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 ABSTRACT 

Land-atmosphere interactions are commonly quantified using eddy-covariance (EC) 

equipment. This technique provides fluxes which are attributed to an area-averaged two-

dimensional flux footprint. Although source flux heterogeneity is present within these 

footprints, current EC footprint models are unable to distinguish the variable flux 

contributions (although they are incorporated into the bulk EC flux). A disaggregation 

method would increase the value of EC data by allowing users to isolate individual fluxes 

from features within the flux footprint; furthermore, this may extend the useability of the 

EC method to more complex terrain of mixed land classifications. It remains unexplored 

how high-resolution surface energy balance (SEB) models can be used to disaggregate 

these EC footprints. This thesis presents a SEB workflow using Unoccupied Aerial 

Vehicles (UAVs) to generate high-resolution patterns of evapotranspiration (ET) to 

disaggregate EC footprints in a novel disaggregated flux footprint prediction (disFFP) 

method.  

This workflow begins by using novel UAV Light Ranging And Detection (LiDAR) 

techniques to derive detailed maps of canopy height (ℎ), effective leaf area index (𝐿𝐴𝐼𝑒), 

and canopy viewing fraction (𝑓𝑐), consistent with known vegetation patterns and field-

average observations (𝐿𝐴𝐼𝑒 𝑅𝑀𝑆𝐸 = 0.08 − 0.81 𝑚
2𝑚−2). It then follows an atmospheric 

correction (path transmissivity and upward-welling radiance) and an ensemble emissivity 

adjustment (brightness to radiometric temperature), testing these with UAV thermal data 

to determine their absolute (magnitude) and relative (spatial pattern) effects on 

temperature. A modified t-test - considering autocorrelation - showed that a raw brightness 

temperature has similar spatial patterns ( 𝑟 > .99 , 𝑝𝑣𝑎𝑙 ≫ 0.001 ) to brightness and 

radiometric temperatures. Combining these thermal and LiDAR UAV inputs with a high-

resolution SEB model (HRMET), the model performance was then compared against EC 

fluxes. It followed that HRMET tended to overestimate latent heat over full canopies when 

surface-air temperature differences exceed 4 − 5°𝐶 . Overall, HRMET succeeded at 

replicating EC latent heat flux within 𝑅𝑀𝑆𝐸 of 79 − 136 𝑊 𝑚−2 using raw brightness and 

ensemble emissivity corrected (observed radiometric) temperatures. The resultant relative 

ET maps ( 𝐸𝑇𝑅 ) provided a coherent chronology of the changing flux landscape. 

Furthermore, the 𝐸𝑇𝑅  trials using corrected temperatures (brightness, radiometric, and 

observed radiometric) had similar spatial patterns to those found using just raw brightness 
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temperature (𝑟 > .93, 𝑝𝑣𝑎𝑙 ≫ 0.001). This implies that a raw brightness temperature is 

sufficient for determining relative patterns of evapotranspiration. 

The next part of the workflow uses 𝐸𝑇𝑅 to disaggregate a well-known parameterization of 

a backwards-Lagrangian flux footprint model. The proposed disaggregation method 

(disFFP) uses the concept of ET period to describe an interval of time (day scale) where 

the EC flux environment remains relatively constant (constant-rate cumulative ET rate). 

ET periods were determined using a piece-wise regression of the cumulative day-over-

day EC latent flux rate. Each season was divided into five ET periods and compared with 

the two other seasons to discover potential metrics for further classifying ET periods. It 

was found that ET rates were consistent across comparable ET periods, 2 − 38 % 

(standard deviation as a percentage of sample mean), and that additional metrics (plant 

phenology, growing degree day, standard precipitation index) played an important role in 

characterizing ET periods for inter-seasonal work. Eddy-covariance and UAV data were 

coupled using climatology footprints of ET periods and the coinciding ET patterns (𝐸𝑇𝑅 

and coefficient of variation). The disFFP combination of these two products (footprint-

weighted factoring) provided disaggregated footprints (EC bulk ET of 144 𝑚𝑚 ) that 

reflected increased contributions (180 − 200 𝑚𝑚) over high ET areas and diminished 

values (90 − 100 𝑚𝑚) over lower ET areas. These preliminary findings present an exciting 

new opportunity to connect discrete UAV data with continuous EC flux monitoring. 
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1 INTRODUCTION 

1.1 Background 

Quantifying land surface-atmosphere exchanges is an ongoing challenge for environmental 

scientists and meteorologists alike. The prominent method of eddy-covariance (EC) directly 

measures water vapour flux (represented using latent heat or evapotranspiration) as an area-

averaged bulk value over a modelled footprint (fetch of land surface contributing to the bulk 

measurement). Although robust two-dimensional footprint models are available, they do not 

partition flux among surface source heterogeneity (Kljun et al. 2015). Variations in source strength 

- as it relates to water vapour flux - are caused primarily by differences in available soil moisture. 

The conspicuous rise of unoccupied aerial vehicles (UAV) and subsequent developments in 

remote sensing now present new opportunities (Kustas and Anderson 2009, Hoffmann et al. 2016, 

Nieto et al. 2019, Nocco et al. 2019). Thermal remote sensing imagery can produce high-

resolution evapotranspiration (ET) maps and reveal underlying landscape hydrology traits (Zipper 

and Loheide ll 2014). Effectively, these methods apply a surface energy balance (SEB) with 

ground-based estimates of soil heat flux and net radiation and a thermal-derived sensible heat to 

solve latent heat (spatially-variable) as a residual.  

It follows that UAV surface energy balance methods can also be applied to disaggregate EC flux 

footprints and quantify contributions from source surface features. In this thesis paper, we 

propose a disFFP disaggregation method involving the High-Resolution Mapping of 

EvapoTranspiration (HRMET) model (Zipper and Loheide ll 2014) and the Kljun et al. (2015) 

footprint parameterization (FFP). 

1.2 Research objectives 

Our primary goal is to disaggregate EC flux footprints using high-resolution ET patterns from a 

UAV-driven surface energy balance. Achieving this objective requires a two-step approach. First, 

we proposed validating the selected SEB model - HRMET - with EC flux measurements. 

Alongside this, we investigate using UAV Light Detection And Ranging (LiDAR) methods to 

acquire canopy height, viewing factor, and leaf area index. We also sought to establish whether 

an easy-to-measure raw brightness temperature can capture ET patterns similar to those of a 

corrected temperature. In this first step, we are primarily concerned about preserving HRMET’s 
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spatial authenticity to acquire relative evapotranspiration patterns (𝐸𝑇𝑅). This leads us to the 

second step of using 𝐸𝑇𝑅 to disaggregate EC footprints. In this step, we want to know how our 

disaggregation strategy (disFFP) performs on single footprints, seasonal climatologies, and multi-

seasonal periods.  

1.3 Organization of thesis 

This thesis is presented in manuscript style and is composed of six sections. Section one (current 

section) contained a brief introduction of the topic, a statement of research objectives, and the 

present thesis organization overview. This is followed by a literature review section explaining the 

key principles of UAV surface energy balance models and the EC method. Afterwards, I present 

my first manuscript titled Assessing a high-resolution evapotranspiration model for field crops. 

Section four proceeds with my second manuscript titled Disaggregating eddy-covariance 

footprints using UAV evapotranspiration patterns. Lastly, I combine the findings of sections three 

and four into a synthesis report and thesis conclusion. 
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2 LITERATURE REVIEW 

2.1 Thermal remote sensing energy balance  

A SEB balance follows the energy exchanges across a surface. Net radiation from the sun (𝑅𝑛) 

increases surface temperature and transfers this energy to the atmosphere as sensible heat (𝐻), 

evaporates and transpires water as latent heat (𝐿𝐸), and is conducted into the ground through 

soil heat flux (𝐺). Advection (𝐴) is the horizontal movement of energy from hot to cold surfaces. 

Figure 1 demonstrates these interactions over a hypothetical land surface with no energy storage. 

It is a common simplification to exclude 𝐴 in land surface and footprint models (Bastiaanssen et 

al. 1998a, Kljun et al. 2015). Although some studies have shown that this term is pertinent in arid 

dryland environments (Alfieri et al. 2012, Song et al. 2016a), the present study uses the simplified 

energy balance of [1].  

 
Figure 1. Surface energy balance over a cropped surface without energy storage  

[1] 𝑅𝑛 − 𝐺 = 𝐻 + 𝐿𝐸   

Surface energy balance models use empirical and analytical methods to solve [1] and are often 

applied in conjunction with thermal remote sensing (Kustas and Anderson 2009). For example, 

the two-source models developed by Norman et al. (1995) and Kustas and Norman (1999) 

partition 𝑅𝑛 between canopy and soil using a fractional canopy cover term based on LAI and a 

clumping factor. Soil heat fluxes are approximated as a proportion of 𝑅𝑛 , and 𝐻  and 𝐿𝐸  are 

calculated based on temperature and water vapour pressure gradients, respectively. Common 

with other SEB models, thermal remote sensing is used to calculate 𝐻 and then solve 𝐿𝐸 as a 

residual (Bastiaanssen et al. 1998b, Kustas and Norman 1999, Zipper and Loheide ll 2014). 
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Equation [2] shows the general solution for 𝐻 given an aerodynamic surface temperature (𝑇𝑎ℎ), 

air temperature (𝑇𝑎𝑖𝑟), heat capacity (𝑐𝑝), moist air density (𝜌𝑎), and a parallel arrangement 

resistance term (Figure 2). 

[2] 𝐻 = 
𝜌𝑎𝑐𝑝(𝑇𝑎ℎ−𝑇𝑎𝑖𝑟) 

𝑟𝑎ℎ
 

The aerodynamic resistance of sensible heat (𝑟𝑎ℎ) is founded on atmospheric boundary layer 

theory (Section 2.3) and is presented from Kustas and Norman (1999) in [3]. It includes 

measurement heights for wind speed (𝑧𝑢) and air temperature (𝑧𝑇), a canopy displacement height 

(𝑑) , the von Karman constant (𝜅 ≈ 0.4) , stability correction terms for momentum  (𝜓𝑚)  and 

sensible heat (𝜓ℎ ), and also roughness lengths for heat and momentum ( 𝑧0ℎ  and 𝑧0𝑚 , 

respectively).  

[3] 𝑟𝑎ℎ =
(𝑙𝑛(

𝑧𝑢−𝑑

𝑧0𝑚
)−𝜓𝑚)(𝑙𝑛(

𝑧𝑇−𝑑

𝑧0ℎ
)−𝜓ℎ)

𝑘2𝑢
  

Roughness lengths 𝑧0ℎ  and 𝑧0𝑚  are logarithmically related using the 𝑘𝐵−  parameter in [4]. A 

constant 𝑘𝐵− value of 2.3 (𝑧0ℎ ≈ 0.1 𝑧0𝑚) is widely used (Allen et al. 1998, Bastiaanssen et al. 

1998a); however, 𝑘𝐵− is known to vary with time and over heterogenous terrain (Su et al. 2001, 

Paul et al. 2014). Although 𝑧0𝑚  is often crudely estimated from crop height, better 

parameterizations exist based on LAI and nominal surface roughness values (Raupach 1994). 

[4] 𝑘𝐵− = 𝑙𝑛
𝑧0𝑚

𝑧0ℎ
  

The definition of 𝑇𝑎ℎ is purely theoretical: a temperature at which [2] is satisfied (Norman and 

Becker 1995). However, it also represents a surrogate for thermodynamic temperature, the 

average of soil (𝑇𝑠) and canopy (𝑇𝑐) temperatures when in perfect kinematic equilibrium (Figure 

2). A momentum-based aerodynamic resistance term (𝑟𝑎𝑚) is used in place of the sensible heat 

interpretation. An additional surface resistance term 𝑟𝑠 is also needed to account for drag forces 

exhibited by the bare-soil roughness when 𝑇𝑐 and 𝑇𝑠 are used in place of 𝑇𝑎ℎ. Models using these 

two interpretations are referred to as one-source (OS) or two-source (TS) according to whether 

they use 𝑇𝑎ℎ or 𝑇𝑐 and 𝑇𝑠, respectively. 
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Figure 2. A parallel arrangement of resistors based on (Norman et al. 1995).  

