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Abstract

Cancer is the second most common cause of death of human beings, whereas liver cancer is the fifth most

common cause of mortality. The prevention of deadly diseases in living beings requires timely, independent,

accurate, and robust detection of ailment by a computer-aided diagnostic (CAD) system. Executing such

intelligent CAD requires some preliminary steps, including preprocessing, attribute analysis, and identifica-

tion.

In recent studies, conventional techniques have been used to develop computer-aided diagnosis algorithms.

However, such traditional methods could immensely affect the structural properties of processed images with

inconsistent performance due to variable shape and size of region-of-interest. Moreover, the unavailability of

sufficient datasets makes the performance of the proposed methods doubtful for commercial use.

To address these limitations, I propose novel methodologies in this dissertation. First, I modified a

generative adversarial network to perform deblurring and contrast adjustment on computed tomography

(CT) scans. Second, I designed a deep neural network with a novel loss function for fully automatic precise

segmentation of liver and lesions from CT scans. Third, I developed a multi-modal deep neural network

to integrate pathological data with imaging data to perform computer-aided diagnosis for malignant liver

detection.

The dissertation starts with background information that discusses the proposed study objectives and

the workflow. Afterward, Chapter 2 reviews a general schematic for developing a computer-aided algorithm,

including image acquisition techniques, preprocessing steps, feature extraction approaches, and machine

learning-based prediction methods.

The first study proposed in Chapter 3 discusses blurred images and their possible effects on classification.

A novel multi-scale GAN network with residual image learning is proposed to deblur images. The second

method in Chapter 4 addresses the issue of low-contrast CT scan images. A multi-level GAN is utilized

to enhance images with well-contrast regions. Thus, the enhanced images improve the cancer diagnosis

performance. Chapter 5 proposes a deep neural network for the segmentation of liver and lesions from

abdominal CT scan images. A modified Unet with a novel loss function can precisely segment minute lesions.

Similarly, Chapter 6 introduces a multi-modal approach for liver cancer variants diagnosis. The pathological

data are integrated with CT scan images to diagnose liver cancer variants.

In summary, this dissertation presents novel algorithms for preprocessing and disease detection. Further-

more, the comparative analysis validates the effectiveness of proposed methods in computer-aided diagnosis.
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1 Introduction

1.1 Background

Chronic liver diseases are progressive and potentially fatal due to asymptotic behavior. According to the

American Institute of Cancer Research Report 2018, liver cancer is the second most common cause of death

in human beings. The percentage has been growing steadily in past years as it was ranked worldwide the sixth

most common cancer in 2012 and fifth in 2018. In 2012, there were 782, 000 cases, while in 2018, 840, 000

cases were reported of liver cancer, more common in men than in women [15]. Since liver cancer does not

have any symptoms in the early stage, the mean age of survival for five years was around 12 percent only

during 2000 to 2007. Similarly, in most cases, liver cancer was diagnosed over the age of 75. Based on given

statistics, a liver cancer diagnosis is currently a focus of interest for biomedical researchers [16, 17, 18, 19, 20].

Liver diseases can be categorized as focal and diffuse. The former type may include benign such as cysts

or malignant lesions related to primary or secondary cancer. In contrast, the latter covers virus hepatitis,

fibrosis, cirrhosis, fatty liver, etc. Liver malignancy is divided into primary- and secondary cancer and has

high mortality with an incidence rate of 0.95.

Multiple clinical tests are performed to diagnose liver malignancy, including biopsies, laparoscopy, and

imaging scans. Unfortunately, such tests are painful, time-consuming, laborious, and cumbersome, while the

results are often not completely reliable. Moreover, specimens obtained for histopathology require biopsy

techniques that are associated with potential patient morbidity or mortality. In contrast, non-invasive meth-

ods such as medical imaging may be used to develop reliable diagnosis algorithms to identify different clinical

outcomes. Here, computer-aided algorithms can assist experts, such as assessing and categorizing liver lesions.

Medical imaging of liver disease may utilize three different imaging modalities: ultrasound (US); mag-

netic resonance imaging (MRI); and computed tomography (CT). CT is more common for abdomen im-

age acquisition due to its operational independence, user-friendly interface, and better resolution than US

[21, 22, 23, 24, 25, 26, 27].

An intelligent computer-aided diagnosis (CAD) requires preliminary steps, including preprocessing, at-

tribute analysis, and classification [20]. In recent studies, several methodologies utilize conventional prepro-

cessing techniques that affect the structural properties of bio-medical images. Also, often the extraction of

region-of-interests are performed manually. Such methods can be tiresome to perform with high precision

due to variable shape and size. After preprocessing, the features are selected based on some state-of-the-art

methods.
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In contrast, selected features can be classified with pre-defined machine learning algorithms [20]. The

classified results are utilized to identify ailment regions for further operations such as radiation therapy,

hepatectomy, cryosurgery, [28]. The unavailability of sufficient datasets, however, makes the performance

of the proposed methods doubtful for commercial or clinical use. Similarly, from a medical perspective,

pathological data correlate with imaging data. However, none of the recent diagnostic studies integrates

clinic data with imaging data for a reliable prognosis [29, 30, 31, 32, 33, 34, 35, 36].

In my research, I first propose two models of a modified generative adversarial network that could deblur

and enhance the biomedical images with minimal structural changes [11, 12]. Afterwards, I designed an

improved Unet with a novel loss function to segment the liver and lesions [13]. Lastly, I developed a multi-

modal deep neural network to diagnose liver cancer variants based on pathological and imaging data.

1.2 Motivations and Objectives

This thesis comprises the following objectives:

Multiple studies have been proposed for computer-aided diagnosis. However, these methodologies have

various limitations in several manners that include data constraint, automatic segmentation, image pro-

cessing, and diagnosis techniques. Hence, I proposed a systematic review with a critical analysis of the

best-performed studies in my first objective given as,

1. To present a systematic review of machine learning-based liver disease diagnosis.

Most methodologies utilize iterative image processing techniques to process non-homogeneous artifacts and

noises. Applying such traditional methods can affect the structural properties of bio-medical images by losing

spatial detail of pixels. Therefore, the second objective of this thesis is to develop deblurring techniques as

follows,

2. To develop a multi-scale GAN with residual image learning for removing heterogeneous blur.

Previously, manual contrast adjustment has been performed for a series of images. However, such conventional

intensity adjustment techniques result in nonuniform contrast due to variable exposure or depth of field

during one complete scan. Hence, low contrast CT scans require a global intensity adjustment method that

has developed in my third objective as,

3. To propose multi-level GAN based enhanced CT scans for liver cancer diagnosis.

Manual and semi-automatic methods have been commonly proposed for image segmentation. The semi-

automatic models require user input to select the region of interest. Thus, it requires more computation time

with inaccurate outcomes for medical applications. However, precise automatic segmentation with maximum

accuracy is required to achieve the best diagnosis. This gives us our next objective as follows,

4. To design a residual multi-scale UNet for liver and lesion segmentation.

2



Image modality is frequently utilized to perform computer-aided diagnosis while clinical data is highly cor-

related with image data that can help diagnose. Therefore, we integrated multi-modal data to diagnose liver

cancer variants. Thereafter segmentation, the last objective became,

5. To develop a multi-modal deep neural network for multi-class liver cancer diagnosis.

1.3 Organization of the Dissertation

This dissertation is formatted in a manuscript style such that most content presented here is published or

submitted papers that I have written during my Ph.D. program. A brief introduction at the beginning of each

chapter describes a connection of the manuscript to the dissertation. All manuscripts have been reformatted

with unified bibliography to maintain consistency.

The remainder of this dissertation is organized as follows. Chapter 2 gives a systematic review of machine

learning-based liver disease diagnosis studies. The preprocessing, feature extraction, and machine learning-

based algorithms are discussed in detail. Chapter 3 proposes a multi-scale GAN with residual image learning

to perform deblurring. Chapter 4 suggests a multi-level GAN for the enhancement of CT scans. Chapter

5 proposes an improved Unet with a novel cost function to segment liver and lesions. Similarly, Chapter

6 introduces a multi-modal network that integrates clinical data with image data to diagnose liver cancer

variants.

Finally, Chapter 7 summarizes the work presented in this dissertation and discusses the future directions

of this research. The list of published research articles are enlisted in Appendix B, while the copyright

permissions are included in Appendix C.
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2 Machine Learning based Liver Disease Diagnosis: A

Systematic Review

Prepared as: Rayyan Azam Khan, Yigang Luo, Fang-Xiang Wu, Machine learning based liver disease di-

agnosis: A systematic review, Neurocomputing 468 (2022) 492509. doi:10.1016/j.neucom.2021.08.138. RAK

and FXW conceptualized the methodology. RAK reviewed the literature, and performed experiments. YL

and FXW supervised the study. RAK and FXW wrote the manuscript. All authors read, revised, and

approved the final version of the manuscript.

This chapter presents a systematic review of machine learning models for liver disease diagnosis. First,

the advancement in the preliminary steps, including image acquisition, preprocessing, attribute analysis, and

machine learning models, have been discussed in detail with a comparative analysis of best-performed studies.

Afterward, future works are proposed to overcome the shortcomings.

Abstract

The computer-based approach is required for the non-invasive detection of chronic liver diseases that are

asymptomatic, progressive, and potentially fatal in nature. In this study, we review the computer-aided

diagnosis of hepatic lesions in view of diffuse- and focal liver disorders. This survey mainly focuses on three

image acquisition modalities: ultrasonography, computed tomography, and magnetic resonance imaging.

We present the insightful analysis with pros and cons for each preliminary step, particularly preprocessing,

attribute analysis, and classification techniques to accomplish clinical diagnostic tasks. In preprocessing, we

explore and compare commonly used denoising, deblurring and segmentation methods. Denoising is mainly

performed with nonlinear models. In contrast, deep neural networks are frequently applied for deblurring and

automatic segmentation of region-of-interest. In attribute analysis, the most common approach comprises

texture properties. For classification, the support vector machine is mainly utilized across three image

acquisition modalities. However, comparative analysis shows the best performance is obtained by deep

learning-based convolutional neural networks. Considering biopsy samples or pathological factors such as

overall stage, margin, and differentiation can be helpful for improving the prediction performance. In addition,

technique breakthrough is expected soon with advances in machine learning models to address data limitation

problems and improve the prediction performance.
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2.1 Introduction

According to World Health Organization (WHO) report 2018, cancer is considered the second most common

cause of death in human beings. Whereas liver cancer is the fifth most common cancer in men and ninth in

women. In 2012, 782, 000 while in 2018, 840, 000 cases have been reported of liver cancer with most of the

diagnosis over the age of 75. Out of these total incident cases, 7.5% are men, thus more common than in

women. More specifically, among the standardized age incidence cases per 100, 000 male population, 9.3 are

in North America, 11.1 in Europe and 31.9 in Eastern Asia [15]. Additionally, the liver cancer prognosis is

very poor due to the fact that the overall ratio of mortality to incidence is only 0.95. Therefore, the mean

age of survival for 5 years is only around 12% from 2000 to 2007 [37].

Liver is formally divided into eight functionally independent segments, while its cancer disease is mainly

categorized into primary and secondary [38]. Primary liver cancer begins in the cells of the liver. These

cancerous cells can accumulate to make a single lump or can start at multiple sites of a liver. Patients

with severe liver damage are more prone to several growth sites. Primary liver cancer is further categorized

into Hepatocellular carcinoma (HCC), Cholangiocarcinoma (CC), Angiosarcoma and Hepatoblastoma. HCC

accumulates up to 75% of primary liver cases, while CC accounts for approximately 10 to 20% of all liver

cancers. HCC most likely occurs due to metabolic syndromes, hepatitis virus or alcohol abuse. CC is

commonly known as the bile duct cancer, where duct carries bile to the gallbladder to assist with the

digestion. The cancer can begin out- or inside section of the liver duct, thus named as extra- or intra-hepatic

bile duct cancer [39]. Secondary liver cancer is also named as metastasis, occuring when cancer begins in

other primary organs of the body such as lungs, stomach, breast, pancreatic etc., while the cancerous cells

break down to travel through the bloodstream or lymphatic system to reside somewhere inside the liver. Due

to the possible multiple source sites, metastasis is more common than the primary liver cancer [40, 41].

Besides several possible symptoms of the liver cancer such as fever, vomiting, fatigue, etc., multiple

diagnostic steps are performed to confirm any possible treatment. Diagnosis may involve one or various

possible tests that includes blood tests, imaging scans, biopsy, laparoscopy, and some others. Imaging scans

assist in structural analysis of the region of interest (ROI) and thus help the overall treatment. Medical

imaging can be performed through various types of modalities. However, abdominal cancer treatment involves

one or more of the three commonly used modalities, namely, Ultrasonography (US), Magnetic Resonance

Imaging (MRI) and Computed Tomography (CT) [21, 22, 23, 24, 25, 26, 27]. These modalities can operate

on multiple protocols to acquire structural images with various contrasts. Considering independent, timely

and adequate detection, MRI and CT are common in practice [26]. Still there is a room of improvement as

researchers have been working for accurate robust detection and classification of the liver tumor or lesion

through US, MRI or CT input images [42, 43, 44, 45, 46, 47]. The discernment of such computer-aided

diagnosis (CAD) system requires some preceding steps that includes preprocessing, attribute analysis and

classification [48, 49, 50, 28].
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Images can be blurry due to subjects’ involuntary movements and may also contain environmental and

instrumental noises. Such noises and artifacts can affect performance while analysing images through state-

of the art algorithms [51, 52]. Likewise, the liver size varies with the body shape, gender and age, also

the malevolent tissue often has low contrast with the normal tissue, thus making malignant tissue detection

difficult. Hence, for adequate structural analysis; for instance, after artifact removal, denoising, deblurring

and registration, the accurate localization and lesion detection are performed [53, 54, 55]. Consequently, pre-

processing images reduces the false negative rate. Afterwards, distinct and meaningful features are required

to differentiate between normal and malignant tissues [50]. After extraction and selection, these features

are utilized to perform classifications between desired outcomes. Various algorithms have been reported to

perform such diagnosis in the best possible ways [42, 56]. The overall schematic of the CAD system is shown

in Fig.2.1. The classified outcomes are employed to identify the ailment regions for further treatment such

as radiation therapy, hepatectomy, cryosurgery, etc., [28].

To identify the relevant articles, we extensively searched Web of Science, EMBASE, PubMed and Google

scholar databases till April 2021. The search includes several renown studies that consist of following key-

words: Liver, Liver mass, Metastasis, Malignancy, Computer-aided diagnosis, Hepatocellular carcinoma,

Primary liver cancer, Computed tomography, Magnetic resonance imaging, Ultrasound, Cyst, Benign and

Fibrosis. Moreover, to increase the search yield, we also review the references of the primary survey articles.

Multiple preliminary studies [41, 57, 58, 59, 60, 61] discusses such CAD algorithms with evaluation criteria

to formally target unresolved problems. To the best of our knowledge, so far malignant liver CAD literature

lacks in various perspectives that are formally addressed in this review, which is thus the first study to

summarize:

• systematic survey of image preprocessing and attribute analysis for malignant liver diagnosis;

• comparative overview of state-of-the-art liver CAD systems based on multiple modalities (US, MRI and

CT);

• the scope of artificial intelligence in the identification of multi-class liver cancer;

• comprehensive analysis on the diagnosis of primary- versus secondary liver cancer, fibrosis versus cir-

rhosis, hepatocellular- versus cholangio-carcinoma, etc.

The remainder of this study is arranged as follows. Section 2.2 briefly discusses preliminary steps such as

image-acquisition, preprocessing, segmentation and feature extraction techniques required for the develop-

ment of intelligent systems in view of developed algorithms. Liver CAD systems are discussed in section 2.2.5.

Subsection 2.2.5 and 2.2.5 critically discusses these proposed algorithms. Finally, prospects and conclusion

are summarized in section 2.2.3 and 2.4.
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Figure 2.1: The schematic flow of malignant liver diagnostic system

2.2 Method Preview

2.2.1 Image Acquisition

Patients experiencing chronic liver diseases are more prone to complications with liver failure. In the diagnosis

and therapeutic assessment of such perennial diseases, it requires to estimate the degree of hepatic fibrosis

stage as substantial predictive factor for the occurrence of HCC. LI-RADS [62] and Barcelona Staging System

[63] are well-known to predict cancer stage. However, for multi-class diagnosis such as cirrhosis versus benign,

hepatocellular- versus cholangio-carcinoma etc., we require intelligent computer-aided diagnosis systems.

The liver biopsy serves as the reference test for staging the fibrosis and is still considered as gold-standard

for its grading [64]. However, it is an invasive procedure with potential side effects; for instance, pain in 30

to 40% cases [65, 66, 67]. To decrease potential use of such painful biopsies, non-invasive methods such as

US, MRI and CT are utilized to perform screening and radiological follow-ups of potentially risky patients

so that early detection can reduce the mortality rate. These modalities can perform at various protocols to

distinguish malignant hepatic tumors from benign. For optimized examinations, we discuss these techniques

with commonly used protocols as follows [26].

Ultrasonography (US)

US is the first commonly used imaging modality for abdominal parenchymal organs, due to the fact of

non-invasiveness, low-cost and wide availability. However, due to the variable diagnosis efficacy for hepatic

fibrosis, it is operated by well experienced and qualified personnel. It utilizes high-frequency sound waves to

get the inside view of the body. A transducer is directly placed on the skin with a gel in between to increase

the conductive medium for the sound waves. Due to its real-time characteristics, it allows dynamic scanning.

Contrary to its multiple advantages, US has a comparatively low-contrast resolution [26].
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Magnetic Resonance Imaging (MRI)

MRI is used for detailed anatomical image analysis. It has some advantages over CT; for instance, non-

ionizing radiations, high-contrast resolution and multi-planar imaging capabilities. MRI uses magnetic waves

to align excited photons with the field. Thus, the synchronized radio-frequency current pulses with magnetic

field are utilized to analyze various type of tissue molecules. Abdominal MRI can be performed commonly

with contrast enhanced axial spin-echo T1-weighted and fast spin-echo T2-weighted imaging. T2-weighted

imaging is commonly preferred for abdominal scans [26].

Computed Tomography (CT)

CT utilizes X-rays to acquire images with sequential or spiral techniques. Due to spiral- and sub-second

scanning, CT is preferred for the detection of hepatic masses. Axial reconstruction of images with optimal

intervals reduces averaging of lesions partial volume. Likewise, it allows the scanning of hepatic enhancement

during various phases named as arterial, portal and delayed. Moreover, registration issues due to respiration

are minimized due to single hold breath. Lastly, spiral CT scans provide three-dimensional imaging datasets.

Routine abdominal CT scans are performed after intravenous examination of contrast agents with variable

thickness, pitch and reconstruction intervals. Sometimes, sequential scans are also performed for further

analysis [26].

2.2.2 Image Preprocessing

The biomedical images obtained using MRI or CT are mostly structural images that may contain artifacts or

blurriness, environmental- and instrumental noises due to subjects’ unintentional movements. Such aspects

can adversely affects image quality and eventually disease detection accuracies while processing or analysing

the images through state-of-the-art algorithms [57, 68, 69]. More frequently, nonlinear bilateral- and median

filters are used for noise removal [70, 71]. However, some adaptive multi-dimensional and wavelet-based

techniques have been proposed to minimize motion artifacts and noises [72, 73]. Similarly, deep learning has

also been widely used to discover and remove various image distortions [74, 75, 76, 77, 78]. Some commonly

used techniques are explained as follows.

Artifacts Removal

Streak effects, also known as metal artifacts, appear due to the presence of high-attenuation objects such

as dental fillings, hip prosthesis, surgical clips, etc.,[79]. Linear prediction [80], non-weighted and weighted

non-missing neighbor projection [81], and polynomial interpolation [79], are some of the techniques utilized to

remove such artifacts. Motion artifacts appear due to the patient involuntary movements, such as the cardiac

motion, or the voluntary movement of the chest in expiration and inspiration. Scans through spiral CT are

short enough to capture an image during a breath hold. Whereas the involuntary movement problem is solved
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by some newly developed scanners that can synchronize with the heart rhythmic beat thus minimizing the

motion [82]. Pixel-wise filter back-propagation methods are used to further minimize these effects [83, 84].

Lastly, spiral artifacts are produced during the interpolation process of continuous projection of individual

slices. These artifacts can be minimized by adjusting the interpolation algorithm and scanning pitch [85].

With the advancement in deep learning algorithms, the trained convolution neural networks (CNNs)

can classify any possible motion-perturbed and motion-free coronary cross-sectional images with the level of

artifacts [74, 75]. Lossau etal. [74] develop a motion artifact model for supervised learning by producing

synthetic data with distortions having scale between 0 and 10. Fantini etal. [75] use CNNs to remove fine

grained artifacts. The low level layers of deep convolution neural network (DCNN) are used to extract useful

information, which is then used to classify with the binary output. Similarly, several studies [86, 87, 88, 89]

utilize supervised deep learning to identify artifacts. While unique evaluation metrics are used for the

quantification of artifacts [90]. Due to image distortions, un-supervised reference-free deep learning models

are in demand to process images.

Noise Removal

The most common type of noises in an image is a white Gaussian noise and an impulse (salt and pepper)

with a normal distribution of zero-mean. These noises can be added independently to image pixels either

during transmission or acquisition. The noisy image can be expressed as

In = I◦ηm + ηα (2.1)

where In is the degraded (noisy) image, I◦ is the original (noiseless) image, ηm and ηα∼N(0, σ2
N ) are the pixel

based multiplicative and additive noises respectively. Filtering techniques are mainly divided into spatial and

variational methods. The former is categorized into nonlinear- and linear filters. Linear filter, such as Mean

can reduce noises by applying weighted average technique. However, it over-smooths the image [91]. On

the other hand, nonlinear filters such as Wiener [92], Median [93], and Bilateral [51], preserves structural

properties with noise reduction. Other hybrid filtering techniques include diffusion- [94], adaptive- [72], non-

local means- [95], Gaussian- [96] and spectral based [97, 98, 99, 100], which could retain structural properties

with more clarity and less rippling artifacts.

Additionally, acquired data may contain speckle noise or artifacts due to the variable contrast dye reso-

lution. Such noises and distortions can impinge diagnostic performance by making image details drastically

hazy, unclear, thus demean image features [69, 101]. Hence, deep learning based models have been used

with end-to-end training to minimize such distortions [102, 103, 104]. Jiao etal. [102] explore the structural

residual information to restore distorted images. The residual image learning assist to recover fine details

lost due to denoising. Yuan etal. [104] investigate spatial- and spectral multi-scale and multi-level features

with deep neural networks (DNNs) to obtain denoised images. Moreover, generative adversarial networks

(GANs) [105] have been used to produce high resolution synthetic images with minimal noise and artifacts
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[77, 76, 78]. Acquired images may contain random noises and distortions with unknown distributions. Thus,

un-supervised DNNs are in demand to restore images without loss of high-resolution information.

Deblurring

The deep learning- and traditional model-based techniques are used to perform deblurring. Deep learning-

based methods consider DNNs with end-to-end [4] or adversarial [14] training scheme to produce deblurred

images. Traditional model-based methods uses parameter estimation schemes based on regularization [106,

107, 108], maximum likelihood [109, 110, 111], singular value decomposition [112], etc., to process images.

The basic blurring model is given by

B = I ⊗K (2.2)

where ⊗ is a convolution operator, B is a blurred image, I is the latent or true image and K is a blur kernel

or invariant point spread function (PSF) [113, 114].

Based on available information, deblurring is further categorized into blind- and non-blind deblurring

problems. Several studies have been proposed to address an image deblurring with blur kernel estimation.

These studies include blind deconvolution based on patch priors [115], residual layers [116, 117, 118], spectral

irregularities [119], random transform [120] and CNN [121, 122]. In Xu etal. [106], a unified framework

is proposed for uniform and non-uniform motion deblurring by using novel regularization technique with

gradient based regularization function for blind deblurring. Fergus etal.[108] assumes a camera blur to be

uniform, therefore Bayesian based maximum a-posterior model is proposed for the blur kernel estimation

by probabilistic distribution. Levin etal. [107] proposes a non-blind prior model-based deconvolution with

residual deconvolution enhancement technique to reduce blur, artifacts and noise with statistical blur kernel

estimation.

Deep learning based neural networks have also showed impressive results for blind deblurring applications

[123, 4, 124, 125, 74]. Kupyn etal. [14] apply a GAN to deblur natural images. Similarly, Tao etal. [126]

consider muti-level neural networks (NNs), whereas Ye etal. [127] apply upscale-iterative networks to enhance

deblurring performance.

Blind deblurring is common in practise, yet with some disadvantages for instance, artifacts in deblurred

images, high computation cost due to ill-posed problem while non-blind deblurring can provide more stable

and accurate solutions [117]. To this end, optical motion flow can provide some initial estimate of latent

images [128, 129]. In addition, deep learning- or traditional model-based techniques can be utilized to further

refine blur kernels and latent images with a reduced number of iterations [110]. Moreover, as discussed in

studies [127, 126], a DNN with multi-channel and multi-scale image input can be used to improve performance.

Registration

US, MRI or CT modality is used to acquire biomedical images mostly in longitudinal directions. Such

images consist of consecutive series of frames across each patient, each frame containing multi-parametric
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information of tissues at higher temporal and spatial resolution [130, 131, 132, 133, 134, 135]. Meanwhile,

the patients unintentional movements; heartbeat, respiration and other factors can misalign these images.

Formally, image registration is divided into dichotomies as deformable vs. rigid, retrospective vs. prospective,

intra- vs. inter-subject, inter- vs. intra-modality, inter- vs. intra-protocols and intensity- vs geometry-

based image registration [54]. Registration can be defined as mapping between the two or more images,

a challenging task in terms of intermix geometries due to complex spatial transformations and similarities.

Thus, registration requires optimized and complex numerical schemes to properly overlay two images with

necessary transformations. Commonly, affine transformation is applied to handle inter-images variations

[84, 136, 137, 138, 139]. Affine transformation includes rotation, translation, shear and rescale parameters to

compare and align two or more images.

Recently, deep learning models have been developed to minimize registration time and to improve ac-

curacies, for example, deformable [140, 141, 142, 143], deformable and unsupervised [144], model-to-image

[145] and 3-D pairwise medical image registration [146]. de Vos etal. [144] employ CNNs to perform the

intensity-based registration by exploiting image similarity in end-to-end training. Once the network is trained

it can be used to perform affine and deformable registration. Similarly, Balakrishnan etal. [146] apply an

un-supervised learning model for deformable medical image registration. Once the network is trained, it can

be used to perform registration without any supervised information. Hence, a semi-supervised well-trained

CNN can speed up medical image analysis by performing registration more precisely and accurately.

