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Abstract

Genomic selection (GS) is a powerful method concerned with predicting the phenotypes of individuals

from genome-wide markers to select candidates for the next breeding cycle. Previous studies in GS have

used single nucleotide polymorphism (SNP) markers to predict phenotypes using conventional statistical or

deep learning models. However, these predictive models face challenges due to the high dimensionality of

genome-wide SNP marker data and interactions between alleles. Thanks to recent breakthroughs in DNA

sequencing and decreased sequencing cost, the study of novel genomic variants such as structural variations

(SVs) and transposable elements (TEs) became increasingly prevalent. Here, we present a one-dimensional

deep convolutional neural network, NovGMDeep, to predict phenotypes using novel genomic markers, such as

SVs and TEs. The model is designed to use novel genomic markers to reduce the curse of dimensionality

of the SNP genotypic data for GS. The proposed model is trained and tested on the samples of Arabidopsis

thaliana and Oryza sativa using 3-fold cross-validation. The prediction accuracy is evaluated using Pearson’s

Correlation Coefficient (PCC), Mean Absolute Error (MAE), and Standard Deviation (SD) of MAE on the

testing sets. The predicted results showed a higher correlation when the model is trained with SVs and TEs

than SNPs. NovGMDeep also has higher prediction accuracy when compared with conventional statistical

models. We also included an extended study which describes sample size effects when the proposed model

is trained on different number of samples for SVs. The results show better PCC values when the model was

trained on more than 700 samples. This work sheds light on the unrecognized function of SVs and TEs in

genotype-to-phenotype associations, as well as their extensive significance and value in crop development.

Moreover, the predictions identified here using SVs and TEs will be useful to investigate the evolution and

trait architecture of A. thaliana and O. sativa.
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1 Introduction

1.1 Research Problem

The genotype of an organism is described by its entire genetic composition. The phrase can also refer to the

set of alleles contained within the genome. In diploid organisms, an individual inherits two alleles at each

genetic locus, with one allele inherited from each parent. Each pair of alleles represents the genotype of a

specific gene. The genotype is expressed when information encoded in the DNA of genes is utilized to generate

RNA and protein molecules. The phenotype, or observable characteristic, is the detectable expression of a

genotype. Generally, three variables influence a phenotype: genes are the most effective; inherited epigenetic

and acquired environmental factors are the other two [122].

Predicting phenotypes of a crop is an essential step in explaining crop behavior using insights from genome-

wide markers such as genome-wide Single Nucleotide Polymorphisms (SNPs). Genomic selection (GS) is a

powerful method concerned with predicting the phenotypes from genotypes using the genomic-estimated

breeding values (GEBVs) of individuals to select candidates for the next breeding cycle [82]. The GEBV

is determined by summing the impacts of genetic markers across the entire genome [52]. The information

from the large number of markers dispersed throughout the genome can be utilized to capture variability in

that genome, which is adequate to determine the breeding qualities. The idea behind GS is to estimate the

phenotypic values of an unseen population using genome-wide markers and phenotypic data from an observed

population. GS is beneficial when it is expensive or difficult to measure the phenotype or where the breeding

cycle is long (e.g., tree species).

Complex traits are traits that are controlled by multiple genes and their interactions. Each gene can

have a minuscule effect on the trait, and it can be challenging to identify which genes are important when

dealing with huge genomic data. In addition, environmental factors can also affect complex traits. For

example, temperature, water, humidity and nutrition can affect plant growth and development. The need to

predict complex traits from large amounts of genomic data has given rise to attempts to develop predictive

statistical and machine learning models. Various genomic prediction models and algorithms include least

absolute shrinkage and selection operator (LASSO) [116]; Bayesian-based algorithms, such as Bayes A, Bayes

B, Bayes C, and Bayes Cπ [47]; and BLUP (best linear unbiased prediction)-based algorithms, such as ridge

regression BLUP (rrBLUP) [32] and genomic BLUP (gBLUP) [20]. These methods for predicting phenotypes

using genotypes are typically based on regression analysis. The predictor variables are the genotypes, and

the response variable is the phenotype. The coefficients of the regression model are estimated using data
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from a reference population of individuals with known genotypes and phenotypes. The model can then be

used to predict the phenotype of an individual with its genotype.

However, these conventional predictors typically assume that the random effect of genotype follows a

normal distribution, and the contribution of each genotype to phenotypes is considered as an independent

attribute. Whereas it is unknown in practice how genotype effects behave. Moreover, these conventional

statistical models do not consider non-linearity between the variables. For example, SNPs may also interact

with other SNPs to cause complex diseases or traits due to epistasis. Also while these models face challenges

due to the high dimensionality of genome-wide marker data and interactions between alleles, GS can benefit

from Deep Learning (DL).

DL provides novel approaches to process noisy data [70] and handle nonlinearity [60]. It can capture

complex relationships within genotypes and between genotypes and phenotypes. DL models show their

favorability and superiority over traditional statistical models through their ability to form convoluted and

non-linear links. These complex links form relationships among genomic parameters by reducing the rigorous

assumptions made by conventional statistical models [35]. These DL models inspired by GS models can

consider the non-additive effects in data and can instantly learn from the interconnected links in the dataset.

Studies have shown that these methods base their predictions on overall genetic relatedness rather than the

effects of particular markers [115]. Moreover, DL models offer feature extraction capabilities for leaf [71]

and disease [114] detection in plants and therefore have the potential to capture hidden patterns in large-

scale datasets [85]. Also, the most prominent advantage of DL is the high capacity and flexible trainable

parameters. Deep learning-based models have shown promising results in a wide variety of tasks such as

object detection [130], speech recognition [27], natural language processing [126], etc.

The fact that deep neural networks are primarily black-boxes is one limitation of deep learning. Once a

network has been trained, it can be challenging to understand why the model predicts what it does or what

input components are important to the output. There are software libraries to resolve the blackbox char-

acteristic of the neural networks. AutoWeka is one example, designed to provide automatic model selection

and hyperparameter optimization [111]. Neural-symbolic computation offers another way of implementing

white-box nonlinear prediction by means of rule extraction [12].

In addition to SNPs, there are other larger-scale genomic variants. Structural variations (SVs) include

variations in the number of chromosomes, the size and shape of chromosomes, and the location of genes.

Transposable elements (TEs) include mobile genetic variations that can move between different chromosomes

in a genome. Both SVs and TEs are highly abundant and active in plants. Such novel genomic markers

could significantly contribute more to plant phenotypic diversity than SNPs. Also, using SVs and TEs

will help in reducing the curse of dimensionality of the SNP genotypic data for GS. However, there need

to be methods predicting phenotypes using these genomic markers. In this thesis, we developed a deep

learning model, NovGMDeep, to predict the different phenotypes from novel genomic markers- SVs and TEs,

as well as SNPs. This work highlights the role of genomic structural variants and transposable elements
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in predicting phenotypes in plants using deep learning. The developed model differs from other statistical

models as it spontaneously learns the complex relationships among the genome-wide markers and phenotypic

traits from the training data. With advanced deep learning technology, the model avoids the overfitting of

the data by using the convolutional, pooling, and dropout layers hence decreasing the complexity of many

genomic markers. The predicted results showed a higher correlation when the model is trained with SVs

and TEs than with SNPs. NovGMDeep also has higher prediction accuracy when compared with conventional

statistical models. The genotype-to-phenotype predictions identified here using SVs and TEs will be helpful

to investigate Arabidopsis thaliana and Oryza sativa evolution and trait architecture. This work sheds light

on the underappreciated function of SVs and TEs in genotype-to-phenotype associations, as well as their

extensive significance and value in crop development.

This work has been presented at ISCB Latin America international conference on Bioinformatics as a

full paper. As the first author of the paper, I contributed in looking for dataset, methodology design,

implementation, verifying results, and manuscript writing. Our co-author, Keyhan Najafian, contributed in

model development and proofreading the manuscript.

• Shivani Sehrawat, Keyhan Najafian, Lingling Jin, ‘Predicting Phenotypes from Novel Genomic Mark-

ers using Deep Learning’, ISCB Latin America SoIBio BioNetMX, Queretaro, Mexico, November 3-7

(2022).

1.2 Layout of the Thesis

The thesis is organized as follows: Chapter 1 gives a clear view of the research problem and the encountered

challenges. Chapter 2 explains the motivations and objectives behind the work in the thesis. In Chapter 3, we

provide the necessary background knowledge to understand our work. Chapter 4 contains the methodology

used in the thesis. In Chapter 5 and Chapter 6, we describe the two phenotype prediction case studies and

also discuss the results of each experiment. In Chapter 7, we summarize the thesis and discuss potential

future works.
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2 Motivation and Objectives

In this chapter, we will discuss the importance of genomic prediction as well as the key objectives of the

thesis.

2.1 Motivation

Strategies to ensure a consistent food supply for the expanding human population, which is anticipated to

reach 9.5 billion by 2050, heavily rely on plant breeding [53]. Plant breeding must achieve the best rates of

genetic improvement to optimize its contribution to raising agricultural production if it is to keep up with

the anticipated rise in food demand in the upcoming years [98]. Utilizing the possibilities of cutting-edge

techniques is a crucial first step in this situation. Genomic selection is a breeding technique that helps

breeders find improved breeding solutions. GS is a predictive methodology that involves training models

with a reference population that comprises known phenotypic (output) and genotypic (input) data to make

predictions for an unseen population. This predictive approach can also reduce the time and cost associated

with traditional breeding methods.

The most popular choice of genotypic data, known as genomic markers, is SNPs. However, several

difficulties must be resolved or overcome when employing SNPs. For instance, SNPs are often scattered

across the genome and have low minor allele frequencies, making it difficult to detect an association between

a SNP and a phenotype. Also, SNPs can be in linkage disequilibrium with each other, making it difficult to

interpret the results of a SNP association study. Another difficulty is working with polyploid crops, where

the relevant SNPs only comprise a small portion of the overall polymorphisms [113]. That is why there is an

increasing need to use novel genomic markers that can capture the genome variation better than SNPs.

Non-SNP DNA variation, such as SVs and TEs, accounts for a smaller number of variation events com-

pared to SNPs. However, they involve a much more significant proportion of overall variant bases and could

significantly contribute to plant phenotypic diversity. Some examples regarding the impacts of SVs in plants

regarding gene regulation towards environmental fitness are: SVs may contribute to biotic [29] and abiotic

stress [40], heterosis in maize [67], and increased chlorophyll content in Brassica napus [99]. According to a

PanSV genome analysis of 100 tomato accessions, SVs altered gene dosage and expression levels, which led

to quantitative trait variations in fruit flavor, size, and yield [7].

Genotyping is the method of identifying an individual’s genotype by analyzing its DNA sequence through

biological experiments and comparing it to another individual or a reference sequence to determine which of
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the two alleles is more common in a population. The final product of genotyping is a report that lists the

alleles from most to least common. Currently, the most widely used genotyping platforms for SNP calling and

validation are KBiosciences’ Competitive Allele Specific PCR (KASPar) coupled with the SNP Line platform,

OpenArray platform, and Illumina’s BeadArray-based Golden Gate [34]. These current genotyping assays

and platforms vary from one another in terms of their chemistry, price, the throughput of genotyped samples,

and the number of SNPs reported. The length of the SNP context sequence and the total number of SNPs

to genotype influence the choice of chemistry and genotyping platform. Most of these chemistries are still

expensive. On the other hand, the widespread detection and genotyping of SVs and TEs are now more feasible

than ever, thanks to recent developments in molecular and statistical approaches. Numerous computational

and experimental techniques have been developed during the past years; most of them concentrate on cost-

effective and high-quality structural variations identifications [54], [106], [55].

Deep learning is a potent technology with a lot of potential for discovering relationships between genotype

and phenotype. Plant breeding programs will gain from the successful use of deep learning in phenotype

prediction since it will enable more accurate phenotype predictions from genomic variations. This allows

breeders to develop and breed a more focused selection of lines by better anticipating the lines from their

breeding stock with the best phenotypic potential for the trait of interest. If genetic data can be utilized

effectively to forecast crop production or crop health, the agricultural industry can better predict and optimize

yields. The global advances in agricultural products that have resulted from previous genetic changes could

be accelerated by building better prediction models [109]. Deep learning models such as convolutional neural

networks (CNNs) have different convolutional layers designed to detect data patterns.

For phenotype prediction challenges, CNN can extract spatial information from genomic variations. In

CNNs, the interactions between nearby genomic markers can be taken into account within various ranges of

the kernel window throughout the convolving process [77]. The primary motivation for using DL models for

GS is that they learn the pattern from the data without any prior assumption; in this way, they include all

the variations and their interactions.

2.2 Objectives of the thesis

The objectives of this thesis can be divided into five categories.

1. Provide a literature survey on genomic selection.

2. Highlight the role of novel genomic markers in the prediction of phenotypes in plants which is not just

limited to SNPs.

3. Present the proposed DL model, its architecture, and optimization strategies for the prediction of

phenotypes.

4. Compare the performance of the newly proposed DL model with other classical GS models.
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5. Compare the architecture and performance of other DL methods with the proposed method.
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3 Literature Review

In this chapter, we will provide the basic knowledge of the different genomic variances, a summary of

deep learning techniques, a survey of genomic selection, theoretical concepts behind the different conventional

statistical and deep learning methods for predicting traits.