Variables 𝑇𝑐, 𝑇𝑠, and 𝑇𝑎𝑖𝑟  are thermodynamic temperatures for canopy, soil, and air, respectively. These 
are related using a momentum resistance (𝑟𝑎𝑚) and the soil drag resistance (𝑟𝑠). Temperature 𝑇𝑎ℎ is an 
aerodynamic term associated with the resistance to heat flow (𝑟𝑎ℎ).  

A virtue of the TS approach is that it partitions remotely sensed brightness temperature (𝑇𝐵) into 

𝑇𝑐 and 𝑇𝑠 and solves the sensible heat exchange over each separately. Conversely, the HRMET 

model (used in this study) does not perform this step so is not a true TS model. HRMET was 

developed by Zipper and Loheide (2014) as an offshoot of Norman et al.’s TS model (1995) and 

Bastiaanssen et al.’s (1998a) single-source SEBAL (Surface Energy Balance Algorithm for Land). 

HRMET is a hybrid approach using TS 𝑅𝑛  partitioning with an OS resistance scheme for 

calculating bulk 𝐻 flux. It iteratively finds 𝐻 by adjusting atmospheric stability (𝜁) and solving the 

bulk transfer equations (Equation [3] and Section 2.3). 

One-source models are generally worse at predicting 𝐻 than TS schemes and are unable to 

provide independent soil and canopy estimates. However, OS methods are robust at calculating 

fluxes in remote regions where few data inputs are available (Bastiaanssen et al. 1998b). When 

appropriately handled, both OS and TS achieve comparable results (Kustas et al. 2007). HRMET 

attempts to combine the flexibility of OS with added precision from a TS radiation scheme. 

Although HRMET compared well against another model in its debut paper, greater uncertainty 

was evident at sparser canopy cover (Zipper and Loheide ll 2014). This discrepancy may attribute 

to over-simplistic assumptions embedded in the model or to the uncertainty of the model inputs. 

In either case, HRMET performance has yet to be assessed with the EC method (Park et al. 2021).  

2.2 Thermal remote sensing of radiometric temperatures 

It is easiest to explain thermal remote sensing using Figure 3. The thermal sensor returns a raster 

map of discretized radiance values (𝐿𝑠), considering the camera field-of-view [𝛷], where each 

pixel value rests on a scale from 0-255 (for an 8-bit system). Unfortunately, 𝐿𝑠 is convoluted with 
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other signals too. These components include upward-reflected solar radiance ( 𝐿𝑈)  from 

atmospheric gasses, aerosols and water vapour, downward atmospheric radiance and 

surrounding surface radiances reflected off the target surface (𝐿𝐷), and the radiance of the target 

surface itself (𝐿𝐵).  

 
Figure 3. Remote sensing radiometric components 

Where LU is the upwelling sky radiance, LB is the target area radiance, and LD is the downwelling sky 
radiance contributing to the target area - adapted from (Jensen, 2015) 

It is inferred from Figure 3 that each component is observed with the same spectral response; 

however, this is not always true when multiple thermal cameras are used in unison. Consequently, 

the component radiances are reinterpreted as spectral radiances [𝑊 𝑚−2𝑠𝑟−1𝜇𝑚−1], dividing by 

their respective central wavelength responses 𝜆𝑝𝑒𝑎𝑘 [𝜇𝑚]. Thermal imagers (which operate in the 

near-infrared wavelengths) have a specified 𝜆𝑝𝑒𝑎𝑘 within 0.8 − 1.4 𝜇𝑚. Continuing with the same 

variable naming convention, we include path transmissivity (𝜏) and target emissivity (𝜖) to relate 

𝐿𝑆 with its components in [5].  

[5] 𝐿𝑆 = 𝜏𝜖 𝐿𝐵 + 𝐿𝑈 + (1 − 𝜖)𝐿𝐷 

At this point, we may juggle between spectral radiance (𝐿) and its temperature using Planck’s 

Law [6]; where ℎ𝑃  is Planck’s constant ( 6.626 𝑥 10−34 𝐽 𝐻𝑧 ), 𝑐  is the speed of light 

(2.998 𝑥 108 𝑚 𝑠−1), 𝑘𝐵 is the Boltzmann constant (1.381 𝑥 10−23 𝐽 𝐾−1), and 𝑇 is the resultant 

temperature. 

[6] 𝐿 =
2ℎ𝑐2

𝜆𝑝𝑒𝑎𝑘
5 

1

𝑒ℎ𝑃𝑐/(𝑘𝐵𝑇)−1
 

Within these interlaying steps, it is easier to adjust the sensor-observed temperature (𝑇𝑠𝑒𝑛𝑠𝑜𝑟), 

subject to the sensor emissivity setting (𝜖𝑠𝑒𝑛𝑠𝑜𝑟 ), to a representative blackbody temperature 

(𝑇𝑏𝑙𝑎𝑐𝑘𝑏𝑜𝑑𝑦) with a blackbody emissivity (𝜖𝑏𝑙𝑎𝑐𝑘𝑏𝑜𝑑𝑦) of one [7]. 
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[7] 𝑇𝑏𝑙𝑎𝑐𝑘𝑏𝑜𝑑𝑦 = (
𝜖𝑠𝑒𝑛𝑠𝑜𝑟

𝜖𝑏𝑙𝑎𝑐𝑘𝑏𝑜𝑑𝑦
 𝑇𝑠𝑒𝑛𝑠𝑜𝑟 

4)

1

4
 

Converting back to spectral radiance, we then ignore emissivity effects and simplify [5] to [8]. The 

𝜏 and 𝐿𝑈  terms can be estimated using an atmosphere transmission software or using linear 

regression with ground observations (Torres-Rua 2017). Finally, the spectral radiance of the 

target surface (𝐿𝐵) can be deduced using [8] and its associated brightness temperature (𝑇𝐵) 

retrieved from [6]. 

[8] 𝐿𝑆 = 𝜏𝐿𝐵 + 𝐿𝑈 

At this point, we can start to factor in the emissivity of the target surface. The Stefan-Boltzmann 

relationship of [9] is derived from Planck’s Law and relates the hemispherical, full-spectrum 

radiant exitance (𝑅𝐵  with units 𝑊 𝑚−2 ) to 𝑇𝐵  through the Stefan-Boltzmann constant (𝜎 =

 5.670 𝑥 10−8 𝑊 𝑚−2 𝐾−4 ). Equation [10] follows as a corollary to [9]; where 𝑇𝑅  and 𝑇𝑠𝑘𝑦  are 

radiometric temperatures for the target surface and sky, respectively.  

[9] 𝑇𝐵 = 𝜎
−1𝑅𝐵

1/4
  

[10] 𝑇𝐵 = [𝜖(𝑇𝑅)4 + (1 − 𝜖) (𝑇𝑠𝑘𝑦)
4

] 1/4 

In some cases, 𝑇𝐵  is treated with an emissivity of one allowing 𝑇𝑠𝑘𝑦  to be discarded. This 

assumption confounds efforts to retrieve a true radiometric temperature, but it is often necessary 

for implementation. A true radiometric correction would account for heterogeneous emissivities in 

the image, implications of wavelength sampling size (thermal vs full band), and differences 

between full hemispherical and finite viewing angle field-of-view (Norman and Becker 1995). 

Consequently, thermal imagery is often simplified to a blackbody brightness temperature with 

𝑇𝐵 ≈ 𝑇𝑅 . Furthermore, in UAV thermal imaging, the atmospheric corrections from [8] are 

sometimes also ignored, because the path lengths are relatively short; the resulting observed 

brightness temperature (𝑇𝐵,𝑜𝑏𝑠 ) is then used. Even the best efforts to account for atmospheric and 

emissivity effects - resulting in the radiometric 𝑇𝑅 - presents a less-than-perfect substitute for the 

true aerodynamic temperature required in [2]. 

2.3 Atmospheric surface layer overview 

As the earth rotates, it generates a fluid-dynamics wake layer between the surface and 

atmosphere. Surface roughness and atmospheric meteorology influence the layer thickness at 

any given time and place. This layer is called the atmospheric boundary layer (ABL) and ranges 
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200-2000 𝑚 in depth. A subset of this is the atmospheric surface layer (ASL). The ASL exists 

closest to the earth’s surface and is the portion of the ABL directly affected by surface roughness 

(Figure 4). A logarithmic wind profile of [11] is characteristic of the ASL. These profiles incorporate 

features related to the surface (measurement height 𝑧𝑢, displacement height 𝑑, and momentum 

roughness length 𝑧0𝑚) and parameters related to meteorology (friction velocity 𝑢∗ and stability 

correction term for momentum 𝜓𝑚). 

[11] 𝑢 =
𝑢∗

𝜅
(𝑙𝑛 (

𝑧𝑢−𝑑

𝑧0𝑚
) + 𝜓𝑚) 

Meteorologic variables are joined through an atmospheric stability term (𝜁). Atmospheric stability 

is typically expressed in terms of the Monin-Obukhov length parameter (𝐿) - a term relating 

buoyancy and momentum forces to the turbulent kinetic energy - following [12]. 

[12] 𝜁 =
𝑧𝑢−𝑑

𝐿
= −

𝜅 𝑔 (𝑧𝑢−𝑑) 𝐻

𝜌𝑐𝑝 𝑇𝑎𝑖𝑟 𝑢
∗3  

Atmospheric stability is classified in three ways: stable (𝜁 > 1), when a parcel of air is colder than 

its surroundings and descends; neutral (𝜁 = 1), when temperatures are close to equilibrium and 

vertical air movement is minimized; and unstable (𝜁 < 1), when an air parcel is hotter than its 

surroundings and rises upward. These conditions have differing effects on the ASL, as shown in 

the stability correction terms for momentum (𝜓𝑀) and sensible heat (𝜓𝐻) under stable [13] and 

unstable [14] conditions. 

[13] 𝜓𝑀 = 𝜓𝐻 = −6𝑙𝑛 (1 + 𝜁) ← stable conditions 

[14] 𝜓𝐻 = 2 𝑙𝑛 (
1+(1−16𝜁)

1
2 

2
) ;𝜓𝑀 = 0.6𝜓𝐻 ← unstable conditions  

2.4 Eddy-covariance footprint  

Eddy-covariance flux towers provide a direct estimate of 𝐿𝐸 and are frequently used to validate 

SEB models. These towers deploy within the atmospheric surface layer (ASL) to coincide with 

the logarithmic profiles of flux-gradient theory (Figure 4).  
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Figure 4. EC tower measuring turbulent wind eddies within the ASL 

The wind profile (𝑢) above the ASL is unaffected by surface roughness. Air movement below the 
momentum roughness length (𝑧0𝑚) plus displacement height (𝑑) threshold is diffusion-dominated. 

A sonic anemometer measures instantaneous wind speeds in three directions. It is coupled with 

a high-frequency gas analyzer to detect water vapour fluctuations. At any given time, 

instantaneous wind speeds deviate around the mean value. Small covariances allow vapour to 

travel vertically even though the mean vertical wind speed �̅� is essentially zero (Figure 5). The 

EC method determines the net covariance between specific humidity and vertical wind speed 

(𝑞′𝑤′̅̅ ̅̅ ̅̅ ) and converts it into 𝐿𝐸 using air density (𝜌𝑎) and the latent heat of vapourization (𝜆) in [15]. 

Friction velocity (𝑢∗), a metric of momentum transfer, is similarly computed from the streamwise 

and vertical covariance ( 𝑢′𝑤′̅̅ ̅̅ ̅̅ ) following [16]. Typical EC studies resolve 80% closure of the 

energy balance (Twine et al. 2000). Unaccounted energy is then attributed to storage terms and 

inconsistent spatial representations of the meteorological equipment. About 10% of the error 

revolves around the assumption that measured covariances are vertically uniform throughout the 

ASL (Foken 2016). Further EC assumptions require the flow field to remain constant over an 

averaging interval with no horizontal flux divergence or advection (Eugster and Merbold 2015).  

 
Figure 5. Reynolds decomposition 

Instantaneous fluctuations in vertical wind speed (𝑤′) transport heat, momentum, and water vapour 
even though the mean vertical wind speed (w̅) is zero.  
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[15] 𝐿𝐸 = 𝜌𝑎𝜆 𝑞
′𝑤′̅̅ ̅̅ ̅̅  

[16] 𝑢∗
2 = −𝑢′𝑤′̅̅ ̅̅ ̅̅  

Flux footprint models are based on boundary layer theory and used to distribute EC signals over 

a probability area. Time-series datasets are then combined to produce a climatology distribution. 