Segmentation

Biomedical images acquired using US, MRI or CT are gray scale images with homogeneous background

and ambiguous appearance. Therefore, for improving diagnostic performance, CAD algorithms demand

quantification and localization of ROI [53, 147, 148]. Segmentation is mainly categorized into automatic,

semi-automatic and manual segmentation. Semi-automatic techniques comprise of numerical energy-based

optimization algorithms, require some initial user input for segmentation, methods include active-contour

[149], graph-cut [150], intensity-based [148, 151, 152], and some other iterative techniques [49]. Automatic

algorithms are user-independent approaches, perform segmentation based on supervised learning or numerical

formulation. However, supervised learning requires enough training data for the generalized performance

[153, 154, 155, 156]. Due to improved computation capabilities in recent years, neural networks have been

able to give promising results [157, 158]. Table 2.1 illustrates automatic and semi-automatic liver- and lesion

segmentation studies with the best outcomes highlighted across open access datasets. Likewise, MRI is

rarely used for the lower abdomen image acquisition due to the large scanning time, metal implant constraint

and some other factors. However, MRI has better spatial resolution compared to CT [65]. Literature

[24, 157, 158, 159] has been reported for MRI liver segmentation. Furthermore, Table 2.3 illustrates, mostly

manual segmentation preferred for US images. This is due to the fact of low contrast, ambiguous background

and heterogeneous appearances of US images (further explained in Section 2.2.5).
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Currently, liver and lesion segmentation algorithms are commonly evaluated on publicly available MRI

or CT scan datasets, including Dircadb [7], LiTS [9], Silver07 [8], Chaos [160], and others. It is evident

from Table 2.1 that study [161] performs consistently better for liver and lesion segmentation. Li etal.

[161] explore intra- and inter-slice features with a hybrid feature fusion layer to improve the automatic

segmentation. Similarly, Chlebus etal. [162] first apply 2-D CNN, and conduct the postprocessing with

random forest to perform coarse to fine segmentation. In comparison to similar studies for LiTS dataset, this

study outperforms in terms of relative volume difference (RVD), asymmetric surface distance (ASSD) and

root mean square surface distance (RMSSD). Qin etal. [163] perform multinomial classification to classify

pixels into liver: inner-region, boundary and background, and thus can explicitly identify boundary region.

The method [164] works better for automatic lesion segmentation on Dircadb dataset, which utilizes multi-

channel CNN to segment liver tumors for CT images. Network is trained for each phase while features are

combined. Similarly, semi-automatic studies [165, 166] perform satisfactory. Zhou etal.[165] consider level

set- and shape prior-based approach to segment liver. Wu etal. [166] implement fuzzy C-mean and graph

cut technique to segment lesions in CT images.

Comparatively, semi-automatic studies are more prone to change in intensity or image distortions. Conse-

quently, such methodologies perform over- or under-segmentation with hazy backgrounds. Therefore, model-

based methods are considered favourable for small datasets with localized performance only.

The liver and lesion segmentation studies show various state-of-the-art methods [49], while neural net-

work techniques prove to be more reliable for the segmentation of liver with variable size and shape [55].

However, deep learning-based segmentation requires large training datasets. To the best of our knowledge, so

far proposed CAD systems lack precise and robust automatic segmentation. Disadvantages may include high

computation cost with strong graphic processing units for automatic segmentation. While, semi-automatic

methods such as: thresholding, region-growing, watershed etc., are fast and easy to implement with homoge-

neous images. However, they are user-dependent and highly susceptible to image noises. On the other hand,

manual segmentation is a repetitive, time consuming and tiring task for medical application. Due to required

trade off between precision, computation time and hardware, algorithms are in demand that could provide

accurate un-supervised segmentation with reduced computational cost [179].

Multiple metrics are computed to evaluate segmentation performance; that includes, Dice- and Jaccard

coefficient, RVD, Volumetric overlap error (VOE), ASSD, Maximum surface symmetric distance (MSSD),

RMSSD, etc., [180].

2.2.3 Attribute Analysis

Feature Extraction

Development of CAD systems requires machine learning algorithms to train with discriminating features so

that a system is capable enough to identify any abnormality with its optimal performance. To this end, the
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Table 2.1: Metrics outcome for liver and lesion segmentation public datasets

Model Dataset Year DICE(%) VOE(%) RVD(%) ASSD(mm) RMSSD(mm)

Liver Segmentation

Christ etal. [167]* Dircadb 2016 94.3 10.7 -1.4 1.5 -
Lu etal.[168] Dircadb 2017 95.09 9.36±3.34 0.97±3.26 1.89±1.08 4.15±3.16
Han[155] Dircadb 2017 93.8±0.02 11.65±4.06 -0.03±0.06 3.91±3.95 8.11±9.68
Li etal. [161] Dircadb 2018 94.7±0.01 10.02±3.44 -0.01±0.05 4.06±3.85 9.63±10.41
Ahmad etal.[169] Dircadb 2019 91.83 6.09 5.59 - -
Chen etal.[170] Dircadb 2019 94.6±0.03 9.52±4.65 -0.02±0.07 8.43±9.37 14.21±5.71
Zhou etal. [165]* Dircadb 2019 96.53 6.7±2.3 0.6±3.2 1.5±0.6 2.4±0.8
Budak etal. [171] Dircadb 2020 95.22 9.05 7.03 1.43 -

Li etal. [161] LiTS 2018 96.5 7.4 -1.8 1.45 3.15
Qin etal. [163] LiTS 2018 97.31±0.36 5.24±0.69 1.97±1.7 1.77±0.49 -
Chlebus etal. [162] LiTS 2018 96.50 7.7 -0.4 1.150 2.42
Chen etal.[172] LiTS 2019 96.7 6.3 2 1.32 -

Hu etal. [173] Sliver07 2016 97.25±0.65 5.35±1.23 -0.17±1.34 0.84±0.25 1.78±0.56
Dou etal.[174, 175] Sliver07 2017 97.24 5.37±0.73 1.32±1.35 0.67±0.12 1.48±0.21
Lu etal.[168] Sliver07 2017 96.96 5.9 2.7 0.91 1.88
Ahmad etal.[169] Sliver07 2019 94.8 4.31 1.28 - -

Shvets etal.[176] Chaos 2018 90.01 18.16 - - -
Pham etal.[177] Chaos 2019 73.45±5.93 41.95 - - -

Lesion Segmentation

Wu etal. [166]* Dircadb 2017 83±0.06 29.04±8.16 2.2±15.88 0.72±0.33 1.10±0.49
Han [155] Dircadb 2017 60±0.12 56.47±13.62 -0.41±0.21 6.36±3.77 11.69±7.60
Sun etal. [164] Dircadb 2017 91.54 15.6±4.33 5.8±3.5 2.0±0.9 2.9±1.5
Li etal. [161] Dircadb 2018 65±0.02 49.72±5.2 -0.33±0.10 5.293±6.15 11.11±29.14
Chen etal. [170] Dircadb 2019 66.0 41.54±4.32 0.16±5.03 2.04±4.32 2.12±5.52
Budak etal. [171] Dircadb 2020 64.3±34.6 - - - -

Vorontsov etal. [178] LiTS 2017 77.3 35.7 12.12 1.075 1.596
Li etal. [161] LiTS 2018 82.4 36.6 4.272 1.102 1.595
Chlebus etal. [162] LiTS 2018 79.6 38.3 46.4 1.143 1.728
Chen etal. [172] LiTS 2019 68.4 43.8 11 25 -

Note: * indicates the semi-automatic approach; - indicates the corresponding metric is not reported.

feature extraction is formally categorized into morphological and hierarchical features [65, 181, 182, 183, 184].

Morphological Features

Morphological features are handcrafted and computed based on transform domain, signal processing and

statistical property of an image [3]. Table 2.2 illustrates various models common in practise for morphological

feature extraction. These models are explained as follows.

Statistical-based Models Statistical methods are primarily categorized into the first- and second order

features. The first order features provide various statistical properties related to gray-level distribution with

in an image, ignoring neighboring pixel relations or spatial properties. These parameters include mean,

peak, slope, kurtosis, variance, standard deviation, skewness, and others [185, 186]. Alternatively, the sec-

ond order features rely on co-occurrence properties within neighboring pixels. These features characterize

spectral qualities related to intensity of an image, for instance, gray-level co-occurrence matrix (GLCM) and

geometrical properties based texture features, etc. [27, 34, 186, 29]. Haralick etal. [187] propose texture

features for the very first time and explain the inextricable relationship between texture and tone of an
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image. They explore spatially dependent features at 0, 45, 90 and 135 degree of a symmetrical image. The 0-

and 90-degree angle considers neighboring pixels, horizontally and vertically with Nx rows and Ny columns,

providing 2Ny(Nx − 1) number of pixels for 0 degree and 2Nx(Ny − 1) symmetrical for 90 degree angle.

The 45- and 135-degree angle provides right- and left-diagonal neighboring pixels making total number of

2(Ny−1)(Nx−1) pixels for feature extraction. These spatial dependence matrices are then extracted in terms

of homogeneity, local variation and linear dependency present between pixels within an image. The texture

features are widely explored with multi-contrast and multi-model input data that includes GLCM, moment

invariant (MI), gradient (GR), gray-level difference matrix (GLDM) etc., [47, 59, 65, 182, 188, 189, 190, 191].

Table 2.3 illustrates GLCM based texture features widely explored for multi-class predictions.

Similarly, few studies [70, 192] explore geometrical properties based texture features that provides infor-

mation regarding object profile and physical structure. Mostly, the benign tumors have smooth profiles, while

the malignant lesions often contain irregular shapes [193]. Therefore, spatial features, for example, compact-

ness, solidity, ROI area, radial length, circularity, rectangularity etc., provide valuable distinct information

for lesion classification.

Processing-based Models Various sizes of masks are convolved with an image to quantify texture infor-

mation. Laws’ etal. [194] derive such features for the first time by convolving 5× 5 size mask with an image.

Since then Laws’ features have been used with various sizes to explore valuable features [1, 195, 196]. Table

2.2 illustrates various sizes of masks used for Laws’ texture feature extraction.

Frequency-based Models Several transform models have been proposed that are based on frequency-

domain features [197]. These are claimed to be effective than spatial-based features due to the fact that

noise is reduced while retaining image quality [198]. Some common models include Gabor filter, Wavelet-,

Ranklet-, and Contourlet transform, etc., [199, 200, 184].

Hierarchical Features

Recent studies [32, 211, 212, 213] have utilized various DNN models to extract meaningful features. NNs

uses back-propagation technique to adaptively learn best combination of spatial features for desired number

of outcomes. In the back-propagation, the weights are fine-tuned by minimizing the errors with multiple

runs based on defined loss function. Since the obtained features are optimal, no further selection criteria

is required. However, such algorithms demand large input data to generalize performance and to avoid

overfitting.

Feature Selection

Selection criteria is performed to choose input features that have strong statistical relationship with the

output. Multiple studies [21, 182, 214, 215, 209] have utilized statistical tests, recursive eliminations, genetic

algorithms and some other methods, to obtain the set of valuable features.
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Table 2.2: Developed models for hand-crafted features extraction [1, 2, 3]

Method Extracted Features

Statistical-based Models

Gray-level Co-occurrence Ma-
trix (GLCM) [34, 187, 201, 202];
Gray-level Difference Matrix
(GLDM) [203, 204]

Correlation information, Angular second mo-
ment, Inverse difference moment, Sum of
square, Gradient, Sum of variance, Sum of av-
erage, Sum of entropy, Contrast, Difference en-
tropy, Difference variance etc.

Gray-level Run Length Matrix
(GLRLM) [27, 73, 205]

Gray-level (GL) run length, GL run number,
Run emphasis, GL non-uniformity,High-, low-
, short- and long GL run emphasis etc.

First Order Statistics (FOS)
[34, 29, 201, 206, 202]

Mean, Peak, Slope, Kurtosis, Variance, Stan-
dard deviation, Skewness etc.

Geometric features [27, 207] Coarseness, Periodicity, Roughness, Eccentric-
ity, Regional area, Compactness, Margin, Cir-
cularity, Rectangularity, Periphery, Border,
Width, Depth etc.

Processing-based Models

Laws’ Mask Analysis [194, 1,
208, 185, 195, 196]

Laws’ mask of length range [3-9]

Frequency-based Models

Transform domain [73, 209, 189,
210]

Fourier power spectrum, Wavelet transform,
Gabor wavelet transform, Contourlet trans-
form, Shearlet transform, Ranklet transform
etc.

Statistical tests are used to select features based on intrinsic relationship between each input and out-

put variable. These tests are considered valid with some prior assumptions regarding data distribution.

Additionally, the features are selected based on independent mean and low variances [216, 217].

Recursive feature elimination (RFE) [182, 188] selects a subset of features based on model performance.

The weakest features are eliminated by recursively running the model and evaluating on cross-validation

scores. Due to the iterative process, RFE demands high computation cost for larger datasets. Therefore,

highly correlated features should be eliminated before applying RFE method for the feature selection.

Genetic algorithm [218] is another feature selection method that performs crossover and mutation to find

the optimal chromosomes. Every feature is considered as a chromosome, while each gene contains distinct

information such that combination of selective features according to the required feature space. An individual

genotype is selected based on a very criterion of survival of the fittest. Multiple crossovers are performed to

recombine the best chromosomes and mutation for new structures from various genome.

Moreover, some other techniques, for instance, Grasshopper or Swarm particle optimization have also

been used for the optimal feature selection [34, 211, 209, 219].

Dimensionality Reduction

Dimensionality reduction is sometimes required to transform high dimensional input data into a lower di-

mensional space due to the fact that the number of features should be less than the number of training data
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points [69, 71, 34, 200, 193, 204]. High dimensional data can lead towards the overfitting. The principal com-

ponent analysis (PCA) and linear discriminant analysis (LDA) are used as unsupervised- and supervised data

transformation techniques [23, 220, 195]. Additionally, independent component analysis (ICA) technique is

used for the data with non-gaussian distribution [221].

2.2.4 Machine Learning Systems

After features extraction and selection, a machine learning model is required to train and classify given

inputs into desired outcomes. Previous studies [56, 57, 58, 69, 193, 222, 213] utilize multiple machine learning

algorithms that commonly include k-nearest neighbor (k-NN), support vector machine (SVM) and DNN in

various forms.

k-Nearest Neighbor

It is evident from the name k-NN, a non-parametric classifier based on k-nearest neighbors. With a pre-

specified value of k, the training points are assigned to a class according to the majority of k nearest neighbors.

The distance between data points is typically calculated by Euclidean or Mahalanobis distance matrices

[204, 215, 223].

Support Vector Machine

Support vector machine (SVM) intends to maximize the distance between the separating hyperplane and

support vectors, so that the classes are best separable. In the feature space, the linear separating hyperplane

is defined as [224],

y = lTxi + d (2.3)

where xi is a feature vector of a binary class, d is an intercept and l is the norm vector of the separating

hyperplane for the two classes. The cost function of l is given by

S(l, k) =
1

2
∥l∥2 + C

E∑
i=1

ki (2.4)

Subject to:

yi × (lTxi + d) ≥ (1 − ki) ki ≥ 0 (2.5)

where C is the regularization parameter, ki indicates the classification errors, E represents the number of

misclassified samples and yi denotes the class label [224, 225, 226, 227]. Table 2.3 illustrates SVM commonly

used to classify various diseases with in a liver.

Neural Networks

Neural Networks (NNs) are biological brain-inspired architectures, comprising of multi-layer neurons to find

the optimal hierarchical features based upon back-propagation error minimizing technique. Neurons with
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the activation function σ and parameters ξ are used to evaluate output. Parameters ξ = {b, w}, where b is

a bias and w is a weight. An activation function transform a linear combination of the input x with neuron

parameters into a neuron output as follows: α = σ(wTx+b), where α is the neuron output. Typical activation

functions include sigmoid 1/(1+e−x), rectified-linear unit max(0, x), hyperbolic tangent (ex−e−x)/(ex+e−x),

and others. A multi-layer perceptron is a well-known neural network that contains several layers of these

transformations, given as [143]

F (x; ξ) = σ(WLσ(WL−1 · · ·σ(W ◦x + b◦) + bL−1) + bL) (2.6)

where Wn is a weight matrix associated with the k activation output, n denotes the number of current layers,

here L represents the final layer. Layers in between input- and output layers are known as hidden layers. A

neural network with multiple hidden layers is called a DNN. Such architectures have been used in various

forms; for instance, AlexNet [228], GoogLeNet [229], ResNet [10], GAN [105] and others [230, 231]. Fig.2.2

shows schematic of feed-forward neural network for x number of input features at input layer with L-hidden

layers having k-perceptron in each layer and y-number of outcomes at the output layer. More often, the final

layer activation is mapped to a distribution over classes P (y | x; ξ) by Softmax function defined as [143]

P (y | x; ξ) = Softmax(x; ξ) =
e(W

L
i )

T
x+bLi∑K

k=1 e
(WL

k )T x+bLk
(2.7)

where WL
i represents the weight vector associated with the class i. Commonly, maximum likelihood with

stochastic gradient descent is used to learn parameters ξ to a dataset D. In the stochastic gradient descent,

a mini batch is utilized to update the gradient. Maximum likelihood accounts to minimize the negative

log-likelihood given as

argmin
ξ

−
N∑

n=1

log [P (yn | xn; ξ)] (2.8)

It results in the multi-class problem by categorical cross-entropy loss or two-class task by binary cross-entropy

loss [143]. For information on various DNN models, readers are encouraged to read the literature [232, 233].

NNs have advantage in terms of feature extraction and selection. However, large input data is required for

the model to be well trained. Alternatively, transfer learning is performed to address such limitations [54, 234].

Moreover, an entire deep learning model is often uninterpretable. Consequently, proposed DNN models work

as a black box for desired classification. An explainable artificial intelligence is required to explain in the

case of misclassification or perfect classification. Secondly, image preprocessing such as intensity adjustment

or normalization is required in health care applications to make uniformity between multiple subjects data.

Finding the correct preprocessing steps is still challenging as it requires a lot of data and longer training to

obtain an effective classification model. Lastly, DNNs can be easily fooled by some minor changes to input

samples; for example, adding imperceptible noise in an image can cause NN to misinterpret the samples.

Thus, machine learning models are susceptible to random manipulations caused by various kind of noises and

artifacts [235].
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Figure 2.2: Schematic of the feed-forward neural network

Machine learning algorithms are evaluated by some universal quantitative assessment metrics. These

metrics are computed mainly based on true positive, true negative, false positive and false negative rate.

Such metrics include accuracy, sensitivity, specificity, precision, area under the curve and some others [69].

2.2.5 Computer-Aided Diagnosis (CAD)

Currently, clinical liver cancer diagnosis is performed manually, based on analysis of acquired scans and

pathological data. This procedure is tiresome and demands multiple specialties. Therefore, CAD systems

are designed to assist in detailed and repetitive diagnosis. The liver disorder can be classified into focal-

and diffuse liver diseases. The former type consists of severe liver morbidities that can be further divided

as benign (BE), such as hemangioma (HEM), focal nodular hyperplasia, hepatocellular adenoma, cyst (CY),

etc., and malignant, such as hepatocellular carcinoma (HCC), metastatic carcinomas (MET), intrahepatic

cholangiocarcinoma (CC), etc. In contrast, the latter covers virus hepatitis, fibrosis (FB), cirrhosis (such

as alcoholic cirrhosis (CR)), non-cirrhotic chronic liver diseases (such as fatty liver (FL) or steatohepatitis),

etc., [3]. The CAD systems are discussed with comparative and critical in-depth analysis as follows.

Primary Analysis

Various studies [70, 73, 204, 32, 219, 31, 208] have utilized machine learning models to classify acquired images

into BE, HEM, CY, FB, CR, primary liver cancer (HCC), and secondary liver cancer (MET). Table 2.3 shows

some previously developed CAD systems using US, MRI and CT modality. The best performed studies are

bold faced for multiple number of disease detection outcomes. Although several studies have proposed novel

morphological features for machine learning algorithms training, the overall best performances are observed
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for DNN architectures. Commonly, texture features based on GLCM have been proposed. Alternatively,

few studies have used CNN based hierarchical features instead of morphological features, to train machine

learning algorithms [70, 212, 211]. We have briefly discussed the best studies with respect to each modality

and the number of classes in the following paragraphs.

As illustrated in Table 2.3, US is comparatively an old modality, widely used for liver cancer diagnosis.

Subramanya etal. [3] propose a binary class CAD system for malignant liver disease detection. The algo-

rithm is designed to classify between diffuse liver diseases such as fatty liver and cirrhosis. Triglyceride fats

accumulate to build-up vacuoles in the hepatic cells that is commonly known as fatty liver diseases (FLD).

FLD (if not treated) can lead towards fibrosis, while excessive fibrosis can take the condition of cirrhosis.

Therefore, they focus on early detection and distinction between FLD and cirrhosis. To this end, radiologists

suggest features related to coarse texture, shrinkage of liver size and nodularity for the desired binary out-

come. Hence, combination of GLCM, gray-level run-length matrix (GLRLM), first order statistics (FOS),

Laws’ and gradient based features are used to extract valuable information. Afterwards, k-NN and Nave

Bayes are applied with maximum possible combinations and multiple iterations to select a subset of features.

The experiment shows FOS and Laws’ based features to be optimal for characterization. SVM is then applied

to perform binary classification with an accuracy of 99.5%. Considering only the US modality, this method-

ology outperforms among the discussed studies for the binary classification. Contrary, small dataset of only

29 images is used to train the model. Likewise, feature selection is performed by various machine learning

models. Since data type may vary, while feature selection by such a methodology can not guarantee the op-

timal performance for other models. Hwang etal. [195] comparatively show better performance for the three

class problem. The three outcomes, CY, HEM and malignancy (MA) are classified by considering a binary

class at a time such as CY vs HEM, CY vs MA and HEM vs MA. GLCM, FOS and Laws’ based features are

extracted, while the dimensionality reduction is performed using PCA. Thereafter, ANN is used to classify

binary class data with total number of 99 focal liver images. The trained model performs with an accuracy of

99.7% for the three-class outcome. Binary classification is performed sequentially to full-fill three-class task.

Thus, more computation time is required to solve the problem. Bharti etal. [204] propose the combination of

three machine learning models k-NN, SVM and Random forest (RF) to perform voting based classification.

Euclidean distance based relevant feature selection and RFE are used to select discriminant features among

GLCM, gray-level difference matrix (GLDM) and ranklet transform with total number of 754 images to clas-

sify four liver stages. The model performs with the accuracy of 96.6%. Assembling multiple models together

highly influence later models performance. Moreover, the disadvantages account for the large computation

time. Similarly, Acharya etal. [209] report the best performance for 5-class outcome. Contourlet- and Fourier

transform based features are extracted. While ANOVA statistical test is performed to select significant fea-

tures. Later, Probabilistic Neural Network (PNN) is used to give the prediction with the accuracy of 91.46%.

Synthetic data generation is also performed to address the imbalance dataset problems.

MRI has relatively better spatial resolution, but due to high operational cost, longer time consumption,
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non-portability etc., its rarely used for lower abdomen disease diagnosis. Xia etal. [70] propose 2-class

CAD system based on 3-D and 2-D MRI image data experimentation. The CNN is used to perform binary

classification, while SVM is also trained with hierarchical features extracted from the CNN. Four different

input methodologies are adopted; for instance, 3-D and 2-D input images in patch and slice form. The best

results are obtained by utilizing the 2-D segmented ROIs. 1023 MRI scans are used to train the network for

a testing accuracy of 95.5%. 2-D CNN consist of shallow neural network that consist of only four strided

convolution layers.

CT is currently on focus due to its rapid scanning and short diagnosis time. Kutlu and Avcı [32] apply the

AlexNet neural network to extract features from total number of 112 images. The discrete wavelet transform

(DWT) is then applied to reduce vector dimensions. Later, recursive neural network (RNN) based long short-

term memory (LSTM) networks are utilized to perform binary classification between benign and malignant

liver with an accuracy of 99.1%. Alternatively, the limitation of data is observed that can result in overfitting,

however balanced training dataset is preferred to avoid any bias results. Das etal. [219] utilize the watershed

segmentation algorithm to segment the ROIs. Afterwards, FOS, GLCM-based texture and geometric features

are extracted to train ANN. However, only a three-layer shallow network is proposed for classification. The

model performs with an accuracy of 99.39% for the three-class; MET, HCC and HEM. A total number of

225 images are used in the analysis. Likewise, Wang etal. [236] use residual CNN to carry out classification

among four-class data: CY, focal nodular hyperplasia (FNH), HEM and HCC. Dataset has total count of

388 images, while the accuracy of the prediction is 91.22%. To overcome data limitation problem, transfer

learning with fine tuning is preferred. Balagourouchetty etal. [36] consider six class problem for CAD. The

ROI is extracted using region growing segmentation technique. While GoogleNet is considered with the leaky

Rectified Linear Unit (ReLU) activation function and some NN changes to enhance performance. Kayaalti

etal. [182] apply SVM and k-NN to classify seven possible stages of FB by pair-wise classification. The feature

extraction is performed by GLCM, DWT and Fourier transform. After extraction, features are normalized

and selected based on sequential forward selection, thus resulting in the accuracy of 90% for 116 CT scans.

The class is assigned on basis of the highest vote scheme. In case that more than one class has the same

highest votes, the class is assigned based on the highest prior probability. The disadvantage includes bias

outcome due to imbalanced dataset. Similarly in [28, 206, 237, 238], various algorithms have been proposed,

however due to inefficient segmentation capabilities, increased noise in scans and small training datasets,

proposed CAD systems are still non-reliable for clinical applications [60].

Secondary Analysis

Studies [239, 240, 241, 242] have opted variant methodologies to accomplish clinical diagnostic tasks. After

preprocessing, liver disease diagnosis requires unique features to classify various diseases. Malignant liver

scans sometimes have very small lesions that tend to have homogeneous backgrounds, and thus make it

difficult for machine learning models to classify with good precision. Mainly FOS, geometric and GLCM
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based texture properties are commonly explored for valuable feature extraction among data from the three

various modalities (US, MRI and CT) [70, 208, 186, 187]. However, few studies have also utilize wavelet

transform (WT), kinetic curves and some other models to extract novel and distinct features [56, 59, 182,

185, 191, 211, 238, 243, 183, 244, 245]. WT varies spatial resolution to represent suitable scale of textures.

Frequency-domain methods give more reliable distinct information than spatial-based methods [22]. Also,

NN features have been explored to enhance machine learning algorithms performance. Additionally, in most

of the reported cases, liver cancer is diagnosed over the age of 75 with larger count of males [15]. Hence,

integrating some general pathological details such as gender, age, overall stage of cancer, size of largest tumor,

etc., can also assist in developing more powerful predictive algorithms in terms of mortality and reoccurrence

[240].