3.1 Genomic Variances

Genomic variance is the difference in the DNA sequences of two or more individuals or groups [94]. Genomic

variances can be categorized into four types, namely genetic drift, selection, genomic mutation, and genetic

variation [63]. Genetic drift is a random change in the frequencies of alleles in a population over time [17]. It

is more likely to occur in small populations, and can lead to the loss of alleles from a population altogether.

Selection is cause when the frequencies of alleles change in a non-random way [13]. Genomic mutation is

defined as a change in the DNA sequence that is passed on to the offspring. The most common type of

genomic variance is genetic variation. This can include variations in the number of copies of a particular gene

which are caused by insertions, deletions, transpositions, translocations, and copy number variations. There

are several other factors that can also cause genetic variations. These factors include but are not limited to,

environmental factors, radiation, and chemical mutagens.

Any change in a nucleic acid sequence or another genetic characteristic that can be identified and used

to classify individuals, populations, or species, or to accurately predict the genes responsible for inherited

trait, is referred to as a genetic marker [1]. A genetic marker is a nucleotide or sequence of DNA that can

be used to identify a particular gene or chromosome that is associated with a certain physical trait. Markers

can be located on any chromosome, including the sex chromosomes, and are used in many different ways.

For example, they may be used to track the inheritance of a disease-causing gene in a family or to find out

whether an individual is at increased risk of developing a certain disease. Markers can also be used to study

the genetics of populations and to map the genes responsible for inherited traits. SNPs, restriction fragment

length polymorphisms (RFLPs), varying number of tandem repeats (VNTRs), microsatellites, insertion or

deletion (indel), copy number variants (CNVs), SVs, and TEs are a few types of genetic markers.

3.1.1 Single Nucleotide Polymorphisms

A single nucleotide polymorphism, or SNP for short (pronounced “snip”), is a type of DNA sequence variation

in which a nucleotide in the genome (sometimes in a particular gene) differs between individuals of the same

7



biological species or between paired chromosomes in an individual [10]. For example, at a specific base

position in the genome, the nucleotide cytosine may appear in most organisms, but in a particular species

it may occasionally be replaced by the nucleotide thymine. SNPs and indels are the most prevalent forms

of markers in the human genome. SNP is a nucleotide polymorphism that can be defined as a substitution

of one nucleotide for another, while an indel is a variation that can be defined as the insertion or deletion

of nucleotide(s). A SNP is different from a mutation which causes a permanent alteration of any size in the

DNA sequence that makes up a gene, such that the sequence differs from what is found in most individuals.

Mutations can be caused by a variety of reasons, including errors that occur during DNA replication, exposure

to ionizing radiation, or exposure to certain chemicals [39]. SNPs are also different from copy number variants

(CNVs), which happen when an entire gene (or other significant portion of DNA) is duplicated or deleted

[38].

SNPs can be found in the coding regions of genes, which can affect the production of proteins. In the

human genome, SNPs account for a large percentage of genetic variation and are important for genetic studies

and genealogical research. There are around 4 to 5 million SNPs in an human’s genome, which implies they

typically occur almost once every 1,000 nucleotides [22]. Despite the relative ease with which SNPs are

discovered in plants with simple genomes, the identification of SNPs in complex genomes faces significant

challenges. The highly repetitive nature of plant genomes is one of the main issues [84]. There are several

ways to identify SNPs and indels in next generation sequencing data:

1. Whole genome sequencing: this is the best approach for identifying SNPs and indels since this approach

allows for the analysis of the entire genome rather than just a few genes or regions.

2. Targeted sequencing: this approach is used when the focus is on a specific gene or region.

3. SNP arrays: this approach is used when the focus is on specific genes or regions and SNPs are already

known.

The impact of SNPs and indels on gene function is not fully understood. However, it is known that SNPs

can change the function of a gene, while indels can disrupt the function of a gene. They can change the

coding sequence of a gene, resulting in a change in the protein that is produced [89] [76]. They can also

change the way that a gene is regulated, which can impact how much protein is produced. For example, a

SNP that affects the codon for the methionine can change the way the protein is encoded and can affect the

way the protein is expressed. Though a majority of SNPs have no impact on growth or health, some of these

genetic variations have turned out to be crucial for understanding an organism’s health. SNPs can result

in phenotypic variability in plants, such as differences in color and size of the fruit, maturing, plant health,

yield components, or susceptibility to various abiotic and biotic stimuli [59].

The type and frequency of these types of variations can be used to determine and measure the relation-

ship between different individuals or groups of individuals, such as different populations. Also, comparing

nucleotide sequence between two different genotypes is a common approach for identifying the molecular

8



basis of a difference in a phenotypic trait. They can be used as markers to track inheritance patterns and

help researchers identify genes associated with traits of interest. SNPs may have an impact on the trait by

altering the function of the gene when they are found within a gene or in a regulatory region close to a gene.

3.1.2 Structural Variations as Novel Genomic Markers

Structural variations (SVs) refer to large-scale genomic changes in the structure of a chromosome that are

larger than 50 bp in length. SVs can be classified as deletions, insertions, inversions, duplications, or translo-

cations [81]. It is a type of genetic variation that is frequently caused by genomic rearrangements that occur

during meiosis or mitosis such as gene loss, gene duplication, or the creation of new genes. They can also be

caused by DNA replication errors, DNA repair errors, exposure to mutagens and rearrangements of chromo-

somal segments. Structural variants can occur in both coding and non-coding regions of the genome. They

can have a range of effects on gene expression and function, depending on their location and size [21].

Structural variants are thought to be a major source of genetic variation and have been implicated in the

development of many human diseases [104]. They can also impact an individual’s response to medication

and their susceptibility to infections. A SV is a section of DNA that differs across individuals in sequence

length, copy quantity, orientation, or chromosomal position. Large insertions and deletions, duplications and

other copy-number variations (CNVs), short tandem repeat (STR) expansions, translocations of genomic

sequences throughout the chromosomes, and inversions of a separated segment of DNA in the reverse position

are all examples of SVs [81]. It is crucial to remember that structural changes can simultaneously affect

characteristics via changing recombination, gene expression, or protein structure, irrespective of how they

affect reproductive isolation per se. This is especially true for inversions since the mutational process that

gives birth to inversions can also result in deletions at the breakpoints [118]. The effects of structural

variations in plants are many and varied. Some common effects include changes in the plant’s appearance,

its ability to photosynthesize, its ability to resist pests and diseases, and its growth rate [104].

SVs are more complicated than SNPs and short insertions and deletions (indels). They can impact the

coding regions of numerous genes or the functionality of genomic segments in diverse ways. Our knowledge of

the evolution of populations, phenotypic polymorphisms, and the functional genome can all be improved by

the study of SVs. Nowadays, structural variation is also being acknowledged as a substantial source of genetic

diversity, even though SNPs were once considered to account for the most selective variation in a genome.

There are various hypotheses to explain how these SVs increase illness risk, and one of them contends that

SVs are infrequent mutations that together cause a considerable burden of disease [74], [97]. SVs, as opposed

to SNPs, can produce large-scale perturbations of cis-regulatory regions, making them more likely to impact

gene expression and phenotypes quantitatively [7].

The widespread detection and genotyping of structural variations is now more feasible than ever due to the

recent developments in molecular and statistical approaches. The advances in long-read sequencing technology

make it easier to find structural variants, especially complicated structural variants [79]. SMRT-SV [58],
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DELLY [101], and LUMPY [69] are examples for detecting SVs using short read sequencing data; while Picky

[45], Sniffles [106], and NanoSV [24] are tools using long read data. With these new technologies, software

program for structural variant detection is developing quickly. After calling SVs, genotyping can be performed

using SVTYPER [18] and SVTOOLS [68]. These genetic markers may be studied in the similar manner and

with the same computational models that have been used for SNP data sets once structural variants have

been found and structural variant genotypes have been determined.

3.1.3 Transposble Elements as Novel Genomic Markers

Transposable elements (TE) are fragments of DNA that can copy or cut themselves then instert in new

chromosome locations. After the emergence of large-scale DNA sequencing, it has become evident that TEs

are the single largest component of the genetic material of most eukaryotes, rather than being an unusual

component of certain genomes. They make up at least 45% of the human genome and 50–85% of the

genomes of certain plants [14]. Barbara McClintock discovered TEs in maize more than seventy years ago

as the genetic agents responsible for the altered pigmentation sectors on mutant kernels. In 1983, she was

awarded the Nobel Prize for this discovery and characterization of the genetic properties of TEs.

TEs are divided into two groups based on the intermediate substrate propagating insertions (RNA or

DNA), and then further divided into families and subfamilies based on structural characteristics. Class

I elements (also known as retrotransposons) use a copy-and-paste mechanism to transpose via an RNA

intermediate, while Class II elements (also known as DNA transposons) use a ‘cut-and-paste’ mechanism

[36]. Plants have the highest concentration of class I elements. Long Terminal Repeat retrotransposons

(LTR-RT), non-LTR retrotransposons, are the two orders of retrotransposons based on structural features.

LTR-RT is the most common order, and it can account for up to 80% of the genome size in plants like wheat,

barley, and rubber trees [92].

When it comes to humans, the phylogenetic analysis of TEs shows that significant amplification stopped

about 35–50 Myr ago [23]. Therefore, it is not surprising that only a small number of human TEs remain

active despite accounting for nearly more than 1,200 Mb of the genome. According to one estimate, only a

few elements out of 500,000 in the LINE family are functional in the human genome. An analysis of closely

related plant genomes (especially grasses) has shown that TE amplification is responsible for the majority of

the variation in genome size, both interspecifically and intraspecifically [36]. It’s reasonable to expect that

active TEs (especially active LTR retrotransposons) could be routinely isolated from plants based on such

circumstantial evidence.

TEs in genomes might be employed as a source of genomic markers for modern plant breeding due to their

widespread distribution and abundant genetic variation [102]. [30] studied how TEs contribute to phenotypic

diversity in tomato. Even though these studies have linked specific TE insertions to a variety of agricultural

characteristics, the phenotypic changes caused by TE insertions in crops have yet to be fully understood. In

addition, developing high-throughput techniques for detecting TE markers on a large scale has been difficult
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but is in progress. TEmarker is a robust tool that can aggregate findings from various TE identification tools

from whole-genome shotgun sequencing data, identify and eliminate probable false-positive TE insertions,

and perform high-throughput genotyping [124]. These findings, taken together, give a paradigm for exploiting

TEs to assist molecular breeding efforts while also providing unique evolutionary insights. The authors of

[124] concluded through GWAS that TE markers have a similar ability to discover association patterns to SNP

markers. Another TE annotation tool is the Extensive de novo TE Annotator (EDTA), which is developed

to automate de-novo TE annotation with various information such as length, number of exons, and read

support [93]. A variety of TE detecting tool were combined with the appropriate filtering and processing

scripts to create the EDTA pipeline, which can be used with any novel genome assembly.

There is a growing opportunity and a need for high-quality annotation of TEs as a result of recent in-

novations in genome sequencing. Also, this high-quality detection and annotation of TEs can give rise to

a significant algorithmic and computational challenge [93]. Due to the varying sequence features of TEs of

different classes, a plethora of software programs have been developed for almost every type of TE. But there

is still a need for methods which can prove to be the gold standard in presenting the comprehensive bench-

marking study. Since transposable elements range from up to 85% in plant genomes, their characterization

and classification are important for understanding the complexities and processes of genome evolution. Fur-

thermore, the annotation of TEs may boost the accuracy of coding area annotations and promote functional

gene studies by relying on the development of different strategies for automatic bioinformatic identification

and classification of transposable elements.

3.2 Phenotypes

The phenotype of an organism is the physical appearance or traits of the organism that is largely dictated

by the genotype [5]. Each phenotype or trait is the result of any number of genetic variants interacting in

complex ways and, given enough analytical power, is predictable to some degree from an organism’s genetic

information [19]. However, a trait is not always predictable from genotype information alone. There are many

other factors that influence how a phenotype is expressed, the simplest example of which is environmental

factors such as sunlight or nutrition availability [105]. Additionally, there are other biological factors that

influence phenotype expression but are not visible via genome sequencing such as DNA methylation or

chromosomal condensation [37]. Finally, there is the concept of epistasis, where the effect of one gene

depends on the alleles of another gene, thus affecting the phenotype [72]. For example, some genetic variants

of the APOE gene increase the risk of developing Alzheimer’s disease [26]. If a person has two variants of

the APOE gene that increase risk, then their risk of developing Alzheimer’s is increased about three-fold.

However, there is also evidence that lifestyle choices (such as diet and exercise) can significantly reduce the

risk of Alzheimer’s disease. So, even if a person has two risk-increasing variants of the APOE gene, they

may be able to reduce their risk of developing Alzheimer’s disease to the same level as someone with no

11



risk-increasing variants by making healthier lifestyle choices.

Phenotype prediction based on genotype information is a complex task, and it is difficult to predict exactly

how a phenotype will be expressed. However, as our understanding of the genetics underlying a trait increases,

we can develop increasingly accurate models for predicting how different gene variants will affect that trait.