Kljun et al. (2002) developed a robust footprint model based on a backwards-Lagrangian particle 

touchdown probability - the likelihood that a particle (representing flux) originates from a source 

surface as traced backwards from the receptor. A simpler parameterization was later developed 

(Kljun et al. 2015) called the Flux Footprint Prediction (FFP) model and is further discussed in 

Section 4.3.1.  

Eddy-covariance methods are unable to distinguish heterogeneity from variable surface sources 

within the footprint. Some studies have used remote sensing of normalized difference vegetation 

index (NDVI) and canopy closure to evaluate footprint representativeness in a particular 

landscape (Kim et al. 2006). Kirby et al. (2008) used this same method to disaggregate aircraft 

EC fluxes with land classification maps, apportioning flux with a probability weighting factor. 

Another method used land classification maps with overlapping footprints and multivariate 

regression to disaggregate the flux (Hutjes et al. 2010). More recently, management zones based 

on available water-holding capacity have been suggested, corresponding to physical field 

attributes of texture, organic matter, and topography (Bauer 2019). Based on similar principles, 

the evapotranspiration pattern index (𝐸𝑇𝑅) by Zipper and Loheide ll (2014) presents a direct metric 

for disaggregating EC flux footprints. 
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3 ASSESSING A HIGH-RESOLUTION EVAPOTRANSPIRATION 

MODEL FOR FIELD CROPS  

3.1 Preface 

Prior to tackling eddy-covariance footprint disaggregation, we first require a surface energy 

balance model for retrieving high-resolution evapotranspiration patterns. Our candidate model, 

HRMET, was developed by Zipper and Loheide ll (2014) and further tested by Nocco et al. (2019) 

and Park et al. (2021). Insofar as we know, HRMET has not yet been qualified against an eddy-

covariance measured flux. This section sets out to amend this issue and specify the functional 

performance of HRMET, trialling different treatments of thermal surface temperature and 

assessing UAV LiDAR canopy structure retrieval techniques.  

3.2 Abstract 

Surface energy balance studies increasingly use unoccupied aerial vehicles (UAVs) for retrieving 

surface temperature and canopy structure. As applications of these models demand higher 

resolution evapotranspiration (ET) products, so does the need to provide scale-consistent inputs, 

particularly for canopy height, leaf area index (LAI), and canopy viewing fraction. Moreover, 

ambiguity surrounding temperature definition and accuracy questions the relevance of such 

thermal corrections in capturing spatial patterns of ET.  

The present study assesses using UAV Light Ranging And Detection (LiDAR) to capture canopy 

height, LAI, and canopy viewing fraction as inputs to the HRMET model (High-Resolution Mapping 

of EvapoTranspiration). These methods were applied to non-irrigated barley and forage fields in 

a semi-arid continental climate. Despite the uncertainty with LAI field observations and differing 

canopy height interpretations with sparse canopies, the UAV LiDAR products demonstrated 

spatial coherence as a set, correspondence with field-scale observations ( 𝑅𝑀𝑆𝐸  0.08 −

0.81 𝑚2𝑚−2), and agreement with site knowledge.  

The HRMET outputs were compared to eddy-covariance (EC) fluxes and local meteorology. The 

modelled latent heat flux achieved 𝑅𝑀𝑆𝐸 between 79 − 136 𝑊 𝑚−2 tending to overestimate ET 

in full canopies (LAI> 3 𝑚2𝑚−2) when surface-to-air temperature differences exceeded 4 − 5 °𝐶. 

Notably, none of the applied thermal corrections (ensemble emissivity, atmospheric) reconciled 

the difference in these conditions. An analysis (modified t-test) of thermal treatment concluded 
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that corrections to the raw thermal brightness temperature did not have a meaningful impact on 

thermal spatial patterns (𝑟 > .99, 𝑝 ≪ 0.001). A similar conclusion (𝑟 > .93, 𝑝 ≪ 0.001) was made 

about their effects on relative ET patterns (𝐸𝑇𝑅 index). Consequently, a simple raw brightness 

temperature suffices to capture high-resolution patterns of ET. Lastly, it was found that an 𝐸𝑇𝑅 

chronology of the 2018-2020 growing seasons adequately reflected changes to the hydrological 

environment and inferred crop stresses. These findings present a novel workflow for SEB users 

concerned with collecting high-resolution ET spatial patterns using UAVs over dryland field crops. 

3.3 Introduction 

3.3.1 New tools for high-resolution evapotranspiration 

Thermal remote sensing estimates of evapotranspiration (ET) were first made possible with the 

1982 launch of the Landsat 4 satellite (Engel and Weinstein 1983). Since then, the field has made 

steady progress through improved radiometric relationships (Moran 1990) and re-envisioned 

surface energy balance (SEB) schemes (Norman et al. 1995, Bastiaanssen et al. 1998a, Kustas 

and Norman 1999). Rapid advancements using Unoccupied Aerial Vehicles (UAV) enable 

versatile high-resolution inputs while testing the limits of traditional SEB schemes (Kustas and 

Anderson 2009, Niu et al. 2020). In contrast to the first thermal thematic mapper images, which 

were coarse (30 𝑚 resolution) and far removed from the Earth’s surface (> 700 𝑘𝑚), low-altitude 

(< 100 𝑚) UAVs capture thermal patterns at the sub-metre scale. Similarly, detailed canopy 

structures are now feasible using UAV photogrammetry and Light Detection And Ranging (LiDAR) 

methods providing consistent input scales for high-resolution SEB modelling. Whereas before, 

model verification using the eddy-covariance (EC) method offered a coarse comparison with one 

overlapping pixel, now the comparison is ameliorated using sub-footprint weighting schemes for 

subsequently smaller pixels (Sutherland et al. 2017). However, the application of these new tools 

has its own unique set of challenges and trade-offs between correctness and useability: notably 

between interpretations of thermal temperature (Norman et al. 1995, Torres-Rua 2017, Kelly et 

al. 2019) and LiDAR limitations and operational errors in acquiring short vegetation foliage density 

and structure (Deems and Painter 2006, Nie et al. 2016). More field feasibility studies, like that 

presented here, are necessary for addressing these issues and coming up with workable solutions 

in the UAV-driven SEB arena. 
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3.3.2 SEB overview 

The goal of a thermal remote sensing SEB model is to account for latent heat (𝐿𝐸), analogous to 

ET, through an energy balance [17]. Ignoring storage (a common practice for short vegetation 

applications) and advective terms (more impactful when considering irrigated cropland), the core 

components of net radiation (𝑅), soil heat flux (𝐺), and sensible heat (𝐻) are estimated leaving 

𝐿𝐸 as a residual. The 𝑅 and 𝐺 terms can be measured in-situ using radiometers and soil heat flux 

plates, and their values are assumed to represent the whole landscape. Sensible heat is then 

calculated according to [18] with: 𝑇𝑎𝑒𝑟𝑜 aerodynamic surface temperature, 𝑇𝑎𝑖𝑟 air temperature, 

𝑟𝑎ℎ aerodynamic resistance to sensible heat, 𝑟𝑒𝑥 excess resistance, 𝑐𝑝 specific heat capacity of 

air, and 𝜌𝑎𝑖𝑟 density of air. Equation [18] requires 𝑟𝑒𝑥 to adjust for the transport of sensible heat 

experiencing more resistance that that of momentum transfer. Moreover, an additional resistance 

correction is sometimes used to address the inherent differences between the observed 

radiometric temperature (𝑇𝑅) and the theoretical aerodynamic temperature (Matsushima 2005, 

Kustas and Anderson 2009). Interpreting 𝑇𝑎𝑒𝑟𝑜  from the raw thermal brightness remains a 

challenging endeavor. 

[17] 𝐿𝐸 = 𝑅 − 𝐺 − 𝐻 

[18] 𝐻 = 𝜌𝑎𝑖𝑟 𝑐𝑝
𝑇𝑎𝑒𝑟𝑜−𝑇𝑎𝑖𝑟

𝑟𝑎ℎ+𝑟𝑒𝑥
 

3.3.3 UAV thermal 

Although grounds for an aerodynamic temperature substitution (replacing 𝑇𝑎𝑒𝑟𝑜 with 𝑇𝑅) are firmly 

established (Brutsaert et al. 1993, Norman and Becker 1995), the prerequisites of addressing 

ensemble emissivity (converting brightness temperatures to radiometric temperatures) and path 

effects (atmospheric transmissivity and upwelling radiation) are often unmet. Ambiguity surrounds 

most efforts to obtain 𝑇𝑅 from the raw brightness temperature (𝑇𝐵,𝑜𝑏𝑠) of UAV thermal. Since a 

±0.5°𝐾 absolute accuracy is unlikely with most sensors (Kelly et al. 2019), it questions whether 

simpler interpretations can still be helpful. The direct use of 𝑇𝐵,𝑜𝑏𝑠 is constrained by confounding 

atmospheric effects (upwelling irradiance 𝐿𝑈 and transmissivity attenuation 𝜏) with reflectance 

from features around the target and with radiance from the target itself. In response, the standard 

practice is to atmospherically correct 𝑇𝐵,𝑜𝑏𝑠 to a surface brightness temperature (𝑇𝐵) and factor in 

emissivity (𝜖) to obtain the target radiometric temperature (𝑇𝑅). One compromise is to only use 

an observed radiometric temperature (𝑇𝑅,𝑜𝑏𝑠) by ignoring 𝜏 and 𝐿𝑈 effects. Although harmless in 

low-flying UAV flights (< 30 𝑚), impacts at higher elevations can exceed ±4°𝐾 (Sagan et al. 2019). 
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Other times, it is prudent to ignore the ensemble emissivity correction proposed by Norman and 

Becker (1995) and assume a constant emissivity (𝜖 of 1.0 or otherwise). The oversight of this is 

less severe, ±1.25°𝐾 error according to Kelly et al. (2019). With Brutsaert et al.’s (1993) ±0.5°𝐾 

thermal accuracy objective far in the background, what operational strategies will conserve spatial 

patterns of ET even if absolute values are off?  

Often atmospheric correction is interpreted as a linear modification to the raw digital numbers 

from a rectified source (Xia et al. 2016). An analogous approach considers ground-level radiance 

observations (Torres-Rua 2017) and enables direct interpretation of the atmosphere components 

transmissivity (𝜏) and upwelling radiation (𝐿𝑈). The linear relationship of either method suggests 

that such atmospheric corrections affect ET patterns in uniform proportion. In contrast, with 

variable emissivity, the temperature distribution is non-linearly adjusted according to the 4th power 

Stephan-Boltzmann relationship with radiance [9]. Although atmospheric correction magnitudes 

are greater, the ensemble emissivity is suspected to have more influence on spatial patterns.  

3.3.4 UAV LiDAR 

With increasingly finer-resolution thermal-driven SEB applications, the need for higher-resolution 

canopy structure inputs becomes apparent (Sutherland et al. 2014). These inputs include canopy 

height (ℎ), Leaf Area Index (LAI), and canopy viewing fraction (𝑓𝑐) and are often inter-related - 

inferring one from the others. Until recently, spatially-continuous canopy structures were found 

using discrete ground sampling and spectral indices or stereo photogrammetry; however, 

developments in three-dimensional photogrammetry and LiDAR now enable superior structural 

descriptions (Leberl et al. 2010, Sutherland et al. 2017, Maesano et al. 2020) at resolutions 

consistent with UAV thermal remote sensing (Sutherland et al. 2014, Aboutalebi et al. 2020). 

Among these methods, UAV LiDAR has greater accuracy and can interpret the digital elevation 

model beneath a canopy (Widyaningrum et al. 2017).  

In short, LiDAR is an active laser pulse device that returns three-dimensional point clouds at 

survey-grade precision. An emitted beam casts a UAV height-dependent spread over a surface 

and reflects back to the sensor as a return. Multiple returns are possible from the same pulse if 

the beam spread covers sufficiently contrasting terrain heights; otherwise, only single discrete 

returns are posted (Deems and Painter 2006). Typically, only single returns are made for short 

(< 1 𝑚) vegetation (Luo et al. 2014, Nie et al. 2016).  

