification.

4.2.2 Multilingual Pre-Trained Language Models

Transformer-based large multilingual pre-trained language models (PLMs) such as mBERT [21] and XLM-R

[82] contain rich contextualized representation from more than 100 languages and can be fine-tuned for many

natural language processing and understanding tasks. The multilingual PLMs are especially helpful in low-

resource language settings where labeled data is limited. For instance, Wu et al. [27] have explored leveraging

multilingual PLMs to transfer knowledge from high-resource language to low-resource languages. Our study

aims to leverage the multilingual PLMs to perform rumour verification in cross-lingual and multilingual

settings. For instance, in the cross-lingual setting, we will explore fine-tuning the multilingual PLMs with an

English rumour dataset for zero-shot prediction in the Southeast Asia languages rumour test sets.

4.2.3 Handling Long Sequences and Hierarchical Transformers

A common approach to process conversation in sequential modeling is to flatten it into a long document.

However, processing long documents using neural networks is a challenging task. For instance, RNN suffers

from the vanishing gradient problem [32, 162]. Furthermore, one of the major limitations of PLM encoders

is that they are unable to accept input longer than a few hundred words. A simple solution to this problem

is to split the long conversation document into segments with overlap [163]. Each chunk is first processed

using the same encoder and then propagated to an MLP or recurrent layer before performing the final

classification with the Softmax layer. Yu et al. [161] argued that concatenating those hidden vectors on top

of a softmax classifier might not be able to capture the global context of the long document. Instead, the

researchers adopted the Hierarchical Transformers [164], where another transformer layer is used to capture

the interaction between segments. The proposed MUSCAT model is inspired by this architecture, where we

adopted Longformer [165] as the global encoder to encode the interaction between segments.

4.3 Task Formulation

Given a text corpus, we denote a set of conversation threads as D = C1, C2, · · · , C|D|. Each thread Ci is then

assumed to consist of a post with the source claim S0 and a sequence of reply posts sorted in chronological

order, denoted by R1, R2, · · · , RN . We assume that each Ci is associated with a veracity label yi, which

belongs to one of the four classes, namely false rumour, true rumour, unverified rumour, and non-rumour.

The goal of the rumour verification task is to learn a classification function f : Ci → yi.

48



As we are interested in investigating rumour verification in multilingual settings, we further define three

task settings:

• Monolingual: The rumour verification models are trained using conversation threads from a specific

language ls. The trained models are tested on a set of conversation threads in language ls. Note that this

is the commonly adopted setting in existing rumour verification studies.

• Cross-lingual: The rumour verification models are trained using conversation threads from a specific

language ls. The trained models are tested on a set of conversation threads in another language lt. The

goal of this setting is to examine the models’ ability to transfer knowledge learned from conversation

threads in the source language (i.e., typically, high-resource language such as English) and verify rumours

in target languages (i.e., low resource languages).

• Multilingual: The rumour verification models are trained using conversation threads from a set of lan-

guages L. The trained models are tested on a set of conversation threads in the same set of languages

L. This setting aims to examine the models’ generalizability to adapt and verify rumours from multiple

languages.

4.4 Methodology

Figure 4.2 illustrates the overall framework of the proposed Multilingual Source Co-Attention Transformer

(MUSCAT) model. The model has three main components: (i) A local context encoder (LCE) that encodes

sub-threads in a conversation. (ii) A global context encoder (GCE) that encodes the sub-threads local

representations. (iii) the output layer classifies the conversation thread based on the aggregated global

representation.

Motivation. Our goal is to design a multilingual model that can share information across languages

during training and improve rumour verification performance in multilingual settings. Recent work has

reported that fine-tuning multilingual pre-trained transformers could achieve promising performance for low-

resource NLP tasks [27]. Therefore, we adapted mBERT [21] as the LCE in the MUSCAT model. Ideally,

we would directly fine-tune mBERT for the rumour verification task. However, mBERT has a limitation on

its input size and is unable to handle long documents. Hence, we adopt a hierarchical approach to break

the long conversation thread into shorter sub-threads and encode each sub-thread using mBERT before

aggregating the sub-thread representation using Longformer as the GCE. Nevertheless, this approach also

has its limitation: due to the chunking process, the source post information is no longer available for some

of the sub-threads. We propose a source co-attention layer that pivots the source post and exploits inter-

dependency between source and corresponding replies in the LCE to address this limitation. The details of

the working mechanism of MUSCAT’s LCE and GCE will be discussed in the subsequent sections.
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Figure 4.2: An overview of the MUSCAT model. A conversation comprises k sub-threads (k = 2 is
shown here). Each sub-thread is input to a local context encoder (LCE) with the Multi-head Source
Co-Attention layer. A Longformer is adopted as the global context encoder to attend and aggregate
the local representations. Finally, the aggregated global representation is fed into a Softmax classifier.