Feature selection plays a vital role in the development of reliable classification models. Various studies

have explored multiple algorithms that includes particle swarm optimization (PSO), recursive forward- and

backward selection, statistical tests, genetic algorithm, etc., to select distinct features that have lower inter-

class and higher intra-class distances [25, 219, 240, 245]. Thus, multiple selection criteria are encouraged to

find optimal combination of features. Moreover, in parallel to the selection criteria, considering importance

of features from clinical perspective can assist in development of reliable prognostic models.

Finally, model selection is required to accomplish classification task with optimal performance. Depend-

ing on the input data characteristics, for instance, linear or nonlinear classification model is chosen with

hyperparameters tuning for training, validation and testing. Table 2.3 illustrates k-NN and SVM machine

learning models widely used for predictions. However, advancement in computational machine capabilities,

deep learning based neural networks have been widely used in recent years for clinical diagnosis [22, 158, 234].

Due to wide availability, short scanning time and low cost, US imaging is used for general diagnosis.

However, due to dependent user input for scanning, low-contrast, low signal-to-noise ratio and low spatial

resolution, CT and MRI are more common in practise. Overall best performance for CAD is achieved by NNs

in various forms, for example, ANN, CNN and RNN. Such DNN requires large training data to avoid over-

fitting with the generalization performance. Yao etal. [240] perform binary classification with comparatively

large datasets. Contrary, to the best of our knowledge, most of the studies have utilized small and imbal-

anced datasets for multi-class problems [246]. Moreover, for multi-class prediction, often studies have either

proposed pair-wise classification or assemble-models based voting criteria. The former technique performs

sequential binary classification to predict the outcome. Whereas, the later methodology uses cascaded- or

multiple fused models with weighted outcome. In such cascade scheme, each model performance is influenced

by the prior model output, with exponential increase in computational cost. Likewise, due to small available

datasets, studies have used shallow NNs. Such short falls can be avoided by utilizing transfer learning with

fine tuning [234, 247, 248]. Furthermore, accuracy metric has been frequently used for performance evaluation

in the proposed studies. Whereas, accuracy metric may not be an optimal choice in the case of imbalanced

datasets. Therefore, robust diagnostic models with accurate and reliable prediction are required for clinical
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diagnosis.

2.3 Future Perspectives

Studies (discussed in Section 2.2.5) have been proposed to classify liver cancer mainly into primary- and

secondary cancer. Primarily, data limitation has been observed for development of reliable CAD. Meanwhile,

to address such problems, GAN is proposed in various forms to generate synthetic data [249, 250]. Frid etal.

[245] utilize GAN to address similar data limitation problem by generating synthetic data for CT scans data

augmentation. Likewise, GAN is also used to remove noise and deblur images [14, 251]. However, it has not

been explored for biomedical applications. Moreover, human liver is mainly divided into five lobes. These

lobes are further sub-divided into eight segments. The identification of malignant segments in the liver scan is

time consuming and require experts knowledge. Similarly, lesion size estimation can assist in the cancer stage

prediction. It is envisioned that estimating tumor size and segments of the liver are novel tasks that could

help to predict the stage of cancer and reoccurrence rate with procurement steps such as chemotherapy,

surgery, etc., [38, 27, 207]. Furthermore, multimodal image input data with multi-scale, multi-resolution,

multi-contrast and multi-phase can assist in predicting more reliable outcomes [190, 252].

2.4 Conclusion

In this study, we investigate the potential of CAD system for malignant liver detection and treatment. CAD

systems can act as a second opinion tool to determine prognostic factors. The existing literature is overviewed

up to date in focus with the conventional image acquisition modalities namely; US, MRI, and CT. Acquired

images may contain noise, artifacts or blurriness. Accordingly, preprocessing is performed to remove artifacts

and further segmentation to select the ROI. Afterwards, features are extracted commonly based on texture,

geometry and statistical properties of gray-level co-occurrence matrices. Significant features are selected by

various statistical and iterative algorithms. Alternatively, deep learning networks have also been utilized to

provide reliable results with transfer learning and fine tuning. Imbalance- and small datasets are some of

the pit falls that can be solved by synthetic data generation. Discussed state-of-the-art algorithms utilize

various methodologies to fulfil diagnostic task. To the best of our knowledge, there has been no consensus

on development of optimal CAD systems. However, we believe that considering patients’ history, multiple

imaging findings and pathological data can assist to develop reliable diagnostic systems. Moreover, follow-ups

can assist to prognosticate stage factors as well in more reliable form.
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3 Multi-scale GAN with Residual Image Learning for

Removing Heterogeneous Blur

Prepared as: Rayyan Azam Khan, Yigang Luo, Fang-Xiang Wu, Multi-scale GAN with residual image

learning for removing heterogeneous blur, IET Image Processing 16 (9) (2022) 24122431.

doi:10.1049/ipr2.12497. RAK and FXW conceptualized the methodology. RAK reviewed the literature, and

performed experiments. YL and FXW supervised the study. RAK and FXW wrote the manuscript. All

authors read, revised, and approved the final version of the manuscript.

As discussed in Chapter 2, the CT scans can be acquired with different phases. The contrast enhanced

scans are acquired by injecting a contrast agent to enhance tumor pixels before the acquisition of images.

However, this enhancement phase and laser light with various focal lengths could result in artifacts and

increased noise in images. The deconvolution technique is applied to process such distorted images. However,

it may create ripples or rings in an output image. In this chapter, I develop an unsupervised neural network

for processing non-homogeneous blur with artifacts. Furthermore, residual image learning is performed to

recover some fine details lost in processing the images. The image processing studies mostly compared their

performances to natural images. Therefore, I train and validate our proposed method on natural images.

This chapter accomplishes Objective 2 of this dissertation.

Abstract

Processing images with heterogeneous blur remains challenging due to multiple degradation aspects that

could affect structural properties. In this study, a deep learning-based multi-scaled generative adversarial

network (GAN) with residual image learning is proposed to process variant and in-variant blur. Different

scaled images concatenated with corresponding gradients are used as multi-channel single input for the

proposed GAN. Residual- and dense-networks are combined to explore salient features in the bottleneck

section while addressing the vanishing gradient problem. A hybrid content loss function with gradient penalty

is designed to minimize the error between generated and ground truth images. Due to structure sparsity, the

generated output may lose some information that leads to artifacts. Residual image learning with dilation

and end-to-end training is used to resolve this issue by recovering high-resolution anatomical details. Three

different datasets: GoPro, Köhler, and Lai, with variant and in-variant blur, are used to train and test

the proposed neural network. To validate our proposed method, we performed qualitative and quantitative
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analysis. The quantitative analysis is based on eight performance metrics with an equal number of reference

and no-reference metrics. To the best of our knowledge, this is the first study to evaluate the proposed

deblurring neural network performance extensively for various degradation aspects. Experiments show our

proposed method is effective in reducing blur while preserving structural properties compared to multiple

preprocessing techniques for image analysis. Moreover, the consistently improved performance over multiple

publicly available datasets validates the merits of our proposed method for large data analysis.

3.1 Introduction

The acquired images of real-world scenes or objects can be degraded due to inaccurate acquisition and optical

factors that include wrong depth of field, poor focus, camera shaking, objects movement, short exposure, low

optical quality, etc. These all factors can lead to produce low contrast, noisy images with artifacts that can

immensely affect the image recognition or classification tasks. The general image formation can be described

in the spatial domain as follows [114],

B(x
′
, y

′
) =

∫∫ ∞

−∞
k(x

′
− x, y

′
− y)I(x, y)dxdy (3.1)

where (x
′
, y

′
) and (x, y) are the image and 3D object in a real-world plane respectively, k is known to be space

invariant point-spread function (PSF), B is a blurred image, and I is a latent or true image. Considering

additive noises N(0, σ2
N ), the image formation model can be represented as:

B = k ⊗ I + N (3.2)

where ⊗ is the convolution operator and k is a non-identity matrix with blur information (see further details

in the supplementary material A).

Image deblurring methods can be mainly categorized into non-blind and blind deblurring algorithms. In

the former algorithms, the blur kernel information is known; thus, the inverse process is carried out to obtain

the deblurred image. The latter algorithms require constrained estimation with heuristic parameter tuning

to find a best blur kernel. Such methods are considered under conventional model-based techniques that

include blind deconvolution based on patch priors [115], spectral irregularities [119], random transform [120],

normalized color-line prior [97], and residual-based deconvolution [116]. However, applying deconvolution

techniques can produce ripple or ringing artifacts in the estimated image [115, 116, 97]. Various noise and

spectral filtering techniques [99, 100, 97, 98] have been proposed to improve images with high contrast and

less rippling artifacts. In addition, many studies [108, 107, 281, 282, 106, 283, 284, 285] have focused on

optimal blur kernel estimation for preprocessing of images.

Deep learning-based techniques have been widely utilized in image sample estimation [105, 286, 287,

288, 289], style transfer [290, 291], super-resolution [292, 293, 294, 103, 295, 296, 297, 298], and many

other applications [299]. Image sample estimation is used to counter data limitation problems by developing
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synthetic data with similar data distribution. Similarly, super-resolution neural networks are used to minimize

noises and artifacts in an image. Deblurring can be considered as a style-transfer task from blurred to sharp

style. Variational auto-encoders and generative adversarial networks (GANs) have been proposed to address

data limitation problems in the field of computer vision. However, GANs have proven to be efficient in image

style transfer application [105].

In this study, we propose a GAN with multi-scale image and gradient input fused with the residual-

and dense-blocks in the bottleneck section to restore non-uniform or uniform blurred images due to various

aspects such as camera shake, motion artifacts etc., [300]. Conventionally, the restored images should be

equal to reference images. Unfortunately, it is not true due to the fact that while denoising and deblurring,

some fine details are lost [116, 301, 117]. To compensate for the lost information in deblurring, we design

a neural network with end-to-end training named residual image learning (RIL) in cascade form with the

proposed GAN [102]. It notably reduces deconvolution ripples or artifacts by learning the structural and

spatial details within an image. Moreover, the RIL block is trained based on the cross-level loss function

between the proposed GAN output and the reference image. It improves the semantic visual quality and

pixel-wise accuracy with a considerable reduction in the computation cost [103]. Furthermore, to increase

the receptive view, stride and dilated convolution layers are adopted with the proposed network.

The proposed method is extensively evaluated qualitatively and quantitatively on three datasets, namely:

GoPro [4], Köhler [5], and Lai [6], and is compared with the most recent and standard deblurring methods.

Notably, we combine the merits of several deblurring studies that include GAN [14], multi-scale network

[126, 4], various cross-level loss functions [300, 14], and residual image learning [117, 102, 103, 296] for

style-transfer applications. Our evaluations are in terms of five reference and no-reference performance

indexes, namely: Peak signal to noise ratio (PSNR), Structural similarity index (SSIM) [302], Absolute mean

sharpness error (AMSE), Perception-based image quality evaluator (PIQE) [303], and No-reference image

quality assessment based on spatial and spectral entropies (SSEQ) [304]. The comparative analysis shows

better performance of our proposed method in terms of most metrics.

The contributions of this study can be summarized as follows,

• The GAN with the residual- and dense-blocks in the bottleneck layer, which takes multi-scale images

and corresponding gradients as input, is designed to restore the spatial properties of variant and non-

variant blurred images;

• The various cross-level loss functions are combined to improve pixel-wise properties within an image;

• The generative network is designed to reconstruct a deblurred image while the residual image learning

is adopted to improve the high resolution anatomical structural details;

• The extensive experimental comparisons are performed on three different public datasets.
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3.2 Related Work and Background

Image restoration is a well-recognized active research area for decades. Techniques for image restoration

can be divided into the conventional model- and deep learning-based methods. In this section, beside these

techniques, we are also discussing about generative adversarial networks.

3.2.1 Conventional Model-based Techniques

Blind deblurring is an ill-posed inverse problem requiring some optimization techniques to estimate true

image. These methods can be categorized into the statistical-, filter- and patch-based techniques [281, 305,

306, 307, 96, 308]. Most existing studies [281, 309, 282, 310, 283, 284, 285] have focused on the model-based

selection of adaptive smoothing kernels for optimized measuring protocols.

In statistical-based methods, Fergus et al. [108] assume a camera blur to be uniform; therefore, the

Bayesian-based maximum a-posterior (MAP) model is proposed for blur kernel estimation by probabilistic

distribution. Yuan et al. [116] considers a pair of noisy and blurred images to estimate deblurred images

using non-blind deconvolution. A novel technique of residual deconvolution is also proposed due to the loss

of fine details with denoising. Subsequently, Cho and Lee [311] apply non-blind residual deconvolution in

a coarse-to-fine manner between an image and blur kernel. Harmeling et al. [312] and Xu and Jia [313]

proposes space-variant blind image deblurring techniques with kernel prior cost functions. Levin et al. [314]

extend the work of Fergus et al. [108] by considering the blind deblurring model with Gaussian distribution

before estimating the blur kernel with MAP approximation.

Similarly, Krishnan et al. [315] propose a novel cost function based on normalized regularization param-

eter to deblur images. The method is demonstrated on spatially varying and invariant blur images with

a considerable reduction in computation cost. In Xu et al. [106] a unified framework is proposed for uni-

form and non-uniform motion deblurring with gradient-based regularization function for blind deconvolution.

Zhang et al. [316] propose a multi-image blind deconvolution model with a novel penalty function to obtain

latent images with blur kernel. The algorithm considers multiple blurred images with higher quality image

domination to recover latent images with blur kernel. Pan et al. [317] consider regularized intensity with

gradient prior to deblur images with the least square estimation. Likewise, Whyte et al. [318] propose RL-

based models for saturated pixels that can cause significant artifacts in deblurred images by conventional

deconvolution algorithms.

In filter-based methods, Yuan et al. [118] assume the invariant blur kernel for blurred images. Afterwards,

they define the correlation between kernel sparseness and translation of a blurred, noisy image. Thus, a good

kernel estimation and alignment are performed simultaneously. Shan et al. [319] explore factors of artifacts in

a deblurred image and conclude with noise and inaccurate blur kernel estimation due to imperfect distribution

assumption. Therefore, a logarithmic image gradient histogram distribution-based function is proposed for
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blur kernel estimation. MAP is then utilized for the minimization of energy. Zhong et al. [320] apply

directional filters to retain the blur information with inverse radon transform to estimate blur kernel. Lastly,

noise-tolerant non-blind deconvolution is used to obtain the latent image. Kim and Lee [321] introduce a

deblurring framework based on motion flow and latent image estimation with Tikhonov regularization (TV).

Liu et al .[322] use the weighted TV optimization to deblur and denoise the images.

In patch-based methods, Huang et al. [323] perform intensity-based geometric transformation estimation

between blurred and non-blurred images. The obtained transformation is then applied to make a non-

blurred image close to the blurred image. After that, the method in [118] is applied to obtain blur kernel,

and Richardson-Lucy (RL) deconvolution [324] to a deblurred image. Cho and Lee [311] consider gradient

input image model with gradient prior to deblur images. Fast Fourier Transform (FFT) is preferred instead

of convolution to speed up the iterative process. Whyte et al. [325] explain the blurring process due to

camera rotational velocity and propose deblurring model in terms of this parameter. RL deconvolution is

further utilized to refine the estimation.

Moreover, Sun et al. [115] models image edge primitives using patch priors. Later, statistical- and

synthetic prior are used to refine the blurred image with kernel estimation. Lee et al. [117] consider two

consecutive blur and non-blur video frames. After estimating the initial blur kernel, the non-blur frame

is synthetically blurred to estimate motion between two consecutive frames. The blurred frame is motion-

compensated and deconvolved in an iterative process to refine the blur kernel with a deblurred frame. Michaeli

and Irani [326] demonstrate the multi-scale properties for deblurring an image. Moreover, a novel cost function

is proposed with multi-scale image dissimilarity and kernel prior. Pan et al. [327] consider threshold-based

dark channel prior as a regularization term to measure the sparsity.

3.2.2 Deep Learning-based Techniques

In addition to classification tasks, deep learning-based techniques have been explored in various image pro-

cessing tasks such as segmentation, enhancement, noise, artifacts removal, deblurring etc., [13, 20]. Xu et

al. [328] coin the idea of deconvolution for the very first time using deep neural networks. The blur kernel

estimated by statistical estimation is used to perform non-blind deconvolution by a deep neural network. The

necessity with a large blur kernel is discussed because a small invariant blur kernel causes artifacts in a latent

image. Therefore, a deep neural network can assist in dealing with large heterogeneous blur kernels. Schuler

et al. [329] introduce a deep neural network to extract features and to estimate the blur kernel. After that,

a deblurred image is estimated to compare with the latent image so that the predicted blur kernel can be

further refined. Sun et al. [129] employ convolutional neural network (CNN) for non-uniform motion blur.

The patch-based neural network scheme is adopted with Markov random field model to estimate the distri-

bution of smooth motion blur. Afterwards, non-uniform motion is removed using a parametric deblurring

model with the patch-level image prior. Nah et al. [4] propose a deep learning-based neural network and a
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novel GoPro dataset for blind deblurring. In their study, the kernel free loss training is considered for blur

images.

Gong et al. [125] utilize a fully convolutional neural network to estimate motion flow within blur images.

Synthetic data is generated for neural network training. Estimated motion flow is then used to deblur images.

Li et al. [161] consider CNN binary output as prior to conventional model-based technique to restore blurred

images. The MAP estimation with the latent image is used to measure the probability of an image being

blurred. Pan et al. [330] consider model- and learning-based techniques to deblur face images. In a model-

based algorithm, regularization is used with gradient prior to deblur images. Afterwards, CNN is proposed

to remove artifacts and to obtain sharp images. Lu et al. [331] introduce an unsupervised deblurring neural

network with unpaired training data. A novel loss function is considered to retain color properties due

to unpaired training data. The proposed method is extensively evaluated on natural- and domain-specific

images.

Likewise, Wei et al. [297] propose a neural network with local correlation blocks to deblur dynamic scene

blurred images. Liu et al. [296] employ a two-stage module to deblur images. The first stage is based on

statistical parameter estimation, while the second stage is based on deep neural network restoration to remove

artifacts and retain the shape of an image. Three datasets are used to evaluate the proposed algorithm. Jiao

et al. [102, 103] introduce residual image learning for deep learning-based deblurring. A content loss function

based on pixel, gradient and feature difference is considered for end-to-end training. Shen et al. [332], and

Yasarla et al. [333] perform semantic face deblurring by utilizing a multi-scale convolutional neural network

and a local structure loss function to regularize the output. Vasu et al. [334] utilize CNN to predict the blur

kernel. Large synthetic data is trained to address blur kernel uncertainties. The predicted blur kernel is then

used to perform non-blind deblurring.

Nimisha et al. [335] propose an auto-encoder based GAN to process invariant blur. Mean squared

and gradient-based loss functions are computed to train the generator. Wu et al. [336] propose an image

enhancement framework based on Gaussian-Poisson GAN [105]. A 9-layer autoencoder GAN is used to

estimate low-resolution realistic images. Afterwards, Gaussian-Poisson assists in fusing gradient and colour

information for constrained optimization. Ramakrishnan et al. [124] consider GAN with skip connections

and dense network to deblur the images with four training datasets. Zhang et al. [337] utilize GAN to deblur

remote sensing images. Nine residual blocks with stride convolution in the bottleneck section is used in the

generative network. Kupyn et al. [14] introduce DeblurGAN to deblur images with a novel loss function.

In addition to non-uniform and uniform deblurring, an algorithm is proposed to produce synthetic training

data. Liu et al. [338] propose scale-recurrent GAN to deblur images based on extracted spatial and temporal

features. Moreover, the progressive loss function is presented to counter the vanishing gradient problem and

exploit global and local information of deblurred images. Jiang et al. [77] consider GAN with dense blocks

to deblur satellite images. The deblurred outputs contain artifacts. Therefore, a cascaded edge enhancement

neural network is used to refine the deblurred output.
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Zhang et al. [300] introduce GAN with the residual and dense network to improve deblurring results.

The perceptual loss is computed based on ℓ1 and ℓ2 loss of VGG-19 pre-trained network output [339]. Zheng

et al. [340] propose an edge heuristic multi-scale GAN with hierarchical content loss function to restore non-

uniform blur caused by camera shake. Wu et al. [292] utilize the residual neural network to estimate blur

kernel with motion flow. The GAN is then fused with the prior information to deblur images. Wu et al. [341]

develop a text image deblurring algorithm based on unpaired training data. Two cascaded GANs are used to

deblur images by training the prior and the posterior to blur images to minimize the losses for unpaired data.

Kupyn et al. [342] improve the performance of DeblurGAN [14] by introducing a feature pyramid network

for image restoration and a least-square loss evaluation of local and global patches for the discriminator.

Nimisha et al. [335] consider homogeneous blur for deblurring. GAN is fused with an autoencoder to extract

variant features. Zhang et al. [251] introduce GAN with res-block in the bottleneck section to exploit blur

features. Moreover, the gradient-based content loss function is utilized to improve performance. Cai et al.

[343] consider novel threshold-based dark and bright channels with multi-scale GAN to perform deblurring.

Various studies [126, 344, 345, 127] discuss different neural network models that include encoder-decoder,

multi-scale, and dilated convolution network. A novel scale-recurrent neural network architecture is proposed

to exploit spatial features at variant scales. A sharp latent image generation at each scale is considered input

for the subsequent up-scale output until the desired output size is attained.

3.2.3 Generative Adversarial Network

Goodfellow et al. [105] proposed GAN for the first time to address the data limitation problem by generating

synthetic data. The network is trained in an adversarial manner, such that the generative network tries to

learn the input data distribution so that the discriminator can be fooled by generated synthetic samples close

to the real one. While the discriminator network tries to estimate the probability that a generated sample is

from the training data. The min-max scheme between generator and discriminator is defined by an objective

function as,

min
g

max
d

V (d, g)= E
x∼pd

[log(d(x))]+ E
z∼pg

[log(1 − d(g(z)))] (3.3)

where E is the expectation operator, x is a sample from the real data distribution pd, z is a sample from

the noise distribution pz that is a blur image in our case [14, 346], and pg is the generated model distribution

with a mapping of noise space to data space. The discriminator is trained to minimize term log (d (x)) while

the generator is trained to minimize term log(1 − d(g(z))).

GAN has been utilized in various forms for image-to-image translation tasks [14]. The conditional GAN is

used to learn a mapping of observed image x and random noise vector z to any kind of auxiliary information y,

where y could be class label or data from various modalities. Thus, the objective function for the conditional

GAN becomes [347],

E
x∼pd

[log (d (x|y))] + E
z∼pg

[log (1−d (g (z|y)))] (3.4)
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Figure 3.1: Workflow of the proposed GAN training.

Actually the training of original GAN suffers from several problems, such as training instability, vanishing

gradients, mode collapse etc., [14, 300]. It is because the original GAN measures the difference between

model- and data distribution based on Jensen-Shannon (JS) divergence. Instead, Arjovsky et al. [348] uses

the Wasserstein distance to calculate the difference between two distributions. The workflow of the proposed

GAN is shown in Figure 3.1. The generative network takes the blurred image as noisy input and generates

the estimate of the sharp image. The content- and Wasserstein loss (discussed in section 3.3.4) are used to

train the discriminator and generator network. At the test time, only the trained generative network is kept

as depicted in Figure 3.2.

Figure 3.2: Schematic of the proposed deblurring model.⊕ and © denotes addition and concatenation
operation.

3.3 Proposed Method

The goal of this study is to reconstruct a high-quality and sharp image I from the blurred image B. To achieve

it, we propose a blur-kernel free GAN for blind deblurring. Conventionally, as defined by equation 3.2, the

generated deblurred image IGD from GAN should be equal to latent image I but it is not, due to the fact that

while performing deblurring to an input image some high-resolution details are lost that causes artifacts in the

deblurred output. Thus consider lost information in the conventional model as [116, 301, 117, 102, 103, 296],
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B = (IGD + ∆I) ⊗ k (3.5)

where ∆I is the lost information of deblurred image named as a residual image. The residual image learning

network assists in recovering this lost information. Initially, the proposed GAN is trained to estimate IGD

corresponding to each blur image B. Then residual image learning is performed to recover lost information

∆I, such that latent image I = IGD + ∆I. The schematic of the proposed deblurring model is shown in

Figure 3.2.

3.3.1 The Generator

As explained in section 3.1, stage I, initial deblurring, is based on the generator trained in an adversarial man-

ner. It considers multi-scale image with corresponding gradient concatenated together to form 18 channels

input. Three-channel (RGB) image at three variant scales with the resolution of {256, 128, 64} and corre-

sponding gradients concatenated together with zero paddings. After that, three 3 × 3 dilated convolutional

layers and three 3 × 3 transposed dilated convolution layers with a stride of 2 and rectified linear activation

function (ReLU), six dense residual network blocks (DRB), a 1×1 convolution layer with hyperbolic tangent

activation function and six batch normalization layers have been adopted in the proposed generative network.

The batch normalization assists in accelerating the convergence speed of training and in solving the gradient

explosion problem. Each layer in the encoder section is downscaled while upscaled in the decoder section.

Dx depicts the various dilation rate, and the top index shows a feature map for each layer in Figure 3.2. The

blurred image has a high correlation with the corresponding sharp image. Hence, in accordance with the

study Kupyn et al. [14], a global residual connection with a 256× 256 scale is included to keep track of input

with faster and generalize training. The DRB block combines the merits of ResNet [10] and DenseNet [349]

neural network to avoid vanishing gradient and over-fitting problems. Each DRB block contains three 3 × 3

convolution layers with a batch normalization layer. Consider an lth convolution layer output xl as input of

DRB and r (·) be a residual mapping function, then each DRB block can be presented mathematically as

[350],

R = r (xl,Wi) + xl

r (xl,Wi) = rW3 [rW2 (rW1 (xl))]

D = F ([xl, xl+1, xl+2, xl+3, R])

O = H (D)

(3.6)

where O is the dense residual network block output, R and D are the outputs of residual and dense connections

respectively, ([xl, xl+1, xl+2, xl+3, R]) represents the concatenation of feature maps in layers (l, · · · , l + 3) and

residual output R, r is the rectified linear activation function (ReLU), Wi is the weighted dilated convolution

layer with a dilation rate of i = {2, 4, 8}, F (·) is a composite function of ReLU and a 3×3 dilated convolution

and H represents a batch normalization function.
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3.3.2 The Discriminator

The primary aim of the discriminator is to maximize the error so that the generator is well-trained to generate

output close to its reference. Therefore, the discriminator output can be a simplified feature map that can

accelerate its training. We consider the discriminator network in accordance with DeblurGAN [14], and

PatchGAN [351, 352]. It contains five 4× 4 strided convolution layers with the batch normalization, and the

LeakyReLU activation function. After that, two fully connected layers are added with the hyperbolic tangent

and the sigmoid activation function. The schematic of the discriminator network is shown in Figure 3.3.