Punnett squares are a very simple method for predicting the phenotypes of cross-breeding experiments where

all possible combinations of genes are enumerated with pen and paper [121]. For predicting simple traits,

simple techniques such as Punnett squares can be used, but for traits that involve the interactions of many

different genes, computational methods like GS are required.

3.3 Deep Learning

The ability of traditional machine learning approaches to analyze natural data in its raw form was limited.

For many years, building a pattern-recognition system needed meticulous architecture and a great deal of

domain knowledge to develop a feature extractor that converted the original data into an appropriate internal

description from which the learning subsystem, frequently a classifier, could find or categorize patterns in

the input [70]. Deep learning (DL) techniques emerge from Artificial intelligence (AI). DL makes process of

learning quicker and simpler, which is very advantageous to data scientists who are entrusted with gathering,

analyzing, and interpreting massive amounts of data. Deep learning algorithms are constructed in a hierarchy

of evolving complexity and abstraction, as opposed to conventional machine learning algorithms, which are

linear [33]. Applications of DL models, however, are still not widely used, as demonstrated by the fact that

the majority of these applications are in the domains of computer science and engineering and less so in the

fields of medical imaging, robotics, and computational biology [31]. In order to anticipate the structure and

function of genomic components including enhancers [108], promoters [120], chromatin interaction predictions

[129], levels of gene expression [107], and protein structure prediction with AlphaFold [62], DL applications

are making headway in biology.

Multiple layers of “neurons” are combined to create a general DL architecture. The well-known Rosenblatt

“perceptron”, modeled based on how the brain functions, is the fundamental component of deep learning

models [4]. Deep learning is regarded as one of the finest, if not the best, algorithms for tackling perceptual

issues like image classification. The main reason for this is that DL models employ numerous hidden layers,

which boosts their ability to recognize nonlinear patterns in the data more effectively [86]. This is why the

additional layers in the architecture are referred to be “deep” in DL models [46]. When it comes to prediction

tasks that use multi-layer neural networks with multiple hidden units, deep learning models need to be seen

not as a single technique but rather as a series of learning algorithms that are now quite popular [70]. The

DL movement gained momentum in the last ten years as a result of the development of effective algorithms

such as backpropagation that can estimate parameters in multi-layer, complex neural networks and the fact

that these techniques outperform existing algorithms in a variety of automatic recognition tasks like image
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analysis [9]. A feedforward neural network (FNN), also known as multi-layer perceptron is the simplest DL

topology shown in Fig. 3.1. Recurrent neural networks (RNN), deep belief neural networks (DBNN), and

convolutional neural networks (CNN) are other examples of deep learning topologies.

Figure 3.1: A deep feedforward neural network with five layers: one input layer, four hidden layers,
and one output layer. This figure is adapted from [96].

Feedforward Neural Network (FNN) FNN are typically fully connected, meaning that each neuron in

the network is connected to every other neuron in the network. Information moves in a single path in this

network, from the input neurons via the hidden layers to the output layer. Each connecting edge between

neurons in one layer and those in the next layer may have varied weights. This kind of artificial deep neural

network requires the least amount of training time, often performs well over a wide range of tasks, and is

ideally suited for general prediction tasks when it is assumed that the input data does not share any unique

relationships. However, these networks are vulnerable to overfitting and less efficient when it comes to train

on large datasets. FNNs are limited in their ability to model complex patterns in data. This is because they

are limited to a single layer of hidden units, which limits their ability to learn complex patterns. Additionally,

feed forward neural networks are also limited by their reliance on a linear activation function, which can limit

their ability to learn non-linear patterns.

Recurrent Neural Network (RNN) A RNN is a type of neural network that is used for processing

sequences of data. In FNNs, information flows in one direction from input to output. In a RNN, each

unit receives input from the previous time step as well as the current input, that means information can

flow in multiple directions. This makes RNNs better suited for analyzing temporal data, as they can take
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into account information about what has come before in the sequence. The feature that enables this is the

recurrent connection, which allows the hidden state of the network to be passed from one time step to the

next. These models are well-suited for tasks such as modeling of sequential data, for instance the time series

data or natural language processing.

Deep Belief Neural Network (DBNN) A DBNN is a neural network that is composed of multiple layers

of stochastic latent variables, with each layer representing a higher level of abstraction than the previous one.

A stochastic latent variable is a hidden variable that is randomly generated in order to create a stochastic

process. This process can be used to generate data that appears to be generated by a deterministic process.

Latent variables are important because they can be used to create models that are more accurate than those

that are created using only deterministic variables. A DBNN can learn a representation of data that is much

more compact than the original data, while still retaining all of the important information in the data. This

is because a DBNN can learn to extract the important features of the data at each level of abstraction, and

then use these features to reconstruct the data at the next level. The main limitation of a DBNN is that it

can be difficult to train. This is because each layer of the DBNN needs to be trained separately, and each

layer is only able to learn a limited amount of information. DBNs are most commonly used for unsupervised

learning tasks.

Convolutional Neural Network (CNN) A CNN is a neural network that uses a local connection pattern,

where each node is connected to a subset of the nodes in the previous layer. It has a convolutional layer

that is responsible for extracting features from the input data. In a convolutional neural network, each layer

consisting of many neurons represents complicated relationships among the large datasets. The different

neurons in each layer receive information from the lower hierarchical layers, which is triggered by predefined

activation functions. Activation functions bring non-linearity to the output of each layer to determine the

input of the next layer [86].

For genomics research, a hierarchical learning algorithm like a CNN is attracting attention because it

is anticipated that complex features would be produced by combinations of genes as well as regulatory

components in the genome [28]. Convolution layers can learn gene connections, chromosome folding patterns,

or other biological features. Hierarchical learning enables lower layers to learn simple traits like single SNPs

or methylation sites. We will emphasize CNNs for predicting phenotypes using genomic data in this thesis.

CNNs are made up of a series of layers, each of which performs a specific task. CNNs are based on the

hierarchical pattern in data and combine smaller and simpler patterns imprinted in their filters to create

patterns of increasing complexity. Given how well CNNs capture both temporal and spatial connections of

the input, they are effective tools for visual identification tasks. CNNs make use of the data’s grid structure

and uses images as input. Similar to image data, genomic data naturally has special connections, encoded

by genomic locations of markers. CNNs are effective because they are able to learn the relationships between

different variables and extract features that are relevant to the task at hand. The fitting process is what
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allows the CNN to learn these relationships and extract the features. A typical CNN architecture can be

divided into seven parts. The first five layers detailed below are the basic layers needed for the functioning

of a CNN. The dropout layer and the activation function, are two additional crucial parameters in addition

to these five layers.

1. The input layer: This is where the input data is fed into the network. The input data representation

in a CNN is typically a matrix with shape (w, x, y, z), where w, x, y, and z represent input batch size,

height, width, channels respectively.

2. The convolutional layer: This is the main computational layer and the foundational component of the

CNN. Convolutional layer is the first class of trainable layers. In this layer, a filter is used to apply

convolution to the input data in order to create a matrix known as a feature map [64]. This layer make

use of a sliding window strategy with a set of learnable filters. Each filter is small in size (usually 3×3

or 5×5), and it is applied to the input to produce a feature map. In other words, the filter is moved

across the input’s width and height, and at each spatial position, the dot product between the input

and filter is computed. The parameters of a convolutional layer include the number, size, stride, and

the padding of the filters. The number of filters determines the number of convolutions that will be

performed on the input. The size of the filter determines the size of the region of the input that each

filter will convolve over. The stride determines the sliding window size that the filters will take when

convolving over the input. And the padding of the filters determines how the input matrix is padded

before the convolution is performed.

3. The pooling layer: This layer downsamples the feature maps produced by the convolutional layer. Each

feature map is treated independently by the pooling layer. This reduces the size of features and helps

to reduce overfitting. The pooling layer usually serves as a bridge between the convolutional layer

and the fully-connected output layer. A two-dimensional filter is slid over each channel of the feature

map during the pooling operation, and the features contained within the area enclosed by the filter are

summarised [42]. In max-pooling, the largest element is taken from feature map and is the most used

pooling method.

4. The flatten layer: It is a non-trainable layer. A flatten layer only resizes the input matrix into a

one-dimensional matrix without doing any numerical change. We must use the flatten layer since

fully connected layers can only receive one-dimensional inputs, while the convolutional layers allow

two-dimensional inputs.

5. The output layer: This is the final layer of the CNN. In the output layer, the feature maps are fed into a

fully connected layer. The output of this layer is the prediction. The fully connected layer is the second

trainable layer. It is similar to a convolutional layer, but with the entire input taken into account at

once. Each neuron in this layer is linked to every neuron in the previous layer. As each connection’s

weight is a separate trainable parameter, this leads to a large number of trainable parameters.
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6. Dropout layer: The dropout layer is used to improve the effectiveness of network training and prevent

overfitting. It has no impact on the size of the subsequent layer. Only during training does the dropout

layer run; during inference, this layer executes the identity operation [73]. Neurons are “dropped out”

or set to 0 at random in the dropout layer. The dropout rate parameter of the layer indicates the

likelihood of keeping or dropping a neuron. By limiting the network from picking up on noise or

unrelated features, this layer lessens overfitting.

7. Activation function: This function is used in a CNN to introduce non-linearity into the network. This

non-linearity allows the network to learn more complex functions. Activation functions are usually

applied to the output of each layer in a CNN. Some common activation functions are Sigmoid, hyperbolic

tangent (TanH) and the Rectified Linear Unit (ReLU) function [90]. ReLU is the most commonly used

activation function because it is the simplest and fastest to compute. Sigmoid and TanH are more

computationally expensive, but they allow for a wider range of values. Each activation function has

different properties, we must choose the activation function that is best suited for the task at hand.

A one-dimensional convolutional neural network can be seen in Fig. 3.2.

Figure 3.2: A one-dimensional convolutional neural network fully represented for a two-dimensional
genotype matrix for n number of samples. Yellow represents the filter of size (3 × 1) applied over the
input features in green color. Pink and blue are used to indicate the outputs of the convolution. Blue
represents the output of the pooling layer. Then the layers are flattened and output is given to a
fully-connected layer. The result is the predicted output in the end. This figure is adapted from [96]

The training and testing process in a CNN typically works as follows:

1. A dataset is first split into a training set, a validation set and a testing set. Though there is no hard-

and-fast rule for splitting the dataset, the amount of samples in the dataset influence the dataset split

ratio.
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2. The set of data known as the “training set” is used to train the model and help it discover any hidden

features or patterns in the data. At each iteration, the model receives the same training data repeatedly,

continuing to learn the characteristics of the data. The training set includes a portion of the dataset

which have corresponding labels known as ground-truth values. A diverse collection of inputs should

be included in the training set so that the model can be trained on all possible scenarios and be able to

forecast any unanticipated data sample that might arise in the future. The loss function is used to train

the neural network by minimizing the error between the predicted values and the actual values. A loss

function maps a set of predicted values to a real number that represents how far off those predictions

are from the actual values. The most common loss functions used in CNNs are the mean absolute error

(MAE) and the cross-entropy loss [61].

3. The validation set is a set of data that is not part of the training set and is used to verify the performance

of the model as it is being trained. The major goal of is to avoid overfitting. At each iteration, the

model is evaluated on the validation set while being trained on the training set. The hyper-parameters

of the model are adjusted using the data from this validation process. It tells us whether or not the

training is on the right track.

4. After the model has been trained, it is tested using a different collection of data called the test set that

is never utilized for training or validation. It offers a neutral measure of the final model’s performance

in terms of precision, accuracy, etc. based on the ground-truth values.

A variety of hyper-parameters affect how training functions. Hyper-parameters that affect training include

batch size, epoch count, learning rate, and early stopping functions.

1. Batch size is the number of samples that are processed together in one step in a neural network. The

larger the batch-size, the more data a CNN can process at one time, and the training process will be

faster.

2. Epoch count is the number of times the entire training dataset is passed through the neural network

during training.

3. Learning rate is the speed at which the neural network learns.

4. Early stopping is a technique used to stop the training if the validation error is not decreasing to prevent

overfitting in a neural network.

Incorrectly specified hyperparameters might result in delayed training or overfitting. Overfitting happens

when a neural network just memorises which inputs correlate to which outputs rather than learning a sys-

tematic mapping from major input properties to outputs. Insufficient training data can lead to overfitting,

which appears as a neural network that performs well on training data but poorly on validation data.
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Deep learning is a game-changing technology with enormous promise for use in predictive data science.

By creating particular topologies for the type of data present in plant breeding programs, DL algorithms have

a significant ability to increase prediction accuracy. Due to these factors, it is crucial that GS implement this

innovative technology to improve its effectiveness and precision.

There are a few reasons why CNNs might be more appropriate for genomic selection than other deep

learning topologies discussed earlier. First, CNNs are designed to work with data that has a spatial structure,

which is common in genomic data, while RNN is limited to temporal relationships. Second, CNN is less

sensitive to overfitting. As FNNs face difficulties in learning complex patterns and RNNs can have very

long-term dependencies, which can lead to overfitting if the training data is not very large. Third, CNNs can

be parallelized more easily than FNNs and RNNs, which means that they can be trained on larger datasets

more quickly. Additionally, CNNs are generally good at learning local patterns, which can be important for

detecting patterns in genomic data. Finally, CNN is more efficient at processing high-dimensional data than

FNN. This is because CNN can exploit the structure of the data to reduce the number of parameters that

need to be learned.