Canopy heights are interpreted as the distance between the point cloud and an interpreted Digital 

Elevation Model (DEM) of the bare ground surface. Due to the vertical orientation of plant stems 
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and leaves, ℎ is systematically underestimated, with the laser pulses experiencing ‘time-walk’ and 

vertical errors (Deems and Painter 2006). Ten Harkel et al. (2020) observed this phenomenon 

and associated it with under-sampling. They concluded that spatial patterns are preserved even 

when ℎ  is underestimated. Song et al. (2020) made a similar conclusion with their UAV 

photogrammetry method of LAI estimation. A simple scaling correction with field observations can 

adjust the magnitude of ℎ accordingly. 

The canopy viewing fraction (𝑓𝑐) as it pertains to thermal-driven SEB models, is the portion of a 

thermal camera’s field-of-view taken up by the canopy (Norman et al. 1995). Analogies of 𝑓𝑐 for 

LiDAR vary depending on if number of returns or intensities are used (Luo et al. 2014) or if it 

includes all scan angles or just nadir scans (Korhonen et al. 2011). A leaf penetration index 

approach [19] considers the relative number of canopy (𝑛𝑐) and ground (𝑛𝑔) classified points and 

has been effective over maize 𝑓𝑐 (Luo et al. 2014, Nie et al. 2016). Canopy and ground returns 

are classified based on an arbitrary cut-off height above the DEM or by combining spectral 

information (Aboutalebi et al. 2020). Also, issues of 𝑓𝑐 saturation are known to occur in dense 

canopy coverage where ground points are missing (Richardson et al. 2009); however, 

relationships to canopy height (Nie et al. 2016) suggests an opportunity for gap filling.  

[19]  𝑓𝑐 =
𝑛𝑐

𝑛𝑔+𝑛𝑐
 

A leaf area index (LAI), interpreted as the area of leave surface (one-sided) over a unit area of 

ground, is used to estimate roughness lengths for SEB applications (Raupach 1994). The 

meaning of LAI can be reinterpreted if leaf inclination angle, canopy clumping, or non-transpiring 

foliage are considered. Ignoring canopy clumping and dead leaf elements, an effective LAI (𝐿𝐴𝐼𝑒) 

can be found with airborne LiDAR using a Beers-Lambert style regression with field observations 

(Solberg et al. 2006). Similar to the leaf penetration index approach, this interpretation [20] 

considers the relative number of ground and canopy points viewed from above and corrects for 

leaf inclination using a decay coefficient (𝜅). Typically assumed to be 0.5, based on a spherical 

canopy structure and nadir viewing angle (Nilson 1971, Kustas and Norman 1999), 𝜅 can also be 

uniquely determined for each canopy through regression with LAI observations (Solberg et al. 

2006, Korhonen et al. 2011, Nie et al. 2016). Although effective, this method requires at least one 

ground return at the calculation resolution to work (Richardson et al. 2009).  

[20] 𝐿𝐴𝐼𝑒 =
 − 𝑙𝑛(

𝑛𝑔

𝑛𝑔+𝑛𝑐
)

𝜅𝑐
=
 − 𝑙𝑛(1−𝑓𝐶)

𝜅𝑐
 



16 

 

3.3.5 HRMET 

Surface energy balance models employ thermal remote sensing to resolve 𝐿𝐸 as a residual. 

Spatially continuous 𝐻 retrieval is founded on a similarity between aerodynamic and radiometric 

interpretations of temperature (𝑇𝑎𝑒𝑟𝑜 and 𝑇𝑅, respectively). Although the suggested accuracy of 

substituting 𝑇𝑅  for 𝑇𝑎𝑒𝑟𝑜  is < 0.5°𝐾  (Brutsaert et al. 1993), inconsistencies > 5°𝐾  are frequent 

(Matsushima 2005) which plague 𝐻 estimates over hot, full cover canopies (Troufleau et al. 1997). 

Two-source (TS) models mitigate this error by calculating canopy and soil 𝐻 fluxes separately 

(Kustas and Norman 1999), and one-source (OS) models bypass this issue by contextually 

scaling with temperature gradients (Bastiaanssen et al. 1998b, Allen et al. 2007). After addressing 

𝑇𝑎𝑒𝑟𝑜 − 𝑇𝑅 differences, TSEB and OS approaches can offer similar 𝐿𝐸 accuracies (Kustas et al. 

2007, Brenner et al. 2017). To achieve this, TS models require accurate 𝑇𝑅 retrieval (Xia et al. 

2016); while, OS contextual scaling relies heavily on subjective hot and cold pixel selection. Other 

OS solutions use empirical adjustment factors with difficult-to-ascertain aerodynamic 

relationships (Troufleau et al. 1997, Matsushima 2005). It has been suggested that a hybrid 

approach is needed to integrate TS and OS formulations for combined accuracy and robustness 

(Brenner et al. 2017).  

The High-Resolution Mapping of EvapoTranspiration (HRMET) model uses a hybrid TS and OS 

schema (Zipper and Loheide 2014). This model combines a simplified TS radiation partitioning 

scheme with an OS bulk 𝐻  evaluation (Norman et al. 1995). A parallel resistance network 

accounts for both momentum and sensible heat influences (Kustas and Norman 1999) in addition 

to Norman and Becker’s excess resistance (1995), which Zipper and Loheide ll (2014) claim 

mitigates 𝑇𝑎𝑒𝑟𝑜 − 𝑇𝑅 differences. An assessment of HRMET’s response to hot full cover canopies 

(exasperating 𝑇𝑎𝑒𝑟𝑜 − 𝑇𝑅) remains untried. In the same study (Zipper and Loheide 2014), HRMET 

was validated against point calculations of the Shuttleworth-Wallace model over a barley field at 

1.0 𝑚 resolution. In other studies it achieved favourable results over sweet potato, corn, peas, 

and pearl millet (Nocco et al. 2019) and satisfactorily captured intra-field ET variation in a peach 

orchard (Park et al. 2021). However, the performance of HRMET has not yet been benchmarked 

against eddy-covariance (EC) flux tower observations.  

In addition to HRMET, Zipper and Loheide ll (2014) proposed a relative evapotranspiration index 

(𝐸𝑇𝑅). The aim was to develop a metric for precision agriculture to delineate water management 

zones. Since ET is mostly transpired in dry conditions, the patterns reflect plant access to 

available soil moisture. 𝐸𝑇𝑅  allows direct comparison between image dates and reveals the 

intrinsic spatial productivity of a field over an observed range of hydrological conditions for a select 
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crop species (Nocco et al. 2019). This information is useful for informing precision farming 

irrigated and dryland practices.  

3.3.6 Goals 

In this study, we assess the application of high-resolution thermal and canopy structure inputs 

within the HRMET framework. Furthermore, we trial varying degrees of thermal correction as 

inputs for the HRMET model. We evaluate how these thermal inputs affect the estimates of SEB 

components and then assess whether they substantiate a difference in ET spatial patterns as 

depicted using 𝐸𝑇𝑅. This study explores a workflow for SEB users who prefer a simplified model 

driven by raw brightness temperature to map high-resolution differences in ET.  

3.4 Methodology 

3.4.1 Data collection 

Area of study 

The study location is situated near Saskatoon, Saskatchewan, in the Canadian Prairies (Figure 

6). Acquired from local meteorological data, this semi-arid region produces 350 𝑚𝑚 of average 

annual precipitation and has average seasonal temperature fluctuations between −37°𝐶  and 

34°𝐶 , consistent with a continental climate (Government of Canada 2021). The region is 

characterized by a short growing season, having an average of 169 consecutive days that are 

above 0°𝐶 (Government of Canada 2021), with moisture-limiting single crop rotations. This study 

observed two fields, 7 𝑘𝑚  apart and 40 𝑘𝑚  SE of Saskatoon, Saskatchewan. One field 

(coordinates: 51.937, -106.374) grew silage barley (2018-2019), while the other field (coordinates: 

51.888, -106.385) grew hay forage (seeded 2019, monitored 2019-2020); hereafter, these sites 

are referred to as Barley and Forage). Both sites consist of dark brown chernozemic soil with a 

fine sandy loam texture (Appendices A2 and A3). The landforms are slightly undulating (< 2% 

slope) glaciolacustrine till with knob and knoll depressions (Ellis et al. 1970). Saline terminal 

wetlands and small water bodies pocket the landscape around each site.  
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Figure 6. Site overview 

a) regional and b) local geography 

Flux tower 

We monitored Barley and Forage using an EC flux station complete with 20 𝐻𝑧 gas analysis (LI-

COR 7500A) and three-dimensional sonic wind speed (CSAT3, Campbell Scientific) and 30 𝑚𝑖𝑛 

records of air temperature and relative humidity (HMP45C212, Campbell Scientific), four-

component net radiation (CRN1, Campbell Scientific), surface temperature (SI-121, Apogee), soil 

heat flux (HFP01, Hukseflux), and 0.1 𝑚 and 0.2 𝑚 soil moistures and temperatures (CS650, 

Campbell Scientific). Each year, the towers were set up in the same approximate locations with 

flux measurement heights between 1.5 − 2.5 𝑚.  

In summary, fluxes were processed in EddyPro software (v7.0, 2021) at 30 𝑚𝑖𝑛 flux averaging 

intervals with a 10% missing sample allowance. Dynamic metadata files of biweekly crop height 

and instrument heights were supplied. A block averaging detrending accompanied double axis 

coordinate rotations. The Webb et al. (1980) method was also used to adjust for density 

fluctuations. High and low-pass filtering corrections were applied using the Moncrieff et al. (2004) 

and (1997) techniques. We used EddyPro default settings for de-spiking, setting absolute limits, 

and addressing discontinuities and the angle of attack. Finally, the time series data were filtered 

in Rstudio (R v4.0.2, 2020) to remove outliers containing 𝐿𝐸 < −100 𝑊 𝑚−2 and 𝑢∗ < 0.1 𝑚 𝑠
−1. 
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UAV data 

Thermal surface temperature data from 17 flights (10 Barley, 7 Forage), captured over five days 

and across three years, were used in this project (Table 1). Corresponding 𝐿𝐴𝐼, ℎ, and 𝑓𝑐 for each 

day were acquired using UAV LiDAR. Flight schedules included a mixture of scanline orientations 

(due to chosen perpendicular flight paths with the prevailing wind), with most being cross-flight 

patterns as prescribed by ten Harkel et al. (2020). For additional flight log metadata, refer to 

Appendix A1. 

Table 1. List of flights, dates, and EC footprint overlap times 
Image 
[𝒚𝒚_𝑫𝑫𝑫_𝒑_#]* 

Date Site Start overlap CST 
[𝒉𝒉:𝒎𝒎: 𝒔𝒔] 

End overlap CST 
[𝒉𝒉:𝒎𝒎: 𝒔𝒔] 

Solar zenith 
 ∠ [°] 

18_207_e_1 July 26, 2018 Barley 13:03:00 13:10:00 32.7 

19_177_e_1 June 26, 2019 Barley 11:24:00 11:33:00 34.9 

19_177_e_2 June 26, 2019 Forage 12:35:00 12:40:00 29.4 

19_177_e_3 June 26, 2019 Forage 14:32:00 14:37:00 32.8 

19_177_h_1 June 26, 2019 Barley 15:09:00 15:20:00 38.1 

19_177_e_4 June 26, 2019 Barley 15:30:00 15:40:00 39.3 

19_184_h_1 July 3, 2019 Barley 7:41:00 7:54:00 67.4 

19_184_h_2 July 3, 2019 Forage 9:03:00 9:10:00 54.8 

19_184_h_3 July 3, 2019 Forage 11:31:00 11:39:00 34.7 

19_184_h_4 July 3, 2019 Barley 12:41:00 12:45:00 29.6 

19_184_h_5 July 3, 2019 Barley 14:14:00 14:23:00 31.6 

19_184_h_6 July 3, 2019 Forage 15:35:00 15:44:00 40.2 

19_212_h_1 July 31, 2019 Barley 10:48:00 11:00:00 44.0 

19_212_h_2 July 31, 2019 Forage 13:12:00 13:18:00 33.8 

19_212_h_3 July 31, 2019 Barley 14:37:00 14:47:00 37.7 

20_210_h_1 July 28, 2020 Barley 11:20:00 11:34:00 39.8 

20_210_h_2 July 28, 2020 Forage 14:27:00 14:35:00 36.4 

* Flight identification label yy_DDD_p_# corresponds to the year, the Julian day, the payload (e for ThermoMAP, h for FLIR Vue Pro 
R), and the flight number 

Equipment 

A combination of UAV and handheld instrumentation was used in this study. We took thermal 

images using EbeeX and Ebee+ fixed-wing UAVs equipped with FLIR Vue Pro R and FLIR Vue 

Pro (ThermoMAP) sensors, respectively. Factory specifications attest to ±5 °𝐶  accuracy and 

central wavelengths of 1079 and 1029 𝑛𝑚 for ThermoMAP and FLIR Vue Pro R, respectively 

(Appendix A4). A handheld FLIR T650sc ( ±1 °𝐶, 1029 𝑛𝑚 central wavelength) was used for 

referencing atmospheric corrections. High-resolution 𝐿𝐴𝐼𝑒, ℎ, and 𝑓𝑐 were also collected using a 

DJI M600 Pro hexacopter equipped with a Riegl miniVUX1-UAV LiDAR (laser specifications: 

0.0015  𝑚  accuracy, 0.001 𝑚  precision) and an APX-15 IMU device for motion corrections. 