4.4.1 Input Representation

Given a conversation thread Ci, we first arrange the posts in Ci in chronological order and then flatten the

thread into a long sequence. Next, we split the flattened sequence into multiple sub-threads with an equal

number of posts. In practice, we first tokenize the flattened sequence using the mBERT tokenizer and split

the flattened sequence into three equal-length sub-threads. We insert two special tokens, i.e., [CLS] and

[SEP], to each sub-thread’s beginning and end. The mBERT has 12 layers, and the CLS token is used to

extract final representations from the last layer of mBERT. Formally, let Ci = (S0, R1, · · · , RN ) denote the

flattened thread, where S0 is the source post, and Rj refers to the j -th reply post. As shown in the bottom

of Figure 4.2, we assume that Ci is decomposed into k sub-threads.

4.4.2 Local Context Encoder

Next, we employed mBERT as the local context encoder (LCE) to separately process the k sub-threads’ local

interactions between adjacent posts within each sub-thread. We also postulate that the thread’s source post
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Figure 4.3: Source Co-Attention Module.

contains information that influences rumour verification. Therefore, we modify the multi-head self-attention

mechanism in the mBERT to capture the inter-dependency of the source post and the corresponding replies

in the sub-threads. We call this modified attention mechanism the source co-attention module (illustrated

in Figure 4.3). The source co-attention module has two components: (i) standard self-attention and (ii)

source-claim attends replies in the sub-thread.

In standard self-attention[3], we first transform input sequence into linear projections (Q), (K) and (V )

of dimension d. The Q,K, V attention score is computed as follows:

Attention(Q,K, V ) = softmax (
QKT

√
dk

)V. (4.1)

The above attention is carried out in multiple heads such that it allows the model to jointly attend to

information from different representation sub-spaces at different positions.

MHA(Q,K, V ) = [headi, · · · , headn] where headi = Attention(Qi,Ki, Vi). (4.2)

In our modified source co-attention module, we introduce an additional projection Ksrc for source post

representations along with the standard projections of a given sub-thread Qsub ,Ksub , Vsub . Therefore, we

first compute the attention score on standard projections using equation 4.2. Next, we compute the source

co-attention by replacing Ksub with Ksrc. The updated attention score:

MHA(Qsub ,Ksub , Vsub ,Ksrc) = softmax (
QsubK

T
sub√

d
+

QsubK
T
src√

d
) ∗ Vsub . (4.3)

Finally, we apply layer normalization and feed-forward layer similar to the multi-head self-attention. The

modified mBERT encodes each input sub-thread and outputs hidden vectors.

hl = EncoderL(el), l = 1, 2, · · · , k, (4.4)
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where el is the input embeddings for the l-th sub-thread and hl is the resulting hidden vector.

4.4.3 Global Context Encoder

Longformer is shown to be able to process long sequences efficiently [165]. Therefore, we adopt Longformer

as the global context encoder (GCE) to encode the learned sub-threads representations. Specifically, we first

concatenate the hidden states from all sub-threads hL = h1 ⊕ h2 ⊕ · · ·hk. Next, we pass hL to our GCE

module. The Longformer layer applies a set of attention patterns on hL and outputs global representations

vector hG:

hG = EncoderG(hL). (4.5)

Output Layer. Finally, hG is input to a feed-forward layer (FFN), and its output is fed into a SoftMax

classifier to predict the conversation thread’s rumour veracity.

4.5 Dataset Construction

As this is the first multilingual rumour verification study, we had to construct suitable datasets for experi-

mental evaluation. We proposed two approaches to construct multilingual rumour datasets: (i) Translating

existing rumour datasets, and (ii) collecting new multilingual rumour datasets.

4.5.1 Translating Existing Rumour Datasets

The PHEME [147] and Twitter15/16 [12] datasets are commonly used in existing rumour verification studies.