Figure 3.3: Schematic of the discriminator network.

3.3.3 Image Refinement

As discussed in section 3.2, the deblurred output may lack salient-structured regions with high-frequency

artifacts or ripples that are irrelevant to input images [77, 296]. Therefore, in accordance with equation 3.5,

a residual image learning network is proposed to improve image resolution by reducing image corruption. We

consider a heterogeneous blur, which can be processed based on conventional iterative model-based techniques

[116, 301, 117] or deep neural networks [102, 103, 77, 296]. However, instead of assuming a random prior

for conventional model-based techniques, we propose a deep neural network that can work as a high- and

low-pass filter to remove artifacts and estimates highly correlated regions corresponding to latent images.

Therefore, a residual image learning network refines IGD to I with four 3×3 dilated convolution layers having

ReLU activation function and a 1× 1 convolution layer with the hyperbolic tangent activation function. The

skip connection is used to keep track of input features. The content and perceptual based cross-level loss

functions are fused together to perform the end-to-end training of our proposed residual image learning

network (discussed in section 3.3.4). Figure 3.4 shows the residual image ∆I, generated deblurred image

IGD, and true image I for the blurred image input.
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Figure 3.4: The process flow of the blur image input.

3.3.4 Loss Function

We aim to restore a sharp image I given a corresponding blurred image B without any blur kernel information.

The combined loss function of the proposed deblurring network is given as,

Lnet = Ladv + Lcont + LG (3.7)

where Ladv indicates the adversarial loss, Lcont is the content loss and LG represents the gradient loss

explained as follows.

Adversarial loss

Our proposed GAN takes an image in the form of pairs as blurred B and the corresponding latent or ground

truth image I. The blurred image B is processed by the generator to produce IGD. IGD and I are evaluated

by the discriminator to compute the loss. We use the same discriminator network loss function as that in

Wasserstein GAN [348] study as follows,

Ladv =

N∑
n=1

−dθd
(
gθg (B(n))

)
(3.8)

where gθg represents the output of the generative network, dθd denotes the trained discriminator with a

binary output label, N is the total number of images in a batch, and B is the blurred image.

Hybrid Content loss

The content-based loss is considered as the primary objective function for deblurring. It is computed based

on two classical methods: mean absolute error (ℓ1 norm) or mean squared error (ℓ2 norm). ℓ1 loss has a

sparse output with a non-smooth gradient at zero. ℓ2 loss results in detail loss, while it lacks sparseness.

Moreover, due to the pixel-wise average computation, these sole optimization functions lead towards blurry

and over-smooth targets [14]. To overcome these limitations, we simultaneously consider both losses by

leveraging ℓ1 loss and ℓ2 loss [300]. Additionally, to avoid blurriness we consider a perceptual loss function.

The perceptual loss is a high-level loss computed using CNN feature maps for style-transfer applications.

The pre-trained VGG-16 [339] for ImageNet classification is used to extract feature maps as a function ϕ.
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Thus, an overall hybrid content loss function becomes,

Lcont=αℓ1 + βℓ2

ℓ1=
1

2N

N∑
n=1

 1

Wi,jHi,j

(Wi,j ,Hi,j)∑
(x,y)=(1,1)

∣∣∣ϕi,j(I(n))x,y−ϕi,j(I◦(n))x,y

∣∣∣


ℓ2=
1

2N

N∑
n=1

 1

Wi,jHi,j

(Wi,j ,Hi,j)∑
(x,y)=(1,1)

(
ϕi,j(I(n))x,y−ϕi,j(I◦(n))x,y

)2


(3.9)

where α and β indicates weighted parameters set to 0.25 and 0.5 in this work for the best performance,

respectively. Wi,j and Hi,j are the feature map dimensions, ϕi,j is the feature map obtained by jth-convolution

after the ith-max pool layer, |·| represents the magnitude, I is the ground truth image and I◦ is the deblurred

output image. block1 pool feature map of VGG-16 is considered because the lower layers of the network

provide structural information and higher layers provide spatial information. Therefore, lower layers help

better in retaining content information.

Gradient loss

In addition to the perceptual based content loss, we also try to minimize the image gradient difference through

the following loss function.

LG = γ

[
1

2N

N∑
n=1

|▽ (I(n)) − ▽ (I◦(n))|

]
(3.10)

where γ is the weighted parameter set to 0.25, and ▽ denotes the image gradient.

3.4 Experiments

3.4.1 Datasets

We utilize three distinct synthetic and real blurred publicly available datasets to evaluate our proposed

deblurring framework. The details of these datasets are as follows.

GoPro Dataset

Nah et al. [4] created this synthetic blur dataset by averaging multiple frames with a total number of 3214

pairs. The dataset consists of natural scenes with 2/3 of the total dataset for training while 1/3 is used for

testing.

Köhler Dataset

Köhler et al. [5] create this standard dataset that has been widely used for deblurring algorithms comparison.

It consists of a total of 4 images that are blurred by convolving 12 various blur kernels. The blur kernels are
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modeled by assuming linear camera response function and 6D real blur camera motion.

Lai dataset

Lai et al. [6] create these images. It contains 100 image pairs from real-world scenes and 100 images generated

by convolving multiple degradations and non-uniform blur kernels with 25 sharp images. The blur kernels

are generated by 6D camera trajectories.

3.4.2 Training Details

We use K40 NVIDIA GPU with Intel (R) Xenon (R) 2.6Ghz CPU having 30 GB RAM to train and test

our proposed deep learning-based deblurring network on Tensorflow 2.0 platform. The proposed generator is

adversarially trained to obtain a deblurred image IGD. Afterwards, the image residual learning block is end-

to-end trained to obtain image I by removing artifacts from the input image IGD. We performed adaptive

training by utilizing the previously trained weights for each epoch. The Adam optimizer with the stochastic

gradient descent is used at an initial learning rate of 0.0001. Moreover, we perform data augmentation by

utilizing flip, shear, zoom and rotation operations. The size of input images is 256× 256 due to computation

limitation with a batch size of 5 and the training data portion of 75%.

3.4.3 Evaluation

The degraded images may contain several types of distortion that could immensely affect the analysis. There-

fore, the processed images are evaluated based on noise reduction and structural similarity between processed

and ground truth images. However, with one given image (distorted), such reference measuring metrics be-

come invalid. Therefore, no-reference metrics are designed to statistically estimate distortions based on

various techniques that include data distribution, entropy, and regression models.

No-reference quality assessment algorithms are complex to compute since they use statistical features of in-

put images to evaluate the image quality. We employ five variant metrics to extensively evaluate proposed

network performance that are discussed as follows.

Peak signal-to-noise ratio (PSNR)

It is defined as the ratio between maximum pixel intensity and mean square error with respect to reference

image. PSNR is expressed in logarithmic decibel scale.

Structure Similarity Index (SSIM)

This index is used to estimate structural changes in an image based on the luminance, contrast, and structure

of objects within an image. For comparison, it uses reference image to compare structure with [302].
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Absolute Mean Sharpness Error (AMSE)

Various blurred assessment indexes [353, 354, 355, 356, 357, 358, 359, 360] are commonly based on image

gradient magnitude due to the fact that sharp images have prominent edges that can be evaluated based on

images gradient. However, the blurred images lack this property.

Perception-based Image Quality Evaluator (PIQE)

PIQE is an opinion unaware and unsupervised spatial quality evaluator, which is based on pristine images

with blockwise distortion estimation from a local variance of each distorted block [303].

Spatial-Spectral Entropy-based Quality (SSEQ)

SSEQ is a no-reference image quality assessment model that considers spatial and spectral entropy of an

image for no-reference quality assessment. It can assess the quality of a distorted image across multiple

distortion categories [304].

PSNR, SSIM, PIQE, and SSEQ are implemented with the built-in function of MATLAB while AMSE is

computed by calculating mean square error (MSE) between processed ▽GX and reference image ▽GY gradient

magnitude. SSIM ranges between [0, 1] with 1 for the best quality while PIQE, and SSEQ ranges between

[0, 100] with 0 for the best quality of an image.

3.4.4 Results and Analysis

We perform quantitative and qualitative comparative analysis to evaluate deblur results. Three distinct

datasets: GoPro [4], Köhler [5], and Lai [6] with a total number of 3486 training and 523 testing images are

used to evaluate and compare various traditional model- and deep learning-based methods with our proposed

method. Due to the computation limitation, we adopt the image size of 256 × 256 for comparative analysis.

Hence, a minor difference is observed in results compared to previous studies, considered as the margin of an

experimental error [161]. A proposed algorithm averagely takes 0.34s to process 256 × 256 scale image with

0.25s for image deblurring and 0.09s for image refinement. It can process space-variant and space-invariant

blur instead of only invariant blur where the blur kernel is evenly convolved with a latent image to give the

blurred output. Therefore, the analysis is performed based on real and synthetically uniform and non-uniform

blur, natural and text images.

The codes of aforementioned methods and results can be downloaded from author’s websites [5, 6, 361],

except for studies [321, 251] whose results have been reported in their previous work. The average PSNR,

SSIM, AMSE, PIQE, and SSEQ in multiple studies on Köhler, Lai and GoPro testing datasets are shown in

table 3.1. The bold values show the best outcome across each metric. To the best of our knowledge, this is the

first study to measure reference and no-reference metrics collectively for deblurred image evaluation. Thus,
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deblurred images are extensively evaluated not only for reference noise, structure, and sharpness parameters

but also for statistical-based noises and distortions. It is evident from table 3.1 that our proposed method

outperforms in terms of most metrics, especially comparing to deep learning methods [4, 14, 126, 127] which

are not able to perform well for the Köhler dataset.

Similarly, some conventional model-based techniques [325, 106, 321] perform better with the Köhler

dataset but not in terms of SSIM. Our proposed network performs satisfactorily because it takes multi-scale

gradients input to keep track of structural information while generating deblurred images. Similarly, we

compute no-reference metrics: PIQE, and SSEQ. It is worth noting that PIQE perform favourably best on

all the datasets for our proposed network. It is due to the novel hybrid loss function (discussed in section

3.3.4) that counts for multiple loss metrics to attain ground truth results with the multi-scale input image

and various dilation rates to probe variant and distinct features.

Likewise, we also compare performance on Lai dataset. Although our proposed methodology performs

favourably best, the MSE is large because of the fact that synthetically blurred images consider various non-

uniform blur kernels. In contrast, not enough training images are considered to learn unknown blur kernels

distribution.

Furthermore, we perform the visual analysis with competing methods. Figures 3.5, 3.6, and 3.7 shows

deblur results of various studies for the discussed datasets (more results shown in supplementary material A).

It is evident from the visual results that recent CNNs studies can remove considerable blur. However, they

are still not pleasing due to ringing artifacts and sometimes remaining blurred edges. For instance, Figure

3.5 shows deblur images for the Köhler dataset. Ye et al. [127] and Tao et al. [126] process images with blur

edges remaining, while Nah et al. [4] with the motion artifacts. Moreover, due to structure parsing, they led

to more sharp edges. A similar trend can be seen in Figure 3.6 for conventional model-based techniques on the

Lai dataset. Local regions tend to over-deblur or under-deblur, specifically eyes, flags, building structures

etc., (see supplementary material A). Likewise, multiple studies [14, 344, 127] deblur GoPro images with

blurry facial and text regions, as shown in Figure 3.7. Therefore, we consider residual image learning block

with end-to-end training to recover fine details that are usually lost while deconvolving the images. However,

Cai et al. [343] provide comparable results on the GoPro dataset due to dark and bright channels input as

prior constraints. A generalized blind deblurring neural network remains challenging due to training dataset

constraints and limitless blur kernels.

Ablation Study

The unique hierarchical features are required for image super-resolution problems. In Zhang et al. [350], a

residual dense block is proposed to explore variant features, which validates the effectiveness of the proposed

block for image super-resolution tasks. Similarly, in accordance with the studies [350, 251], we consider DRB

to explore new hierarchical features at the bottleneck section.
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Table 3.1: Performance metrics evaluation on three public datasets

Reference Metrics Non-reference Metrics

Study Year PSNR SSIM AMSE PIQE SSEQ

GoPro Dataset [4]

Whyte et al. [325] 2012 24.53 0.83 31.31 26.99 30.01
Xu et al. [106] 2013 20.29 0.72 43.43 71.14 24.18
Kim and Lee [321] 2014 23.64 0.82 - - -
Sun et al. [129] 2015 25.30 0.85 29.39 69.13 24.16
Pan et al. [327] 2016 27.06 0.90 30.97 37.54 19.76
Nah et al. [4] 2017 29.02 0.91 21.84 64.24 25.16
Gong et al. [125] 2017 29.49 0.90 27.34 47.14 16.29
Tao et al. [126] 2018 30.21 0.93 19.18 72.89 24.26
Kupyn et al. [14] 2018 27.02 0.89 24.53 65.38 23.67
Zhang et al. [344] 2018 27.07 0.90 24.62 66.52 24.33
Zhang et al. [345] 2019 30.44 0.93 16.50 75.16 40.52
Zhang et al. [251] 2020 28.67 0.96 - - -
Cai et al. [343] 2020 31.09 0.94 17.38 68.22 24.99
Ye et al. [127] 2020 27.09 0.89 23.50 74.79 36.08
Zhou et al. [362] 2021 24.82 0.82 - - -
Feng et al. [363] 2021 29.62 0.89 - - -
Wen et al. [364] 2021 26.24 0.86 - - -
Wu et al. [365] 2021 30.75 0.91 - - -
Pan et al. [366] 2021 31.40 0.94 - - -
Proposed - 33.10 0.95 12.55 32.85 26.19

Köhler dataset [5]

Fergus et al. [108] 2006 17.56 0.54 67.96 50.96 11.18
Shan et al. [319] 2008 19.49 0.65 61.68 36.13 8.57
Cho and Lee [311] 2009 18.62 0.62 67.38 42.98 8.45
Harmeling et al. [312] 2010 17.82 0.58 79.04 43.11 9.08
Krishnan et al. [315] 2011 17.81 0.59 74.83 39.56 7.19
Whyte et al. [325] 2012 19.73 0.67 61.28 35.93 9.52
Xu et al. [106] 2013 18.48 0.61 67.52 37.52 8.08
Kim and Lee [321] 2014 24.01 0.79 - - -
Nah et al. [4] 2017 15.72 0.59 39.50 78.73 36.28
Kupyn et al. [14] 2018 15.80 0.59 39.32 78.90 36.80
Tao et al. [126] 2018 15.79 0.59 39.50 77.72 34.75
Ye et al. [127] 2020 17.32 0.70 50.83 85.38 21.29
Wu et al. [365] 2021 19.83 0.64 - - -
Kaufman and Fattal [367] 2021 20.83 0.61 - - -
Pan et al. [366] 2021 17.55 - - - -
Proposed - 24.16 0.81 35.92 30.25 10.88

Lai Dataset [6]

Fergus et al. [108] 2006 15.22 0.57 103.76 46.78 17.19
Cho and Lee [311] 2009 16.71 0.64 85.14 44.49 19.37
Xu and Jia [313] 2010 17.31 0.67 80.58 48.16 19.60
Krishnan et al. [315] 2011 16.43 0.64 87.87 45.90 18.57
Levin et al. [314] 2011 16.02 0.61 89.37 43.35 17.40
Whyte et al. [325] 2012 17.12 0.65 83.08 33.41 20.05
Sun et al. [115] 2013 17.27 0.67 80.77 45.47 20.37
Xu et al. [106] 2013 16.96 0.66 83.31 48.40 19.71
Zhang et al. [316] 2013 16.52 0.63 86.36 43.87 17.59
Zhong et al. [320] 2013 16.60 0.64 85.86 46.97 18.59
Michaeli and Irani [326] 2014 17.45 0.67 80.19 42.29 20.04
Pan et al. [317] 2014 17.28 0.64 83.32 45.02 14.59
Perrone and Favaro [310] 2014 16.53 0.65 89.34 48.57 18.90
Zhou et al. [362] 2021 17.82 0.62 - - -
Kaufman and Fattal [367] 2021 18.89 0.71 - - -
Proposed - 19.50 0.75 57.24 31.16 18.59
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Moreover, we perform an ablation analysis on GoPro dataset [4] to quantize the proposed modifications.

Hence, we gradually inject the proposed changes, including multi-scale images and corresponding gradients

input, DRB block, dilated convolution, and residual image learning. Table 3.2 summarizes the results of each

proposed step. It is evident from the performance metrics that each proposed change gradually improves the

result. Remarkably, residual image learning shows considerable improvement by recovering high anatomical

details in an image. The outputs of Stage I and Stage II are depicted in Figures 3.5, 3.6, and 3.7, respectively.

Table 3.2: An ablation study of proposed GAN on GoPro dataset [4].

Proposed network changes PSNR SSIM

Generative network (autoencoder) 28.08 0.897
+Multi-scale images input 29.81 0.912
+Multi-scale gradient input 29.97 0.928
+DRB 31.39 0.935
+Dilated Conv 31.56 0.942
+Residual image learning (proposed) 33.10 0.954

We also measure computation cost of our proposed network. It consumes 144.63 GFLOPS, which is

approximately one-fifth that of deblurGAN [14]. Likewise, it takes around half of a second to produce a

deblurred image.

(a) Blur (b) GT (c) [127] (d) [345] (e) [126] (f) [14]

(g) [4] (h) [318] (i) [368] (j) [315] (k) [313] (l) [369]

(m) [319] (n) [108] (o) Ours (Stage I) (p) Ours (Stage II)

Figure 3.5: Visual deblur results of various studies for Köhler [5] dataset. GT represents ground
truth image.
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(a) Blur (b) GT (c) [317] (d) [310] (e) [326] (f) [115]

(g) [106] (h) [316] (i) [320] (j) [325] (k) [314] (l) [315]

(m) [369] (n) [313] (o) Ours (Stage I) (p) Ours (Stage II)

Figure 3.6: Visual deblur results of various studies for Lai et al.[6] dataset. GT represents ground
truth image.

3.5 Discussion

Conventional model-based approaches have been commonly used for blind deblurring. Most of these deblur-

ring studies have utilized regularization techniques to estimate blur kernel, and considerable attention has

been paid to estimate the regularization term that best describes prior of natural images [370, 371, 372, 373].

However, such optimization techniques are not efficient due to various noises that can drastically affect

estimated kernel quality, an iterative framework that requires prior information based on some statistical

assumptions, and many more. Contrarily, deep learning-based methods process blur images in an end-to-end

manner that effectively minimises errors [328]. Furthermore, generative priors make a more effective break-

through compared to classical priors [4, 14]. Following, multi-scale and multi-level approaches are introduced

with generative priors to improve performance [332, 126, 344, 345, 333, 127]. In a multi-level approach,

several auto-encoders are combined blockwise in cascade form to process the same image at various levels.

However, utilizing multi-level technique has several demerits such as high dependency on preceding outputs,

over-fitting, exponential increase in computation cost, etc. Therefore, we adopt single multi-channel input

with multi-scale images concatenated with corresponding gradients to explore salient features in view of

deblurred images.
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(a) Blur (b) GT (c) [343] (d) [127] (e) [345] (f) [14]

(g) [126] (h) [344] (i) [4] (j) [125] (k) [327] (l) [129]

(m) [106] (n) [325] (o) Ours (Stage I) (p) Ours (Stage II)

Figure 3.7: Visual deblur results of various studies for GoPro [4] dataset. GT represents ground
truth image.

Furthermore, as discussed in section 3.4.4, restoring textures and structures with sparsity result in high-

frequency content often referred to as rippling or ringing artifacts. Subsequently, it corrupts hallucinated blur

information. Yuan et al. [116] address this issue for the very first time and suggest a model named residual

deconvolution. Later, several conventional model-based [311, 117] and deep learning-based [102, 103, 296]

studies have utilized this method to minimize artifacts. Nevertheless, we utilize a residual image learning

block with dilated convolution and end-to-end training to recover such lost information. Additionally, a

hybrid content-loss function with the perceptual loss is proposed to combine the merits of MSE and MAE

(discussed in section 3.3.4). Besides that, a loss function with gradient penalty is included to retain sharp

boundaries within a generated image. Our proposed neural network is trained to process images based on the

intensity of an image. Therefore, the learned network might be less effective when the input image contains

any outliers and significant noises. Thus, a denoising filter can be applied before the proposed deblurring

process. The limitation of training data always remain problematic for the generalized deep learning model

[374]. Consequently, an unsupervised deep neural network could be a choice for deblurring in the future

[331, 375].
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3.6 Conclusion

The goal of this study is to deblur images with the minimal structural loss. To this end, we develop a multi-

scale generative adversarial network (GAN) with residual image learning to process uniform and non-uniform

blur. Proposed GAN takes input in the form of multi-scale images concatenated with the corresponding

gradients. To avoid ringing artifacts in a deblurred image, we utilize a residual image learning network with

a hybrid content loss function and end-to-end training. The deblurred output is quantitatively evaluated with

eight reference and no-reference metrics: PSNR, SSIM, AMSE, PIQE, and SSEQ. In contrast, qualitative

evaluation consists of comparative analysis with the previous traditional model- and deep learning-based

studies. Our analysis shows the proposed method is effective to achieve the required objectives while retaining

structural properties. To the best of our knowledge, this is the first study to extensively conduct qualitative

and quantitative analysis of deblurred images. One direction of future work could be the development of an

unsupervised network to address training data limitations.
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4 Multi-level GAN based Enhanced CT Scans for Liver

Cancer Diagnosis
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doi:10.1016/j.bspc.2022.104450. RAK and FXW conceptualized the methodology. RAK reviewed the litera-

ture, and performed experiments. YL and FXW supervised the study. RAK and FXW wrote the manuscript.

All authors read, revised, and approved the final version of the manuscript.

As discussed in Chapter 3, after removing artifact and noise with in the acquired CT scans, there comes

a problem of uniform intensity levels for various tissues and adjacent organs with vague boundaries that can

result in imprecise segmentation and false classification of malignant liver. I propose an unsupervised neural

network to enhance low-contrast CT scans, while the conventional techniques result in non-uniform contrast

images that could adversely affect diagnostic performance. For fair comparative analysis, previous studies

have been evaluated on common CT scans. This chapter covers the Objective 3 of this dissertation.

Abstract

Liver cancer diagnosis requires preprocessing of images with preserved structural details. In this study,

a multi-level generative adversarial network (GAN) is proposed to enhance computed tomographic (CT)

images. The generated enhanced images are used to perform computer-aided diagnosis between malignant

and normal liver. Three publicly available datasets, Ircadb, Sliver07, and LiTS, are used to investigate the

performance of the proposed method with qualitative and quantitative analysis, namely performance metrics

and computer-aided diagnosis. The mean structure similarity index of 0.45 and peak signal-to-noise ratio

of 16.20 dB is achieved for the metric analysis. The AlexNet is adopted to perform binary classification

with the testing accuracy of 90.37% and 85.90% for enhanced and non-enhanced images, respectively, which

demonstrates the effectiveness of the proposed multi-level GAN in producing enhanced biomedical images

with preserved structural details and favourable reduction in artifacts. Moreover, the consistently better

performance among three datasets confirms the merits of the proposed multi-level GAN for computer-aided

diagnosis.
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4.1 Introduction

The prevention of various deadly diseases in human beings requires adequate detection of affected portions.

However, the biomedical images obtained using computed tomography (CT) or magnetic resonance imaging

(MRI) are primarily structural images that can be low in contrast due to poorly illuminated environments

and may contain noise that can inevitably be amplified due to simple brightness adjustment techniques [68].

Also, such distortions affect accuracies while processing or analyzing the images through state-of-the-art

algorithms due to intensity-based performance [272, 23, 44, 181, 31, 240]. Similarly, the liver size varies with

body shape, sex and age. The malevolent tissue often has low contrast with the normal tissue, thus making

malignant tissue detection difficult [164]. Hence, for adequate diagnostic analysis, some pre-classification

steps such as enhancement, deblurring, denoising etc., are required for localization and lesion size detection

[284, 11].

The enhancement problem can be defined by classic Retinex model decomposition [376],

I = R ◦ L (4.1)

where I is the output image, (◦) is known to be element-wise multiplication, R and L are the reflection and

luminance of an image.

Due to the spatial and sequential image acquisition, CT modality is more common in practice for abdomen

image analysis. Moreover, the axial formation of CT images with ideal intervals reduces the average of lesions.

Various phases acquire CT scans with a unique intensity range that includes non-contrast, arterial, portal

venous, or total body opacification phase [281, 305, 306, 307, 96]. However, the same phase can even

produce scans with variable intensities. It may be attributed to variable exposure or depth of field during

one complete scan. Figure 4.1 depicts series of portal venous phase CT scans for the same subject. It is

evident from Figure 4.1 that series of scans can have variable intensity range that can adversely affect the

performance of intensity-based algorithms.

Figure 4.1: The portal venous phase CT scans of a subject, truncated at a best viewable intensity
range of [180-255].

The low-contrast image enhancement problem is addressed using the traditional model- or deep learning-

based studies [377, 378]. The traditional model-based techniques consider an iterative process with a cost
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function optimization. In contrast, deep learning-based techniques perform end-to-end or adversarial training

to improve input image illumination. To the best of our knowledge, very few studies have focused on CT image

enhancement for the computer-aided diagnosis (CAD) [379, 380, 381, 382, 383, 384]. de Haan et al. [385] give

an overview of deep learning-based microscopy image enhancement techniques. Chen et al. [386] utilize a deep

convolution neural network for image enhancement with end-to-end training. Georgieva et al. [387] integrate

a wavelet decomposition with a homomorphic filter for restoration and gamma correction. Mohammed et

al. [388] formulate a conventional model-based stochastic approach to enhance endoscopy images. Munadi

et al. [389] enhance X-ray chest images by applying emphasis filter and histogram equalization. Deep neural

networks (DNNs) have performed satisfactory for super-resolution [102, 103, 290], image sample estimation

[105, 286, 287], and style tansfer [309, 14, 121, 296] applications. Nevertheless, there remains a room of

improvement in yielding low-contrast image enhancement techniques.

In this study, we propose a deep learning-based multi-level generative adversarial network (GAN) to

enhance low-contrast images. Our proposed generator uses a three-stage simplified auto-encoder structure

connected in the cascade form to process images at three variant scales with an adversarial training. Moreover,

the proposed auto-encoder contains various dilation rates to explore distinctive features and skip connections

to keep track of input. Three publicly available datasets, namely Ircadb [7], Sliver07 [8], and LiTS [9] are used

to create the contrast-enhanced image dataset with the help of radiologists. Two evaluation indices, peak

signal-to-noise ratio (PSNR) and structure similarity index (SSIM) [302], are used to measure the quantitative

performance. In addition, the AlexNet [228] with transfer learning is used to carry out qualitative analysis

for liver cancer diagnosis. Finally, the results obtained by two different analyses validates the performance

of proposed method.