Coinciding ground-level LAIs were observed using a Decagon LP-80 ceptometer (0.865 𝑚 wand 

length) in both full sun and partial sunlit conditions.  
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Sampling 

For ground validation efficiency, we flagged observation points (Figure 4) across three W to E 

transects spaced 200 𝑚 apart according to the 100:1 rule with EC fetch (Burba 2013). We 

surveyed additional points around each tower, apparent saline outcrops (observed white 

precipitate on the soil surface and impeded emergence), and in landscape depressions, where 

we expected to see a sufficient range of observations. Field-scale LAI and crop height information 

were used instead of specified points for the 18_207_e_1 image. Also, in 2020 (since only one 

image was collected) we chose sample spots along a single transect upwind of each flux tower. 

Flags were surveyed (±0.03 𝑚 accuracy) using a Leica GPS with real-time kinetics and precise 

point processing corrections with the Natural Resources Canada online tool. We made 

observations from these placemarks about one metre south of each flag. Thermal observations 

were collected at chest height (approximately one metre above the ground) to achieve a field-of-

view of 0.6 𝑚  (the width of three crop rows at Barley). Since Forage vegetation was more 

scattered, we attempted to balance the relative proportions of grass, alfalfa, and bare ground 

viewed in each observation. Meanwhile, we recorded LAI as an average of three cross-row and 

with-row means within a 1 𝑚2 zone (Figure 8). With-row measurements were taken at about one-

third of the crop row spacing (4” from the crop row base). After the above-canopy reading, we 

took a second below-canopy reading to ensure stability within ±10% to mitigate light transience. 

A separate set of LAI observations (not dedicated to this study) were collected as routine 

measurements for the upkeep of the flux tower sites; these took a spatial average of three spot 

measurements across a 5 𝑚 transect. The two sets of LAI are separate because the latter has a 

coarser spatial registration; we label these ‘dedicated’ or ‘undedicated’, respectively. Average 

field heights were taken with a measuring tape as the height of horizon disappearance from a 

level viewpoint (±0.05 𝑚 accuracy). 
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Figure 7. Sampling maps 

 a) Barley and b) Forage 

 
Figure 8. Example of field LAI measurements 

a) with-row and b) cross-row 

Statistics 

We used a modified t-test (Clifford et al. 1989, Dutilleul 1993) to assess spatial correlations 

amongst thermal temperatures and 𝐸𝑇𝑅  results. This test provides a Pearson correlation 

coefficient ( 𝑟 ) corrected for spatial autocorrelation by reducing the effective number of 

observations. We performed the test using the SpatialPack (Vallejos et al. 2020) package in R 

(v4.0.2, 2020). We applied the modified.ttest function with 20 class categories and default settings 

on random raster subsets of 10,000 cells each. Results from this test include 𝑟, the effective 

number of observations (𝑛𝑚𝑜𝑑), and the significance p-value.  

Three-dimensional point clouds were surveyed using UAV LiDAR. We flew LiDAR at around 100 

𝑚𝑎𝑔𝑙 at average speeds of 6 𝑚 𝑠−1 (Appendix A1). To improve ground point recovery in dense 

vegetation (Richardson et al. 2009), we considered all available scan angles (typically 0-80°) 

similar to the multi-angle photogrammetry approach used by Song et al. (2020). DEMs were 
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retrieved from early-season point clouds and provided good descriptions of depressional areas 

for referencing ℎ throughout the analysis. The LiDAR GNSS survey and base station data post-

processing was performed in Leica Infinity (v3.0.1, 2018) with precise point positioning using the 

Natural Resources Canada online system. Post-processing of the APX-15 IMU data to develop a 

smoother best estimate of the trajectory of the LiDAR system was performed with POSPac UAV 

(v8.5, 2020). RiPROCESS software (v1.9.1, 2021) combined post-processed trajectory with laser 

scans to then develop, refine and generate geo-registered point clouds. 

3.4.2 Canopy height 

Canopy height models (ℎ) were inferred from the bare-ground DEM using the lasground function 

in LAStools (Isenburg 2021). We extracted ℎ from the post-processed point cloud as the vertical 

distance between each point and the ground DEM. We then converted ℎ to raster format using a 

95𝑡ℎ  percentile height and aggregating to 0.6  𝑚  (Barley) and  1.0  𝑚  (Forage) resolutions. 

Afterwards, ℎ was scaled manually to match field observations. For a scaling factor, we used the 

fraction of the average field height over the unscaled raster average height. This method corrected 

ℎ magnitude while preserving its high-resolution spatial patterns. 

3.4.3 Canopy viewing fraction 

Canopy viewing fractions were acquired using equation [19]. Similar to Nie et al. (2016), only 

discrete returns were considered. We used the lidR package in R (Roussel and Auty 2021) to 

analyze point clouds and statistics: its filter_poi function separated ground and canopy returns 

with date-specific cut-off heights of 0.05 − 0.20 𝑚, and grid_metrics calculated the number of 

canopy points 𝑛𝑐  and ground points 𝑛𝑔  at three-metre resolution. We adopted a sigmoidal 

regression with the spatially continuous ℎ to gap-fill areas with missing or insufficient number of 

ground points. This flexibility allowed us to adjust the required number of ground points from one 

(Richardson et al. 2009) to a statistically better sample size of twenty. Concurrent 𝑓𝑐 and 𝐿𝐴𝐼 

interpretations used the same height and ground return thresholds (5 − 20 𝑐𝑚  and 20  𝑝𝑡𝑠 

respectively).  

3.4.4 Effective leaf area index 

The Beers-Lambert approach [20] was used to solve 𝐿𝐴𝐼𝑒 helped by the lidR package (Roussel 

and Auty 2021) in R (v4.0.2, 2020). We applied [20] to the point cloud directly instead of using 𝑓𝑐, 

and considered the relative number of canopy and ground return points at each pixel. We then 
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adjusted 𝜅𝑐 so that 𝐿𝐴𝐼𝑒 matched LAI field measurements. This effectively made 𝜅𝑐 an empirical 

adjustment factor unique to each LiDAR point cloud. The 𝑙𝑎𝑠𝑐𝑙𝑖𝑝 function helped us retrieve points 

within a  1.5 𝑚  search radius of the field observation locations. Afterwards, we used the 

grid_metrics function to help calculate 𝐿𝐴𝐼𝑒 at three-metre resolution with uniform cut-off heights 

for each point cloud ranging from 0.05 𝑚 (sparser canopies) to 0.20 𝑚 (denser coverage). As with 

𝑓𝑐, gap filling followed a sigmoidal regression with ℎ.  

3.5 Thermal corrections 

To get 𝑇𝐵,𝑜𝑏𝑠 from raw thermal data, we first had to apply internal camera corrections and geo-

register with ground control points; these were done in Pix4D software (v4.3, 2021). We used 

three to five ground control points consisting of a one-by-two-metre reflective foil for each flight. 

Orthomosaics of 𝑇𝐵,𝑜𝑏𝑠 were then generated at 0.05 𝑚 and 0.15 𝑚 resolutions for FLIR Vue Pro R 

and ThermoMAP cameras, respectively. 

3.5.1 Ensemble emissivity correction 

To isolate 𝑇𝑅,𝑜𝑏𝑠  from the target surface, we used a two-component ensemble emissivity 

(𝜖𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒) following Norman and Becker (1995). The correction applies canopy (𝑓𝑐) and soil (𝑓𝑠) 

viewing fractions to distribute emissivity (𝜖𝑐  and 𝜖𝑠 ) according to 𝑇𝐵,𝑜𝑏𝑠  in [21]. The 𝜖𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 

replaces default emissivity (𝜖𝑑𝑒𝑓𝑎𝑢𝑙𝑡) settings in the thermal imagers (usually 0.95 or 1.0) and 

relates 𝑇𝑅,𝑜𝑏𝑠 to 𝑇𝐵,𝑜𝑏𝑠  following [22] (Nieto et al. 2019). Alternately, assuming atmospheric 

corrections, the relationship holds for obtaining 𝑇𝑅 from 𝑇𝐵 following [23]. 

[21] 𝜖𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =
𝑓𝑐 𝜖𝑐𝑇𝐵,𝑜𝑏𝑠+ 𝑓𝑠 𝜖𝑠𝑇𝐵,𝑜𝑏𝑠

𝑓𝑐 𝑇𝐵,𝑜𝑏𝑠+ 𝑓𝑠 𝑇𝐵,𝑜𝑏𝑠
  

[22]  𝑇𝑅,𝑜𝑏𝑠 = (
𝜖𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝜖𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒
 𝑇𝐵,𝑜𝑏𝑠 

4)

1

4
  

[23] 𝑇𝑅 = (
𝜖𝑑𝑒𝑓𝑎𝑢𝑙𝑡

𝜖𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒
 𝑇𝐵 

4)

1

4
  

The 𝜖𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 correction causes the temperature to increase more over sparse canopies than 

over full canopies. A sparse canopy has 𝜖𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 closer to that of soil (𝜖 = 0.95), while the dense 

canopy has 𝜖𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 nearer to that of vegetation emissivity (𝜖 = 0.98). Being farther away from 

a blackbody default emissivity (𝜖 = 1.0) causes the sparse canopy temperature shift to be higher.  
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3.5.2 Atmospheric correction 

The atmospheric correction follows the ‘vicarious calibration’ approach presented by Torres-Rua 

(2017). It uses the logic that ground-level thermal observations are unaffected by path irradiance 

(𝐿𝑈) and transmissivity (𝜏) attenuation. Ground-level and UAV temperatures are converted to 

spectral radiances (𝐿𝐵 and 𝐿𝑆) using Planck’s Law and the thermal imager central wavelengths. 

These are arranged as a linear regression according to [8], which is then inverted as a radiometric 

correction to convert 𝐿𝑆 to a ground-level equivalent (in place of 𝐿𝐵). Afterwards, the adjusted 

spectral radiance is reverted to 𝑇𝑅,𝑜𝑏𝑠.  

3.6 HRMET processing 

This study uses the HRMET (Zipper and Loheide 2014) SEB model coded in R (v4.0.2, 2020) 

with some processing and input differences. First, the code was vectorized and adapted for 

parallel processing to increase speed. Then the incoming longwave formula was replaced with 

measured values. Lastly, a LiDAR interpretation of 𝑓𝑐  was used instead of the LAI-Beers law 

relationship.  

3.6.1 Key processes 

HRMET uses the radiation partitioning prescribed by Norman et al. (1995), where the fractions of 

longwave and shortwave radiation reaching the soil (𝛸) are related to the canopy viewing fraction 

(𝑓𝑐) following [24]. The constant 0.9 pertains to Nilson’s (1971) description of gaps in a spherical 

canopy structure. Moreover, we approximated soil heat flux following 𝐺 ≈ 0.35 𝑅𝑛,𝑠, as a ratio of 

net soil radiation (𝑅𝑛,𝑠).  

[24] 𝛸 = 𝑒𝑥𝑝(0.9 𝑙𝑛(1 − 𝑓𝑐))  

The parallel resistance scheme employed by HRMET to solve [18] uses the sensible heat 

description of aerodynamic resistance (𝑟𝑎𝐻) according to Kustas and Anderson (2009). It includes 

an additional excess resistance (𝑟𝑒𝑥), originally intended to compensate sensible heat applications 

for use in a momentum-based theory (Norman and Becker 1995); however, HRMET considers it 

as a radiometric correction factor for using 𝑇𝑅 in place of 𝑇𝑎𝑒𝑟𝑜.  