The availability of adequate amounts of high-quality training data is a crucial need for DL models. The

fact that deep neural networks are primarily black boxes is one problem with deep learning. After a network

has been trained, it can be challenging to examine the network and examine the layers to determine why the

model makes the predictions that it does or what input components are important to the output.

3.4 Genomic Selection

Genomic Selection (GS) is a method of predicting the genetic value of individuals for a trait, without having to

measure the phenotype of the individuals. It is based on the relationship between phenotypes and genotypes

of individuals within a reference population. Breeders can choose breeding lines to propagate during a

growing season by assessing and anticipating the phenotypes of that line. When examining the impact of

genetic markers sequenced with the most cutting-edge dense marker maps available at the time, Meuwissen

et al. [83] first came up with the term “Genomic Selection” in 2001. Due to the advantages of dense marker

maps, certain genetic markers were possibly found in linkage disequilibrium with the quantitative trait loci

and others were close to them. The availability of detailed marker maps and the possibility of genotyping

multiple individuals for these markers are both made possible by recent developments in molecular genetic

techniques such as Next Generation Sequencing.

In genomic selection methods, the individual effects of each marker are calculated, then the combined

marker effects are used to calculate each individual’s genotypic value, known as genome estimated breeding

value (GEBV) defined in Equation 3.1.

GEBVi =

m∑
j=1

Gijfj (3.1)
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where i = 1, 2, · · · , n and j = 1, 2, · · · ,m (n is the total number of individuals and m is the total number of

markers), Gij is the element in the incidence matrix corresponding to the jth marker of a individual i, and

fj is the estimated effect of marker j.

The first step in the GS process is to create a statistical model using individuals with both genotypic and

phenotypic data available (also known as the training set or reference population). This model is then used

to estimate GEBVs for individuals with genotypic data. Following a ranking of individuals based on GEBVs,

the best candidates are chosen. The effectiveness of GS depends on the choice of a good and large training

population, and appropriate prediction model.

GS has become a routine technique in many plant and animal breeding programs. The International

Maize and Wheat Improvement Center breeding studies have demonstrated that GS can cut the breeding

cycle in half at the very least and create lines with much higher agronomic performance [25]. GS has been

used in breeding projects for crops including, chickpea, groundnut [117], soybean [123], barley [15], wheat

[48], strawberry [41], millet [75], and maize [80].

3.4.1 Existing methods in GS

Broadly speaking, GS methods can be classified into two categories: conventional statistical modeling and

deep learning methods. Existing methods in both categories only consider the SNP variants as genomic

markers to predict the phenotypes. In this section, we briefly summarize two models in each category. These

four models are compared with our proposed NovGMDeep model in Section 5.3 and Section 6.3 to demonstrate

the prediction of phenotypes using SV, TE, and SNP markers.

Ridge Regression-Best Linear Unbiased Prediction

One of the most widely used statistical models for GS is Ridge Regression-Best Linear Unbiased Prediction

(rrBLUP) [32]. The model is created using the linear regression algorithm, the genotype matrix, and the

phenotype vector as defined in Equation 3.2.

y = µ + Xq + e (3.2)

where y is the phenotype data vector, µ is the overall mean vector of random effects, X is the design matrix

with a vector q of fixed effects, and e is the residual effect.

Under the notion that marker effects follow a normal distribution with a modest but non-zero variance,

the ridge regression technique is used to estimate the joint effects of all genotypic markers at the same time.

The mixed.solve function in the rrBLUP package was used to solve the rrBLUP model.

Genomic Best Linear Unbiased Prediction

Genomic best linear unbiased prediction (gBLUP) [20] is another statistical modeling method for estimating

an individual’s genetic performance based on its genomic associations. A genomic relationship matrix is used
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in gBLUP, which is used to represent genomic markers as defined in Equation 3.3.

y = Zb + Wg + e (3.3)

where y is the phenotype data vector, Z is a design matrix with a vector b of fixed effects for each individual,

W is a design matrix allocating records to genetic values with a vector g of additive genetic effects for each

individual, and e is the residual effect.

To make more accurate merit predictions, the matrix specifies covariance between individuals based on

observed similarity at the genomic level rather than predicted similarity based on lineage. gBLUP has been

used to predict merit in cattle breeding, in disease risk prediction, as well as in the calculation of variance

components and genetic heritabilities [51]. The BGLR function in the R package was used to solve the GBLUP

model.

DeepGS

The DeepGS model has been developed using a deep convolutional neural network with an 8 − 32 − 1

architecture [78]. The final output represents the predicted phenotypic values for the analyzed individual

markers. The DeepGS model has been trained and tested using 10-fold cross-validation on Iranian bread

wheat (Triticum aestivum) landrace accessions with eight measured phenotypes. The phenotypes include

grain length, grain width, grain hardness, thousand-kernel weight, test weight, sodium dodecyl sulphate

sedimentation, grain protein, and plant height. A backpropagation algorithm has been used to optimize the

parameters of the model. The number of epochs has been kept at 6000, momentum has given a 0.5 value,

weight decay is 0.00001 and the learning rate of the model has been set to 0.01. The DeepGS model utilizes

hidden variables to collectively represent features in the genome-wide markers while making predictions.

Convolutional, dropout, and sampling layers have been employed in the model to reduce the complexity of

large volume genomic data.

G2PDeep

The quantitative phenotypic prediction problem was treated by G2PDeep as a regression problem [128].

Data on zygosity and SNPs for Soybean with five phenotypes, including grain yield, height, moisture, oil, and

protein were used to train the model. For genotypes and missing data, one-hot binary encoding is employed to

express zygosity data. Each genetic marker is displayed as a four-dimensional and five-dimensional vector for

zygosity and SNP data, with 1 for the matching genotype and 0 for the other genotypes. The model is made

up of a dual-CNN layer and a fully connected neural network. The encoded genotypes are transferred by dual-

CNN, which has two concurrent CNN streams, followed by single-CNN to enhance marker representation.

The flattened layer with the combined representation of markers is passed to a fully connected neural network

with only one neuron in the output layer to estimate the quantitative phenotype. The two CNN layers have

kernel sizes of 4 and 20, as well as the same number of 10 filters, in the left stream. In the right stream, a
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single CNN layer with a kernel size of 4 and 10 filters is utilized. The add-up layer combines the output from

two streams, followed by a single CNN layer with a kernel size of four and ten filters. The fully connected

layers with 512 and 1 neurons serve as regression blocks for predicting phenotype.

The two above-discussed statistical methods have been used as predictive models for a plethora of both

plant and animal species for the last two decades. However, these conventional models typically assume that

the genotype random effects follow a normal distribution, and each genotype’s contribution to phenotypes

is considered an independent attribute. Whereas, it is unknown in practice how genotype effects behave.

Moreover, these models do not consider non-linearity between the variables, as SNPs may also interact with

other SNPs to cause complex traits as a result of epistasis. Though both of these BLUP models have given

equivalent prediction results in the past, gBLUP is known for its computational efficiency [20]. For the

aforementioned DL models, it is still early to compare as there is a limited number of applications for these

in the literature.

3.4.2 GS using Novel Genomic Markers

All above-discussed methods only consider the SNP variants as genomic markers to predict the phenotypes.

For standard linear models, the number of genome-wide SNP features largely exceeds the sample size, leading

to overfitting. For deep learning models, studies have shown that these methods base their predictions on

overall genetic relatedness, rather than on the effects of particular markers [115]. To mitigate these limitations,

instead of SNPs, we propose to use SVs and TEs to represent genomic variations and explore their effectiveness

in genomic predictions. We have provided an overview of SVs and TEs in Section 3.1.2 and Section 3.1.3

and discussed their importance in phenotypic prediction in plants.

This research demonstrates the need of looking further than SNPs for genomic selection. And how

significant sources of variation such as SVs and TEs can help the breeders in selection of desired traits more

accurately and improve the efficiency of their breeding programs. The proposed model in Chapter 4 makes

effective predictions using novel genomic variations. Although our method focuses on representing structural

variations and TE markers for predicting phenotypes, SNP variation is also compatible with the model.

Early plant genomic investigations were hampered by technological limitations and a lack of high-quality

reference genome assemblies, which prohibited a detailed analysis of both SVs and TEs in plants. Recent

improvements in genomic technology, notably whole-genome sequencing and long-read mapping, offer the

generation of high-quality plant genome and pangenome assemblies, as well as exposure to a diverse set of

SVs for evaluating their possible significance in plant phenotypic diversity [127]. Similarly, the transposition of

TEs, which are common in most eukaryote genomes, accounts for a considerable amount of genomic variation.

As a result, TE-derived molecular markers are useful resources for unraveling the genomic variations of both

plants and animals [102]. The aim of this work is to shed light on the unrecognized function of SVs and TEs

in genotype-to-phenotype associations, as well as their extensive significance and value in crop development.
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4 NovGMDeep: a convolutional neural network for

genomic selection using novel genomic markers

In this chapter, we will discuss general strategies to represent novel genomic markers as the input to the

model, the model design and architecture, and performance metrics.

4.1 Genomic marker representation

DNA sequence variation and associated information are stored in variant call format (VCF) files. A VCF file

contains information about genetic variants in a tab-delimited text format. Each line in a VCF file represents

a single genetic variant. For example, a variant could be a SNP, indel, SV or TE. The file format consists

of a header followed by data lines. The header line contains information about the format of the data lines

that follow. The data lines contain information about individual genetic variants in ten columns with column

headers listed as follows:

CHROM POS ID REF ALT QUAL FILTER INFO FORMAT SAMPLE

The first five columns are mandatory and must be in order. The remaining columns are optional and can

be in any order.

1. CHROM: The name of the chromosome or contig where the variant is located in the reference genome.

2. POS: The position of the variant on the chromosome or contig, with the first base having position 1 in

the reference genome.

3. ID: A unique identifier for the variant.

4. REF: The reference allele for the variant.

5. ALT: The alternate allele for the variant. A basic string made up of the letters A, C, G, T, N, ∗, or an

angle-braced ID String (“<ID>”) are all options to represent an alternate allele. The reserved allele,

∗, is an allele that is not found in the population. The ID string in the ALT column indicates the

type of the variant. For example, <DEL> for deletion, <DUP> for duplication, <INV> for inversion,

<INS:ME:ALU> for insertion of ALU retrotransposon element, <INS:ME:LINE1> for insertion of

LINE1 retrotransposon element, etc.

6. QUAL: A quality score for the variant.
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7. FILTER: One or more filters that have been applied to the variant. “PASS” means that the variant

called at that position has passed all of the filters that have been applied to the data.

8. INFO: Additional information about the variant.

9. FORMAT: It describes the order of the genotype fields for each individual. It includes information on

the individual’s genotype, allele depth, quality, and other information.

10. SAMPLE: It contains the genotype data of the variant in the order described in the FORMAT column

for a particular sample. There can be multiple columns of different samples for a variant.

Table 4.1: Example of a few types of variants encoded in a VCF file. In the INFO column, SVTYPE
indicates the type of structural variant (INV for inversion, DEL for deletion, INS for insertion, DUP
for duplication); END marks the end position of the variant; SVLEN is the length of the variant; and
CIPOS/CIEND records confidence interval around POS and END positions for imprecise variants. For
precisely known variations, the REF and ALT columns contain the full sequences for the alleles. For
imprecise variations, the REF field may include a single base, while the ALT fields may contain alleles
that are descriptive (<ID>). The last column, NA00001 (sample name), contains the genotype data
of the variants in the order (GT:GQ:CN:CQ) described in the FORMAT column (GT is genotype; GQ
is genotype quality; CN is the copy number genotype for imprecise events; CQ is the copy number
genotype quality for imprecise events).

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA00001

1 2827694 rs2376870 CGTGGATGCGGGGAC C . PASS SVTYPE=DEL; END=2827708; HOMLEN=1; HOMSEQ=G; SVLEN=-14 GT:GQ 1/1:14

2 321682 . T <INV> 6 PASS SVTYPE=INV; END=421681; SVLEN=99999; CIPOS=56,20; CIEND=10,62 GT:GQ 0/1:12

2 14477084 . C <DEL:ME:ALU> 12 PASS SVTYPE=DEL; END=14477381; SVLEN=-297; CIPOS=-22,18; CIEND=-12,32 GT:GQ 0/1:12

3 9425916 . C <INS:ME:L1> 23 PASS SVTYPE=INS; END=9431943; SVLEN=6027; CIPOS=-16,22 GT:GQ 1/1:15

3 12665100 . A <DUP> 14 PASS SVTYPE=DUP; END=12686200; SVLEN=21100; CIPOS=-500,500; CIEND=-500,500 GT:GQ:CN:CQ ./.:0:3:16.2

The five rows in Table 4.1 contain information for different variants. The details of these variants are

described as follows.

Row 1. Sample NA00001 has a homozygous deletion of length 14 at position 2827694 in chromosome 1.

This is an accurate deletion with a known breakpoint, and a micro-homology of one base. Micro-homology

is defined as one or more base pairs (bp) of perfectly matching sequence surrounding the breakpoints.