The contributions of this study are as follows,

• We utilize GAN with auto-encoder blocks at three variant scales in generative network to enhance

low-contrast CT scanned images;

• We evaluate the proposed multi-level GAN on three publicly available datasets with both qualitative

and quantitative analysis;

• We reproduce several state-of-the-art algorithms for fair comparative analysis.

4.2 Related Work

4.2.1 Traditional Model-based Techniques

Traditional model-based techniques for image enhancement can be categorized into histogram equalization

[390, 391, 392, 117, 393, 379], Retinex theory [256, 394, 395, 161], and filters [396].

The histogram equalization methods are used to manipulate the image histogram shape. Such traditional

methods include histogram equalization [91] and adaptive histogram equalization [397]. These methods are
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widely applied for contrast enhancement. However, they can amplify artifacts and noises by stretching the

typical dynamic range for uniform distribution of the target histogram. Similarly, Somal [398] compares local

and global histogram equalization techniques for image enhancement.

Retinex theory considers reflection and illumination to form an image [376]. In contrast, some methods

remove illumination by considering reflectance as enhanced result. The single-scale Retinex (SSR) [399] and

multi-scale Retinex [400] are considered representative algorithms that uses Gaussian filters to discriminate

illumination and reflectance. Lee et al. [256] propose a weighted SSR model to eliminate luminance. Li et

al. [161] regularize a conventional Retinex model with noise to improve the image quality. The Lagrange

multiplier is utilized for the cost function minimization. Ying et al. [401] consider multi-exposed images and

fuse them based on a weighted matrix obtained using a camera response model to produce well-exposed syn-

thetic images. Fu et al. [402] develop a maximum-a-posterior (MAP) based technique to estimate reflectance

and illumination separately for enhanced images. Guo et al. [260] propose a LIME enhancement model.

Three channels, red, green, and blue, are used to estimate illuminate structures using MAP. Afterwards, the

illumination map is refined by considering structure prior.

Pătraşcu [403] performs image processing using fuzzification. Fu et al. [404] perform regularization with

gradient priors to estimate processed images. Cai et al. [395] formulate a least-square model to investigate

intrinsic and extrinsic properties of an image. The shape, illumination, and texture priors are used to

outperform the conventional Retinex model. Lin et al. [405] consider a Chi-squared based cost function

and a piecewise brightness transform function to enhance microscopic images. Liu et al. [307] propose an

enhancement framework that combines the merits of a DNN and MAP optimization. Similarly, few more

studies have formulated conventional model-based techniques based on image formation model, illumination

estimation, filtration, etc., [406, 345] to address the low exposure problems.

4.2.2 Deep Learning-based Techniques

Lore et al. [407] utilize a deep auto-encoder with end-to-end training to remove noise and dark regions in low-

contrast images. Gharbi et al. [408] propose a convolution neural network (CNN) with affine transformations

to enhance a low-resolution image. The coefficients of the locally affine model are predicted bilaterally from

a low-resolution image. The transformations are then upsampled in the slicing mode and applied to a full

resolution image. Anwar et al. [409] perform image enhancement for underwater images. The synthetic

images with various wavelength effects are produced to train CNN with mean-squared error (MSE) and

SSIM loss functions. Wei et al. [410] develop a deep Retinex-Net with two sub-networks, namely Decom-Net

and Enhance-Net, to enhance images. The Decom-Net decomposes an image into reflectance and illumination

image. The Enhance-Net uses the illuminated image to improve luminance and reflectance image to reduce

noise.

Similarly, Fu et al. [411] develop two sub-models to simultaneously adjust brightness and exposure shift for
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low illumination problems. Xu et al. [412] develop a frequency-based decomposition and enhancement model

to process the images. The proposed model recovers image objects in low-frequency layers and computes

high-frequency detail based on extracted image objects information. Moreover, a low-light image dataset

is introduced with real noise. Lv et al. [413] develop a multi-branch CNN with end-to-end training. A

synthetic dataset is developed with low light illumination. Afterwards, two attention maps, the first one

to explore underexposed regions and the second to distinguish noise from real textures, are learned with a

structural- and content loss function. Shen et al. [414] propose a retinal fundus image-enhancing neural

network by considering multiple degradation factors and modeling retinal images separately for low quality,

retinal structure, and image correction. The processed images for the three unique factors produce enhanced

images.

Deng et al. [415] propose an enhanceGAN that takes input in the form of non-paired images and processes

to perform piecewise color enhancement. de Stoutz et al. [416] utilize GAN with perceptual loss function to

enhance images. Islam et al. [417] utilize a GAN with a Unet based autoencoder network having content

and perceptual based loss function. Uplavikar et al. [418] explain the diversity of wavelength dependent

underwater images caused by light attenuation due to the variation in depth and quality of ocean water. Ten

various types of underwater images are considered for the training of a GAN. Jiang et al. [77] propose an

edge-enhanced GAN with a global-local discriminator, unsupervised adversarial learning, and a regularized

perceptual loss function to minimize error. Shamsabadi et al. [419] propose an image enhancement filter

with structure-aware adversarial learning. Ni et al. [420] propose an unsupervised GAN with unpaired

data to perform image enhancement. Fidelity-, identity-, and quality losses are introduced to upgrade the

image attributes. Chen et al. [421] utilize Unet structure in generator to explore global features. Adaptive

Wasserstein loss (WGAN) is preferred over WGAN with gradient penalty. Moran et al. [422] fuse elliptical,

graduated and polynomial filters with a deep neural network to provide a regularization and adjustment for

visually pleasing results.

Wang et al. [423] and Guo et al. [424] formulate custom loss functions to perform unsupervised learning of

CNNs. The exposure, color, and illumination-based loss functions are computed for no-reference evaluation.

Park et al. [425] utilize reference images with distorted color distribution for reinforcement learning of image

enhancement. Similarly, various schemes have been proposed to address image enhancement problems using

CNN [426, 427, 428, 429, 2, 430, 431, 432, 298, 433, 434, 435, 436, 437, 438] and GAN [439, 294, 440].

4.2.3 Generative Adversarial Network

A classic GAN contains a generator G and discriminator D to solve the image-to-image translation problem

[105]. The generator task is to learn the input data distribution so that the generated synthetic data has

the same distribution as the real data. In contrast, the discriminator task is to distinguish between real and

generated data. In other words, the generator task is to minimize data distribution error, while the discrim-
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Figure 4.2: The workflow of the proposed GAN.

inator task is to maximize the error. Thus, the generator and discriminator are trained in an adversarial

manner.

The training workflow of the proposed GAN is shown in Figure 4.2. The generative network takes the input

of a low-contrast image and tries to generate the estimate of the corresponding enhanced image. Therefore,

the GAN is a min-max problem that is defined mathematically as,

min
G

max
D

V(D,G) = E
I∼pR

[log(D(I))] + E
B∼pg

[log(1 −D(G(B)))] (4.2)

where E is the expectation operator, I is a sample from the reference enhanced images distribution pR, B

is a sample from the low contrast images distribution pb, and pg is the generated data distribution with a

mapping of low contrast and reference data space [346, 14]. The discriminator minimizes the term log(D(I))

and maximizes the term log(D(G(B))).

The discriminator and generator networks are trained using perceptual and Wasserstein loss functions

(discussed in section 4.3.3). The trained generator is kept only during testing.

4.3 Proposed Method

4.3.1 The Generator

We develop a multi-level generator in accordance with the studies by Nah et al. [4] and Tao et al. [126], and

train in an adversarial manner to perform abdominal CT scan enhancement. The schematic of the proposed

generator is shown in Figure 4.3. The generator contains three encoder-decoder blocks. Each encoder-decoder

block contains symmetric CNN structure that downscale features to explore spatial details and then upscale

features to meet the desired output size. Skip connections are added to combine various levels of information

with fast convergence and to solve vanishing gradient problem. The three blocks at three variant scales 32,

64, and 128 are combined in a cascade form. Each block contains two 3× 3 convolution layers in the encoder

section, one 3 × 3 convolution layer in the bottleneck section, and two 3 × 3 deconvolution layers in the

decoder section with the rectified linear activation function (ReLU). Mathematically, ReLU can be written
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as,

y = max (0, x) (4.3)

where x and y are the input and output features.

The output consists of a 1×1 convolution layer with a hyperbolic tangent activation function. The batch

normalization performs regularization throughout the network. In addition, each layer contains a different

dilation rate Dj to explore unique features, where j represents the dilation rate of 1,2 or 4. The low contrast

input images are highly correlated to output enhanced images. Therefore, skip connections are added to

assist in generalizing training. The proposed encoder-decoder block of the generative network can be written

as,

yi = F
(
xl

i, wj
i
)

+ xi (4.4)

where F (·) is the encoder-decoder block, xl
i is the lth convolution output and wj

i is the weighted dilated

convolution with j as a dilation rate at the ith scale, xi and yi represents the input and output of encoder-

decoder block with ith scale index such that i = 1 is the coarsest scale. F (·) in our study can be written as,

F
(
xl

i, wj
i
)

= hwi
1rw

i
1rw

i
2rw

i
4

[
rwi

2

(
rwi

1

(
xi
))]

(4.5)

where r (·) represents a composite function of ReLU and batch normalization, h denotes a hyperbolic tangent

activation function.

Figure 4.3: The schematic of the proposed image enhancement multi-level generative network with
CAD. ⊕ and © denotes the addition and concatenation operation.

Coarse-to-Fine Level Network

The proposed multi-level generative network processes images in a coarse-to-fine manner. Due to computation

limitations, three input image resolutions of 32, 64, and 128 with 3 channels input and a 0.5 scale difference

are considered for a multi-level network. Therefore, we have 6 channels at the next finer level, making feature

maps of (64, 64, 6) and (128, 128, 6) at each finer level. In total, the proposed generative network contains
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eighteen convolution layers. Several studies [4, 126] process images in a multi-level fashion with the largest

scale input at the finest level. Similarly, we consider the smallest scale input for the coarsest level and desired

output (largest) scale at the finest level to have a large enough receptive field to explore at the finest level.

Likewise, considering the smallest scale at the coarsest level, we can have a large enough receptive field to

cover the whole patch of an image.

Moreover, up-convolution [441], reshaping [442] etc., operations have been used to match the output size of

the coarsest level to the input of the next finer scale. In contrast, we utilize an up-sampling operation to avoid

any checkerboard or ringing artifacts due to stride convolution. The up-sampled features are concatenated

with the next finer scale low contrast image input. The proposed multi-level neural network is written as,

Ii = NML

(
Bi, I(i−1)↑;βML

)
(4.6)

where i represents the scale index with i = 1 for the coarsest level, NML is our proposed multi-level neural

network with training parameters as βML, Ii and Bi are the enhanced and low contrast images at the ith

scale and (·) ↑ denotes an upscaling operator for the (i− 1)
th

to ith scale.

4.3.2 The Discriminator

In adversarial training, the discriminator maximizes the error between the generated and the reference output.

In contrast, the generator tries to fool the discriminator by generating output close to the reference. Therefore,

the discriminator can have a simplified binary output. We consider discriminator network according to the

study Kupyn et al. [14]. It contains five 4 × 4 convolution layers with LeakyReLU activation function

and the batch normalization. Afterwards, two fully connected layers with the hyperbolic tangent and the

sigmoid activation function are added to get the binary output. The schematic of the discriminator network

is depicted in Figure 4.4.

Figure 4.4: The schematic of discriminator network.
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4.3.3 Loss Function

The proposed multi-level GAN is trained in an adversarial manner to generate enhanced images. Thus, the

generator network weights are updated based on discriminator network output that acts as a critique for the

generator network by maximizing error between reference and generated images. Therefore, the net loss of

the proposed enhancement network is defined as,

Lnet = Ladv + Lcon (4.7)

where Ladv and Lcont are the adversarial and content loss functions explained as follows.

Adversarial Loss

The proposed GAN takes input in pairs as low contrast image B and the corresponding reference image

I. The low contrast image B is processed at three variant scales to produce enhanced images (discussed in

section 4.3.1). We apply the similar discriminator loss function as in the study Wasserstein GAN [348] given

as,

Ladv =

N∑
n=1

−Dθ (Gθ (B (n))) (4.8)

where N represents a number of images in a batch, B is a low contrast input image, Gθ denotes the generator

network output, and Dθ represents the binary label output of the trained discriminator.

Content Loss

Multiple studies [421, 439, 417, 432, 420, 443] have considered perceptual content loss function to enhance low

contrast images. For style transfer applications, the perceptual loss is computed using trained CNN feature

maps to avoid low contrast regions in an enhanced image. We use the pre-trained VGG-16 [339] neural

network on the ImageNet dataset to compute perceptual features for the generated and reference output.

Thus, the content loss in terms of perceptual loss function ϕ is defined as,

Lcon=
1

2N

N∑
n=1

 1

Wx,yHx,y

Wx,y∑
i=1

Hx,y∑
j=1

(
ϕx,y(IR(n))i,j−ϕx,y(IG(n))i,j

)2

 (4.9)

where Wx,y and Hx,y are the output feature map dimensions of the VGG-16 layer, IR and IG are the reference

and generated output with spatial indices (i, j), respectively. We utilize the ”block1 pool” output layer feature

map of VGG-16 for function ϕ because higher layers provide spatial information while lower layers provide

spectral information. Hence, lower layers help better in keeping track of structural information.

4.3.4 Processed Images Evaluation

We perform qualitative and quantitative analysis to validate the proposed GAN performance. The qualitative

analysis consists of two performance metrics, namely SSIM [96] and PSNR. In quantitative analysis, we
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perform deep learning-based binary classification for liver cancer diagnosis. The performance metrics are

explained as follows.

Structure Similarity Index

Image enhancement studies [444, 445, 306, 446] have utilized SSIM to evaluate model performance. The

SSIM is assessed on three factors, namely luminance l (IR, IG), contrast c (IR, IG), and structure s (IR, IG).

Mathematically it can be written as [302],

SSIM (IR, IG) =
[
l (IR, IG)

α · c (IR, IG)
β · s (IR, IG)

γ
]

(4.10)

here

l (IR, IG) =
2IR IG + C1

IR
2

+ IG
2

+ C1

; c (IR, IG) =
2σIRσIG + C2

σIR
2 + σIG

2 + C2
; s (IR, IG) =

σIRG
+ C3

σIRσIG + C3

where IR and IG are the local means of reference IR and generated image IG, respectively, σIR and σIG

are the corresponding standard deviations, respectively, and σIRG
is the covariance of reference and gen-

erated image while (C1, C2, C3) are the regularization constants for the three factors, avoiding instability

where the standard deviation or local mean is zero. These constants are computed as, (C1, C2, C3) =[
(0.01 ∗R)

2
, (0.03 ∗R)

2
,C2/2

]
, where R is the dynamic range of pixels. SSIM with α = β = γ = 1 is

adopted in this study and is simplified as,

SSIM =

(
2IR IG + C1

)
(2σIRG

+ C2)(
IR

2
+ IG

2
+ C1

)
(σIR

2 + σIG
2 + C2)

(4.11)

Peak Signal-to-Noise Ratio

PSNR is to measure the ratio of a maximum pixel intensity to mean square error of generated image with

respect to reference image and is typically expressed in logarithmic decibel scale given as [447, 418, 434],

PSNRdB = 10 log10

[
[max (IG)]

2

MSE

]
(4.12)

where MSE is the mean squared error between the reference IR and generated image IG.

Liver Cancer Diagnosis

The processed high contrast images assist in improving the machine learning based disease diagnosis. We per-

form qualitative analysis between processed and non-processed images for malignant liver diagnosis. Multiple

CNN studies have classified malignant liver between lesions (tumors) versus benign (cyst), secondary versus

primary cancer, cholangio versus hepatocellular carcinoma, cirrhosis versus fibrosis, etc. [36, 35, 34, 240]. We

sort the Ircadb, Sliver07, and LiTS datasets into a malignant and normal dataset. The former type covers se-

vere liver diseases such as hepatocellular carcinoma, metastatic carcinoma, intrahepatic cholangiocarcinoma,
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virus hepatitis, cirrhosis (alcoholic cirrhosis), etc. In contrast, the latter class contains scans related to benign,

such as hemangioma, focal nodular hyperplasia, hepatocellular adenoma, cyst, fibrosis, non-cirrhotic chronic

liver diseases (such as fatty liver or steatohepatitis), etc. Afterwards, the deep learning-based AlexNet [228]

is trained to classify malignant versus normal liver. Although AlexNet is capable of classifying 1000 classes,

we consider it for binary class. Therefore, the neural network consists of one 5×5 convolution layer, four 3×3

convolutional layers, and two fully connected layers with ReLU activation function, and one fully connected

layer with a sigmoid activation function. The drop-out layers are added with fully connected layers to avoid

over-fitting and data augmentation to improve training. The schematic of AlexNet is shown in Figure 4.3.

4.4 Experiments

4.4.1 Datasets

We consider three publicly available datasets, namely Ircadb [7], Sliver07 [8], and LiTS [9], to evaluate

our proposed GAN. Moreau et al. [7] develop an image reconstruction for comparison of algorithm database

(Ircadb) which contains hepatic tumors of 20 subjects with an equal number of men and women. Similarly, the

medical image computing and computer-assisted intervention society (MICCAI) develops a Sliver07 dataset

with CT scans from 20 subjects. Likewise, the liver tumor segmentation challenge (LiTS) dataset is produced

by CodeLab that contains CT scans of 130 subjects. We develop an enhanced and non-enhanced dataset with

the help of a radiologist that contains CT scans of 170 subjects with varying images for each subject that

range between 150 to 550. Hence, we consider more than sixty thousand images to produce a multi-modal

image enhancement dataset.

4.4.2 Training Details

The proposed GAN is implemented on the Tensorflow 2.0 platform with Intel (R) Xenon (R) having a clock

speed of 2.6 Ghz and K40 NVIDIA GPU. The adversarial training is performed with 70% data and Adam

optimizer with stochastic gradient descent at a learning rate of 1 × 10−4. For more generalized training, we

perform data augmentation with zoom, flip, rotation, and shear operations. Although, due to computation

limitations, we consider a batch size of 5 with an output resolution size of 128 × 128.

4.4.3 Results and Analysis

We compare performance metrics for several traditional model- and deep learning-based image enhancement

methods as illustrated in Table 4.1. These state-of-the-art methods include renown enhancement techniques,

namely NPE [394], LIME [260], MBLLEN [447], Retinex-Net [410], etc. Three CT scan datasets are used to

compare these studies with the proposed multi-level GAN. A minor performance difference may be observed
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due to a different output resolution size of 128 × 128. We consider this difference as an experimental error.

The best-performed metrics for each dataset are highlighted in Table 4.1. To the best of our knowledge, this

is the first study to evaluate famous image enhancement methods on common CT scan datasets. Therefore,

the enhanced images are extensively evaluated based on noise and structural properties. It is evident from

Table 4.1 that Ibrahim and Pik Kong [448] perform second-best among Sliver07 and LiTS datasets. While

histogram equalization performs better for the Ircadb dataset. In contrast, the proposed multi-level GAN

outperforms among various discussed studies. It is due to the fact that we consider a generator with a multi-

level auto-encoder to process images at three variant scales. Processing images at several scales improves the

spatial and spectral resolution of an image.

Similarly, studies [430, 386, 422, 427] propose the global enhancement methods. In contrast, the CT

scans contain non-uniform image illumination, such that low contrast dark regions with blur boundaries.

Therefore, global enhancement results in low-contrast CT scan images with similar intensities for the normal

and malignant liver. The visual results of several studies are depicted in Figures 4.5, 4.6, and 4.7. Although

methods proposed by Zeng et al. [434] and Ibrahim et al. [448] perform better among discussed studies but

still their results are unsatisfactory due to vague region of interest boundaries. Likewise, NPE [394], LIME

[260], MBLLEN [447], and Retinex-Net [410] fail to perform enhancement for low-contrast bio-medical images.

Comparatively, the histogram equalization performs well as depicted in the visual results. Meanwhile, we

propose a local enhancement framework that develops high contrast CT scan images with distinct boundaries

of liver lesions.

Furthermore, we perform a CAD to evaluate enhanced images performance. The proposed multi-level

GAN output is fed into AlexNet to perform binary classification between malignant and normal liver (dis-

cussed in section 4.3.4). AlexNet is trained and evaluated using testing data of the proposed multi-level GAN

that is 30% of the whole dataset. Therefore, 70% of nineteen thousand enhanced and non-enhanced images

are utilized for training AlexNet. The Adam optimizer is applied with a learning rate of 0.0001 and the early

stopping criterion. The early stopping criterion checks at the end of every epoch whether the monitored

metric (loss) is improved (decreased) by a minimum change (∆). If the loss does not improve in the (X)

consecutive epochs, then the network stops training [449]. Therefore, the learning process stops if a training

loss difference remains less than ∆ = 0.0001 for X = 5 consecutive epochs and the best weights are restored.

This criterion is set to avoid the over-fitting issue and to obtain a better-generalized model [450]. Figure

4.8 shows binary classification accuracy and loss curves for non-enhanced and enhanced CT scans. It can be

observed that after exhaustive parameter adjustment and training of AlexNet, stable curves are achieved with

270 epochs with the training accuracy of 97.71% and the testing accuracy of 90.37% for enhanced images.

The non-enhanced low contrast dataset diagnostic accuracy stops improving after 181 epochs with the

training accuracy of 91.01% and the testing accuracy of 73.63%. That means loss improves up to 176

epochs and does not improve from 177 to 181 epochs. Hence the training stopped at 181 epoch. However,

the validation response of the non-enhanced model still showed gradual improvement at the 181 epoch,
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as depicted in Figure 4.8. Therefore, we continue network training (with transfer learning) by changing

the stopping criterion to X = 20. The loss converges until 196 epochs and stops improving from 197 to

216 epochs, thus giving an improved testing accuracy of 85.90% with 216 total epochs. Besides that, it is

worth mentioning that diagnostic performance curves for enhanced dataset are consistent and more stable.

Therefore, it can be stated that enhanced images using multi-level GAN are more reliable for the machine

learning-based diagnosis.

(a) Raw (b) Reference (c) HE (d) [448] (e) [394] (f) [402]

(g) [401] (h) [406] (i) [395] (j) [260] (k) [161] (l) [426]

(m) [345] (n) [447] (o) [410] (p) [434] (q) Ours

Figure 4.5: Visual results of CT scan enhancement for the Ircadb dataset [7]. HE represents histogram
equalization.

4.5 Clinical Application

Clinical cancer diagnosis requires various invasive or non-invasive tests, including biopsy, blood test, medical

imaging, etc. Medical imaging assists in structural analysis of a region of interest using one or more commonly

used modalities, namely, CT, Ultrasonography (US), and MRI. CT is a well-establish modality used to

examine tissues and organs in an abdominal scan, as depicted in Figure 4.1. However, the acquired scans are

degraded due to various aspects that include instrumental optical issues such as short exposure, low optical

quality, etc., and experimental problems, for instance, expiration and inspiration chest movement while

scanning, heartbeat, etc. These factors can combine to affect radiologist analysis by suppressing critical
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Table 4.1: Performance metrics evaluation for traditional model and deep learning-based studies on
three public datasets at a resolution of (128 × 128).

Study Year PSNR(dB) SSIM

Ircadb Dataset [7]

Histogram equalization - 7.804 0.171
Ibrahim and Pik Kong [448] 2007 6.449 0.138
Wang et al. [394] 2013 7.657 0.153
Fu et al. [402] 2015 4.579 0.136
Ying et al. [401] 2017 5.327 0.155
Ying et al. [406] 2017 4.538 0.151
Cai et al. [395] 2017 6.150 0.047
Guo et al. [260] 2017 3.401 0.121
Li et al. [161] 2018 4.544 0.139
Wang et al. [426] 2018 5.508 0.146
Zhang et al. [345] 2019 8.001 0.183
Amsr et al. [447] 2019 4.826 0.068
Wei et al. [410] 2019 5.437 0.073
Zeng et al. [434] 2020 6.030 0.171
Proposed - 13.0007 0.335

Sliver07 Dataset [8]

Histogram equalization - 8.156 0.234
Ibrahim and Pik Kong [448] 2007 12.186 0.296
Wang et al. [394] 2013 7.919 0.157
Fu et al. [402] 2015 8.951 0.156
Ying et al. [401] 2017 10.119 0.169
Ying et al. [406] 2017 7.135 0.130
Cai et al. [395] 2017 10.461 0.067
Guo et al. [260] 2017 5.463 0.119
Li et al. [161] 2018 8.809 0.167
Wang et al. [426] 2018 7.103 0.118
Zhang et al. [345] 2019 12.132 0.192
Amsr et al. [447] 2019 7.995 0.091
Wei et al. [410] 2019 8.225 0.147
Zeng et al. [434] 2020 10.343 0.357
Proposed - 18.013 0.54

LiTS Dataset [9]

Histogram equalization - 8.084 0.222
Ibrahim and Pik Kong [448] 2007 11.991 0.265
Wang et al. [394] 2013 7.457 0.122
Fu et al. [402] 2015 8.131 0.100
Ying et al. [401] 2017 9.396 0.124
Ying et al. [406] 2017 6.630 0.104
Cai et al. [395] 2017 10.410 0.057
Guo et al. [260] 2017 5.082 0.111
Li et al. [161] 2018 8.137 0.127
Wang et al. [426] 2018 6.325 0.085
Zhang et al. [345] 2019 11.519 0.155
Amsr et al. [447] 2019 7.582 0.068
Wei et al. [410] 2019 7.614 0.113
Zeng et al. [434] 2020 9.285 0.206
Proposed - 17.61 0.480
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(a) Raw (b) Reference (c) HE (d) [448] (e) [394] (f) [402]

(g) [401] (h) [406] (i) [395] (j) [260] (k) [161] (l) [426]

(m) [345] (n) [447] (o) [410] (p) [434] (q) Ours

Figure 4.6: Visual results of CT scan enhancement for the Sliver07 dataset [8]. HE represents
histogram equalization.

minor details.

Similarly, such degradations can influence CAD performance by impacting each preliminary step required

for disease detection through state-of-the-art machine-learning algorithms. Figure 4.9 shows a general process

flow for CAD. The preliminary steps mainly include segmentation and feature extraction [13]. In contrast,

the low-quality images affect precise segmentation and information extraction for various diseases such as

cyst, hemangioma, abscess, hepatocellular carcinoma, metastasis, etc., [245, 36, 451, 20]. Therefore, such

techniques are in demand to reduce random effects and distortions in an obtained biomedical image without

any structural changes.

Nevertheless, we apply a multi-level GAN that process images with auto-encoder blocks at three variant

scales. Processing images with variant scales combined in a cascade form improves illumination details while

preserving shape and texture properties. As a result, the output has less artifacts and high contrast regions.