Model uncertainty is assessed through a Monte-Carlo permutation approach. HRMET computes 

100 estimates at each cell based on randomly selecting inputs from their uncertainty distributions. 

The inputs are varied using a normalized distribution of the 95% confidence uncertainty estimates. 

Uncertainty estimates for raster inputs consider spatial uncertainty using the mean and standard 
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deviation from a three-by-three moving window. Meanwhile, meteorological inputs include 

temporal uncertainty using the mean and standard deviation from the surrounding 30 𝑚𝑖𝑛 records. 

All 95%  confidence uncertainty estimates (𝑢𝑇𝑜𝑡𝑎𝑙 ) were calculated according to [25] where 

𝑢𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡 is the instrument accuracy and 𝑢𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 is twice the standard deviation from the 

moving window analysis (raster inputs) or the adjacent records (time series inputs). In this way, 

HRMET creates mean and standard deviation maps for each SEB component.  

[25]  𝑢𝑇𝑜𝑡𝑎𝑙 = √𝑢𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡
2 + 𝑢𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡

2   

3.6.2 Eddy-covariance comparison 

UAV and flux tower comparisons have some issues when it comes to temporal and spatial 

registration, the aligning of time intervals and measurement areas. First, while flux tower 

measurements are made with 30 𝑚𝑖𝑛 averaging intervals, the UAV overpass time of the footprint 

only takes 5 − 10 𝑚𝑖𝑛. We address this by isolating the UAV footprint overpass time and, if it 

straddles two 30 𝑚𝑖𝑛 records, using linear interpolation to weight the corresponding meteorology 

inputs for HRMET. The same technique is applied to compare SEB outputs with 30 𝑚𝑖𝑛 EC fluxes. 

Moreover, HRMET accounts for temporal stability using its permutation-based Monte-Carlo 

strategy, which provides confidence boundaries for each SEB output. To encourage spatial 

registration between HMRET and EC footprints, we issued a weighting function following [26] 

where 𝑎 is the pixel area, 
𝑓𝑖

∑𝑓𝑖
 is the fraction of the total sum of footprint values in the footprint area 

at a given cell 𝑖, 𝜒𝑖 is the SEB component (𝐿𝐸, 𝐻, 𝑅, or 𝐺) value at each coinciding pixel, and 𝜒𝑓 

is the footprint weighted bulk SEB component value. 

[26]  𝜒𝑓 = 𝑎 ∑ (
𝑓𝑖

∑𝑓𝑖
 𝜒𝑖) 

Following Brenner et al. (2017), we apply a Bowen-ratio closure to our eddy-covariance 𝐻 and 𝐿𝐸 

terms for comparison with HRMET. Upper and lower thresholds are represented using closure 

bounds (residual energy assigned wholly to 𝐻 or 𝐿𝐸). We calculated residual energy (𝑅𝐸𝑆) using 

𝑅𝐸𝑆 = 𝑅 − 𝐻 − 𝐿𝐸 − 𝐺 (Foken 2008).  

Flux tower 𝐺 was derived from a soil heat flux plate at 0.10 𝑚 depth with attenuation corrections 

following [27]; where 𝐺𝑜𝑏𝑠 is the soil heat flux at 0.10 𝑚 depth, 𝑑𝑇 is the change in 0.10 𝑚 soil 

temperature between 30 𝑚𝑖𝑛 records, 𝐶𝑠 is the thermal conductivity of the soil, 𝑧𝑠𝑜𝑖𝑙 is the 0.10 𝑚 

soil depth, and 𝑡 is the time of observation (30 𝑚𝑖𝑛).  
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[27] 𝐺 = 𝐺𝑜𝑏𝑠 + 𝑑𝑇 𝐶𝑠
𝑧𝑠𝑜𝑖𝑙

𝑡
 

3.6.3 Relative evapotranspiration 

Following Zipper and Loheide (2014), we represented spatial ET patterns using the 𝐸𝑇𝑅 index. 

This was done by stretching each ET raster between the 2.5𝑡ℎ  and 97.5𝑡ℎ  percentiles (95% 

confidence range) and normalizing between zero and one. The output 𝐸𝑇𝑅 contains values from 

zero (low) to one (high) representative of the relative ET patterns within each image. By ordering 

𝐸𝑇𝑅 images sequentially, we address how ET patterns relate with changing hydrology and canopy 

development.  

3.7 Results and discussion 

3.7.1 Background conditions 

Hydrology 

Barley and Forage received most of their soil moisture from winter runoff and spring rains (Figure 

9), then precipitation tapered off in July-August. Cumulative ET continued strong until available 

soil moisture depleted, then ET too tapered off. Forage maintained higher ET rates throughout 

the season; this is explained by deeper established root systems than at Barley. The 2018 season 

stands out with higher antecedent soil moisture, scant Spring rains, and less overall precipitation. 

Conversely, the 2019-2020 rainfalls came earlier in greater quantity. The soil moisture drawdowns 

in 2018-2019 are relatively steeper than in 2020, indicating higher drought stress in these first two 

years. Meanwhile, the UAV flight dates were focused on the peak growth periods and moisture-

limiting transitions (where cumulative ET plateaus). 
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Figure 9. Overview of seasonal site hydrology with corresponding flight overpasses 

a) Cumulative precipitation and ET and b) 0.2 𝑚 volumetric soil moisture 

Meteorology 

Unlike UAV data, which provides a snapshot in time, other SEB meteorological inputs are 

averaged over 30 𝑚𝑖𝑛  intervals and are subject to uncertainty from shifting meteorological 

conditions. To help interpret HRMET outputs, we present flight occurrences in context with the 

daily energy dynamics in 𝑅, 𝐺, and the surface-air temperature gradient (Figure 10). In Appendix 

A5, we provide further meteorology measurements coinciding with each UAV flight (shortwave 

incoming, longwave outgoing, air temperature, surface brightness temperature, vapour pressure 

deficit, wind speed, friction velocity, and relative humidity). 

 
Figure 10. Daily energy dynamics with coincident UAV overpasses 
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3.7.2 Applying UAV LiDAR 

For brevity, we present UAV LiDAR figures for Barley and include Forage results only in the table 

summaries. Although each site required manually-adjusted parameters, the outcomes were 

generally the same for both. 

DEM 

We began by creating Digital Elevation Models (DEMs) from UAV LiDAR point clouds of sparse 

canopies. The Barley DEM (Figure 11) depicts the depressions and rises throughout the site and 

identifies a tillage ridge - an old field boundary - running W to E along the top quarter of the map. 

This 0.6 𝑚  resolution description of site topography provides a reference for ℎ  and helps us 

interpret 𝑓𝐶, 𝐿𝐴𝐼𝑒 , and 𝐸𝑇𝑅.  

  
Figure 11. Barley field DEM from UAV LiDAR at 0.6 𝑚 resolution 

A tillage ridge (old field boundary) is revealed in the DEM, shown as a horizontal lighter-coloured line 

Canopy height 

The canopy height models (ℎ) generally agreed with field-average observations (Barley sample 

shown in Table 2). First attempts to relate observations with ℎ failed (𝑅2 < 0, not shown) partly 

because of a lack of observed variation and systematic differences between aerial and ground-

based canopy height estimates. Nonetheless, we applied uniform scaling to match the average 

field values. The correction was proportionally larger and positive for sparse canopies (80 −

82% increase over unscaled mean height) than for fuller canopies (0 − 15% decrease). 
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Table 2. Field-average canopy height correction at Barley 
Date 𝒉 mean unscaled [𝒎] 𝒉 mean scaled [𝒎]  𝒉 mean change [𝒎] 

18_207 0.76 0.65 -0.11 
19_177 0.10 0.18 0.08 
19_184 0.13 0.23 0.10 
19_212 0.73 0.70 -0.03 
20_210 0.83 0.84 0.00 

 

The UAV-LiDAR derived ℎ maps depict patterns consistent with RGB imagery for sparse and full 

canopies (Figure 12). Over sparse cover (19_184), green patches of canopy emergence coincide 

with taller ℎ (in yellow). Furthermore, the alternating diagonal patterns in Figure 12a mimic known 

tillage rows in the field. In the later image (19_212) comparison (Figure 12c-d), we see that the 

RGB only partially explains the ℎ pattern: with the bare road, gravel pads, and N to S tractor tracks 

evident in both. The unexplained taller canopy patches in ℎ  are accounted for in the DEM 

depressions from Figure 11. From a field observer's point of view, this phenomenon was viewed 

with the crop growing to a seemingly level plain that belied the actual ground surface. 
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Figure 12. UAV LiDAR barley canopy structures 

a,b) sparse canopy (19_184) and c,d) full canopy (19_212) conditions 

𝐿𝐴𝐼𝑒 and 𝑓𝑐 

A calibration regression of UAV LiDAR 𝐿𝐴𝐼𝑒 with LAI observations yielded low 𝑅2 but achieved 

acceptable 𝑅𝑀𝑆𝐸 (Table 3). Dedicated LAI (measured over a one-metre-squared area instead of 

along a five-metre transect) at Barley 20_210 had a good comparison (𝑅2 = 0.81) even though it 

contained the fewest number (10) of observations. Meanwhile, over a similar canopy (19_212), 

the more numerous undedicated observations failed to match 𝐿𝐴𝐼𝑒. This implies that the spatial 
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uncertainty of our observations exceeded the LAI contrast present in the field. To compensate 

indeterminate 𝑅2  values, 𝜅𝑐  was adjusted (0.5 − 1.0) until the average 𝐿𝐴𝐼𝑒  matched average 

field LAI. This solution anchors 𝐿𝐴𝐼𝑒 within 𝑅𝑀𝑆𝐸 of 0.08 − 0.82 𝑚2𝑚−2, consistent with similar 

studies (Nie et al. 2016). Solutions for 𝑓𝑐  are contained with in the 𝐿𝐴𝐼𝑒  formulation, so their 

performance was assumed to be consistent with that of 𝐿𝐴𝐼𝑒. 

Table 3. LAI regression parameters 
Date 
[YY_DDD] 

Average 
point density 
[𝒑𝒕𝒔 𝒎−𝟐] 

Canopy cut-
off height 
[𝒄𝒎] 

𝜿, Extinction 
coefficient 

Number of 
observations 

Dedicated 
observations? 
[yes/no] 

𝑹𝟐 
(explained 
variance) 

𝑹𝑴𝑺𝑬 
[𝒎𝟐𝒎−𝟐] 

Barley 
18_207 44.6 20 0.8 0 - - - 
19_177 68.6 5 0.5 20 no -2.56 0.08 
19_184 73.1 5 0.5 20 yes 0.12 0.56 
19_212 66.3 20 0.6 32 no -1.2 0.81 
20_210 73.2 20 0.5 10 yes 0.82 0.48 
        
Forage 
19_177 77.6 5 0.75 15 yes 0.31 0.33 
19_184 89.0 5 1.0 23 yes -0.31 0.53 
19_212 81.3 10 1.0 40 no -1.92 0.52 
20_210 85.6 5 0.9 0 - - - 

 

To fill areas of the 𝑓𝑐 and 𝐿𝐴𝐼𝑒 maps where UAV LiDAR could not penetrate the dense canopy, 

we relied on our gap-filling procedure with ℎ (Figure 13). A sigmoidal curve regression allowed 

smoother gap-filling (Figure 13b and 13e) with better 𝑅𝑎𝑑𝑗
2  than a regular linear model (Appendix 

A6) and also capped 𝐿𝐴𝐼𝑒 at realistic values (6 − 8 𝑚2𝑚−2). The gaps coincide with low-spots in 

the DEM (Figure 11) and N to S tractor seeding paths; this also happens to be where SEB 

dependency on 𝐿𝐴𝐼𝑒 and 𝑓𝑐 is expected to plateau (over full canopies). Since gap filling was only 

needed for 𝐿𝐴𝐼𝑒 ≫ 1 𝑚
2𝑚−2, the relative impact of 𝑅𝑀𝑆𝐸 on these larger 𝐿𝐴𝐼𝑒 is diminished.  
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Figure 13. Gap-filling procedure for 𝑓𝑐 and 𝐿𝐴𝐼𝑒 

a-c) 𝑓𝑐 and d-f) 𝐿𝐴𝐼𝑒 with sigmoidal curve fitting regression (Barley, 19_212) 

A field morphology summary (Table 4) documents key differences between the two sites. 