Row 2. An imprecise inversion in sample NA00001 (Figure 4.1). The length of the inverted DNA fragment

is 99999 bp.

Figure 4.1: An inversion (INV) of 99,999 bp in chromosome 2 of the sample.
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Row 3. An imprecise deletion of an ALU retrotransposon component (297 bp) from the reference (Fig-

ure 4.2).

Figure 4.2: A deletion (DEL) of 297 bp.

Row 4. An imprecise L1 retrotransposon element insertion of length 6027 bp in relation to the reference

(Figure 4.3).

Figure 4.3: An insertion (INS) of 6,027 bp.

Row 5. A roughly 21Kb imprecise duplication in chromosome 3 of sample NA00001 (Figure 4.4). The

two unknown haplotypes (./.) indicate the missing genotype for this sample.

Figure 4.4: A duplication (DUP) of 21,100 bp.

TE variants are mobile genetic elements that can move around within the genome. There are two main

types of transposons: those that move around by a “copy-and-paste” mechanism and those that use a “cut-

and-paste” mechanism. Retrotransposon variants use RNA as a template to make a copy of themselves and

insert the copy into a new location within the genome (Figure 4.5). An example of a L1 retrotransposon

element can be seen in Table 4.1. DNA transposons cut themselves out of their current location and insert

themselves into a new site (Figure 4.6).
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Figure 4.5: Retrotransposons following a “copy-and-paste” mechanism. This figure is adapted
from [2].

Figure 4.6: DNA transposons following a “cut-and-paste” mechanism. This figure is adapted from [2].
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The subsequent combination of alleles that an individual possesses for a specific gene is their genotype

[103]. The genotypes of all the samples are stored in the columns after the FORMAT column as seen in

Table 4.1. The genotypes in Table 4.1 are in the format ‘0/0’ and ‘1/1’ accompanied by the genotype

quality, copy number genotype for imprecise events and copy number genotype quality for imprecise events.

Genotypes in plant species are represented as either haploid or diploid or polyploid. A haploid genotype

comprises a single set of chromosomes for generating the phenotype whereas a diploid genotype contains two

sets of chromosomes, each of which is required for phenotype generation. Genotypes are usually represented

as ‘0|0’ or ‘0/0’, where ‘|’ and ‘/’ indicates the phased and unphased genotypes respectively. To gain a

complete picture of genetic variation, phasing entails separating maternally and paternally inherited copies

of each chromosome into haplotypes. A genotype with at least one set of explanatory haplotypes is referred

to as a phased genotype. Unphased genotypes are those for which no set of explaining haplotypes have been

identified [88]. The genotype is considered to be homozygous if all the haplotypes for a specific site have

the same value. Otherwise, the genotype is considered heterozygous. A diploid organism either inherits two

copies of the same allele or one copy of two different alleles from its parents. If an individual inherits two

identical alleles, their genotype is homozygous at that locus. However, if they possess two different alleles,

their genotype is heterozygous for that locus. Alleles of the same gene are either autosomal dominant or

recessive. An autosomal dominant allele will always be preferentially expressed over a recessive allele.

There are two ways to represent genotypes in genomic selection models. The first way is to represent each

allele as a single integer, with 0 representing the reference allele and 1 representing the alternate allele. For

example, the genotype AA would be represented as 0, the genotype Aa would be represented as 1, and the

genotype aa would be represented as 2. The second way is to represent the genotype as a one-hot encoding

integer. It is a representation of a genotype where each allele is represented by a unique integer. For example,

each genotype is represented as a vector of 0s and 1s, with each element of the vector corresponding to a

different allele. A detailed explanation of the one-hot encoding representation can be found in Section 5.2

and 6.2.

The number of genomic markers needed to obtain a complete sampling of an organism’s genetic variation

is usually lower for an organism with a smaller genome than one with a bigger genome. A dataset with

fewer genomic markers requires less memory and training time for a neural network, while a dataset with

millions of genomic markers is undesirable due to the computer resources they demand. For the case study in

Chapter 5, we used the genome of A. thaliana to compare the effectivity of SVs and SNPs (which are usually

found in millions in most of the genomes) in phenotype prediction. And for the case study in Chapter 6, the

genome of O. sativa is used to compare the effectivity of TEs and SNPs.

26



4.2 Phenotypic Data

The availability and association of phenotypic information with each sample is also crucial for a neural

network to be trained as it learns to predict labels based on inputs. The genotype serves as the input and

the phenotype serves as the label for each individual in a dataset. Labeled samples are utilized for training,

validation and testing, allowing a neural network to predict the phenotypic data for unlabelled samples after

it has been trained. Each genotype must have corresponding phenotypes as labels to be utilized for training or

validation. Most of the current genotype databases lack information on associated phenotypes with matching

samples. High costs of genome sequencing technologies and data privacy and security could be some of the

challenges.

4.3 Model Architecture

The fundamental idea behind a convolutional neural network architecture is to start with a broad and shallow

feature space and gradually make it tighter and deeper as the network progresses. In order to deepen the

feature space and aid in the learning of more levels of abstract features, the number of filters is raised. So

in the process of model architecture design, as we advance through the layers of our convolutional neural

network architecture, the number of channels typically rises or stays the same. Add layers until the model

starts overfitting. Once we reach a high accuracy level in the validation set, we can reduce over-fitting by

using regularization components, dropout, batch normalization, data augmentation, etc.

Hyper-parameter tuning of CNNs is a challenging task. We must keep checking if we select the appropriate

parameters while creating the CNN architecture. The architecture selected for this work was chosen after

keeping all these conventions in mind and playing with different hyper-parameters to be able to predict

phenotypes with less overfitting.

We also considered RNNs for the model architecture in this thesis. The issue with RNNs is that they only

have a single weight matrix that is used by all of the recurrent units, which makes it difficult for them to find

a variety of spatial features. While a CNN can use several kernels or filters in a layer to locate a variety of

features. The RNN model needed numerous layers and an inordinate amount of time to replicate the same

as the proposed CNN architecture because they can only find a small number of sequences at a single layer.

For both the case studies in Chapter 5 and 6 similar CNN network architecture is utilised, however layer

shapes were adjusted to accommodate the various input sizes as discussed in Section 5.2 and 6.2. The number

of different genomic markers in the input samples is always equal to the number of neurons in the input layer

of a CNN. The number of neurons in each consecutive layer is subsequently decreased by convolutional layers

that follow the input layer. Although the architecture (the selection and arrangement of layers) is the same

for each dataset, the size of those layers must match the input size.

NovGMDeep, a deep one-dimensional (1D) convolutional neural network to predict phenotypes, is presented
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in this study. It has four 1D convolutional layers, a single 1D max-pooling layer, a flatten layer and one

dropout layer followed by a fully connected dense layer (Figure 4.7).

Figure 4.7: NovGMDeep architecture. The first convolutional layer has 16 filters of kernel size five.
The second layer comes with 32 filters of kernel size five. The third one has 64 filters of kernel size
three. And the last convolutional layer has 128 filters of kernel size three. The max-pooling layer has
a pool size of two and stride of two. At last, there is one fully connected layer as the regressor with
one output neuron.

As the backbone of the model, we use four 1D convolutional layers of the following sizes. The first layer

includes 16 filters of size five. For the next layers, we doubled the number of filters in each layer and reduce

the filter sizes of the last two layers to three. We double the number of filters in each layer to increase

the depth of the network. This allows the network to learn more complex features. We reduce the filter

sizes to reduce the amount of resources required to train the network. If the input to the convolution layer

is represented as X, filter as F , bias as B, and the output of the convolution layer as Y , the convolution

operation between X and F including bias is defined in equation (4.1).
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Y (Ni) = F ∗X (Ni) + B (4.1)

where N is the batch size and ∗ is the cross-correlation [16] operator.

For all the convolutional layers, ReLU activation function [3] (Equation 4.2), LecunNormal kernel initial-

izer [49], and L1L2 kernel regularizer [66] is used with same padding.

ReLU (Y (Ni)) = max (0, Y (Ni)) (4.2)

To reduce the high dimensionality of the prominent features of the last convolutional layers, a one-

dimensional max-pooling layer is used after the convolutional layers with a window size of two and a stride

of two. It minimizes the amount of the input to the following layer by taking only the maximum values

as the most important features, which cuts the size of the input into the following layer in half [6]. Then

the extracted feature map from the model’s backbone is flattened using a flatten layer and fed into the

fully connected layer which is our phenotype predictor. Fully connected layers link every node in the input

to every node in the output, but they do not capture spatial information. Due to the high number of

input features which results in a large-size feature map, the dropout layer with the dropout ratio of 0.6 is

used before the fully connected layer to reduce computational complexity and avoid overfitting. We used

the Adam [65] optimizer with a learning rate of 0.0003. The Adam optimization algorithm is applied to

iteratively adjust the network weights based on training samples. Moreover, we utilized mean absolute error

as the loss function. The NovGMDeep is developed with Keras [46], an open-source software library that

provides a Python interface for artificial and deep neural networks. The source code of NovGMDeep is publicly

available on Github (https://github.com/shivanisehrawat4/NovGMDeep.git).

Due to a large number of features, four convolutional layers were used to extract the most representative

feature maps for the linear predictor. On one side, because of the small number of training samples, increasing

the number of layers made the model more complex and led to overfitting. On the other side, decreasing

the number of layers as well could not provide the predictor with informative feature maps. Even with

four convolutional layers, we had a huge output feature map which resulted in a complex linear predictor.

Therefore, we needed to use a dropout layer to decrease the complexity of the predictor and avoid overfitting.

Each of these choices were made based on the stability of the model performance and behavior on the

validation and test sets during and after model development and training.

The model is trained separately on three different types of data: SVs, TEs and SNPs. Also, we used

K-fold cross validation to select the best model. It is a process for model selection that involves partitioning

data into K subsets, using K-1 subsets to train the model, and then evaluating the model on the remaining

subset. This process is then repeated K times, with each subset serving as the validation set once. The

model selection process is then repeated for each value of K.
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4.4 Performance Metrics

To evaluate the model, statistical analysis using Pearson’s coefficient of correlation was performed among

the predicted and observed phenotype values. The results show that SVs and TEs are more informative for

phenotype prediction than SNPs. PCC is a model-free method, and it, therefore, shows the nature of the

data without depending on any of the existing models. It is commonly used in statistical analysis for the

evaluation of the model and measuring the relationship between two variables.

The model predicts quantitative phenotype as a real number which is the model’s output. The predicted

phenotypes are later compared with the ground-truth values to evaluate the model performance. As an

evaluation metric, we use the Pearson’s coefficient of correlation (PCC) between the predicted and observed

phenotypes. Five assumptions mentioned below must be met before we calculate the PCC between two

variables [91]:

1. Level of Measurement

2. Linear Relationship

3. Normality

4. Related Pairs

5. No Outliers

As far as our datasets are concerned, all of the conditions are true and the detailed analysis can be found in

Appendix B.

PCC [43], normally denoted by ρ, is a measure of the linear correlation between two variables (X and Y ),

whose values range from -1 to 1, with 1 indicating total positive correlation, 0 indicating no correlation, and

-1 indicating a total negative correlation. It is defined as the covariance of the two variables divided by the

product of their standard deviations.

ρ =
cov(X,Y )

σXσY
, (4.3)

where cov(X,Y ) is the covariance of X and Y , σX is the standard deviation of X, and σY is the standard

deviation of Y .

For a classification task, the ability of a model can be indicated by calculating its accuracy to predict the

class label correctly. A regression model’s performance or competence can be indicated by calculating the

error in those predictions. As we deal with a regression task and try to predict numerical phenotypes in this

study, such as plant height, we are more interested in how closely the predictions came to the actual values.

This can be measured by error metrics. For assessing and summarizing the effectiveness of our proposed

model, mean absolute error (MAE) metric was employed.
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The MAE metric is used to calculate the validation loss on the test set. MAE refers to the magnitude of

difference between the prediction of observation and the true value of that observation.

MAE =
1

N

N∑
i=0

|Pi −Oi|, (4.4)

where N represents the total number of individuals present in the training set and Pi and Oi denote the

values for the ith predicted and ith observed phenotypes.

The Standard Deviation (SD) is a measure of how spread out numbers are. SD of MAE is calculated to see

the deviation among all the calculated MAE values for each sample in the test set.

SD =

√√√√ 1

N

N∑
i=1

(xi − µ)2, (4.5)

where xi is a value in the data set, µ is the mean of the data set, and N is the number of data points in the

population.

Thus, the MAE tells us what the average value for the test set is and the SD tells us what the average

scatter of MAE values is for the same test set, around the mean.

31



5 Case Study #1: Phenotype Prediction using SV

markers

In this chapter, we will discuss the phenotype prediction experiment for A. thaliana using SV markers.