Both datasets contain English tweets from Twitter. Table 4.1 provides a statistical summary of the two

datasets. Our goal was to translate these two datasets into various Southeast Asia languages for rumour

verification in multilingual settings.

As the two datasets only provide the tweet ids of the posts, we first utilize the Twitter API to retrieve

the content of the posts. Note that the number of tweets retrieved is less than the reported numbers in

the originating papers, as some of the tweets have either been removed by Twitter due to content policy

violations or have since been deleted by its users. Next, we apply the Google Cloud Translation API to

translate all the tweets in the two datasets into four Southeast Asia languages: Bahasa Indonesia, Bahasa

Melayu, Vietnamese, and Thai. 2 The resulting dataset for each language has the same number of tweets as

the original dataset as was recently retrieved. For instance, the Thai translated version of PHEME will have

105,354 post in Thai language. The PHEME and Twitter16 datasets, together with their translated versions

are used in our experimental evaluation.

2https://cloud.google.com/translate
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Table 4.1: Statistical summary of PHEME and Twitter16.

PHEME Twitter16

# of threads 6,425 817

# of posts 105,354 16,259

Avg. of posts/thread 16.40 19.90

4.5.2 Collecting Multilingual Rumour Dataset

Besides translating existing rumour datasets, we also collected and constructed SEAR (SouthEast Asia

Rumours), a multilingual rumour dataset with English and Bahasa Indonesia tweets. Broadly, SEAR contains

tweets that are related to fact-checked articles. The intuition is that the fact-checked articles are usually

controversial, and spreading the information on these articles on social media could be seen as propagating

rumours.

Collection. Our multilinugal data collection procedure is similar to previous works in rumour detec-

tion [150, 147]. We first gathered fact-checked articles from credible fact-checking websites, namely Black

Dot Singapore for English articles in Singapore’s context, and Cekfakta for Bahasa Indonesia articles in

Indonesia’s context.34 we employed KeyBERT to extract the keywords from the article title and queried the

Twitter API using the extracted keywords to retrieve relevant tweets.5 As we are interested in performing

rumour verification for conversation threads, we filtered and retained only tweets that are part of a conver-

sation thread. A total of 1043 threads in Bahasa Indonesia and 560 threads of conversation in English have

been gathered primarily. After annotation and quality-checking, there are 278 threads in English and 798

threads in Bahasa Indonesia.

Annotation. Next, we annotated the veracity of the collected conversation threads. Similar to existing

rumour datasets, we annotated the conversation threads’ source post (i.e., root tweet). Two annotators were

recruited for this task. The annotators were undergrad students and we recruited them as intern for this

project. The annotators first underwent a process of familiarization where they annotated a sample of 100

source tweets using an established codebook that follows the veracity labels used in the PHEME dataset [147].

Specifically, the annotators are presented with the content of the source tweets, along with the title and first

paragraph of the corresponding fact-checked articles as contextual knowledge. Since the annotators are fluent

in English, we translated the Bahasa Indonesia tweets into English to facilitate the annotation. After the

familiarization exercise, the annotators discussed and aligned their understanding of the veracity labels.

Table 4.2 shows the statistical summary of the annotated SEAR dataset. Overall, we computed agreement

using Cohen’s Kappa and achieved 0.967 for English and 0.927 for Bahasa Indonesia. Both achieved almost

3https://blackdotresearch.sg/factcheck/
4https://cekfakta.com/
5https://maartengr.github.io/KeyBERT/

53

https://blackdotresearch.sg/factcheck/
https://cekfakta.com/
https://maartengr.github.io/KeyBERT/


Table 4.2: Statistical summary of SEAR dataset. EN refers to English and ID refers to Bahasa
Indonesia

EN ID

# of threads 278 798

# of posts 10,714 5,227

# of true rumour 58 495

# of false rumour 76 116

# of unverified rumour 26 15

# of non-rumour 119 189

perfect agreement, indicating a high degree of agreement in our annotations [166].

4.6 Experiments

4.6.1 Baselines

We benchmark MUSCAT using the following baselines:

• Support Vector Machines (SVM) classifier with radial basis function (rbf) kernels trained using top

5000 tf-idf features.