Thus, the proposed method can process medical images acquired from any modality to get high-contrast

enhanced images with better spatial resolution and in-depth anatomical details. Afterwards, the processed

images can be either analyzed by a radiologist or CAD for possible disease detection.
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(a) Raw (b) Reference (c) HE (d) [448] (e) [394] (f) [402]

(g) [401] (h) [406] (i) [395] (j) [260] (k) [161] (l) [426]

(m) [345] (n) [447] (o) [410] (p) Ours

Figure 4.7: Visual results of CT scan enhancement for the LiTS dataset [9]. HE represents histogram
equalization.

4.6 Discussion and Limitations

Several studies utilize traditional model-based techniques to process biomedical images. These methods

commonly include histogram equalization [452], non-linear polynomial model [52], regularization [453, 454,

455, 117], fuzzy c-means clustering [307], filter [456, 306], voxel adjustment technique [457], etc. Histogram

equalization introduces visual deterioration such as unnecessary and non-uniform saturation effects that

result in structural loss. In contrast, regularization and fuzzy c-mean clustering produce enhanced lesions

with intensity inhomogeneity. In addition, these methods require vary number of iterations for intensity

correction of images that make it less applicable for large dataset processing. Moreover, the developed

methodologies are good enough to reduce distortions but can cause structural changes that impact disease

diagnosis. In comparison, our analyses based three datasets validate the proposed model performance in

image processing and CAD.

The proposed multi-level generative network uses three encoder-decoder blocks combine in a cascade form

that exponentially increases training parameters. However, to handle low illuminated scans with low contrast

and dark regions, larger receptive fields are required, thus resulting in more levels of encoder-decoder blocks

for image enhancement.
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(a) Non-enhanced (b) Enhanced

Figure 4.8: Normal versus malignant liver classification performance for (a) non-enhanced and (b)
enhanced CT scans dataset.

Figure 4.9: The process flow of a typical CAD system.

4.7 Conclusion

This study aims to enhance biomedical images for disease diagnosis. To this end, we develop a multi-level

GAN to perform enhancement on CT scans. The images are processed at three variant scales to improve the

spatial and spectral resolution of the output. Three public datasets Ircadb, Sliver07, and LiTS, are used to

investigate the performance of our proposed method with quantitative and qualitative analysis. The enhanced

images are quantitatively evaluated using peak signal-to-noise ratio (PSNR) and structure similarity index

(SSIM). The proposed method outperforms with a mean PSNR of 16.20 dB and a mean SSIM of 0.45. In

contrast, the qualitative analysis is performed using deep learning-based binary classification for enhanced and

non-enhanced images. The AlexNet is used to perform binary classification between normal and malignant

liver. The enhanced images surpass a testing accuracy of at least 5% compared to non-enhanced images. Our

analysis shows that the proposed method is effective in enhancing images with preserved spatial and spectral

resolution. One of the future studies could be developing an unsupervised or semi-supervised enhancement

network to counter training data limitations.
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5 RMS-UNet: Residual Multi-scale UNet for Liver and

Lesion Segmentation

Prepared as: Rayyan Azam Khan, Yigang Luo, Fang-Xiang Wu, MS-UNet: Residual multi-scale UNet

for liver and lesion segmentation, Artificial Intelligence in Medicine 124 (2022) 102231.

doi:10.1016/j.artmed.2021.102231. RAK and FXW conceptualized the methodology. RAK reviewed the

literature, and performed experiments. YL and FXW supervised the study. RAK and FXW wrote the

manuscript. All authors read, revised, and approved the final version of the manuscript.

After processing the images for deblurring (chapter 3), and enhancement (chapter 4), segmentation is per-

formed to extract region of interest. The malignant liver detection requires precise and robust segmentation

so that minute tumors are not misclassified. A Unet has been proposed for biomedical image segmentation

with remarkable performance. I design a Unet with a novel loss function to perform liver and lesion segmen-

tation. The proposed technique can segment very small lesions that are usually ignored with conventional

models. The proposed method is evaluated and compared on four publicly available datasets. This chapter

accomplishes Objective 4 of this dissertation.

Abstract

Precise segmentation is in demand for hepatocellular carcinoma or metastasis clinical diagnosis due to the

heterogeneous appearance and diverse anatomy of the liver on scanned abdominal computed tomography

(CT) images. In this study, we present an automatic unified registration-free deep-learning-based model with

residual block and dilated convolution for training end-to-end liver and lesion segmentation. A multi-scale

approach has also been utilized to explore novel inter-slice features with multi-channel input images. A novel

objective function is introduced to deal with fore- and background pixels imbalance based on the joint metric

of dice coefficient and absolute volumetric difference. Further, batch normalization is used to improve the

learning without any loss of useful information. The proposed methodology is extensively validated and

tested on 30% of the publicly available Dircadb, LiTS, Sliver07, and Chaos datasets. A comparative analysis

is conducted based on multiple evaluation metrics frequently used in segmentation competitions. The results

show substantial improvement, with mean dice scores of 97.31, 97.38, 97.39 and 95.49% for the Dircadb,

LiTS, Sliver07, and Chaos liver test sets, and 91.92 and 86.70% for Dircadb and LiTS lesion segmentation. It

should be noted that we achieve the best lesion segmentation performance on common datasets. The obtained
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qualitative and quantitative results demonstrate that our proposed model outperform other state-of-the-art

methods for liver and lesion segmentation, with competitive performance on additional datasets. Henceforth,

it is envisaged as being applicable to pertinent medical segmentation applications.

5.1 Introduction

Liver malignancies are a common cause of death. According to World Health Organization report (2018),

in Europe, adults diagnosed with liver cancer between 2000 and 2007 had a mean 5-year age-standardized

survival rate of 12% and a mortality to incidence of 0.95% [15]. Early detection and diagnosis may certainly

help to improve the survival. Therefore, based on these and other statistics, images of liver tumors or

lesions by computed tomography (CT) or magnetic resonance imaging (MRI) currently are a focus of interest

for researchers in clinical diagnosis [164, 18, 19, 16, 458, 451]. Certainly, the prevention of such deadly

outcome in living beings requires the timely, accurate and independent robust diagnostic imaging. However,

the process requires preliminary steps, namely preprocessing and segmentation. Various studies [148, 459,

460, 164, 20] have reported tumor segmentation; however, as a means of avoiding false-negative error, the

recent literature [461, 462, 463, 464, 465, 466, 467, 468, 147, 53] suggests liver segmentation as the primary

image processing step. Segmentation can be divided into three main categories: manual, semi-automatic,

and automatic. Semi-automatic methods require a user-defined seed allocation with some energy-based

constrained optimization functions to improve segmentation [166, 169, 153]. Moreover, these models are more

prone to poor performance, resulting in ambiguous background and heterogeneous appearances of abdominal

CT-scan images. Meanwhile, automatic segmentation, which does not require any user interaction, has been

proposed, though sufficient training data are required for optimal results [465, 469, 60, 470].

Liver cancer is mainly categorized into primary and metastatic forms. Primary liver cancer begins in

the cells of the liver, and can either begin as a solitary focus, spread in the liver, or as multiple foci at the

same time within the liver. In addition, after treatment, liver cancer could recur as well. People with known

liver damage related to cirrhosis or hepatitis are more likely to develop several liver lesions at different sites

simultaneously. Primary liver cancer is further categorized into subtypes of hepatocellular carcinoma (HCC),

cholangiocarcinoma, and others. HCC, developing in the hepatocytes, is the most common type of primary

liver cancer, accounting for 75% of all cases. It can spread from the liver to other parts of the body, for

example the lungs. People with severe liver damage secondary to alcohol abuse, virus hepatitis, or metabolic

syndromes are especially prone to HCC. Metastasis or secondary liver cancer originates when cancer cells

from a primary organ metastasize to the liver. Contrary to other normal cells in the body, cancer cells can

break away from their primary site, which is where the cancer began, and proceed to other regions of the

body through the lymphatic system, the bloodstream, or by direct extension. Eventually these migrating

cancer cells come to reside and grow in other organs; breast-, colon- or lung-cancer cells, for instance, can

metastasize to the liver. Therefore, as a means of heading off metastasis or recurrence, the precise tumor
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segmentation is in high demand. Due to the limitation of training data, complex boundaries and diverse

anatomy on abdominal CT scans, the proposed architectures [166, 169, 153, 471, 472] are lacking in terms of

computational cost and performance due to cascaded multiple models that highly rely on prior ones.

Convolutional neural networks have been widely used in various forms for automatic segmentation; one

such example is UNet for the biomedical-image segmentation [441]. UNet is a U-shaped deep-learning network

divided into three main sections: down-sampling, bottleneck, and up-sampling. The deep neural network

(DNN) is famous for the biomedical image segmentation that consists of 18 3 × 3 convolutional layers with

the rectified linear activation function, 4 2 × 2 max pool layers, and 4 2 × 2 up-convolution layers. Various

architectures [471, 472, 426, 473, 177], have utilized the basic UNet DNN in their proposed methodologies

with variable kernel sizes, 3-D convolution and cascaded multiple models.Unfortunately, increasing network

layers with large kernel sizes not only increases computation time but sometimes can result in overfitting. To

overcome these drawbacks, dilated convolution in various forms can be utilized to gain large-scale features

with a constant kernel size [474, 475, 476, 477].

(a) (b) (c)

Figure 5.1: A 3×3 kernel with the dilation rate of a) 1, b) 2, and c) 4.

Slice thickness in CT scans varies a lot, while resampling images on equal voxel size may lead to the

removal of small lesions [460]. Moreover, cascaded models exponentially increase computational complexity

and incur dependency on preceding model performance [478].

In this study, to exponentially increase the receptive view of input images without any change of the

kernel size, we introduce the dilated convolution with multiple dilation rates. Figure 5.1 shows three dilation

rates 1, 2, and 4 employed throughout the proposed network to increase receptive views without affecting the

number of network parameters and computation cost. Similarly, increasing the convolution layers may lead

to the training error, residual networks were introduced with the batch normalization to avoid overfitting.

The network was initially trained from scratch with the binary cross-entropy loss function. Afterwards, we

incorporated a novel objective function with transfer learning based on combined dice coefficient and absolute

volumetric difference. In summary, this study makes the following contributions:
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• Design of a Residual UNet with the dilated convolution to probe inter-slice generalized features on the

large scale for liver and tumor segmentation.

• Proposal of a novel loss-function based on a combination of dice coefficient and absolute volumetric

difference that surpasses the performances of dice and cross-entropy-based loss functions.

• Training, validation, and extensive testing of our architecture on four publicly available datasets, namely

Dircadb, LiTS, Sliver07, and Chaos.

• For fair comparison, we compare and analyse our model with various methods on similar commonly

used open access challenge datasets.

5.1.1 Related Work

Roth et al. [479] develop a cascaded and fully convolutional network using UNet for 3-D segmentation of

multiple abdominal organs of the human body such as the liver, spleen, stomach and others, and report a

15%-improved score for their proposed methodology. Drawbacks are observed in terms of computation time

and the required hardware due to the cascaded network. In Sun et al. [164], a multi-channel convolutional

network is used to segment liver tumors for CT images. The network is trained for each phase while their

features were combined. A single-channel consisting of 8 convolutions, 3 subsamplings, 3 deconvolutions

and 2 feature-fusion layers and also a multi-channel network is applied to three phase-contrast-enhanced CT

images, which improves the algorithm for lesion segmentation of livers. However, the performance evaluation

metrics for segmentation are not discussed in their paper. Chlebus et al. [460] implement a 2-D neural

network for tumor detection with shape-based post-processing. The model consists of 4 resolution levels for

learning local and global features with an accuracy of 77%. A 3-D neural network is not used, due to the

fact that CT-scan slice thickness varies a lot, while resampling images to equal voxel size may lead to the

removal of small lesions. Drozdzal et al. [480] utilize a fully convolutional network to normalize data while

preprocessed data is employed iteratively for precise segmentation by a fully convolutional residual network.

The iterative segmentation algorithm is lacking in variant aspects such as a performance metric, the required

graphical processing memory and computation time. Li et al. [471] use intra- and inter-slice features with

a hybrid feature-fusion layer to enable the improved segmentation. The algorithm yield the best results on

the LiTS 2017 database, while, due to training on inter-slice features, the results are comparable to those

on Dircadb datasets. Han [155] propose a residual DNN-based UNet segmentation. The proposed model

consists of 32 layers in total, and makes use of both the long-range concatenation connections of UNet and

short-range residual connections. The model is trained using the 130 LiTS training datasets and achieves an

average DSC score of 0.67 for 70 test CT-scan images. Similarly, Jegou et al. [481] apply dense blocks [349]

to improve the segmentation without any preprocessing of images. Likewise, two other studies [471, 167]

propose DNNs in the cascaded form for segmenting the liver and lesions. Increasing the number of DNN

layers with large kernels not only increases computation time but also can result in over-fitting and gradient

vanishing problems. To resolve these problems, Kamnitsas et al. [474] and Hai et al. [475] use dilated
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convolutional layers while keeping the kernel size constant. Hence, the UNet DNN can be modified with

residual or dense blocks and large-scale features that can provide efficient results in terms of accuracy and

computation time. Our initial focus is on improving the performance by incorporating dilated convolution

layers into the UNet DNN, thereby enabling to grasp significant features while training. Likewise, residual

blocks are included in order to minimize training errors with batch normalization layers, thus avoiding over-

fitting and gradient vanishing problems. Moreover, several studies [471, 426, 478, 479, 167] have utilized

cascaded 2-D and 3-D deep-learning models in various forms to perform coarse-to-fine segmentation. Such

overlapping models can greatly influence one anothers performance, but with exponential increases of the

computation cost. Hence we propose a single unified residual dilated model to address certain concerns with

previously proposed methodologies. Furthermore, our network is trained, validated and tested on multiple

datasets to demonstrate improved performance for segmentation. Thereby, the high performance with the

minimal loss of segmentation and low computation cost could be achieved. Future potential research may

involve analysis of adversarial networks for synthetic data generation with classification [245, 165].

5.2 Methodology

5.2.1 Our Network

To enhance the performance of UNet, we modify its basic deep-learning-based neural network in keras with

tensorflow as the backend [441]. Instead of the single-channel input, we utilize a three-channel input with

three convolution layers having three distinct dilation rates (1, 2, 4) and the same feature map for each block.

The 3 × 3 kernel size is utilized with the rectified linear unit (ReLU) activation function. Mathematically,

this activation function can be written

y = max (0, x) (5.1)

where x is the input while y is output. Adding more layers can increase training parameters, though going

deeper beyond some point affects the performance by increasing the rate of training error. To minimize such

degradation problems, we introduce residual connections to perform identity mapping (see He et al. [10]).

Let us suppose that we have x feature map output after utilizing a stacked convolution layer with a dilation

rate of 1, as shown in Figure 5.2.

Mathematically, this building block can be written

y = F (x,Wi) + x (5.2)

where F (x,Wi) is the residual mapping that is to be learned, and x & y are the input and output of the

considered layer. In our case, F is equivalent to

F (x,Wi) = rW2r(W1x) (5.3)
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Figure 5.2: Residual block [10].

where r is the rectified linear activation function and Wi represents the dilated convolution layer with weights.

Moreover, the UNet DNN uses valid convolution that reduces the output size at each layer [55]. Conse-

quently, the up-sampling portion is less symmetric than the down-sampling one. We utilize the convolution

with the same output feature map as input for integration with the residual connections within the DNN.

Afterwards, a 2 × 2 max pooling is applied to down the input size. At each down-sampling step, we

double the feature channels. This cycle is repeated until we reach the bottleneck section of 322 output-

layer size. To avoid overfitting and for more generalized training of the DNN, the dropout is applied as in

Ronneberger et al. [441]. Dropout acts as a means of regularization; however, it can affect performance

by randomly removing parameters during training. Lyu and Simoncelli [482] introduce the concept of the

batch normalization that dynamically normalizes the output of a previous activation layer by subtracting

the batch mean and dividing it by the batch standard deviation. Thereby, it helps in increasing the learning

rate by improving the convergence. Moreover, it provides some regularization effect that works as a dropout

for the deep network. Hence, before and after the bottleneck section, we apply the batch normalization in

accordance with Han [155] to improve the stability of the neural network by means of faster learning and

without any loss in generalization.

In the decoding section, the feature maps are concatenated with the corresponding encoding sections to

obtain a more precise location of the output. The long-range connections help produce more fine and precise

high-resolution output as the result with corresponding encoding features as input for the decoding section.

Each decoding section consists of a 2×2 up-sampling layer concatenated with corresponding skip connections

from the encoding section stacked with three convolutional layers at different dilation rates and the same

output size with the ReLU activation function. This process is repeated until the output size becomes equal

to the input. The schematic of our model is shown in Figure 5.3. Dx shows the dilation rate used for

each layer, and the bottom left of the encoding section and the bottom right of the decoding section depict

the feature map output size. Likewise, the top index in the encoding section and the bottom index in the

decoding section show the output filters of each of the layers.
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Figure 5.3: Schematic of considered deep neural network.

5.2.2 Training

To maximize the GPU performance, we preferred steps per epoch equal to the number of training images

instead of a large batch, thus reducing the batch size to the size of a single image. For supervised learning

of corresponding binary masks, the sigmoid energy function (1/(1 + e−z)) was used on the final feature map

with the binary cross-entropy loss function given as,

Lc(y, p) =
−1

n

n∑
i=1

(yi ∗ log(pi) + (1 − yi) ∗ log(1 − pi)) (5.4)

where log is a natural logarithm, n is the number of labelled voxels for original (yiϵY ) binary indicator (0 or 1)

if class label C is the correct classification for observation O, (piϵP ) is the predicted probability observation

O of class C.

In the medical-images processing, we often come across such situations where the anatomy of intent

correspondingly engages a very small region of the scan. As a consequence, the learning process can become

trapped in a local minima that leads to the biased background prediction, thus resulting in the missing

or incomplete foreground prediction [483]. Figure 5.4 shows some examples of outcomes obtained with the

cross-entropy loss function training.

Hence, we adopt a coarse-to-fine segmentation scheme such that, following the training with the cross-

entropy loss function, we apply transfer learning and compared the performances of the two loss functions:

1) based on the dice coefficient, and 2) the combined absolute volumetric difference with the dice coefficient-

based function.
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(a) (b)

Figure 5.4: Liver segmentation (best viewed in color): a) miss-classification with the cross-entropy
loss function and b) proposed loss function.

The dice coefficient function can be defined as

LD(y, p) =
2
∑n

i=1 yi ∗ pi∑n
i=1 y

2
i +

∑n
i=1 p

2
i

(5.5)

Likewise, absolute volumetric difference function can be defined as

LV (y, p) =
|
∑n

i=1 yi −
∑n

i=1 pi|∑n
i=1 yi

(5.6)

The absolute volumetric difference ranges between 0 and 1, where 1 means no common region between

reference and predicted output. Contrary, dice function ranges between 0 and 1, where 1 is for the perfect

segmented output.

The combined loss function which we aim to minimize thus becomes

LTotal = [1 − LD(y, p)] + LV (y, p) (5.7)

Figure 5.5 depicts the final 10 simulations outcome for accuracies of the dice- and proposed loss function. It

is evident from the output that the training accuracies are comparable. However, the validation accuracies for

the proposed objective function provides more stable and improved performance. Moreover, after performing

transfer learning with the proposed loss function, we evaluated the liver segmentation as shown in Figure

5.4.

The initialization of weights in each convolution layer is important in order to avoid the excessive activa-

tion. Therefore, for the initial weights with the unit variance, we use a Gaussian distribution with a standard

deviation of (σ =
√

2/n), where n denotes the number of inputs of one neuron [484]. For example, for a 3×3

convolution and 64 feature maps, we have n = 9 ∗ 64 = 576. ADAM is used to optimize our loss function at

a learning rate of 0.0001 [485].
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Figure 5.5: Comparison of accuracies for the dice- and proposed loss function.

5.2.3 Data Augmentation

As the anatomy of medical images varies highly from subject to subject in the shape and intensity of pixels,

we trained our model with random elastic deformations to produce more generalized data for training. Hence,

we perform data augmentation for each epoch in a dataset with rescaling equal to (1/255), rotation 40%,

widening, height shift and shear in random range of [−0.1,+0.1], zooming in the random range of [−0.2,+0.2],

and horizontal flip to images for each epoch. Introducing the batch normalization, layers before and after

the bottleneck section provides further tacit data augmentation and showed great improvement in training

and testing.

5.2.4 Dataset and Preprocessing

We use Dircadb [7], LiTS [9], Sliver07 [8] and Chaos [160] competition datasets to evaluate our proposed DNN

for the liver segmentation. However, whereas only the Dircadb and LiTS datasets contain lesion CT scans

with corresponding masks, we evaluate lesion segmentation only on those two publicly available datasets.

The experimental dataset for liver contains a total of 180 subjects with approximately 55000 CT-scan images

and 143 cases of lesion segmentation with approximately 22000 CT scans. Corresponding CT-scan masks are

outlined by radiological experts. The input image size is (512 × 512 × 3) with the variable voxel size from

subject to subject. For the best visibility and uniform pixel intensity, we first apply histogram equalization

and then truncate the image pixels intensity between [180 − 255] to best differentiate the liver and tumor

boundaries [471]. No further preprocessing (e.g. registration or noise removal) is performed. Figure 5.6

depicts the pipeline flow of our proposed methodology. The CT scans with corresponding liver masks are

used to train the proposed neural network. Afterwards, the segmented liver-anatomical regions are considered
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as input for lesion segmentation.

Figure 5.6: Proposed pipeline for liver and lesion segmentation.

5.2.5 Evaluation Metrics

Recent segmentation challenges (Dircadb , LiTS, Sliver07, Chaos) and previous studies [471, 472, 426, 49]

have considered multiple metrics for the evaluation of segmentation performance. Hence, we extensively

evaluate our liver and tumor segmentation outcomes based on all of the commonly and widely used metrics.

Performance metrics are computed on MATLAB© in accordance with the Chaos grand challenge evaluation

[180]. The details of these metrics are as follows.

Dice Similarity Coefficient (DSC)

It evaluates the overall performance of an algorithm by including the region-of-interest (ROI) pixels of

segmentation [60, 486]. The DSC ranges from 0 to 1, where 0 means no overlap or common region between

the segmented and reference images, and 1 means perfect segmentation. It can be defined as,

DSC =

[
2 |Ip ∩ Iy|
|Ip| + |Iy|

]
× 100 (5.8)

where |Ip| & |Iy| are the cardinalities of pixels in the predicted and ground-truth segmented images, respec-

tively.

Volumetric Overlap Error (VOE)

It measures the ratio of the common region between the segmented and reference images, as divided by their

union [60]. It can be defined in terms of the complement of the Jaccard score, as

V OE =

[
1 − |Ip ∩ Iy|

|Ip ∪ Iy|

]
× 100 (5.9)

V OE is 0 for the perfect segmentation.
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Relative Volume Difference (RVD)

It is the ratio of the total volume difference to the total ground-truth volume of an image. Its asymmetric

metric is given as [60],

RVD =

[
|Ip| − |Iy|

|Ip|

]
× 100 (5.10)

RVD is 0 for perfect segmentation, whereas positive and negative for over- and under-segmentation, respec-

tively.

Average Symmetric Surface Distance (ASSD)

The symmetric surface distance metric is used to measure the distance between the foregrounds of predicted

and ground-truth images. The closest Euclidean distance between the predicted Ip image and the ground

truth Iy image is measured alternatively [49]. Afterwards, the mean of all the obtained distances is computed,

hence the name average symmetric surface distance (ASSD), with 0 mm for perfect segmentation. The

shortest distance of an arbitrary voxel x to the set of surface voxels of Iy is defined as

d(x, Iy) = min
yϵIy

∥x− y∥ (5.11)

where ∥·∥ denotes the Euclidean distance between voxels x and y in real-world coordinates. Thus, the average

of all sorted distances is computed as

ASSD =
1

|Iy| + |Ip|
×

∑
xϵIp

d(x, Iy) +
∑
yϵIy

d(y, Ip)

 (5.12)

Likewise, the Root Mean Square Symmetric Surface Distance (RMSSD) is calculated by computing the

square root of the symmetric surface distance, with 0 mm for perfect segmentation.

Maximum Symmetric Surface Distance (MSSD)

The maximum symmetric surface distance is also known as Hausdorff distance, and is computed by alter-

natively calculating the maximum distance between the surface voxels of the predicted Ip and reference Iy

images, with 0 mm for perfect segmentation [49]. Mathematically it can be written as,

MSSD = max

{
max
xϵIp

d(x, Iy),max
yϵIy

d(y, Ip)

}
(5.13)

This metric is sensitive to outliers; thus, it is significant for applications such as surgical planning, where the

true maximum error is more influential than the average error.

5.3 Experiments

We perform experiments on Python 3.7 with Keras and Tensorflow for DNN analysis. The machine is with

the specification of an Intel(R) Xenon (R), 2.6GHz CPU with 30GB RAM and NVIDIA K40 GPU. The
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training, validation and testing scheme is adopted to evaluate our DNN. 70% of the total data is utilized

for training, while 15% of the data is utilized for validation and the 15% for testing. The stopping criterion

is defined based on the training loss, such that iterations are to be stopped if a minimum change of 0.0001

is not experienced in loss for 5 consecutive epochs while restoring the best weights. Figure 5.7 depicts the

proposed DNNs training and validation outcomes of the iterative process of liver and tumor segmentation. It

is evident from the output responses that the proposed DNNs multi-scale context layers within each residual

block explore more generalized features, which considerably improves performance and reduces losses to the

second decimal place. Consequently, validation accuracies come close to training accuracies within a few

iterations. Moreover, the obtained performance curves follow traditional trends that validate the optimal

performance by the proposed algorithm. Likewise, it takes less than 2 sec to predict the liver or tumor mask

corresponding to the CT-scan image.

(a) (b)

Figure 5.7: Proposed DNN performance for: a) liver and b) tumor segmentation.

We perform extensive comparative analysis with previously developed methodologies on publicly available

liver and tumor segmentation datasets. Comprehensive results on liver segmentation are obtained with the

Dircadb, LiTS, Sliver07 and Chaos test sets, whereas the lesion segmentation performance is evaluated with

Dircadb and LiTS test sets only. Tables 5.1 and 5.2 illustrate the mean performance metrics with standard

deviations. The best outcomes for each dataset are boldfaced for comparisons. Furthermore, individual

dataset details and substantial analyses are as follows.