5.1 A. thaliana dataset description

The flowering plant, A. thaliana, is an ideal plant species for researching genotype-phenotype-environment

interactions because their naturally inbred strains allow for repeated phenotyping and have adapted geno-

types under a variety of controlled circumstances. A. thaliana is quite appealing in scientific research for

surveying the molecular and phenotypic effects at the species level [119]. It is found in a wide variety of

environments around the world, and representative accessions have been extensively phenotypically and ge-

netically characterized. It matures, replicates, and reacts to stress and diseases in a manner that is similar

to that of many agricultural plants. Additionally, because Arabidopsis is simple, cheap, and prolific, it en-

ables large-scale genetic studies that frequently involve several thousand plants. Moreover, the relatively

tiny genome of Arabidopsis makes genotyping easier and cheaper compare to some large genomes. The 1001

Genomes “A Catalog of A. thaliana Genetic Variation” [100] is a database where whole-genome sequencing

has been performed on over 1000 A. thaliana accessions which makes the genomic selection and genome-wide

association studies on this species possible.

The full VCF variant files containing the structural variants data for the 1, 301 A. thaliana samples are

publicly available on European Variation Archive (PRJEB38975) [44]. They were used in this study, as well

as the SNPs and indels for 1, 135 accessions of A. thaliana [8]. The SV dataset includes several types of SVs,

such as deletions, duplications, and inversions. The lengths of these variations span from 50 bp to 10 kb.

The phenotypes of matched samples were downloaded from AraPheno, the 1001 genomes project [112].

Flowering time, rosette leaf number, cauline axillary branch number, and stem length were used with their

definitions listed as follows.

1. Flowering time: Generally scored as days from seeds in the soil until the first open flower.

2. Rosette leaf number: A shoot system morphology trait which is the number of leaves in the shoot

system of A. thaliana.

3. Cauline axillary branch number: A shoot axis morphology trait which is the amount or pattern of
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branches arising from the shoot axis.

4. Stem length: A stem morphology trait often measured from the soil surface to the highest point on the

stem.

All the sources of the datasets used in this experiment can be found in Appendix A.

5.2 SV marker representation

A. thaliana is a diploid species and has phased genotypes as ‘0|0’ and ‘1|1’ which means homozygous for

reference allele and homozygous for alternate allele respectively. Although SVs are smaller in numbers

than SNPs, which account for almost a million variant sites per genome, they are more informative, as

they account for a higher number of nucleotide differences due to their size. Different types of SVs such

as inversions, duplications, and deletions may capture the genomic variations better than the SNPs. We

propose a strategy as shown in formula 5.1 to represent the SVs. The SV genotypic data for inversions,

duplications, and deletions are transformed using one-hot encoding as binary arrays. In one-hot encoding,

given a dataset with different features, the encoder finds the unique values per feature and transforms the

data to a binary one-hot vector [95]. Different arrays for different types of SVs were chosen so that the details

of genomic variations were well represented and understandable by the model. For the SNP and indel data,

the same one-hot encoding strategy was used, 0|0 for reference allele, 1|1 for alternate allele, and .|. indicating

the missing genotypes. As shown below, INV represents inversions, DUP represents duplications, and DEL

represents deletions:

0|0(INV ) → [1, 0, 0, 0, 0, 0]

1|1(INV ) → [0, 1, 0, 0, 0, 0]

0|0(DUP ) → [0, 0, 1, 0, 0, 0]

1|1(DUP ) → [0, 0, 0, 1, 0, 0]

0|0(DEL) → [0, 0, 0, 0, 1, 0]

1|1(DEL) → [0, 0, 0, 0, 0, 1]

.|.(MissingV alue) → [0, 0, 0, 0, 0, 0]

(5.1)

For the SV dataset, the data is represented in the format of a 3D matrix A(x× y × z) where x represents

the number of accessions, y represents number the SV/SNP markers, and z represents the size of one-hot-

encoded arrays. As one example, in the A. thaliana SV dataset, there are 914 accessions, 155, 440 genotypes,

and 6 variant types as defined in formula (5.1), therefore, x = 914, y = 155, 440, and z = 6 respectively. As

another example, for the A. thaliana SNP dataset, x = 923, y = 500, 000 (only 500, 000 SNP genotypes were

selected randomly from the 10 million genotypes to save computational resources), and z = 2 respectively.
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5.3 Results and Discussion

We trained the NovGMDeep model on both SVs and SNPs variations of the accessions and their associated

phenotypes for A. thaliana. We splitted all the samples into training and testing subsets with the ratios of

80% and 20%, respectively. Note that we applied the k-fold cross-validation [50] on the training sets in the

model development step. Cross-validation process has a single parameter called k that refers to the number

of groups that a given data sample is to be split into. In this process, the whole training dataset is randomly

split into independent k-folds. Then, k-1 folds are used for the model training and one fold is used for

validation. This procedure is repeated k times (iterations) so that k number of performance estimates for

each iteration is obtained. In each iteration, the model is evaluated on the validation set while being trained

on the training set. In most cases, the choice of k is 5 or 10, but there is no formal rule. However, the value of

k relies on the size of the dataset being used. The run-time of cross-validation algorithm and computational

cost come along with large values of k, that’s why we chose k=3. The best models are saved while training

for the three rounds of cross-validation. Then, those best models are used to calculate the PCC value on the

test set. Later, the average of the three PCC values obtained from testing was finally used in the results to

evaluate the model.

PCC was used to find the correlation between the observed and predicted phenotypes. The correlation

between the two quantitative variables assessed for the same samples is depicted by a scatter plot in Figure 5.1.

(a) (b)

Figure 5.1: PCC analysis of A. thaliana for predicting flowering time using (a) SV and (b) SNP
datasets. (a) The orange line represents the trend of the relationship between predicted and ground-
truth values (blue points). The graph shows that predicted values by the model positively follow the
ground truth values with a high confidence level (minimum fluctuation). (b) The graph shows that
predicted values by the model positively follow the ground-truth values but with a lower confidence
level (more fluctuation).

The horizontal axis displays the true values of the phenotypes, while the vertical axis shows the values

of the predicted phenotypes. Each value in the data is represented by a point on the graph. The strength

of the association between the two variables is a key aspect of a scatterplot. The linear regression line

shows the best fit between predicted and true values. The slope conveys information about the strength of
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the relationship between true and predicted values. When the slope is 1, the correlation between the two

comparable variables is the strongest. Figure 5.1(a) and Figure 5.1(b) show the results between ground truth

and predicted phenotypic values for NovGMDeep using SVs and SNPs respectively for predicting flowering

time of A. thaliana. These PCC graphs were created on the testing samples and show the accuracy of

the proposed model in predicting phenotypes. The orange line in these graphs represents the trend of the

relationship between the observed and predicted phenotypes (blue points) by the NovGMDeep model.

As shown in Figure. 5.1, the predicted values which are close to the fitting line indicate a strong correlation,

and values far from the fitting line indicate a weak correlation between the true and predicted values.

The graphs for phenotypes of rosette leaf number (Figure 5.2), cauline axillary branch number (Figure 5.3),

and stem length (Figure 5.4), all showed similar results as flowering time for A. thaliana.

(a) (b)

Figure 5.2: PCC analysis of A. thaliana for predicting rosette leaf number using (a) SV and (b) SNP
datasets. (a) The orange line represents the trend of the relationship between predicted and ground-
truth values (blue points). The graph shows that predicted values by the model positively follow the
ground-truth values with a high confidence level (minimum fluctuation). (b) The graph shows that
predicted values by the model positively follow the ground-truth values but with a lower confidence
level (more fluctuation).
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(a) (b)

Figure 5.3: PCC analysis of A. thaliana for predicting cauline axillary branch number using (a) SV
and (b) SNP datasets. (a) The orange line represents the trend of the relationship between predicted
and ground-truth values (blue points). The graph shows that predicted values by the model positively
follow the ground-truth values with a high confidence level (minimum fluctuation). (b) The graph
shows that predicted values by the model positively follow the ground-truth values but with a lower
confidence level (more fluctuation).

(a) (b)

Figure 5.4: PCC analysis of A. thaliana for predicting stem length using (a) SV and (b) SNP
datasets. (a) The orange line represents the trend of the relationship between predicted and ground-
truth values (blue points). The graph shows that predicted values by the model positively follow the
ground truth values with a high confidence level (minimum fluctuation). (b) The graph shows that
predicted values by the model positively follow the ground-truth values but with a lower confidence
level (more fluctuation).
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Performance Evaluation

The aforementioned two statistical methods in Section 3.4.1, rrBLUP and gBLUP, were evaluated with the

same data to compare their overall prediction performance with NovGMDeep. The mixed.solve and BGLR

function in the rrBLUP and gBLUP package is used to solve these BLUP models. These packages are ran in

R environment. The genotype data is encoded as integer numbers: 0 & 1 indicating the reference & alternate

genotype of an inversion respectively; 2 & 3 indicating the reference & alternate genotype of a duplication

respectively; 4 & 5 indicating the reference & alternate genotype of a deletion respectively; -1 indicating the

missing genotype. The training and testing datasets are splitted with ratios of 80% and 20%, respectively.

And 3-fold cross-validation was applied in the same manner as the proposed model described in Section5.3.

As shown in Table 5.1, phenotypes predicted by NovGMDeep show the strongest correlations with observed

phenotypes. Therefore, NovGMDeep outperforms the other statistical models in predicting phenotype with SV

data. Moreover, phenotypes predicted by NovGMDeep using SV data show stronger correlations with observed

phenotypes than the ones predicted using SNP data. This shows the effectiveness of using SV marker data

instead of SNPs for phenotype prediction.

Table 5.1: Pearson’s coefficients of correlations between the observed and predicted phenotypes on
the testing set. SVs and SNPs are used to capture the genomic variations among the accessions of A.
thaliana. Results show the average of the three PCC values taken from the three-fold cross-validation
results of the model. The highlighted values show the highest PCC values obtained using SVs.

Model Flowering Time Rosette Leaf Number Branch Number Stem Length

PCC (SVs) PCC (SNPs) PCC (SVs) PCC (SNPs) PCC (SVs) PCC (SNPs) PCC (SVs) PCC (SNPs)

rrBLUP 0.664 0.520 0.653 0.547 0.675 0. 513 0.690 0.502

gBLUP 0.657 0.516 0.662 0.512 0.683 0.530 0.681 0.514

NovGMDeep 0.788 0.594 0.742 0.563 0.761 0.581 0.759 0.572

The MAE loss was watched to select the best model during the training process of 150 epochs with early

stopping. The model with the lowest MAE was selected to evaluate the model on the test set as shown in

Table 5.2.

The SD of all the MAE values on the test set was also calculated to see the deviation among those values.

The MAE measures the average absolute error over the dataset while the SD measures how far the absolute

error on each training point is from the MAE. A low SD means that errors across the dataset tend to have

similar values close to the mean. A high SD tells that the errors are spread over a bigger range. This can

provide insight into the model: a model with a low MAE indicates a good “average” performance over the

dataset, and if that model also has a low SD then it tells that the performance is not only good on average

but also uniform on the dataset. The low values of MAE and SD of MAE for the SV markers show higher

prediction accuracy of NovGMDeep model over the SNPs.

Figure 5.5 demonstrates a typical training process for all the datasets. The trend shows that the model
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Table 5.2: Mean Absolute Error (MAE) and Standard Deviation of MAE calculated by NovGMDeep

model on the test sets for predicting different phenotypes of A. thaliana using SV and SNP datasets.

Phenotypes SVs SNPs

MAE SD MAE SD

Flowering Time 7.64 6.51 13.71 11.56

Rosette Leaf Number 8.23 7.02 14.89 12.47

Branch Number 7.89 6.52 14.84 12.62

Stem Length 7.92 6.71 14.31 13.09

keeps learning the discriminative features of the data for the first few epochs as both the training and

validation losses are decreasing to a significant amount at the start. For the rest of the epochs, the flattened

part of the graph illustrates that the model is capable to handle the co-variate shift between the training

and validation set because now the training and validation losses are decreasing steadily. The closeness

of the training and validation curves demonstrates that the model is neither overfitted nor under-fitted in

Figure 5.5(a). In Figure 5.5(b) the training curve is lower than the validation curve, which shows that

the model is overfitted. An under-fitted model will have a high training and high validation loss while an

overfitted model will have an extremely low training loss but a high validation loss. A large number of features

(SNPs) expands the hypothesis space, making the data more sparse and this might also lead to overfitting

problems.

The loss graphs for the rest of the phenotypes in Figure 5.6, 5.7, and 5.8 also showed similar trends as

flowering time for A. thaliana.

(a) (b)

Figure 5.5: Training and validation losses of NovGMDeep model using (a) SV and (b) SNP dataset
for predicting flowering time of A. thaliana. The first few epochs illustrate that the model is learning
quickly as both the training and validation losses are decreasing faster. Later it shows the potential
of the model in handling the co-variate shift between sets as the training and validation losses are
decreasing steadily now.

38



(a) (b)

Figure 5.6: Training and validation losses of NovGMDeep model using (a) SV and (b) SNP dataset for
predicting rosette leaf number of A. thaliana. The first few epochs illustrate that the model is learning
quickly as both the training and validation losses are decreasing faster. Later it shows the potential
of the model in handling the co-variate shift between sets as the training and validation losses are
decreasing steadily now.

(a) (b)

Figure 5.7: Training and validation losses of NovGMDeep model using (a) SV and (b) SNP dataset
for predicting cauline axillary branch number of A. thaliana. The first few epochs illustrate that the
model is learning quickly as both the training and validation losses are decreasing faster. Later it shows
the potential of the model in handling the co-variate shift between sets as the training and validation
losses are decreasing steadily now.