Whereas Barley shows a solid seasonal growth trend, Forage experiences relatively subtle 

changes in 𝐿𝐴𝐼𝑒 , ℎ , and 𝑓𝑐 . The range of Barley 𝐿𝐴𝐼𝑒  proceeds from 0.2 𝑚2𝑚−2  early in the 

season to 2.7 − 5.1 𝑚2𝑚−2  by the end of July. There is also a dramatic increase in Barley 

vegetation in the 2020 collection than at similar times in 2018 and 2019, which may have resulted 

from increased available moisture in the 2020 season (Figure 9). Conversely, Forage 

demonstrates relatively modest canopy structure changes over the season. This fact reflects the 

asynchronous phenology stages and root structures in the grass and alfalfa cultivars at Forage. 

Table 4. Field morphology summary of average field values 
 Barley Forage 

ID 𝐿𝐴𝐼𝑒 ℎ [𝑚] 𝑓𝑐 𝐿𝐴𝐼𝑒 ℎ [𝑚] 𝑓𝑐 

18_207 2.5 0.65 0.85 - - - 

19_177 0.2 0.18 0.11 1.1 0.51 0.54 

19_184 0.4 0.23 0.18 1.3 0.61 0.68 

19_212 3.4 0.70 0.85 1.7 0.70 0.78 

20_210 5.1 0.84 0.92 1.0 0.17 0.59 
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Challenges with UAV LiDAR 

An interpretive issue arises when using UAV LiDAR to acquire ℎ over sparse canopies. We found 

that our 95𝑡ℎ percentile aggregation of canopy-classified points led to an 80% underestimation 

compared with ground-level observations. The reason is that in sparse canopies, the aerial-view 

LiDAR is more likely to measure ℎ along the plant stem than it is to measure the top; whereas, in 

full canopies, more returns are likely made from the top matt of vegetation. This poses a challenge 

for integrating UAV-LiDAR ℎ with empirical relationships derived using conventional crop height 

estimates. In response, it is prudent to correct ℎ estimates from sparse canopy UAV LiDAR. 

Relating handheld LAI observations to sub-metre UAV observations is notoriously tricky due to 

spatial variation in heterogenous landscapes (Nassar et al. 2022). Our efforts met similar 

resistance, with strongly clumped canopies garnering negative 𝑅2  (Table 3) and worsening 

results when changing the calculation resolution (Nie et al. 2016). Although our LAI sampling 

strategy provided representative field-scale values, it struggled to spatially relate with three-metre 

resolution UAV LiDAR. This is partly due to a relatively large LAI sampling uncertainty compared 

to the range of observations. Considering that previous successes with this approach applied to 

taller vegetation - maize (Nie et al. 2016) and trees (Richardson et al. 2009), we suspect that 

attempts over young field crops may not provide sufficient contrast. Alternatively, we suggest 

improving the observation technique. Following Nie et al.’s (2016) approach, LAI observations 

could be limited to diffuse light conditions only (sunset, sunrise, or overcast). Doing so would 

bypass assumptions about canopy leaf structure and increase the measurement consistency.  

We sough to use UAV LiDAR for acquiring physically-based canopy characteristics at resolutions 

consistent with UAV thermal remote sensing. Resultant ℎ, 𝐿𝐴𝐼𝑒 , and 𝑓𝑐  reflected actual field 

conditions, and their magnitudes were consistent with field observations. Furthermore, the 

associated growth patterns coincided with high-resolution RGB imagery and DEM topography.  

3.7.3 Applying UAV thermal 

Practical considerations using thermal corrections 

Attempts to perform atmospheric corrections using the ‘vicarious calibration’ method had mixed 

results. In many cases, field observations did not capture a sufficiently contrasting temperature 

range to succeed with the correction. We specified a successful correction as one that produced 

temperatures with 𝑅𝑀𝑆𝐸 less than 5 °𝐶 (FLIR Vue Pro R and ThermoMAP absolute accuracy). In 

terms of spectral radiance (Table 5), this corresponded to corrected 𝑅𝑀𝑆𝐸  less than 0.4 
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𝑊 𝑚−2𝑠𝑟−1𝜇𝑚−1 and 𝑅2 > 0.67. The three successful applications were at Barley: 19_177_e_4, 

19_212_h_3, 20_210_h_1, with 𝑅𝑀𝑆𝐸 (𝑅2)  of 0.28 (0.77) , 0.17 (0.90) , and 0.40 (0.67) , 

𝑊 𝑚−2𝑠𝑟−1𝜇𝑚−1 respectively. We observed that atmospheric influences were greater in the early 

season, with 𝐿𝑈 in 19_177_e_4 twice as high and 𝜏 half as much compared to 19_212_h_3 and 

20_210_h_1. This implies that atmospheric corrections are more important to consider earlier in 

the season when there is greater atmospheric water vapour. 

Table 5. Atmospheric corrections 
Flight  
[YY_DDD_ID] 

# Obs. 
[-] 

𝑹𝟐 
[-] 

𝒓 (p-value) 
[-] 

𝑹𝑴𝑺𝑬 
[ 𝑾 𝒎−𝟐𝒔𝒓−𝟏𝝁𝒎−𝟏]  

Upwelling spectral radiance, 𝑳𝑼 
[ 𝑾 𝒎−𝟐𝒔𝒓−𝟏𝝁𝒎−𝟏] 

Transmissivity, 𝝉 
[ 𝑾 𝒎−𝟐𝒔𝒓−𝟏𝝁𝒎−𝟏] 

18_207_e_1 - - - - - - 

19_177_e_1 14 0.15 .39 (0.16) 0.34 8.34 0.16 

19_177_e_4 10 0.77 .88 (<0.001) 0.28 6.62 0.35 

19_177_h_1 16 0.27 .52 (0.037) 0.29 6.37 0.3 

19_184_h_1 - - - - - - 

19_184_h_4 22 0.08 .28 (0.19) 0.77 8.06 0.23 

19_184_h_5 23 0.36 .60 (0.002) 0.52 5.92 0.38 

19_212_h_1 24 0.14 .37 (0.066) 0.39 6 0.36 

19_212_h_3 12 0.90 .95 (<0.001) 0.17 1.35 0.92 

20_210_h_1 8 0.67 .82 (0.013) 0.4 3.5 0.68 

19_177_e_2 11 0.16 .40 (0.23) 0.51 12.83 -0.29 

19_177_e_3 14 0.06 .24 (0.39) 0.92 9.02 0.11 

19_184_h_2 - - - - - - 

19_184_h_3 19 0.03 .17 (0.48) 0.6 8.4 0.1 

19_184_h_6 14 0.23 .48 (0.12) 0.51 6.63 0.29 

19_212_h_2 26 0.15 .39 (0.052) 0.84 7.55 0.3 

19_242_h_2 14 0.24 .49 (0.075) 0.77 6.4 0.26 

20_210_h_2 8 0.03 .17 (0.66) 1.19 15.46 -0.22 

 

Combined corrections 

Of the combined thermal corrections in Figure 14 and Figure 15 (for sparse (19_177_e_4) and 

full (19_212_h_3) canopies, respectively), those with an atmospheric correction achieved closer 

parity between UAV and field observations. The 𝜖𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 correction shifted each measurement 

with the same increase and did not noticeably change 𝑅2. Atmospheric corrections applied a 

uniform UAV offset (𝐿𝑈) in both situations with the rotation (𝜏) pronounced in the early season 

(Figure 14). The later season image was almost parallel to field observations (Figure 15) with an 

𝑅𝑀𝑆𝐸 offset similar to the 5°𝐶 UAV thermal accuracy. This suggests that a ground-level camera 

calibration with a NIST traceable blackbody (Torres-Rua 2017) could replace the full spatial 

calibration in these conditions (low 𝐿𝑈, high 𝜏). 
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Figure 14. Incremental thermal corrections for 19_177_e_4 at Barley 

a) 𝑇𝐵,𝑜𝑏𝑠, b) 𝑇𝑅,𝑜𝑏𝑠, c) 𝑇𝐵, d) 𝑇𝑅  
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Figure 15. Incremental thermal corrections for 19_212_h_3 at Barley 

 a) 𝑇𝐵,𝑜𝑏𝑠, b) 𝑇𝑅,𝑜𝑏𝑠, c) 𝑇𝐵, d) 𝑇𝑅  

The level of thermal correction had differing effects on statistical distributions (Figure 16). 

Ensemble emissivity corrections (𝑇𝑅,𝑜𝑏𝑠) increased mean temperature for early and late images 

(3.7°𝐶 𝑎𝑛𝑑 1.9°𝐶  respectively) but had little effect on variability (decrease standard deviation 

~0.1°𝐶 for both). Meanwhile, tenable atmospheric corrections (𝑇𝐵) tended to flatten the histogram 

(increase standard deviation) with a more pronounced standard deviation increase in early sparse 

canopies (~3°𝐶) than in later images (~0.3°𝐶). It also shifted temperature slightly to the right 

(~0.4°𝐶  increase) in the early season image (high 𝐿𝑈 , low 𝜏) but strongly to the left (~3.7°𝐶 

decrease) in the later season image (low 𝐿𝑈, high 𝜏). The combined thermal corrections (𝑇𝑅) 
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exercised facets of both corrections; notably, the temperature shift of 19_212_h_3 (late season) 

was moderated between the positive shift from 𝜖𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 and the negative translation from the 

atmospheric correction. Consequently, omitting either correction had different outcomes 

depending on the developmental stage of the canopy, which coincides with increasing canopy 

closure and lessening atmospheric effects. 

 
Figure 16. Sample temperature adjustment histograms  

The impact of the thermal correction on spatial patterns was assessed with the modified t-test 

(Clifford et al. 1989, Dutilleul 1993) using 𝑇𝐵,𝑜𝑏𝑠 as a comparator. Interestingly, although thermal 

corrections had dissimilar histograms, their spatial correlations were virtually identical (𝑟 > .99, 

𝑝 ≪ 0.001). The one exception at Barley with the ensemble emissivity correction of 19_184_h_1 

(𝑟 = 0.92  𝑝 ≪ 0.001)  suggests that variable emissivity has an increased role in determining 

spatial thermal patterns under early morning sparse canopy conditions. Yet overall, the modified 

t-test indicates that atmospheric and emissivity temperature corrections have minimal impact on 

surface thermal patterns.  

It follows that a ±5 °𝐶 measurement uncertainty from the UAV thermal cameras (Appendix A4) 

would similarly not alter the spatial patterns significantly. We assume the ±5 °𝐶  error acts 

uniformly across each image because the thermal sensors have a very fine (0.2 − 0.04 °𝐶 ) 

sensitivity one-to-two orders smaller in magnitude. Furthermore, within HRMET’s Monte-Carlo 

error analysis, the three-by-three moving window analysis of raster information incorporates the 

potential spatial error (thermal standard deviation of moving window) in the results ( 95% 

confidence bounds of surface energy balance components).  
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Challenges with UAV thermal 

We successfully applied ensemble emissivity correction to all thermal images in this study; 

however, certain operational challenges made atmospheric corrections only partially successful. 

Relying on handheld thermal observations of the terrain alone typically did not achieve strong 𝑅2 

linear regressions. Using temperature calibration plates to acquire a sufficient thermal contrast 

(Kelly et al. 2019) appears to be the simplest solution. Alternatively, a second UAV might be 

operated, hovering just above the ground (three metres, for example) to collect large quantities 

of concurrent sample temperatures. This would enable better ground coverage and increase the 

number of samples, thus improving geo-registration and sampling efficiency and avoiding the 

need to set up calibration plates. 