• Long-short term memory networks (LSTM) [32] with FastText pre-trained word embeddings for each

corresponding language.6

• TD-RvNN [25] that utilize a top-down recursive neural networks (RvNN) to preserve tree-structure

while processing a conversation. We use n-gram counts and top 5000 features to match the original

experiment setting.

• Bidirectional graph convolutional neural networks (BiGCN) [154], which utilizes a Graph Convolutional

Network (GCN) [167] with both top-down and bottom-up directed graph.

• mBERT [21], which is is a pre-trained model of 100 languages.

• XLM-R [82], which is a transformer base language model trained on large multilingual corpus and

deep transformers layers.

We also adapted the single-task setting CHT [161] for rumour verification. In CHT, a conversation thread

is processed as a chunk of sub-threads using a pre-trained BERT model. We replace the BERT model in

CHT with mBERT for multilingual settings. Note that for tree-structured baselines such as TD-RvNN and

6https://fasttext.cc/
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BiGCN, the models accept the conversation threads’ propagation trees and post content as input. For the

other sequence modeling baselines, we flatten the conversation threads in chronological order and concatenate

the tweets in each thread into a long sequence as models’ input.

4.6.2 Experimental Settings

Monolingual. We train and test on a specific language rumour dataset. For example, we train a model

on the training set of the Vietnamese PHEME dataset and evaluate the model on the test set of the same

Vietnamese PHEME dataset.

Cross-Lingual. We train models on a specific language rumour dataset and test the model on a rumour

dataset of another language. For example, we train a model on the training set of the Vietnamese PHEME

dataset and evaluate the model on the test set of the Thai PHEME dataset. Note that the train and test

sets are carefully split to ensure no overlap or data leakage regardless of the languages.

Multilingual. We train and test models on the combined rumour datasets of multiple languages. For

example, we train a model on the combined training set of PHEME datasets of all languages (i.e., English,

Bahasa Indonesia, Bahasa Melayu, Vietnamese, and Thai) and evaluate on the test sets of PHEME datasets

in various languages.

4.6.3 Evaluation Settings

In this section, we describe the key components of the metrics used in the evaluation of classification mod-

els. We will define the frequently used metrics for F1 score, recall, accuracy, and precision. For binary

classification:

• A true positive (TP) result is one where the model correctly identified the positive class.

• Similar to a true positive, a true negative (TN) is a result where the model accurately predicted the

negative class.

• A false positive (FP) is an outcome where the model incorrectly predicts the positive class.

• A false negative (FN) is a result when the model predicts the negative class incorrectly.

Precision is defined as follows:

Precision =
TP

TP + FP
(4.6)

Recall is defined as follows:

Precision =
TP

TP + FN
(4.7)

F1 score is a harmonic mean of precision and recall:

F1 score = 2 ∗ precision ∗ recall
precision + recall

(4.8)
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Accuracy has the following definition:

Accuracy =
Number of correct predictions

Total number of predictions
(4.9)

K-fold validation. For Twitter16 and SEAR datasets, we perform 5-fold cross-validation (CV) and

report the average accuracy and F1 scores. Since it is multi-class classification problem, we take the average

of the F1 score of each class and report the mean.

Leave-one-out. As the PHEME dataset is organized by events, we adopt the evaluation approach

proposed in [160] to perform leave-one-out CV at the event level. Specifically, we train models on conversation

threads from eight events and test on the treads on the remaining event. Finally, we report the average

accuracy and F1 scores. Note that this is a more challenging setting as it evaluates the models’ ability to

perform domain adaptation when they verify rumours for an unseen event.

4.6.4 Implementation Details

The TD-RvNN, BiGCN, and CHT models are reproduced using the available codes published in the original

papers. We fine-tune mBERT and XLM-R from Huggingface transformers checkpoints.7 The baseline models’

hyperparameters are empirically optimized for the various datasets and experimental settings. For MUSCAT,

we initialize most of the weights in LCE using bert-base-multilingual-case pre-trained checkpoint. The

modified attention in the source co-attention module and LongFormer weights are learned. We empirically

set the number of input sub-threads to 3. Adam optimizer with learning rate scheduler and warmup steps is

used for model training. A fixed learning rate of 3e-5 is used in fine-tuning and batch size is set to 8.