39



(a) (b)

Figure 5.8: Training and validation losses of NovGMDeep model using (a) SV and (b) SNP dataset for
predicting stem length of A. thaliana. The first few epochs illustrate that the model is learning quickly
as both the training and validation losses are decreasing faster. Later it shows the potential of the
model in handling the co-variate shift between sets as the training and validation losses are decreasing
steadily now.

The NovGMDeep model was also compared with the aforementioned DL models. However, the comparison

was possible just on the SNP data as these models are specially designed for that. G2PDeep, is a web-based

framework where users can upload their datasets and predict phenotypes by creating a deep learning model

according to the data. Because of the extremely high-dimensional SNP dataset, the web-based framework

did not work, therefore, we ran the code uploaded into their repository that is publicly available on GitHub.

DeepGS package was also ran on the command line. PCC values were calculated for all the phenotypes of

A. thaliana in Table 5.3.

Table 5.3: Pearson’s coefficients of correlations between the observed and predicted phenotypes on
the testing set. SNPs are used to capture the genomic variations among the accessions of A. thaliana.
Results show the average of the three PCC values taken from the three-fold cross validation results of
the model.

Model Flowering Time Rosette Leaf Number Branch Number Stem Length

DeepGS 0.542 0.559 0.544 0.563

G2PDeep 0.561 0.557 0.571 0.569

NovGMDeep 0.594 0.563 0.581 0.572

The results in the Table 5.3 showed that NovGMDeep performed better than the other existing DL models.

Also, it can be seen that G2PDeep has a better performance than DeepGS.
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5.4 Study of sample size effects

This section describes a comprehensive study showing sample size effects when the proposed model is trained

on the different numbers of samples for SVs. The increased number of training samples could improve the

model to get even better predictions. Adding more samples adds diversity to the model. It decreases the

generalization error because the model becomes more general under training on more samples.

For this study, we selected the first 100 samples from the whole dataset and then kept increasing the sample

size by 100 for training the model on nine different datasets. Table 5.4 shows the results for the different

number of samples for the SVs for predicting the flowering time of A. thaliana. The results improved when

the number of samples increased. Also, the PCC values for 700, 800, and total samples (914) are high

compared to the other sample sizes. The PCC values were also quite close to each other for the datasets

with 700, 800, and 914 samples. The results showed better PCC values when the model is trained on more

than 700 samples. Also, the MAE decreased when the sample size increased, which shows improvement in

the predicted results of the proposed model.

Table 5.4: Different number of samples for the SV markers to train NovGMDeep to predict flowering
time of A. thaliana.

Number of Samples PCC MAE

100 -0.370 15.79

200 -0.219 15.04

300 0.186 13.81

400 0.385 10.24

500 0.433 9.95

600 0.662 8.70

700 0.740 7.93

800 0.767 7.82

914 0.788 6.51

5.5 Perspectives

The low PCC values for the traditional statistical models are potentially because simple regressions can-

not capture the complex relationships between genotypes and phenotypes. Though we tuned the hyper-

parameters for SVs, TEs, and SNPs so that the current model works with all these three types of data, it

might give different results when working with another dataset/organism as different DL model architectures

impact the results significantly. Also, the more significant number of input features might lead to overfitting
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because the model has extra potential to become complex. DL model is often very hungry for training data

[57] if it has to learn a large number of features. Training deep learning models frequently demands a large

amount of data. The performance of the model will continually improve with more quantity of data. Lack of

data poses a challenge because the deep learning model may not detect patterns from the data, which could

result in poor performance on unseen data. Similarly, our proposed model’s performance increased with the

increment in the number of samples.

42



6 Case Study #2: Phenotype Prediction using TE

markers

In this chapter, we will discuss the phenotype prediction experiment for O. sativa using TE markers.

6.1 O. sativa dataset description

Oryza sativa, commonly known as Asian rice, is a monocotyledonous flowering plant in the Poaceae family.

It is one of the world’s most significant agricultural plants, providing the primary source of nutrition for

half of the world’s population. Oryza sativa subsp. japonica is one of three primary rice subspecies: indica,

javanica, and japonica. The grains of Oryza sativa are short and high in amylopectin, causing them to stick

together when cooked. It is known for being simple to genetically modify and is a model organism for the

botany of grains. It has a genome that is 430 Mbp in size and is distributed across 12 chromosomes. It is

the most important crop for human food production as more energy is provided by rice to humans globally

than by any other crop, including wheat and maize. Worldwide, 3.1% of the total agricultural land is used

to grow it. Around the world, rice cultivation, production, and yield are all constantly rising [87].

The TE markers computed from the 176 O. sativa accessions were used in this study [124]. The SNPs

for the same number of accessions were also obtained in this study in comparison to TE markers.

Four phenotypes are used in the study: panicle length, spikelet number, days to heading, and plant height

measured for the same accessions [125].

1. Panicle length: The length measured from a terminal component of the rice tiller which is an inflores-

cence called a panicle.

2. Spikelet number: The number of panicle rice spikelets, which develop into grains.

3. Days to heading: Characterized together by the vegetative growth phase. It is the period from ger-

mination to panicle initiation and the reproductive phase of rice development, meaning the time from

panicle initiation to heading.

4. Plant height: Defined as the shortest distance between the upper boundary (the highest point) of the

main photosynthetic tissues (excluding inflorescences) and the ground level.

All the sources of the datasets used in this experiment can be found in Appendix A.
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6.2 TE marker representation

Orzya sativa is a diploid species and has unphased genotypes. The TE and SNP markers in the raw dataset

were coded as integers 1, 0, and -1 which means the reference genotype (1/1), the first (most common)

alternative genotype (0/1), and the second most frequent alternative genotype (0/0) respectively. TE and

SNP variants are encoded using one-hot-encoded binary arrays as shown in formula (6.1).

1/1 → [1, 0, 0]

0/1 → [0, 1, 0]

0/0 → [0, 0, 1]

./. → [0, 0, 0]

(6.1)

For the TE markers, the data is represented in the format of a 3D matrix B(u× v × w) where u refers to

the accessions, v indicates the TE/SNP markers, and w shows the depth of one-hot-encoded vector. So, for

the O. sativa TE dataset u = 176 , v = 6, 074, and w = 3 respectively. And for the O. sativa SNP dataset,

u = 176, v = 493, 882, and w = 3 respectively.

6.3 Results and Discussion

Here we trained the model on both TE and SNP data of O. sativa. Similar strategies as Chapter 5 are

used here for splitting all the samples into training and testing subsets, applying cross-validation, saving best

models, and evaluating the model.

The correlation between the two quantitative variables assessed for the same samples is depicted by scatter

plots in Figure 6.1. Figure 6.1(a) and 6.1(b) show the results between observed and predicted phenotypic

values for NovGMDeep using TEs and SNPs respectively for predicting heading time of O. sativa. These

PCC graphs were created on the testing samples and show the accuracy of the proposed model in predicting

phenotypes. The orange line in these graphs represents the trend of the relationship between the observed

and predicted phenotypes (blue points) by the NovGMDeep model.

As shown in Figure 6.1, the predicted values which are close to the fitting line indicate a strong correlation,

and values far from the fitting line indicate a weak correlation between the true and predicted values.

The graphs for phenotypes of plant height (Figure 6.2), spikelet number (Figure 6.3), and panicle length

(Figure 6.4), all showed similar results as days to heading for O. sativa.

These graph show that the phenotypes predicted by NovGMDeep using TEs data have stronger correlations

with observed phenotypes than the ones predicted using SNPs data. This shows the effectiveness of using

TE marker data instead of SNPs for phenotype prediction.
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(a) (b)

Figure 6.1: PCC analysis of O. sativa for predicting days to heading using (a) TE and (b) SNP
datasets. (a) The graph shows that predicted values by the model are positively following the ground
truth values but have a low confidence level. (b) The graph shows that predicted values by the model
are negatively following the ground truth values and have no confidence level at all.

(a) (b)

Figure 6.2: PCC analysis of O. sativa for predicting plant height using (a) TE and (b) SNP datasets.
(a) The graph shows that predicted values by the model are positively following the ground truth
values but have a low confidence level. (b) The graph shows that predicted values by the model are
negatively following the ground truth values and have no confidence level at all.
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(a) (b)

Figure 6.3: PCC analysis of O. sativa for predicting spikelet number using (a) TE and (b) SNP
datasets. (a) The graph shows that predicted values by the model are positively following the ground
truth values but have a low confidence level. (b) The graph shows that predicted values by the model
are negatively following the ground truth values and have no confidence level at all.

(a) (b)

Figure 6.4: PCC analysis of O. sativa for predicting panicle length using (a) TE and (b) SNP
datasets. (a) The graph shows that predicted values by the model are positively following the ground
truth values but have a low confidence level. (b) The graph shows that predicted values by the model
are negatively following the ground truth values and have no confidence level at all.
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Performance Evaluation

The aforementioned two statistical methods in Section 3.4.1, rrBLUP and gBLUP, were evaluated with the

same data to compare their overall prediction performance with NovGMDeep. The mixed.solve and BGLR

function in the rrBLUP and gBLUP package is used to solve these BLUP models. These packages are ran in

R environment. The genotype data for TEs and SNPs is encoded as integer numbers: 1, 0, -1, -2 which means

the reference genotype, the first (most common) alternative genotype, the second most frequent alternative

genotype, and missing genotype respectively. The training and testing datasets are splitted with ratios of 80%

and 20%, respectively. And 3-fold cross-validation was applied in the same manner as the proposed model

described in Section5.3. TE data showed the lowest PCC values compared to the two statistical models

because of the mere 176 samples as there are not enough training samples for the DL model (Table 6.1).

Table 6.1: Pearson’s coefficients of correlations between the observed and predicted phenotypes on
the testing set. TEs and SNPs are used to capture the genomic variations among the accessions of O.
sativa. Results show the average of the three PCC values taken from the three-fold cross validation
results of the model.

Model Days to Heading Plant Height Spikelet Number Panicle Length

PCC (TEs) PCC (SNPs) PCC (TEs) PCC (SNPs) PCC (TEs) PCC (SNPs) PCC (TEs) PCC (SNPs)

rrBLUP 0.439 0.281 0.391 0.275 0.387 0.294 0.405 0.209

gBLUP 0.417 0.212 0.402 0.266 0.371 0.282 0.387 0.215

NovGMDeep 0.436 -0.014 0.406 0.002 0.372 -0.169 0.397 -0.148

The MAE loss was watched to select the best model during the training process of 150 epochs with early

stopping. The model with the lowest MAE was selected to evaluate the model on the test set as shown in

Table 6.2. The SD of all the MAE values on the test set was also calculated to see the deviation among

those values. The low values of MAE and SD of MAE for the TE markers show higher prediction accuracy

of NovGMDeep model over the SNPs.

Figure 6.5 demonstrates a typical training process for all the datasets. The closeness of the training and

validation curves demonstrates that the model is neither overfitted nor under fitted in Figure 6.5(a). In

Figure 6.5(b) the training curve is lower than the validation curve, which shows that the model is overfitted.

For O. sativa also, a large number of features (SNPs) expands the hypothesis space, making the data more

sparse and this might also lead to overfitting problems.

The loss graphs for rest of the phenotypes in Figure 6.6, 6.7, and 6.8 also showed similar trends as days

to heading for O. sativa.

The NovGMDeep model was also compared with the aforementioned DL models. However, the comparison

was possible just on the SNP data as these models are specially designed for that. G2PDeep, is a web-based

framework where users can upload their datasets and predict phenotypes by creating a deep learning model

according to the data. Because of the extremely high-dimensional SNP dataset, the web-based framework
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(a) (b)

Figure 6.5: Training and validation losses of NovGMDeep model using (a) TE and (b) SNP dataset
for predicting days to heading of O. sativa. The graph shows that the model is learning slowly at the
start as it took 20 epochs for it to be at a steady state. Later it shows the potential of the model in
handling the co-variate shift between sets as the training and validation losses are decreasing steadily
now.

(a) (b)

Figure 6.6: Training and validation losses of NovGMDeep model using (a) TE and (b) SNP dataset for
predicting plant height of O. sativa. The graph shows that the model is learning slowly at the start as
it took 20 epochs for it to be at a steady state. Later it shows the potential of the model in handling
the co-variate shift between sets as the training and validation losses are decreasing steadily now.

Table 6.2: Mean Absolute Error (MAE) and Standard Deviation of MAE calculated by NovGMDeep

model on the test sets for predicting different phenotypes of O. sativa using TE and SNP datasets.

Phenotypes TEs SNPs

MAE SD MAE SD

Days to Heading 8.65 6.41 16.84 18.51

Plant Height 8.01 6.57 15.92 19.74

Spikelet Number 9.26 7.22 19.46 20.25

Panicle Length 9.51 6.38 16.78 19.02
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(a) (b)

Figure 6.7: Training and validation losses of NovGMDeep model using (a) TE and (b) SNP dataset
for predicting spikelet number of O. sativa. The graph shows that the model is learning slowly at the
start as it took 20 epochs for it to be at a steady state. Later it shows the potential of the model in
handling the co-variate shift between sets as the training and validation losses are decreasing steadily
now.