Dircadb Dataset

The Research Institute against Digestive Cancer (IRCAD) dataset, provided in 2016, is composed of 20

subjects CT scans of liver and hepatic tumors with an image resolution of (512 × 512) [7]. It is evident

from Table 5.1 that several studies have utilized Dircadb database for the liver segmentation evaluation;
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however, none of the previous studies solely performs the best. Zheng et al. [463] outperform on DSC 96.6%,

MSSD 18.9% and RMSSD 2.1%, while Christ et al. [167] surpass on ASSD metric. This is due to the fact

that they apply multiple semi-automatic algorithms, such as the level set and Chen-Vese model in cascaded

form for coarse-to-ne segmentation. Semi-automatic methodologies lack in generalize performance due to

heterogeneous background and ambiguous appearance. Similarly, Ahmad et al. [169] perform the best for

VOE as 6.09% and Li et al. [471] for RVD as −0.01%. The former utilizes DNN with the active contour

model for post-processing output images, whereas the latter employs cascaded 2-D and 3-D models of UNet

[28] for refine outputs. We implement the 2-D model given the fact that CT slice thickness varies with

variable voxel sizes. Sampling all slices with a similar voxel size may disregard minor lesions within the ROI

[9]. In addition to this certainty, obtained outcomes for the liver segmentation surpass all previously claimed

metrics except for RVD, where this outcome is comparable. Similarly, for the tumor segmentation results in

Table 5.2, Sun et al. [164] performs the best for DSC and VOE, while Wu et al. [166] for ASSD and RMSSD.

The former utilizes DNN with multi-channel input, whereas the latter applies semi-automatic approach to

perform lesion segmentation. Our study shows margin in DSC, VOE and RVD with lagging in two distance

measure metrics. This might have been due to the fact that Wu et al. [166] apply multiple semi-automatic

approaches with the constrained optimization, whereas our results are consistent, as shown in Figure 5.8.

The obtained liver masks are closely related to their references with minor discrepancies in the tumor masks.

Figure 5.8: Liver and lesion segmentation outcomes for Dircadb test set. The arrows indicate the
green under-segmented regions (best viewed in color).

LiTS Dataset

The Liver Tumor Segmentation Challenge 2017 was conducted in Australia by CodeLab. This dataset

contains 130 subjects collected from six medical centers with varied numbers of CT scans [7]. In the case of

the liver segmentation in Table 5.1, Qin et al. [163] and Chlebus et al. [460] perform collectively the best
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among all of the discussed studies with the LiTS database. It is worth noting that the claimed results by

the former study are based on only 100 selected CT scans, while the latter utilizes the shape based post-

processing to improve 2-D DNN output. Comparatively, our metrics are based on a complete LiTS dataset

analysis; thus, they could consider vague and generalized situations for segmentation. Apart from this, our

algorithm outperforms the competing methods in terms of multiple commonly used metrics such as DSC,

VOE, and others. Similarly, for the lesions in Table 5.2, our obtained outcomes are remarkably better than

those of competing methods, considering the fact that we model the loss function based on two metrics.

Likewise, taking into account distance-based metric can further improve performance for remaining metrics.

Some outcomes from LiTS test set are depicted in Figure 5.9.

Figure 5.9: Liver and lesion segmentation outcomes for LiTS test set. The arrow indicates the green
under-segmented region (best viewed in color).

Sliver07 Dataset

A Sliver07 competition was initiated with the title, Segmentation in the clinic: A grand challenge, as part

of a workshop in 2007. Later, this challenge was conducted yearly under the auspices of the Medical Image

Computing and Computer Assisted Intervention Society (MICCAI) [8]. It consists of 20 subjects with images

of (638 × 638) resolution. Maklad et al. [492] show the best performance for most of the metrics in Table

5.1, based on only 10 subjects CT-scan images. Moreover, they apply a semi-automatic approach that lack

in generalize performance. Our network utilizes multi-scale context layers within each residual block without

largely increasing the computation cost. This helps us explore more generalized features with exceptional

performance. Despite this fact, it outperforms among all other DNNs. Figure 5.10 shows some examples of

Sliver07 dataset liver segmentation.
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Table 5.1: Metrics outcome on liver segmentation datasets

Model Year DSC (%) VOE (%) RVD (%) ASSD (mm) MSSD (mm) RMSSD (mm)

Dircadb Dataset

Erdt and Kirschner [153]* 2010 94.55 10.34±3.11 1.55±6.49 1.74±0.59 26.83±8.87 3.51±1.16
Chung and Delingette[487]* 2013 93.05 12.99±5.04 -5.66±5.59 2.24±1.08 25.74±8.85 -
Chartrand et al.[149]* 2014 96.48 6.8±1.2 1.7±1.6 1.6±0.3 24±5.9 2.9±0.7
Li et al.[488]* 2015 95.2 9.15±1.44 -0.07±3.64 1.55±0.39 28.22±8.31 3.15±0.98
Huang et al.[466]* 2016 95.92 7.84±2.95 3.42±2.11 1.97±1.02 37.05±9.82 4.71±1.96
Christ et al.[167]* 2016 94.3 10.7 -1.4 1.5 24 -
Zheng et al.[463]* 2018 96.64 6.5±2.8 2.1±0.8 1.9 18.9±8.3 2.1±0.8
Yuan et al.[489]* 2018 96.21±0.56 7.3±1.05 -0.01±2.50 - 24.23±6.97 2.37±0.73
Zhou et al.[165]* 2019 96.53 6.7±2.3 0.6±3.2 1.5±0.6 24.6±7.9 2.4±0.8

Han[155] 2017 93.8±0.02 11.65±4.06 -0.03±0.06 3.91±3.95 - 8.11±9.68
Lu et al.[168] 2017 95.09 9.36±3.34 0.97±3.26 1.89±1.08 33.14±16.36 4.15±3.16
Li et al.[471] 2018 94.7±0.01 10.02±3.44 -0.01±0.05 4.06±3.85 - 9.63±10.41
Ahmad et al.[169] 2019 91.83 6.09 5.59 - - -
Chen et al.[170] 2019 94.6±0.03 9.52±4.65 -0.02±0.07 8.43±9.37 - 14.21±5.71
Budak et al. [171] 2020 95.22 9.05 7.03 1.43 - 19.37
Proposed - 97.31±0.023 5.13±3.94 0.04±0.05 2.00±1.92 18.47±21.95 1.32±0.49

LiTS Dataset

Qin et al.[163] 2018 97.31±0.36 5.24±0.69 1.97±1.7 1.77±0.49 13.03±5.71 -
Wang et al.[426] 2018 96.7 6 1 1.32 29.9 3.078
Li et al.[471] 2018 96.5 7.4 -1.8 1.45 27.118 3.15
Chlebus et al.[460] 2018 96.5 7.7 -0.4 1.15 24.49 2.42
Chen et al.[172] 2019 96.7 6.3 2 1.32 29.9 -
Proposed - 97.38±0.024 4.98±4.28 -0.71±0.53 1.84±1.74 17.47±19.73 1.27±0.46

Sliver07 Dataset

Wimmer et al.[490]* 2008 96.65 6.47 1.04 1.57 18.32 2
Linguraru et al.[491]* 2012 96.71 6.37 2.26 1 20.75 1.92
Maklad et al.[492]* 2013 97.78 4.33±0.73 0.28±0.87 0.63±0.16 14.01±2.88 1.19±0.28
Gauriau et al.[493]* 2013 96.24 7.24 2.58 1.32 23.13 2.58
Salman Al-Shaikhli et al.[494]* 2015 90 7.2 1.25 1.16 22.88 2.14
Li et al.[488]* 2015 96.77 6.24±1.52 1.18±2.76 1.03±0.31 21.1±0.95 18.82±8.82
Wang et al.[152]* 2016 96.06 7.57 -1.83 1.57±0.34 21.11±4.6 2.33±0.46
Zheng et al.[463]* 2018 96.04 7.6 -0.1 0.8±0.5 20.8 1.5±1.1
Zhou et al.[165]* 2019 97.27 5.3±2.1 1.7±1.5 0.8±0.5 19.4±5.3 1.4±0.7

Hu et al.[173] 2016 97.25±0.65 5.35±1.23 -0.17±1.34 0.84±0.25 19.58±0.56 1.78±0.56
Dou et al.[175] 2016 97.24 5.37 1.32 - 29.63 1.48
Lu et al.[168] 2017 96.96 5.9 2.7 0.91 18.94 1.88
Dou et al.[174] 2017 97.24 5.37±0.73 1.32±1.35 0.67±0.12 29.63±16.31 1.48±0.21
Ahmad et al.[169] 2019 94.8 4.31 1.28 - - -
Proposed - 97.39±0.0085 3.89±1.61 0.09±1.7 1.83±1.04 17.60±7.64 1.51±0.72

Chaos Dataset

Shvets et al.[176] 2018 90.01 18.16 - - - -
Pham et al.[177] 2019 73.45±5.93 41.95 - - - -
Proposed - 95.49±0.0093 10.87±1.77 1.2±3.0 3.88±4.58 26.10±28.83 1.78±0.86

Note: * denotes the semi-automatic methodology; - denotes that the results are not reported for the corresponding metric.

Chaos Dataset

Combined Healthy Abdominal Organ Segmentation (Chaos) was conducted by randomly collecting data

from hospitals. The dataset is comprised of 10 subjects with only corresponding masks of liver for CT and

MRI scans [160]. For consistency, we utilize only CT scans in our experimentation. Table 5.1 illustrates

some recent studies with a few reported metrics. Shvets et al. [176] show best results for DSC and VOE.

Comparatively, our methodology outperforms the competing methods on this dataset as well due to the fact

that we consider dual metrics for the objective loss function. Some segmented outcomes are depicted in

Figure 5.11.
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Figure 5.10: Liver segmentation outcomes for Sliver07 test set. The blue arrows indicate the over-
segmented regions (best viewed in color).

Figure 5.11: Liver segmentation outcomes for Chaos test set (best viewed in color).

5.4 Discussion

Clinical diagnosis requires identification and anatomical segmentation of lesions. Fully automatic algorithms

can assist such tasks, provided that the training is generalized enough to tackle vague unknown situations. We

propose a 35-layer-deep model with end-to-end training to probe more unique features with less computation

cost. It can be utilized for liver and lesion segmentation with minor input changes such that only the liver-

anatomical region can be considered for lesion segmentation. Except for intensity adjustment, no further

pre-processing to input images or post-processing to output images is applied. We have explored the overall

capability of the proposed DNN on multiple renowned and publicly available datasets, namely Dircadb, LiTS,

Sliver07, and Chaos. Two of these datasets, Sliver07 and Chaos, relatively contain low-quality images in the
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Table 5.2: Metrics outcome on liver lesion segmentation datasets

Model Year DSC (%) VOE (%) RVD (%) ASSD (mm) RMSSD (mm)

Dircadb Dataset

Foruzan and Chen [495]* 2016 82±0.07 30.61±10.44 15.97±12.04 4.18±9.60 5.09±10.71
Wu et al. [166]* 2017 83±0.06 29.04±8.16 -2.2±15.88 0.72±0.33 1.10±0.49

Han [155] 2017 60±0.12 56.47±13.62 -0.41±0.21 6.36±3.77 11.69±7.60
Sun et al. [164] 2017 91.54 15.6±4.33 5.8±3.5 2.0±0.9 2.9±1.5
Li et al.[471] 2018 65±0.02 49.72±5.2 -0.33±0.10 5.293±6.15 11.11±29.14
Chen et al.[170] 2019 66 41.54±4.32 0.16±5.03 2.04±4.32 2.12±5.52
Budak et al. [171] 2020 64.3±34.6 - - - -
Proposed - 91.92±0.05 14.95±9.40 -0.7±1.3 3.06±3.13 1.60±0.72

LiTS Dataset

Han [155] 2017 82 30.5 - - -
Vorontsov et al. [178] 2018 77.3 35.7 12.12 1.075 1.596
Li et al. [471] 2018 82.4 36.6 4.272 1.102 1.595
Chlebus et al. [460] 2018 79.6 38.3 46.4 1.143 1.728
Chen et al. [172] 2019 68.4 43.8 11 25 -
Proposed - 86.70±0.179 20.45±19.47 0.84±1.62 5.33±17.87 1.68±1.58

Note: - denotes that the results are not reported for the corresponding metric;
* denotes the semi-automatic methodology.

non-processable form. Therefore, the proposed neural network performed an average for these datasets as

illustrated in Table 5.1. Collectively, our method has achieved the best results in terms of several evaluation

metrics with almost all of the databases.

5.4.1 Ablation Analysis

We perform an ablation analysis to verify the performance of our proposed neural network. The analysis

of the proposed method and its variants include RMS-UNet with no dilation, RMS-UNet with dice loss,

absolute volumetric difference loss, cross-entropy loss, and our proposed loss function. Figure 5.12 shows

liver and lesion segmentation results with the mean DSC coefficient performance metric for the variants of

the proposed network. It is evident from Figure 5.12 that dilated convolution explicitly improves results

compared to non-dilated RMS-UNet by exploring novel features for improved performance. RMS-UNet

without dilation performs under-segmentation or even miss-classification for very small tumors. Thus, results

in lowest performance metric for liver and lesion segmentation. Similarly, the proposed novel loss function

outperforms the competing loss functions with the mean DSC coefficient of 96.89 for liver segmentation and

89.31 for tumor segmentation.

Moreover, we conduct statistical tests to verify the significance of the proposed neural network with a

novel loss function. The students t-test has been conducted at the significance level of α = 0.05. Table 5.3

shows the significance level of the proposed neural network and loss function variants to the fourth decimal

place. It is evident that the proposed neural network with a novel loss function outperforms among competing

variants.
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Table 5.3: Statistical significance outcomes of the proposed neural network and its variants.

Architecture Loss Function p-value

Liver Segmentation

Non-dilated RMS-UNet vs.
Dilated RMS-Unet

Cross-entropy 0

Dilated RMS-UNet Cross-entropy vs. Proposed loss, Dice co-
efficient, Absolute volumetric difference

0.0441, 0, 0.0018

Dilated RMS-UNet Dice coefficient vs. Proposed loss, Abso-
lute volumetric difference

0, 0

Dilated RMS-UNet Absolute volumetric difference vs. Pro-
posed Loss

0.0016

Lesion Segmentation

Non-dilated RMS-UNet vs.
Dilated RMS-Unet

Cross-entropy 0

Dilated RMS-UNet Cross-entropy vs. Proposed loss, Dice co-
efficient, Absolute volumetric difference

0.8365, 0.0001,
0.0012

Dilated RMS-UNet Dice coefficient vs. Proposed loss, Abso-
lute volumetric difference

0.0002, 0.3499

Dilated RMS-UNet Absolute volumetric difference vs. Pro-
posed Loss

0.00003

5.4.2 Comparative Analysis

We have discussed a few of most of the relevant architectures [471, 472, 426, 474, 475, 155, 483, 496, 481] for

extensive comparative analysis, mainly from the following three perspectives.

We have analyzed studies [164, 471, 426, 475, 476, 173, 496] to probe more unique features for DNN

training. In this context, Sun et al. [164] and Li et al. [471] utilize multi-channel features by considering

several consecutive scans as channels for input. Due to the variation in CT-scan voxel size, resampling several

scans on the same scale can pass over small regions. Therefore, to obtain the benefit of multi-channels input

[170], we utilize only colored, three-channel (RGB) input images. In a few earlier studies [426, 475, 476],

various form of dilation are utilized to explore novel features, while Liu et al. [496] utilize multi-kernel

methodology to fulfill the same task. However, using multi-kernels can exponentially increase computation

cost. Therefore, we utilize only dual-scale dilation layers to examine unique features without significant

increase in computation cost.

Three previous studies [471, 472, 483] utilize custom loss-functions in their proposed methodologies due

to the possible local minima trap (discussed in sub-section 5.2.2). Nevertheless, we have compared the

performance of the universally used dice loss-function with that of the proposed model, and found that the

additional volume-measuring metric can increase accuracy, and improves segmentation performance.

Stacking several hidden layers up to some limit can incur the vanishing gradient problems related to the

training error. Therefore, multiple studies [471, 472, 155, 481, 10, 349] have utilized residual and dense blocks
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to keep some gradients with identity mapping. We have customized the UNet [441] DNN with several dilated

layers to increase the receptive view. Accordingly, there are residual blocks to address the vanishing gradient

problem.

5.5 Conclusion

In this study, we have modified the UNet deep neural network (DNN) to minimize training losses and improve

the segmentation performance. We probe inter-slice features by considering three-channel RGB abdominal

CT-scan input images. To increase the valuable and unique information for each layer, multi-scale context

layers with various dilation rates are considered instead of utilizing multiple kernel sizes. Consequently,

residual blocks are added to compensate for training losses due to the increase in the number of convolution

layers. A normalization scheme instead of dropout is preferred to avoid over-fitting and enable more gener-

alized training without loss of any information. Moreover, to avoid fore- and background imbalance, a novel

objective function is adopted, based on dice and absolute volumetric difference, to reduce output losses. To

explore the proposed DNN performance, four commonly used publicly available datasets are used, namely

Dircadb, LiTS, Sliver07, and Chaos. Mean dice similarity coefficient (DSC) scores of 97.31, 97.38, 97.39,

and 95.49% and average symmetric surface distance (ASSDs) of 2.00, 1.84, 1.83 and 3.88mm are achieved

for Dircadb, LiTS, Sliver07 and Chaos of 15% liver test sets, respectively. Likewise, DSC scores of 91.92,

86.70% and ASSDs of 3.06, 5.33mm for the 15% lesion test sets are achieved. It should be noted here that

most of the previous studies utilize limited test sets (as discussed in section 5.2.2) to validate their method-

ologies, whereas we consider extensive validation and test sets. Also, the highest mean scores for lesions,

and comparative scores for liver segmentation, have been attained. The comprehensive comparative analysis

illustrated significant improvement in segmentation performance and minimization of training losses.
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Figure 5.12: An ablation analysis of RMS-UNet and its variants in terms of mean DSC coefficient
for liver and lesion segmentation. The arrows indicate the under-segmented regions for liver and lesion
segmentation (best viewed in color).
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6 A Multi-modal Deep Neural Network for Multi-class

Liver Cancer Diagnosis

Prepared as: Rayyan Azam Khan, Burbridge Brent, Yigang Luo, Fang-Xiang Wu, A multi-modal deep

neural network for multi-class liver cancer diagnosis, Neural Networks (2022) (Under Review). RAK, YL

and FXW conceptualized the methodology. BB performed data curation. RAK reviewed the literature,

performed experiments, and FXW supervised the study. RAK, BB, YL, and FXW wrote the manuscript.

All authors read, revised, and approved the final version of the manuscript.

After extracting the region of interest (chapter 5), a model is trained to classify malignant liver between

cancer variants. However, the liver cancer pathology data is correlated with imagery scans. In accordance

with the medical perspective, I integrate the pathology data with CT scans to perform diagnosis. Therefore,

this chapter proposes a multi-modal neural network to diagnose liver cancer variants. This chapter covers

Objective 5 of this dissertation.

Abstract

Liver disease is a potentially asymptomatic clinical entity that may progress to patient death. This study

proposes a multi-modal deep neural network for multi-class malignant liver diagnosis. In parallel with the

portal venous computed tomography (CT) scans, pathology data is utilized to prognosticate primary liver

cancer variants and metastasis. The processed CT scans are fed to the deep dilated convolution neural

network to explore salient features. The residual connections are further added to address vanishing gradient

problems. Correspondingly, five pathological features are learned using a wide and deep network that gives

a benefit of memorization with generalization. The down-scaled hierarchical features from CT scan and

pathology data are concatenated to pass through fully connected layers for classification between liver cancer

variants. In addition, the transfer learning of pre-trained deep dilated convolution layers assists in handling

insufficient and imbalanced dataset issues. The fine-tuned network can predict three-class liver cancer variants

with an average accuracy of 96.06% and an Area Under Curve (AUC) of 0.832. To the best of our knowledge,

this is the first study to classify liver cancer variants by integrating pathology and image data, hence following

the medical perspective of malignant liver diagnosis. The comparative analysis on the benchmark dataset

shows that the proposed multi-modal neural network outperformed most of the liver diagnostic studies and

is comparable to others.
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6.1 Introduction

Liver diseases are potentially fatal due to their poor clinical prognosis and to potential diagnostic delays in

asymptomatic patients. Liver diseases can be categorized as focal or diffuse. Focal liver diseases may include

benign entities such as liver cysts or malignant lesions related to primary or secondary tumors. In contrast,

diffuse liver diseases include viral hepatitis, fibrosis, cirrhosis, hepatic steatosis, etc.

Liver malignancy is divided into primary- and secondary cancer and has a very high mortality to the

incidence rate of 0.95, resulting in low rates of patient 6-year survival. Primary cancer begins with the

accumulation of cancer cells at single or multiple liver sites. It includes Hepatoblastoma, Cholangiocarcinoma

(CC), Angiosarcoma, and Hepatocellular carcinoma (HCC), with HCC accounting for 75% of primary cases.

Secondary cancer is commonly known as metastasis and occurs when cancer cells from other primary organs

of the body deposit inside the liver [15]. Liver tumors may be solitary or multiple. Multiple liver lesions may

result from multifocal HCC (MO) or hepatic metastases (IM), originate from primary colorectum cancer. A

common cause for multiple liver metastases is colorectal cancer (mCRC) [497].

Due to poor differentiation between cancer variants, as shown in Figure 6.1, multiple possible tests

are performed for diagnosis, including biopsy, laparoscopy, blood tests, imaging scans, etc. These tests are

laborious, cumbersome, and time-consuming, while the results are often not completely reliable. Additionally,

specimens obtained for histopathology require biopsy techniques that are associated with potential patient

morbidity or mortality. However, non-invasive methods such as medical imaging may be used to develop

reliable diagnosis algorithms to identify different clinical outcomes. Thus, computer-aided algorithms can

assist experts, such as radiologists, assess and categorize liver lesions [20].

Medical imaging of liver disease may utilize three different imaging modalities, ultrasound (US), magnetic

resonance imaging (MRI), and computed tomography (CT). Nevertheless, CT is more common for abdomen

image acquisition due to its operational independency, user-friendly interface, and better resolution than US

[21, 22, 23, 24, 25, 26, 27]. However, CT images consist of a series of frames containing noise, heterogeneous

contrast, and blurriness that can adversely affect diagnosis performance. Therefore, conventional or deep

learning models are designed to process acquired images with contrast adjustment techniques [52, 110, 14,

11, 78, 77]. Segmentation is then performed to determine the region of interest (ROI) [55, 13]. Afterward,

unique meaningful features are extracted to assist designed models in classifying between multiple outcomes.

Several machine learning-based algorithms have been proposed to perform computer-aided diagnosis (CAD)

[498, 20, 41, 57, 58, 59, 60, 61]. However, deep neural networks have proved to perform the best with better

generalization and less feature engineering [231, 236, 245, 36]. A typical workflow of CAD is shown in Figure

6.2.

This study proposes a multi-modal deep neural network for multi-class liver cancer diagnosis. A deep

neural network is designed to classify primary- and secondary liver cancer, including HCC Multiple, HCC
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Figure 6.1: Abdominal portal venous CT scans of HCC variants and metastasis. The red traced
lines by a radiologist indicate the perimeter of the lesions.

Figure 6.2: The workflow of a computer-aided system for liver cancer diagnosis.

Single, and mCRC. After contrast adjustment and selection of ROI with the help of our previously devel-

oped networks, we process CT scan images to extract image-based high-order and pathology-based low-order

features. The high-order features are achieved by considering several dilated convolution layers that increase

the receptive view of input images without affecting computation cost. Consequently, residual connections

are added to address vanishing gradient problems. Similarly, five pathological low-order features are explored

using a wide and deep network. The wide and deep network helps memorize low-order features with gen-

eralized learning. Finally, the processed features (high-order and low-order) are concatenated to perform a

multi-class liver cancer diagnosis.

Typically, pathology reports are correlated with imaging studies to predict malignancy. Keeping this

medical perspective in view, we propose a deep neural network that integrates imaging and pathology data

for a reliable prognosis between liver cancer variants such as HCC Multiple, HCC Single, and mCRC. The

results show a competitive performance of the proposed network in liver cancer diagnosis. In summary, this

study contributes as follows.
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1. The multi-modal deep neural network framework with transfer learning, which considers image and

pathology data for diagnosis of liver cancer variants, namely, HCC Multiple, HCC Single, and mCRC.

2. The proposed deep neural network is pre-trained on binary dataset for the transfer learning.

3. A comparative analysis is performed with state-of-the-art methods on the benchmark dataset.

6.2 Related Work

We have searched CAD studies for a focal liver disorder, particularly CT scan based liver malignancy.

Several studies have addressed diffuse- and focal liver disease diagnosis problems [20]. However, very few

have discussed liver malignancy diagnosis, especially hepatocellular carcinoma variants (i.e., HCC Multiple

and HCC Single) and metastasis. Since liver cancer variants have similar homogeneous CT density and

may be small lesions, it is difficult for traditional machine learning algorithms to classify them with good

performance. Nevertheless, neural networks can be wisely designed to overcome such limitations with better

generalized learning.

Balagourouchetty et al. [36] modify a GoogleNet neural network to classify liver diseases into several

classes: normal, HCC, hemangioma, cyst, abscess, and liver metastasis. CT images are enhanced using

decorrelation stretching and segmented by the semi-automatic active contour method with transfer learning

to cater data limitations. Consequently, very few images are considered compared to the multi-class prob-

lem. Li et al. [35] propose a 9-layer convolution neural network (CNN) to diagnose diffuse, nodular, and

massive tumors while including only 165 venous phase CT scans. Similarly, Renukadevi and Karunakaran

[34] utilize handcrafted features with principal component analysis (PCA) and grasshopper optimization to

select valuable information. A deep belief network is then applied to perform classification on 583 CT scans

between various focal- and diffuse liver diseases.

Likewise, Vivanti et al. [269] utilize a CNN to segment and quantify 246 tumors. The identified tumors

are used to extract texture, geometric and statistical features for machine learning-based classification. Wang

et al. [236] apply a residual convolutional neural network to diagnose four-class focal liver lesions with 388

CT scans. Midya et al. [273] implement an Inception-v3 network to perform binary primary liver cancer

classification. The cropped CT scan images of 223 patients are employed to prognosticate CC and HCC.

Yasaka et al. [242] consider a custom CNN to classify HCC, hemangioma, cyst, and lesions. Relatively, a

large number of 1068 CT scans are engaged with augmentation for generalized training. Kutlu and Avcı [32]

combine a CNN and long short-term memory (LSTM) for binary classification. The CNN-based hierarchical

features are extracted from 122 CT scans and are fed to the LSTM for benign versus malignant identification.

Likewise, Chen et al. [276] propose a dual attention dilated residual network with spatial and spectral

attention modules for binary classification. Romero et al. [277] apply an Inception-v3 network with 230 CT

scans. Moreover, Yao et al. [240] utilize the largest dataset with more than 76 thousand images to train a

dense neural network and predict 13-class liver function test indicators.
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After reviewing the literature, several loopholes were brought to our attention, including small datasets,

manual preprocessing methods (such as contrast adjustment and segmentation), and attribute analysis.