4.7 Results & Analysis

Monolingual. We present the monolingual rumour verification experimental results for Twitter16, PHEME,

and SEAR datasets in Table 4.3 and 4.4 respectively. MUSCAT is observed to outperform the state-of-the-

art baselines in the three datasets. Specifically, MUSCAT has outperformed the best baseline by 4%, 4%,

and 10% F1 scores on the Twitter16, PHEME, and SEAR datasets, respectively. We noted that all models

performed worse for the PHEME experiments as it is a more challenging setting; the leave-one-out event

evaluation setting will require the models to perform rumour verification in an unseen domain (i.e., event).

Interestingly, we observe that MUSCAT and CHT outperformed the mBERT and XLM-R, supporting that the

hierarchical approach is able to overcome the limitation of PLMs in handling long documents. MUSCAT has

also outperformed CHT, suggesting the usefulness of the source co-attention module in capturing important

signals in the source posts.

Multilingual. We present the multilingual rumour verification experimental results for Twitter16,

PHEME, and SEAR datasets in Table 4.5 and 4.6. We have only benchmarked the performance of PLM-based

7https://github.com/huggingface/transformers
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Table 4.3: Monolingual results on Twitter16 and PHEME. We report both accuracy and F1 score.
EN - English, ID - Bahasa Indonesia, VI - Vietnamese, MS - Bahasa Melayu, and TH - Thai

Model
TWITTER16 PHEME

EN ID VI TH MS EN ID VI TH MS

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

SVM-tfidf 0.856 0.856 0.843 0.846 0.815 0.817 0.773 0.776 0.849 0.852 0.662 0.324 0.654 0.348 0.628 0.338 0.627 0.334 0.654 0.348

SVM-bow 0.742 0.744 0.689 0.691 0.657 0.659 0.643 0.647 0.701 0.705 0.503 0.309 0.606 0.331 0.551 0.333 0.596 0.321 0.591 0.328

LSTM 0.684 0.691 0.599 0.601 0.527 0.529 0.399 0.399 0.614 0.617 0.479 0.288 0.482 0.279 0.320 0.228 0.364 0.249 0.443 0.291

TD-RvNN 0.811 0.810 0.797 0.793 0.785 0.780 0.689 0.683 0.801 0.798 0.595 0.306 0.604 0.315 0.514 0.232 0.457 0.262 0.615 0.311

BiGCN 0.840 0.830 0.830 0.825 0.825 0.825 0.644 0.644 0.798 0.793 0.652 0.236 0.657 0.258 0.650 0.224 0.631 0.236 0.689 0.273

mBERT 0.787 0.787 0.746 0.744 0.631 0.621 0.617 0.611 0.758 0.757 0.634 0.376 0.543 0.362 0.554 0.343 0.467 0.280 0.572 0.339

XLM-R 0.746 0.742 0.691 0.690 0.711 0.709 0.659 0.652 0.711 0.708 0.605 0.351 0.565 0.336 0.601 0.340 0.236 0.166 0.550 0.324

CHT 0.835 0.835 0.826 0.826 0.833 0.834 0.644 0.645 0.820 0.820 0.686 0.382 0.668 0.315 0.675 0.346 0.694 0.312 0.667 0.327

MUSCAT 0.857 0.857 0.849 0.850 0.848 0.848 0.775 0.777 0.850 0.850 0.665 0.410 0.670 0.374 0.651 0.371 0.665 0.362 0.700 0.372

Table 4.4: Monolingual results on SEAR.

Model
EN ID

Acc F1 Acc F1

SVM-tfidf 0.658 0.520 0.779 0.489

SVM-bow 0.608 0.499 0.752 0.504

LSTM 0.518 0.441 0.603 0.436

TD-RvNN 0.561 0.398 0.714 0.425

BiGCN 0.679 0.546 0.785 0.475

mBERT 0.529 0.508 0.761 0.567

XLM-R 0.522 0.523 0.744 0.548

CHT 0.601 0.571 0.774 0.508

MUSCAT 0.665 0.634 0.811 0.648

models as the other baselines are mainly designed for monolingual settings and cannot be used for multilin-

gual rumour verification. Similar to the monolingual experiments, MUSCAT outperforms the state-of-the-art

baselines in the three datasets. Specifically, MUSCAT outperforms the best baseline by 6%, 2%, and 4% F1

scores on the Twitter16, PHEME, and SEAR datasets, respectively. More interestingly, we noted that the

performance of the various models did not worsen in multilingual rumour verification. This demonstrates

the strength of multilingual PLMs in transferring the knowledge learned across languages for multilingual

rumour verification.