(a) (b)

Figure 6.8: Training and validation losses of NovGMDeep model using (a) TE and (b) SNP dataset
for predicting panicle length of O. sativa. The graph shows that the model is learning slowly at the
start as it took 20 epochs for it to be at a steady state. Later it shows the potential of the model in
handling the co-variate shift between sets as the training and validation losses are decreasing steadily
now.
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did not work, therefore, we ran the code uploaded into their repository that is publicly available on GitHub.

DeepGS package was also ran on the command line. PCC values were calculated for all the phenotypes of

O. sativa in Table 6.3.

Table 6.3: Pearson’s coefficients of correlations between the observed and predicted phenotypes on
the testing set. SNPs are used to capture the genomic variations among the accessions of O. sativa.
Results show the average of the three PCC values taken from the three-fold cross-validation results of
the model.

Model Days to Heading Plant Height Spikelet Number Panicle Length

DeepGS -0.004 -0.015 -0.171 -0.165

G2PDeep 0.023 -0.011 -0.036 -0.182

NovGMDeep -0.014 0.002 -0.169 -0.148

In Table 6.3 the results for DL models suggest that statistical models are better for datasets with fewer

samples as seen in Table 6.1
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7 Conclusions and Future Directions

In this chapter we conclude our findings and discuss about future work.

7.1 Synopsis

Genomic selection has revolutionized the applications of breeding programs in plants and livestock [56].

Novel methods for predicting complex traits of extensive genotypic data have increasingly become essential.

DL, as an advanced technique of machine learning algorithms, has the potential to find hidden patterns in

massive datasets. It has the potential to serve the purpose of the principal need for breeders to improve their

practices. This work aimed to develop a DL model and evaluate its accuracy in predicting the specific traits

from genome-wide SV and TE markers.

In this thesis, the applications of deep learning and its relationship with GS have been explored. Although

the literature suggests DL algorithms as a reliable method for predicting complex phenotypes, there are a

few limitations to using deep learning techniques. In large-scale datasets, the most important consideration

for high prediction accuracy is the model’s architecture which requires excellent knowledge of deep learning

techniques. A well-constructed network in any model is the critical source for the model’s high performance.

Another crucial consideration is the choice of applying convolutional, fully connected, dropout, and sampling

layers with distinct sets of hyperparameters that handle specific characteristics of the data [11]. Interpreting

the biological relevance of the data is also a helpful consideration to minimize the limitations of deep learning

techniques in bioinformatics. The small number of DL for GS applications demonstrates the enormous

potential for these models to enhance early candidate genotype selection and knowledge of the intricate

biological mechanisms underlying the link between genotypes and phenotypes. This potential is partially

explained by how such models are constructed, which allows them to recognize more intricate data patterns.

There are some challenges that must be overcome to employ deep learning techniques for phenotype

prediction. First, finding a dataset with enough samples and related phenotypic labels to train a neural

network to be efficient and broadly applicable. Several datasets with significant numbers of sequenced

genomes are available, but most of these databases need more reliable phenotypic data for the linked samples.

Second, the cost of sequencing sufficient depth of coverage for SV and TE calls is also high.

In this study, we developed NovGMDeep as a method to predict phenotypes based on different types of SVs

(inversions, duplications, and deletions) and TEs. This work was motivated by the importance of SVs and

TEs in genome evolution and that they could better capture variants among genomes than SNPs [110]. Also,
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the authors of [124] concluded through GWAS that TE markers have a similar ability to discover association

patterns to SNP markers. Therefore, the model is not only for predicting phenotypes from SVs and TEs but

also shows that they can be more beneficial in genomic selection than SNPs. With the proposed model, it

is still challenging to link phenotypes to genetic structural variation and environmental variables, which will

be a future direction to explore.

Compared with traditional statistical models, rrBLUP and gBLUP have low PCC values compared to the

NovGMDeep model for the A. thaliana data. This is potentially because simple regressions cannot capture the

complex relationships between genotypes and phenotypes. For the O. sativa data, the PCC value is low for

TEs and even negative for SNPs because of the low sample size to train the DL model. The results for the

TE markers are better than the SNPs, which makes the former more useful. The performance comparison

between NovGMDeep and other DL models, such as: DeepGS [78] and G2PDeep [128], was only possible with

SNP data. NovGMDeep outperformed the other two DL models for A. thaliana whereas the low sample size

problem persisted for O. sativa. Though we tuned the hyper-parameters for SVs, TEs and SNPs datasets in

a way that the current model works with all these three types of data, it might give different results when

working with other dataset/organism. As different model architectures impact the results significantly.

The search for datasets with more than 176 samples and associated phenotypes for TEs was unsuccessful

at the time of writing this thesis. It was challenging to develop a generalizable prediction model for TEs

due to the issues with overfitting and short validation sets caused by using datasets with small sample sizes.

Also, the study of sample size effects for SVs explains the low performance of the proposed model for TE

markers as the PCC value is very low for less number of samples to train NovGMDeep for the SV data as well.

Due to a large number of SNP markers across the genome used as features, overfitting increases in the

model. This is potentially because the number of SNPs is significantly larger than the number of samples,

causing the “small-n-large-p problem”.

Overall, the NovGMDeep model was well implemented in predicting phenotypes using SVs genotypic mark-

ers and could be added to the toolkits of crop breeders. Also, the results showed the importance of selecting

algorithms and hyperparameters for genotype-to-phenotype predictions. In conclusion, this study paves the

way for the novel use of SVs and TEs in the field of GS.

7.2 Future Work

The study also shows that the nature of data, network architecture, and the type of trait which is being

predicted play an influential role in model training and prediction. It is essential to focus on individuals with

high phenotypic trait values so that they can serve as selected assets for different breeding programs for other

vital crops. In future work, we will explore finding top-ranked individuals with high phenotypic values by

incorporating all types of genomic data, such as SVs, TEs, and SNPs together. Moreover, environmental data,

such as soil, PH-value, and temperature can be taken into consideration by incorporating an environment
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vector while training the model in phenotype prediction.

Other potential future work includes reducing the size of SNP features by turning those into haplotypes.

This can be done by collapsing group of SNPs to reduce their number. A haplotype refers to the inheritance

of a cluster of SNPs. Also two SNPs show linkage disequilibrium (LD) more often when they are not together.

LD is the non-random association of alleles at different loci within haplotypes. It measures the degree to

which alleles at two loci are associated based on the allele frequencies at those two loci. It would be an

interesting direction to explore as SVs capture rearrangements but SNPs within LD can not. Also, another

direction is to assess if SV markers are better than TE markers or vice-versa and if there are ways to combine

them together.
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Colot, and Leandro Quadrana. The impact of transposable elements on tomato diversity. Nature
Communications, 11(1):1–11, 2020.

[31] Frank Emmert-Streib, Zhen Yang, Han Feng, Shailesh Tripathi, and Matthias Dehmer. An introductory
review of deep learning for prediction models with big data. Frontiers in Artificial Intelligence, 3:4,
2020.

[32] Jeffrey B Endelman. Ridge regression and other kernels for genomic selection with R package rrBLUP.
The Plant Genome, 4(3), 2011.

[33] Zubair Md Fadlullah, Fengxiao Tang, Bomin Mao, Nei Kato, Osamu Akashi, Takeru Inoue, and Kimi-
hiro Mizutani. State-of-the-art deep learning: Evolving machine intelligence toward tomorrow’s intel-
ligent network traffic control systems. IEEE Communications Surveys & Tutorials, 19(4):2432–2455,
2017.

55



[34] J-B Fan, A Oliphant, R Shen, BG Kermani, F Garcia, KL Gunderson, M Hansen, F Steemers, SL But-
ler, P Deloukas, et al. Highly parallel SNP genotyping. In Cold Spring Harbor symposia on quantitative
biology, volume 68, pages 69–78. Cold Spring Harbor Laboratory Press, 2003.

[35] Livio Favaro, Elodie F Briefer, and Alan G McElligott. Artificial neural network approach for revealing
individuality, group membership and age information in goat kid contact calls. Acta Acustica United
with Acustica, 100(4):782–789, 2014.

[36] Cédric Feschotte, Ning Jiang, and Susan R Wessler. Plant transposable elements: where genetics meets
genomics. Nature Reviews Genetics, 3(5):329–341, 2002.

[37] EJ Finnegan, RK Genger, WJ Peacock, and ES Dennis. DNA methylation in plants. Annual Review
of Plant Biology, 49:223, 1998.

[38] Jennifer L Freeman, George H Perry, Lars Feuk, Richard Redon, Steven A McCarroll, David M Alt-
shuler, Hiroyuki Aburatani, Keith W Jones, Chris Tyler-Smith, Matthew E Hurles, et al. Copy number
variation: new insights in genome diversity. Genome Research, 16(8):949–961, 2006.

[39] Errol C Friedberg. DNA damage and repair. Nature, 421(6921):436–440, 2003.

[40] Iulian Gabur, Harmeet Singh Chawla, Rod J Snowdon, and Isobel AP Parkin. Connecting genome
structural variation with complex traits in crop plants. Theoretical and Applied Genetics, 132(3):733–
750, 2019.

[41] Salvador A Gezan, Luis F Osorio, Sujeet Verma, and Vance M Whitaker. An experimental validation
of genomic selection in octoploid strawberry. Horticulture Research, 4, 2017.

[42] Hossein Gholamalinezhad and Hossein Khosravi. Pooling methods in deep neural networks, a review.
arXiv preprint arXiv:2009.07485, 2020.

[43] Stephanie Glen. Correlation coefficient: Simple definition, formula, easy steps. Statistic-
sHowTo.com. Available online: https://www.statisticshowto.com/probability-and-statistics/correlation-
coefficient-formula/(accessed on 3 August 2020), 2021.
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Appendix A

Data Sources

The phenotypes for A. thaliana were downloaded from https://arapheno.1001genomes.org/study/12/

and https://arapheno.1001genomes.org/study/38/.
The TE markers for O. sativa were downloaded from https://data.cyverse.org/dav-anon/iplant/

home/yanhaidong1991/opt_genos_fltmissing_fltmaf_fltukn_TE.txt and the SNPs were downloaded
from https://data.cyverse.org/dav-anon/iplant/home/yanhaidong1991/176GATK.indelsnpsFiltered0.

05M0.25.txt.
The G2PDeep web-based framework can be found at https://g2pdeep.org.
The standalone G2PDeep and DeepGS packages can be found at https://github.com/kateyliu/DL_

gwas and https://github.com/cma2015/DeepGS respectively.
The source code of NovGMDeep is publicly available on Github (https://github.com/shivanisehrawat4/

NovGMDeep.git).

62

https://arapheno.1001genomes.org/study/12/
https://arapheno.1001genomes.org/study/38/
https://data.cyverse.org/dav-anon/iplant/home/yanhaidong1991/opt_genos_fltmissing_fltmaf_fltukn_TE.txt
https://data.cyverse.org/dav-anon/iplant/home/yanhaidong1991/opt_genos_fltmissing_fltmaf_fltukn_TE.txt
https://data.cyverse.org/dav-anon/iplant/home/yanhaidong1991/176GATK.indelsnpsFiltered0.05M0.25.txt
https://data.cyverse.org/dav-anon/iplant/home/yanhaidong1991/176GATK.indelsnpsFiltered0.05M0.25.txt
https://g2pdeep.org
https://github.com/kateyliu/DL_gwas
https://github.com/kateyliu/DL_gwas
https://github.com/cma2015/DeepGS
https://github.com/shivanisehrawat4/NovGMDeep.git
https://github.com/shivanisehrawat4/NovGMDeep.git


Appendix B

Detailed Analysis of the assumptions of PCC

Five assumptions must be met before we calculate the PCC between two variables [91]. As far as our
datasets are concerned, all of the conditions are true. First, while measuring the two variables, we should
consider the interval or ratio level. All the phenotypes used in the paper can describe by using intervals
for example, plant height, branch number, stem length etc. on the real number line. These all are physical
measures which fall into general continuous category.

Second, there must be a linear relationship between both variables. All the phenotypes when plotted
using scatter plot, fell roughly along a straight line, which can also be seen in Figure 5.1 and Figure 6.1.
The main thing to consider here is that the variables should not exhibit some other type of relationship, like
quadratic.

Third, both variables should have a roughly normal distribution. We have plotted the values of flowering
time for A. thaliana and days to heading for O. sativa. Figure B.1 and Figure B.2 show a bell-shaped curve
for both of these phenotypes that indicates that the variables follow a normal distribution.

Figure B.1: The bell-shaped curve show that the values of flowering time are normally distributed.

Figure B.2: The bell-shaped curve show that the values of days to heading are normally distributed.

Fourth, each observation in the dataset needs to have a pair of related values. It simply means that to
calculate the correlation between the variables, each observation in the dataset has one measurement for
the observed value and one measurement for the predicted value. This one was easy to check as NovGMDeep

predicted phenotypes for all the corresponding ground truth values.
Fifth, the dataset should not contain any extreme outliers. An extreme value in the dataset substantially

changes the PCC between the two variables. We did not find any extreme outlier in the dataset of predicted
and observed phenotypes.
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