Biomedical studies lack the availability of large datasets, making the proposed model performance doubtful.

However, very few studies address such limitations by utilizing synthetic data generation or transfer learning

techniques [230, 245, 499]. Nevertheless, we consider a pre-trained network besides a large training dataset

and extensive augmentation. Moreover, automatic preprocessing steps, including contrast adjustment and

segmentation [13, 12], are performed to develop labeled datasets. Furthermore, hierarchical features are

explored instead of handcrafted features for multi-class diagnosis.

6.3 Materials

This section briefly discusses data processing details, including data imputation, enhancement, segmentation,

and augmentation.

6.3.1 Dataset

We explored the Royal University Hospital (RUH), Saskatoon, Saskatchewan, Canada repository for the re-

quired dataset. The database is searched from 2008 onwards for HCC Multiple, HCC Single, mCRC, and

normal cases. The shortlisted dataset consists of 68 pathological confirmed subjects, including 7 HCC Multi-

ple, 11 HCC Single, 12 mCRC, and 38 normal individuals between the ages of 16 and 93. The portal venous

CT scans with corresponding pathology reports are collected close to the surgery date so that both modalities

information remains comparable. Moreover, we developed a binary (malignant versus normal) dataset with

180 subjects using publicly available Dircadb [7], LiTS [9], Sliver07 [8], and Chaos [160] databanks to obtain

a pre-trained network for the multi-class problem. Therefore, this study utilizes 248 subjects collectively to

develop the diagnosis algorithm, while 30% of them is used for testing and validation. The ethics board of

the University of Saskatchewan has approved this study under file number Bio-1493.

6.3.2 Data Processing

The CT scans consist of sequential images with equal intervals. However, each image can have variable

contrast due to changing depth of field, exposure, focus, subject movement, etc. Some, or all, of these factors

can combine to produce images with variable intensities. Therefore, we consider our previously developed

multi-level GAN network to enhance portal venous CT scan images with uniform intensities. Our multi-level

GAN consists of three auto-encoder blocks to process images at three variant scales, while each preceding

block is linked with the succeeding block [12]. Figure 6.3 shows various portal venous CT scans enhanced

with our multi-level GAN. Afterward, we utilize our RMS-Unet for segmentation [13]. As discussed in section

6.2, manual or semi-automatic segmentation is commonly performed for CAD. However, we designed a Unet-
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based, fully automatic neural network to extract liver regions from lower abdominal images, as shown in

Figure 6.3. Thereafter, the segmented images are cropped and resized for background removal.

Moreover, we apply data augmentation with zoom operation in the range of [−0.2,+0.2], rotation 5%,

height-, widening- shift, and shear in the random range of [−0.1,+0.1], rescaling
(

1
255

)
, and horizontal-,

vertical- flips to every image of epoch. Alternatively, pathology data is processed for five features, namely

age, gender, length, width, and depth of the largest liver tumor. Whereas the Gaussian distribution N
(
µ, σ2

)
is utilized for data imputation. Some augmented images are depicted in Figure 6.3.

Figure 6.3: The image processing layout for portal venous CT scans [11, 12, 13].

6.4 Methodology

6.4.1 Our Network

We modify to propose our multi-modal deep neural network base on AlexNet [228]. It requires image-

based high-order features and pathology-based low-order features to perform categorical classification. The

schematic of the proposed multi-modal network is depicted in Figure 6.4. After image processing (discussed in

section 6.3.2), the single-channel images are fed to the five blocks network with three valid convolution layers

in each block having different dilation rates {1, 2, 4} and the same feature map. In contrast, each layer utilizes

a 3× 3 kernel size with rectified linear (ReLU) activation function. Convolution layers with different dilation

rates assist the network in identifying unique features without increasing kernel size. However, adding more

layers can cause vanishing gradient problems. Therefore, the residual connection is included in four blocks

to avoid such degradation issues. Mathematically, suppose we have yB+1
res feature map output after applying

input xB to B-th block with the residual mapping written as,

yB+1
res (x,W ) = F (xB , wB

i ) + r(wB
i xB) + bB (6.1)
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where B is the block number, r indicates rectified linear activation function, F
(
xB , wB

i

)
represents residual

mapping, wB
i is the i-th weighted dilated convolution layer, and bB is the bias at B-th block. Similarly,

F
(
xB , wB

i

)
is defined as

F (xB , wB
i ) = r

(
wB

i+2r
(
wB

i+1[r(wB
i xB)]

))
(6.2)

After that, block output is regularized with batch normalization and downscaled using a 2×2 max-pooling

layer. Consequently, we get 82 layer size concatenated with low-order features as shown in Figure 6.4.

Figure 6.4: The schematic of the proposed multi-modal deep neural network.

The pathology data is processed with a wide and deep neural network [500]. The wide and deep net-

work simultaneously works on a principal of memorization and generalization. The wide network learns the

correlation between the most frequent co-occurrence of features, which is noted as memorization. It can be

presented as a generalized linear model of the form,

ywide(V,W ) = r(WT
wideV ) + b (6.3)

where V is a vector of n = 5 features, and W is the weights vector.

In contrast, a deep network tries to explore and learn novel combinations that have rarely occurred in the

past. The deep network component uses two hidden layers with 64 and 32 feature maps, batch normalization,

and a drop-out layer. Thus, each hidden layer can be computed as,

yl+1
deep = r(wl

deepx
l) + bl (6.4)

where l is the layer number.

Lastly, the two fully connected layers process the high- and low-order features together, given as,

ŷ = σ{rwi+1[rwi(yres + ywide + ydeep)]} (6.5)

where ŷ is the multi-modal deep neural network output and σ represents the Softmax activation function.
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6.5 Experimental Setup

6.5.1 Transfer Learning and Fine-tuning

Initially, the proposed deep neural network is trained for binary classification without considering pathological

input (i.e., image input only). The binary (normal versus malignant) dataset contains 23 thousand original

and augment images (discussed in section 6.3.2) for every epoch. Afterward, the weight of the pre-trained

layers are transferred (i.e., for transfer learning) and fine-tuned for multi-class diagnosis with multi-modal

input. Suppose we have n images in a training dataset X, then fine-tuning tries to find optimal weights w

in an iterative process by minimizing the proposed neural network error rate (i.e., empirical loss) given as

[248],

L(X,w) =
1

n

n∑
i=1

ℓ(ŷi(xi, w), yi) (6.6)

where xi is the i-th image of X, ŷi (xi, w) is the output prediction function of the multi-modal neural network,

yi is the reference or ground-truth class of the i-th image, and ℓ(ŷi, yi) is a function of penalty for predicting

ŷi instead of yi which is set to the categorical cross-entropy loss function [240].

We utilize a mini-batch Adam optimizer to find optimal weights w. Let Xm ⊂ X be a subset of m

images; then we may call Xm be a mini-batch of X with batch size m. A randomized set of mini-batches

are generated that covers all the samples of X. Thus, each iteration can be termed as the completion of one

mini-batch. However an epoch is one training pass completed after using all elements of X or all mini-batches.

Conventionally, each epoch contains n
m mini-batches. However, if m is not a factor of n then any mini-batch

can have less than m samples [248].

The network is run for a number of epochs with mini-batches until the error minimizes and does not

improves for 10 epochs. In contrast, weights w are calculated after each iteration. The revised weights wt+1

are computed by the gradient of the loss function L over mini-batch Xm with current weights wt defined as

wt+1 = wt + l

[
℘∆wt −

∂L(wt, Xm)

∂wt
− dwt

]
(6.7)

where l is the learning rate for controlling the change of the weights, ∆wt is the change in weights from the

previous iteration, ℘ is the momentum coefficient that suppresses the weight change fluctuations between

successive iterations by adding some part of previous or current weights to the revised weights; thus, speeding

up the learning with uniform weights update, and d is the weight decay to find minimal optimal weights.

The weights are updated only if they perform better than the previous epochs. Figure 6.5 depicts the

learning curves of proposed neural network training from scratch and with transfer learning. It is evident

from the trends that training and validation losses gradually decrease while following the traditional fashion.

The responses also confirm that the fine-tuned network considerably improves its performance with transfer

learning. Moreover, the similarity between training and validation graphs indicates a well-trained model.

90



(a) (b)

Figure 6.5: The proposed multi-modal deep neural network learning curves with; a) training from
scratch and b) transfer learning with fine-tuning.

6.5.2 Fine-tuning Parameter Selection

Table 6.1 shows the training summary of the proposed network with and without transfer learning. As

discussed in the section 6.5.1, our proposed multi-modal network takes less than 60 epochs to fine-tune with

the pre-trained layers and a set of parameters that are explained below.

We use Intel© Xenon© 2.6 GHz CPU with K40 NVIDIA GPU to train and evaluate our proposed

network with the batch size of m = 5. The learning rate is kept uniform at l = 1×10−5. Higher rates usually

lead to over-fitting. In contrast, lower rates can affect computation costs by causing little change across

epochs. Therefore, this value is determined by empirically analyzing validation errors during fine-tuning in

our preliminary works related to image processing [11, 12, 13].

The momentum coefficient ℘ controls the fluctuation of weights by adding some parts of the previous iter-

ation to the current iteration. Its value is kept low in early iterations due to drastic changes and non-optimal

learning of the network. However, with transfer learning, the fluctuations are minimized by encouraging the

changes similar to previous iterations. Thus, leading towards uniform and earlier convergence of optimal

weights. We consider ℘ = 0.9 for all epochs of the pre-trained network, which is trained for binary classi-

fication but yet to be trained and fine-tuned for optimal weights of multi-class classification. Similarly, the

weight decay is set to d = 1, which helps in regularizing the gradient descent [248].

Table 6.1: The proposed neural network training summary with and without transfer learning.

Architecture #Parameters Epochs Time(s)

Fine-tuned 114 14,820
Transfer learned & fine-tuned 113, 360, 995 54 7,020
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6.6 Results and Analysis

An ablation analysis is performed to investigate the proposed multi-modal deep neural network and its

variants, as illustrated in Table 6.2. The suggested changes are introduced step-wise, including multi-modal

input (i.e., image and pathological data), dilated convolution, residual connections, and transfer learning.

It is evident from Table 6.2 that pathology data makes a considerable improvement. Likewise, dilation

and residual connections are added to the gradual increase in accuracy. However, including pre-trained

layer weight (discussed in section 6.5.1) further improves the performance of the proposed network with less

computation time such that it takes only 54 epochs to converge. Thus, we can infer that transfer learning

considerably improves model performance.

Table 6.2: An ablation analysis of the proposed multi-modal deep neural network.

Architecture Accuracy(%)

Proposed neural network (Image input only) 78.37
+Pathological data input 85.21
+Dilated convolution 86.01
+Residual connection 89.93
+Transfer learning & fine-tuned 96.09

Similarly, we compute various evaluation metrics for the multi-modal deep neural network. These metrics

include accuracy, precision, sensitivity, specificity, and F1-score, as shown in Table 6.3. Average accuracy of

96.09% is achieved for the proposed model. Contrarily, HCC Single has better precision and sensitivity among

three classes. It implies that the trained model has relatively better reproducibility and a true positive rate

for the HCC Single class. In contrast, the HCC Multiple has higher specificity. Favorably, all three classes

have comparable performance outcomes that indicate a trained model is less bias towards any particular class.

However, besides accuracy-based metrics, to further evaluate model performance, we plot receiver operating

curves (ROC) for the multi-class problem using the one versus rest (OvR) strategy as depicted in Figure 6.6.

The area under ROC curves (AUC) shows the trained model performs the best for the HCC Single and is

comparable for the mCRC class, while for HCC Multiple it is satisfactory. It also verifies that the proposed

model is well-trained to classify liver cancer variants.

Table 6.3: The performance metrics evaluation of the proposed multi-modal deep neural network.

HCC Multiple HCC Single mCRC

Precision 0.9523 0.9647 0.9623
Sensitivity 0.9424 0.9678 0.9654
Specificity 0.9856 0.9783 0.9761
F1-Score 0.9473 0.9662 0.9638

Furthermore, Table 6.4 illustrates a comparative analysis of several deep learning studies on our bench-

mark dataset. To reproduce results with fair comparative analysis, we only review some well-known diagnosis

studies that consider neural network models with hierarchical features. Nevertheless, it is evident from the
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Figure 6.6: The ROC curves for one versus rest class.

analyses that our proposed network outperforms all previously developed methods. However, Das et al. [33]

give competitive results for our three-class diagnosis.

Table 6.4: Prediction performance of various models for liver cancer diagnosis.

Study Year Accuracy(%)

AlexNet [228] 2012 76.56
VGG [339] 2014 66.21
Wu et al. [258] 2014 81.19
ResNet-152 [10] 2015 82.02
Meng et al. [22] 2017 87.34
Vivanti et al. [269] 2017 81.29
Wang et al. [236] 2018 89.49
Yasaka et al. [242] 2018 86.90
Yasaka et al. [267] 2018 79.55
Reddy et al. [29] 2018 84.09
Yamakawa et al. [30] 2019 89.82
Wang et al. [31] 2019 80.53
Kutlu and Avcı [32] 2019 90.10
Das et al. [33] 2019 95.56
Renukadevi and Karunakaran [34] 2020 94.71
Li et al. [35] 2020 85.28
Balagourouchetty et al. [36] 2020 93.85
Ours - 96.09

Our experimental findings validate our proposed model performance compared to various baseline models.

Several more studies [70, 73, 204, 32, 219, 31, 208, 262] have proposed different algorithms to predict focal and

diffuse liver disorders. However, these studies commonly face numerous constraints, including insufficient and

imbalance dataset, multi-modal acquisition problems, etc. All these factors can immensely affect algorithm

performance for a reliable diagnosis. Nevertheless, we examine 248 subjects with transfer learning and fine-

tuning for our analysis. Transfer learning assists to cater imbalance and quantity related issues by learning

generic features on another dataset. Whereas fine-tuning further improves by learning features specific to our

multi-class dataset. Likewise, neural networks have been commonly applied for image-based diagnosis [143],
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while definite medical analyses are still performed with reference to clinical reports. In contrast, we propose

a multi-modal network that integrate pathology data with image data, thus making the diagnosis according

to a medical perspective. Moreover, pathology data can also assist in making some novel prognoses such as

mortality rate and cancer reoccurrence [451].

6.7 Conclusion

In this study, we present a multi-modal deep neural network that integrate images with pathology data

for multi-class liver cancer diagnosis. The preprocessed portal venous CT scans are fed to the proposed

network that frequently uses dilation, residual connection, and batch normalization to explore novel features

for reliable diagnosis meanwhile addressing vanishing gradient problems. The pre-trained layers further

help counter imbalance and insufficient dataset issues with transfer learning. Alternatively, the wide and

deep network is utilized to process pathology data with a concept of memorization and generalization. The

algorithm is trained and tested on 248 subjects (more than double the previous studies). The fine-tuned

network can classify malignant liver among HCC Multiple, HCC Single, and mCRC with an AUC of 0.77,

0.87, and 0.86 and an average accuracy of 96.06%. Our experiments validate the proposed deep neural

network surpasses the existing models with subtle differences over the same benchmark dataset. Future work

involves prognoses of reoccurrence risk and mortality rate with deep neural networks.
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7 Summary and Future Work

7.1 Summary

Chronic liver diseases are considered potentially fatal due to asymptotic behavior and being progressive in

nature. This dissertation research aims to lower the mortality rate by diagnosing liver cancer variants in

a timely manner. Novel methodologies have been proposed to preprocess images that contain artifacts and

noise due to contrast enhancement injection, unintentional patient movements, and poor optical quality.

Similarly, the obtained CT scans may contain vague boundaries of body organs due to similar intensity

levels and could lead to imprecise segmentation. Likewise, computer-aided diagnosis algorithms have been

developed using only image data without considering clinical information correlated to image data. Here I

proposed five objectives in Chapter 1 to address these issues; Chapters 2 to 6 have achieved these objectives.

Chapter 2 presented a comprehensive review of machine learning models for liver disease diagnosis based

on US, CT, and MRI. Advances in preliminary steps, including image acquisition, preprocessing, attribute

analysis, and machine learning models, have been discussed in detail with a comparative analysis of best-

performed studies.

Chapter 3 proposed a multi-scale GAN for the deblurring of non-homogeneous blur. Residual image

learning was also performed in the cascaded form to recover some fine details lost in deblurring the images.

Chapter 4 proposed a multi-level GAN to enhance low-contrast CT scans, while the conventional tech-

niques resulted in non-uniform contrast images that could adversely affect diagnostic performance.

Chapter 5 proposed a multi-scale Unet with a novel loss function to perform liver and lesion segmentation.

The proposed technique is capable of segmenting small lesions that are misclassified with conventional models.

Chapter 6 proposed a multi-modal neural network to diagnose liver cancer variants. The pathological

data was integrated with imaging data to perform diagnosis.

With the development of these models, liver cancer diagnosis may be more accurately identified and

diagnosed. However, it is to be noted that my methods are not optimal. For instance, Chapter 5 utilized

a supervised neural network for segmentation, which can lead to an over-trained model with limitations

of training data. Therefore, an unsupervised neural network could be developed to address such issues.

Similarly, due to data constraints, Chapter 6 utilized limited pathology features for prediction. In contrast,

multiple clinical factors could play a significant role in diagnosis.
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7.2 Contributions

This dissertation provides innovative methodological and analytical approaches for diagnosing liver cancer

variants, which are explained as follows.

1. Image deblurring is commonly performed using conventional iterative and deep learning-based tech-

niques that limit computational time, output spatial resolution, and structural similarity due to vari-

ation in homogeneous and heterogeneous blur. In Chapter 3, I incorporated gradient input with a

generative adversarial network and performed residual image learning to improve the restoration of

structural details in variant and non-variant blur. Residual image learning was introduced to recover

high-resolution details in the generated images.

2. Contrast adjustment was applied to enhance low-contrast images that led to a series of variable contrast

images, while neural networks with supervised learning resulted in blurred images. In Chapter 4, I

developed a generative adversarial network to enhance low-contrast CT scanned images. The network

processed images at various scales in a coarse-to-fine manner.

3. Segmentation is required for the extraction of malignant regions. However, CT scans with multiple

lesions may result in poor segmentation performance due to diverse anatomy and homogeneous contrast.

In Chapter 5, I designed a novel loss function with improved Unet to perform automatic segmentation

of malignant liver and lesions. The network, trained on several datasets, segmented minute lesions with

improved precision.

4. Previously, imagery data were frequently used to perform computer-aided diagnoses. In Chapter 6,

I proposed a multi-modal neural network that integrates correlated pathological and imagery data to

diagnose liver cancer variants.

7.3 Future Work

Based on the algorithms proposed in this dissertation, I find multiple future directions that could improve

diagnosis:

1. The human liver is mainly divided into two lobes. These lobes are further sub-divided into sections as

left lobe with segments II and III. A medial sector with segment IV and right lobe with segments V ,

V I, V II and V III. The identification of these segments in scans of the liver is a bit of a complicated

task and requires expert knowledge. In frontal view, segments V I and V II are not visible therefore

transverse images at various positions are acquired for all segments. Therefore, malignant CT scans

can be classified into segments to assist in surgery.
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2. Tumor staging (resectable, borderline resectable or unresectable) is performed to decide the feasibility

of surgery. Estimation of tumor size could become a valuable estimator in deciding accurate staging.

3. Traditionally, TNM (Tumor, lymph Node, Metastasis) staging is used to predict patient survival in the

majority of cancers. However, not all information for TNM staging can be accurately available before

the final pathology, often from surgery. In contrast, survival prediction and recurrence rate could be

vital in determining if patients should undergo surgery. Accordingly, it would be useful to integrate

image and clinical data with TNM staging to predict survival outcomes and recurrence rate of liver

cancer.

4. Several diagnosis studies validate their algorithms on limited non-public datasets, making it difficult

for comparative analysis between different discussed methodologies. Keeping in view these constraints,

the developed CAD systems still lack the fully commercial use, hence unsupervised models could be

used to cater data constraints and develop reliable CAD systems for commercial use.
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Appendix A

Supplementary for deblurring

This section provides supplementary materials for image formation model A.1, image gradient magnitude
A.1.1, and additional visual results for the proposed deblurring neural network A.1.2.

A.1 Image Formation Model

Mainly two planes are considered in image formation. One is a real-world plane, and the second one is
an image plane in which we try to develop an image. Therefore, a 3D scene in the real world plane is
transformed into a 2D image plane. Meanwhile, the object in a real-world scene is assumed to be a source
of radiant energy. Suppose the 3D scene is defined in a homogeneous real-world coordination system with
projective geometry as O (x, y, z, w), where (x, y, z) are related to 3D coordinates, and w is the projective
distance between real-world plane and image plane. There are 3D objects with radiant energy presented
by ei (x, y, z, w), where i = {1, 2, · · · , n} are a number of objects. These 3D objects contain radiant energy
assumed to propagate from real-world plane to image plane while intercepting through image formation
system based on multiple factors such as projective distance w, aperture or pin-hole size, etc. By geometric

transformation function q (x, y; ei (x, y, z, w)) the objects are transformed from O (x, y, z, w) to O
′
(
x

′
, y

′
)

image plane, eliminating hidden surfaces of objects and generating the radiant intensity for visible surface
points. Thus, by the transformation, the radiant energy function for each visible object point becomes [114],

I (x, y) = q (x, y; ei (x, y, z, w)) (A.1)

A function that describes the transformation of energy from a real-world plane (x, y) to an image plane(
x

′
, y

′
)

is defined as

B
(
x

′
, y

′
)

= k
(
x

′
, y

′
, x, y, I (x, y)

)
(A.2)

Since the image formation model is linear with the superposition additive property, we can rewrite it as

k
(
x

′
, y

′
, x, y, I (x, y)

)
= k

(
x

′
, y

′
, x, y

)
I (x, y) (A.3)

Summing the infinitesimal contribution of object points to image plane radiant intensity, the general image
formation can be written in the spatial domain as [113],

B(x
′
, y

′
) =
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−∞
k
(
x

′
, y

′
, x, y, I (x, y)

)
dxdy

=
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−∞
k
(
x

′
, y

′
, x, y

)
I (x, y) dxdy

(A.4)

where k
(
x

′
, y

′
, x, y

)
is known to be the point-spread function (PSF) that describes radiant energy dis-

tribution in the image plane due to a point source of radiant energy located in the object plane. The

k
(
x

′
, y

′
, x, y

)
can define energy at any position in both planes; hence it is said to be space-variant PSF.

However, space invariant PSF independent of position can be defined by taking the difference of coordinate
systems. Therefore, linear space invariant PSF can be expressed using convolution integral as [113, 114],

B(x
′
, y

′
) =
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−∞
k
(
x

′
− x, y

′
− y

)
I (x, y) dxdy (A.5)
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In discrete form, it can be represented by summation as,

B(x
′
, y

′
) =

M−1,N−1∑
x,y=0

k
(
x

′
− x, y

′
− y

)
I (x, y)

= k
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′
, y

′
)
⊗ I (x, y)

(A.6)

where B
(
x

′
, y

′
)

is the output or obtained image, I (x, y) is the input or true image, and the size of the image

is M ×N and ⊗ is the convolution operator.

A.1.1 Image Gradient Magnitude

The image gradient has been implemented in various forms commonly known as Sobel, Intermediate, Central
techniques etc. Image gradient is the change in intensity of an image that can be numerically found by Taylor
series approximation using finite-difference.
By Taylor series the finite forward difference approximations,

f (x + h) = f (x) + hf
′
(x) +

h2f
′′

(x)

2
+

h3f
′′′

(x)

3!
+ 0

(
h4

)
(A.7)

the finite backward difference approximations,

f (x− h) = f (x) − hf
′
(x) +

h2f
′′

(x)

2
− h3f

′′′
(x)

3!
+ 0

(
h4

)
(A.8)

subtracting (A.8) from (A.7) gives the finite central difference,

f (x + h) − f (x− h)

2h
= f

′
(x) + 0

(
h2

)
(A.9)

Hence image gradients in x and y direction become,

I
′

x =
I (x + 1, y) − I (x− 1, y)

2
; I

′

y =
I (x, y + 1) − I (x, y − 1)

2
(A.10)

respectively, where the image gradient magnitude can be computed as,

G =

√
(I ′

x)
2

+
(
I ′
y

)2
(A.11)

Measuring image gradient assesses how much image has been enhanced or deblurred compared to the original
image.

133



A.1.2 Processed Images

The deblurred images for the three datasets GoPro, Köhler, and Lai can be acquired from [361, 5, 6].

(a) Blur (b) GT (c) [343] (d) [14] (e) [126] (f) [344] (g) [4] (h) [125] (i) [327]

(j) [129] (k) [106] (l) [325] (m) Ours

(a) Blur (b) GT (c) [343] (d) [127] (e) [14] (f) [126] (g) [344] (h) [4] (i) [125]

(j) [327] (k) [129] (l) [106] (m) [325] (n) Ours

Figure A.1: Visual deblur results of various studies for GoPro [14] dataset. GT represents ground
truth image.
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(a) Blur (b) GT (c) [126] (d) [14] (e) [4] (f) [318] (g) [368] (h) [315] (i) [313]

(j) [369] (k) [319] (l) [108] (m) Ours

(a) Blur (b) GT (c) [126] (d) [14] (e) [4] (f) [318] (g) [368] (h) [315] (i) [313]

(j) [369] (k) [319] (l) [108] (m) Ours

(a) Blur (b) GT (c) [126] (d) [14] (e) [4] (f) [318] (g) [368] (h) [315] (i) [313]

(j) [369] (k) [319] (l) [108] (m) Ours

Figure A.2: Visual deblur results of various studies for Köhler [5] dataset. GT represents ground
truth image.
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(a) Blur (b) GT (c) [317] (d) [310] (e) [326] (f) [115] (g) [106] (h) [316] (i) [320]

(j) [325] (k) [314] (l) [315] (m) [369] (n) [313] (o) [108] (p) Ours

(a) Blur (b) GT (c) [317] (d) [310] (e) [326] (f) [115] (g) [106] (h) [316] (i) [320]

(j) [325] (k) [314] (l) [315] (m) [369] (n) [313] (o) [108] (p) Ours

(a) Blur (b) GT (c) [317] (d) [310] (e) [326] (f) [115] (g) [106] (h) [316] (i) [320]

(j) [325] (k) [314] (l) [315] (m) [369] (n) [313] (o) [108] (p) Ours

(a) Blur (b) GT (c) [317] (d) [310] (e) [326] (f) [115] (g) [106] (h) [316] (i) [320]

(j) [325] (k) [314] (l) [315] (m) [369] (n) [313] (o) [108] (p) Ours

Figure A.3: Visual deblur results of various studies for Lai et al.[6] dataset. GT represents ground
truth image.
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