Cross-Lingual. To further examine MUSCAT’s ability to transfer knowledge learned across languages,

we performed the cross-lingual evaluation on Twitter16 and SEAR datasets. Figure 4.6 shows the F1 scores

for MUSCAT’s cross-lingual rumour verification performance on the two datasets. We observe that the

MUSCAT performed well in the Twitter16 dataset, achieving more than 0.65 F1 scores in the cross-lingual
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(a) Twitter16 (b) PHEME (c) SEAR

Figure 4.4: Mono-lingual performance on (a) Twitter16, (b) PHEME and (c) SEAR.

Table 4.5: Multilingual results on Twitter16 and PHEME.

Model
TWITTER16 PHEME

EN ID VI TH MS EN ID VI TH MS

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

mBERT 0.749 0.748 0.737 0.737 0.627 0.616 0.642 0.636 0.710 0.709 0.656 0.334 0.654 0.330 0.657 0.332 0.640 0.322 0.643 0.323

XLM-R 0.609 0.606 0.575 0.572 0.562 0.559 0.514 0.507 0.518 0.511 0.648 0.335 0.639 0.327 0.643 0.337 0.585 0.305 0.632 0.316

CHT 0.818 0.819 0.817 0.818 0.791 0.792 0.707 0.708 0.800 0.801 0.664 0.337 0.679 0.339 0.674 0.312 0.653 0.312 0.676 0.324

MUSCAT 0.877 0.876 0.862 0.861 0.847 0.847 0.796 0.796 0.856 0.855 0.639 0.367 0.630 0.358 0.652 0.359 0.532 0.321 0.618 0.344

setting. Specifically, MUSCAT has achieved a high F1 score of 0.77 when trained on Bahasa Indonesia

(i.e., source language) and tested on Bahasa Melayu, and vice versa. As Bahasa Indonesia is an isolect of

Bahasa Melayu, both share some grammatical and vocabulary features. Therefore, MUSCAT may be able to

transfer knowledge across languages better when the languages are related or from the same linguistic family.

Interestingly, while it is easier to train on Thai rumours and transfer the knowledge to other languages, the

reverse setting (i.e., Thai as the target language) is more challenging; transferring knowledge to perform Thai

rumour verification has the worse F1 scores.

Surprisingly, we observe a drastic performance drop when performing cross-lingual evaluation on the SEAR

dataset. As shown in Figure 4.6(b), MUSCAT has F1 score less than 0.3 when trained on Bahasa Indonesia

(i.e., source language) and tested on English, and vice versa. A possible reason for the observed result

might be the nature of the SEAR dataset. Unlike the translated Twitter16 dataset, the Bahasa Indonesia

and English tweets were collected based on different new sources and events. Thus, when performing cross-

lingual rumour verification, MUSCAT will have to verify rumours in unseen language and domain (i.e., events).

This compiled the difficulty in performing cross-lingual rumour verification on the SEAR dataset.
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Table 4.6: Multilingual results on SEAR.

Model
EN ID

Acc F1 Acc F1

mBERT 0.554 0.492 0.774 0.578

XLM-R 0.619 0.546 0.776 0.588

CHT 0.626 0.602 0.774 0.543

MUSCAT 0.637 0.607 0.803 0.620

(a) Twitter16 (b) PHEME (c) SEAR

Figure 4.5: Multi-lingual performance on (a) Twitter16, (b) PHEME and (c) SEAR
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Figure 4.6: MUSCAT’s cross-lingual performance on (a) Twitter16 and (b) SEAR.
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5 Conclusion

This dissertation studies two significant contributions on the applications of multilingual NLP in tackling

social value tasks.

1. We show that meta-learning can improve cross-lingual transfer over standard fine-tuning for multilingual

hate speech detection.

2. We present a novel Transformer-based model for multilingual rumour detection in two low-resource

South East Asian languages.

This chapter provides a summary of the thesis and directions for future work.

5.1 Summary

Chapter 1 present motivation for automatic neural applications in tackling two pressing problems in social

media: hate speech detection and multilingual rumour detection. First, the challenges in OSPs on the

dimension of hatred and disinformation that results in discord in society are discussed. Second, neural

applications and the need for developing resources in multiple languages to address social value tasks are

discussed. Finally, the benefits of neural applications in social media are presented.

Chapter 2 provides the technical foundation of neural networks and their applications. The chapter starts

with an overview of the fundamental concepts of neural networks. Modern architectures in text processing

are then described, followed by a discussion of prior works on knowledge transfer to improve low-resource

applications.

Chapter 3 present multilingual hate speech detection task in extreme low-resource setting. The system

architecture is described, as well as the different language-specific resources that have been used to train

the system. It use a novel meta-learning learning algorithm that benefits from resource maximization to

improve cross-lingual transfer. The experiments in this chapter investigate pairwise cross-lingual transfer,

cross-domain transfer and a comparison with fine-tuning methods. It shows that meta-learning is a viable

alternative for hate speech detection in low-resource languages.

Chapter 4 proposes a new model for multilingual rumour detection. It formulates the problem of multi-

lingual rumour detection, collects a dataset for two South East Asian languages, and discusses challenges in

building datasets in low-resource communities. The proposed model and baseline are used to discuss multi-

lingual rumour detection. The results show that the proposed system outperforms the baselines, and that it
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is possible to detect rumours in multiple languages with a single model. We analyse our improvements and

discuss remaining challenges.

5.2 Future work

Some possible future extensions of this work are discussed here.

5.2.1 Constructing datasets for social value tasks in low-resource languages

Resources in deep learning applications for tackling social value tasks are still limited. Chapter 3 investigates

multilingual hate speech detection in eight languages. However, the study was limited to available hate

corpora and there is a need for exploring hate speech in other languages. To facilitate further research,

the construction of datasets for extreme low-resource languages should be explored. It is also useful to

focus on domain-specific data for careful evaluation of cross-domain hate speech detection that matches the

real-world setting. In Chapter 4, we discuss some of the difficulties while constructing rumour detection

datasets in multiple languages. We believe it requires further attention to build datasets for many other

low-resource languages since rumour detection in those remains an open challenging problem. In particular,

future research can focus on the integration of fact-checking websites for a longer period to achieve broader

coverage of rumour events.

5.2.2 Exploring meta-learning for fine-grained and implicit hate speech detec-

tion

This study can be extended to explore meta-learning for fine-grained and implicit hate speech detection. The

proposed meta-learning algorithm in Chapter 3 treats hate speech as binary tasks, however, it is possible

to use this framework to solve multi-class hate speech detection on fine-grained labels. Chapter 3 reveals

some insights into language similarity and cross-lingual transfer. This study can be elaborated to gain

further insight into other language families while training on a wide variety of language families. It is

worth noting that our study was mainly devoted to explicit hate speech detection. Future work can take

motivation from recent studies on implicit hate speech to investigate implicit hatred in languages beyond

English. Furthermore, it would be interesting to explore meta-learning for cross-lingual transfer of implicit

hate forms of varying cultures and domains.

5.2.3 Detecting rumour with fact-checking resources in multiple languages

Detecting rumours with fact-checking resources in multiple languages is a very challenging task due to the

limited resources that are available. The natural extension to multilingual rumour detection would be to add

more languages in the implementation of models and explore the nature of large-scale cross-lingual rumour
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detection. The collected datasets are small and it is possible to extend them to multiple domains and explore

resource languages beyond South East Asia. Current neural modeling only uses a single source of information

for verifying rumour events. Relying on only the conversations happening in social media might make them

brittle to coordinated attacks such as bots. To strengthen further knowledge utilization in these systems, we

can leverage external knowledge sources such as major news outlets and fact-checking websites. A potential

extension is exploring neural methods that capture signals from multiple sources beyond social media to

verify a rumour event.

In conclusion, this thesis examines deep learning applications for tackling social value tasks in two chal-

lenging problems: hate speech detection and rumour detection. For both tasks, we explore resource utilization

and develop neural models for automated solution. First, we present a novel algorithm for low-resource hate

speech detection that maximizes the resource utilization. We show that meta-learning is a viable alternative

to multilingual fine-tuning and achieve stronger performance in cross-domain setting. Second, the multilin-

gual rumour detection can be improved by modifying Transformers to prioritize source post while processing

replies. We present extensive studies on two South Asian languages and present challenges on data collection

to multilingual modeling.
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