3.7.4 HRMET validation with the EC method 

𝐿𝐸 time-series comparison 

We compared HRMET’s footprint weighted 𝐿𝐸 against an EC time series to assess the model 

response to changing flux (Figure 17) while using thermal input names 𝑇𝐵,𝑜𝑏𝑠, 𝑇𝑅,𝑜𝑏𝑠, 𝑇𝐵, and 𝑇𝑅 

to refer to their respective model outputs. The model error bounds reflect a 95% confidence 

interval derived from the footprint-weighted standard deviations of HRMET. Larger uncertainty 

bounds corresponded to quickly shifting meteorological inputs caused mainly by changing cloud 

cover and incoming solar radiation (Figure 10). Meanwhile, the upper and lower boundaries in the 

EC data reflect the degree of energy balance closure and associated closure methods (the upper 

boundary attributing RES to 𝐿𝐸 and lower boundary to 𝐻). During rapid meteorological changes 

RES becomes erroneously negative, leading to a reversal of the closure bound. We decided to 

retain these deprecated segments to benefit discussion of the daily flux environments. 

At a glance, Figure 17 tells us that modelled 𝐿𝐸  generally agrees with the EC time series. 

Differences between HRMET and EC latent heat are mostly reconciled within the 95% HRMET 

confidence interval. A diurnal sequence is observed with Forage (2019-07-03), while Barley 

(2019-07-03 and 2019-07-31) captures the 𝐿𝐸 increase from morning to mid-day. HRMET also 

responded to sudden upward (19_177_h_1) and downward (19_184_h_5) changes in 𝐿𝐸, albeit 

more strongly than the EC signal.  

Seasonally, the comparison is better with earlier estimates (2019-06-03 and 2019-07-03) than 

with late-season estimates (2019-07-31 and 2020-07-28). The exceptions to these categories are 

at Forage after baling (2020-07-28) and at Barley (2018-07-26) and Forage (2019-08-30) when 
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prevailing cloud cover and low surface-air temperature gradients brought HRMET and EC latent 

heat flux into agreement (Figure 10). The cases of HRMET overestimating 𝐿𝐸 occurred later in 

the season when surface-to-air temperature differences reached 4 − 5 °𝐶, and the canopy was 

fully developed. Considering the concurrently dry soil conditions (Figure 9) and the regional 

presence of saline wetlands, advection may have contributed 10 − 20% to the total error (Alfieri 

et al. 2012) but leaves the remaining 50% unexplained. Furthermore, all thermal trials in HRMET 

gave similar 𝐿𝐸 output and did not reconcile 𝐿𝐸 discrepancy in these late season conditions. 

Differences among model trials of thermal input appear to be small and systematic. The three 

instances where atmospheric correction was applied (19_177_e_4, 19_212_h_3, and 

20_210_h_1) repeat the pattern 𝑇𝐵  (high), 𝑇𝐵,𝑜𝑏𝑠 , 𝑇𝑅 , 𝑇𝑅_𝑜𝑏𝑠  (low). This progression generally 

follows the temperature shifts in Figure 16 (𝑇𝑅,𝑜𝑏𝑠 always highest) being inversely proportional to 

𝐿𝐸  following [2] and [17]. While the trial differences are minor compared to the model 

overestimation in 19_212_h_3 and 20_210_h_1, they have more meaning when considering the 

19_177_e_4 estimates. In this image, the 𝜖𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 corrected 𝑇𝑅,𝑜𝑏𝑠 fairs closest with the bowen-

ratio closure, while the atmospheric and 𝜖𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒  corrected 𝑇𝑅  leans towards the lower 𝐿𝐸 

residual closure bound. Given how 𝑇𝑅 had the best radiometric alignment in Figure 14, we can 

infer that the 𝐿𝐸 residual closure is a truer EC flux estimate in these conditions. Thus, the thermal 

corrections were informative for early-season images but had limited use in late-season images 

when their effects were overshadowed by HRMET model error.  

 

Figure 17. HRMET comparison within EC closure bounds 
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SEB component comparison 

We separated component fluxes (Figure 18) to help diagnose 𝐿𝐸 output and reveal HRMET’s 

modelling tendencies. We included each estimate's 95𝑡ℎ percentile error bound based on the 

HRMET-modelled standard deviation. Table 6 and Table 7 provide the supporting statistics: root 

mean squared error (𝑅𝑀𝑆𝐸), mean bias, standard deviation, coefficient of determination in terms 

of explained variance with the 1:1 line (𝑅𝑓𝑖𝑡
2 ), and a Pearson correlation coefficient (𝑟) with 

significance (𝑝). Since the atmospheric correction had only three applications, two of which were 

in poorly estimated late-season images, we excluded it (𝑇𝐵 and 𝑇𝑅) from the remaining analysis. 

The discussion follows each component separately: sensible heat (𝐻), net total radiation (𝑅), soil 

heat flux (𝐺), and latent heat (𝐿𝐸).  

HRMET estimates of 𝐻 somewhat follow a one-to-one agreement with EC fluxes but with some 

exceptions. Namely, the 19-07-31 estimates at both sites and Barley 20-07-28 are all low. 

However, 𝐻 at Barley 18-07-26 (overcast and cloudy) and Forage 20-07-28 (post-harvest) better 

resemble EC observations. This phenomenon may relate to HRMET’s OS resistance scheme. 

Similar results from Troufleau et al. (1997) show that OS models underestimate 𝐻  over full 

canopies with high surface-to-air temperature differences. The only instant of 𝐻  being 

overestimated is at Forage (19-08-30) with a full canopy and marginal (one-degree Celsius) 

surface-air temperature gradient. Statistically, there is improvement in using 𝑇𝑅,𝑜𝑏𝑠 over 𝑇𝐵,𝑜𝑏𝑠 by 

neutralizing mean bias (−40 to  −2 𝑊 𝑚−2  at Barley and −25 to +13 𝑊 𝑚−2  at Forage) and 

reducing 𝑅𝑀𝑆𝐸 (80 to 73 𝑊 𝑚−2, Barley; 52 to 48 𝑊 𝑚−2, Forage). Excluding model variance, 

Barley 𝐻 is poorly fit with EC observations (negative 𝑅1:1
2 ); while Forage has a less poor fit (𝑅1:1

2 <

0.5). These results are largely affected by the outliers previously mentioned.  

Although 𝑅 is strongly correlated at both sites (𝑟 > .97, 𝑝 < 0.001) with a good fit (𝑅1:1
2 > 0.74), its 

𝑅𝑀𝑆𝐸 contributions are larger than those of 𝐻 (60 − 114 vs 48 − 80 𝑊 𝑚−2). Additionally, a 54 −

95 𝑊 𝑚−2  positive bias is present, comprising most of the 𝑅𝑀𝑆𝐸  inflation. This presents an 

opportunity for updating the radiation partitioning scheme, as informed by Anderson et al. (2005) 

and (Colaizzi et al. 2012b). Inconsistent measurement scales are also problematic (those 

between the field-of-view of the net radiometer and the parcellated increments of HRMET), 

contributing to the total error. When considering model trials, 𝑇𝑅,𝑜𝑏𝑠  succeeded over 𝑇𝐵,𝑜𝑏𝑠  by 

reducing 𝑅𝑀𝑆𝐸  by 12 − 14  𝑊 𝑚−2 , bias by 13 − 17  𝑊 𝑚−2 , and improving 𝑅1:1
2  0.74  to 0.80 

and 0.84 to 0.89 for Barley and Forage respectively.  
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It proved difficult to relate HRMET with the soil heat flux plates. The largest outliers (19_177_h_1, 

19_184_h_5 and 19_177_e_3) coincide with sudden large changes in 𝑅 (Figure 10). Embedded 

in the results are deviations from HRMET’s simplistic 𝐺 interpretation (Santanello and Friedl 2003) 

and mismatched spatial coverages between UAV and soil heat flux plates. The observed fluxes 

at Barley are generally twice as much as those found at Forage. The difference lies in Forage 

having a scattered emergence pattern with less exposed soil, thus experiencing smaller soil 

temperature changes and smaller 𝐺 . Differences in model trials have negligible effects on 

comparison statistics; however, while Barley has better goodness-of-fit and linearity metrics, the 

smaller quantities at Forage give it a better 𝑅𝑀𝑆𝐸 and a reduced bias. 

The 𝐿𝐸  plots in Figure 18 reiterate the outliers found in Figure 17 but depict overall model 

performance with greater clarity. 𝐿𝐸 mostly agreed with EC (95% confidence), except for the few 

late-season outliers. Of all the SEB components, 𝐿𝐸 had the highest 𝑅𝑀𝑆𝐸 (79 − 136 𝑊 𝑚2) 

equivalent to 0.12 − 0.20 𝑚𝑚 ℎ𝑟−1 evapotranspiration at 20 °𝐶. This lends to the fact that 𝐿𝐸 is 

estimated as a residual of the other SEB components and inherits their combined net errors. 

Interestingly, sometimes these errors appear to cancel out; in the 19_177_h_1 image, the excess 

energy in 𝑅 and underestimated 𝐻 are countered by a large 𝐺 over-evaluation resulting in a fair 

𝐿𝐸 estimate. Furthermore, the goodness-of-fit statistic is somewhat greater than that of 𝐻 or 𝐺. 

This implies that HRMET models 𝐿𝐸 as an energy balance residual better than it models 𝐻 from 

[18]. As a model for deriving absolute 𝐿𝐸, HRMET achieved 𝑅𝑀𝑆𝐸 comparable to operational 

models like DATTUTDUT as posted by Song et al. (Song et al. 2016b). Its capacity to derive 

accurate 𝐿𝐸 pattern however, is a subject of greater interest. 



42 

 

 

Figure 18. HRMET component evaluation with EC energy balance 

Table 6. Barley HRMET component evaluation 

 

𝑹𝑴𝑺𝑬 
[𝑾 𝒎−𝟐] 

Bias 
[𝑾 𝒎−𝟐] 

Std. Dev. 
[𝑾 𝒎−𝟐] 

𝑹𝒇𝒊𝒕
𝟐  

[1:1] 

𝒓 (p-value) 

𝑇𝐵,𝑜𝑏𝑠      
G 64 44 49 0.24 .77 (0.009) 
H 80 -40 73 -0.8 .51 (0.130) 
R 114 95 67 0.74 .97 (<0.001) 
LE 136 89 108 0.16 .73 (0.017) 
𝑇𝑅,𝑜𝑏𝑠      
G 61 40 48 0.29 .78 (0.008) 
H 73 -2 77 -0.20 .49 (0.150) 
R 100 78 66 0.80 .97 (<0.001) 
LE 113 38 112 0.40 .68 (0.029) 

 

Table 7. Forage HRMET component evaluation 

 

𝑹𝑴𝑺𝑬 
[𝑾 𝒎−𝟐] 

Bias 
[𝑾 𝒎−𝟐] 

Std. Dev. 
[𝑾 𝒎−𝟐] 

𝑹𝒇𝒊𝒕
𝟐  

[1:1] 

𝒓 (p-value) 

𝑇𝐵,𝑜𝑏𝑠      

𝐺 39 21 35 -0.78 .45 (0.26) 
𝐻 52 -25 49 0.26 .85 (0.007) 
𝑅 72 67 27 0.84 .99 (<0.001) 
𝐿𝐸 103 71 80 0.34 .82 (0.013) 
𝑇𝑅,𝑜𝑏𝑠      

𝐺 38 20 34 -0.74 .45 (0.26) 
𝐻 48 13 49 0.45 .85 (0.008) 
𝑅 60 54 28 0.89 .99 (<0.001) 
𝐿𝐸 79 21 81 0.59 .79 (0.019) 

 

Challenges with UAV high-resolution SEB applications 

Spatial and temporal inconsistences remain challenges for implementing high-resolution SEB 

models with UAV data. Although footprint weighting allowed us to reference HRMET outputs to 

bulk EC fluxes, the ancillary 𝑅 and 𝐺 spatial registrations remain unaccounted. Large 𝑅 biasing 

(54 − 95 𝑊 𝑚−2) and subsequently poor 𝐺 regressions (𝑅2  < 0 − 0.29 𝑊 𝑚−2) are evidential for 
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improving their spatial representations. Aside from updating the radiation model (Colaizzi et al. 

2012a, 2012b), we suggest exploring methods to scale 𝑅 and 𝐺 within the EC footprint.  

Errors from comparing dissimilar measurement intervals between UAV data (5 − 10 𝑚𝑖𝑛) and 

meteorological records (30 𝑚𝑖𝑛) were mitigated in our linear interpolation strategy. However, the 

large uncertainty bands presented by HRMET reaffirm the difficulty of resolving instantaneous 

SEB processes in real-life environments. The reality of this issue limits accurate SEB use to ideal 

conditions of near-constant meteorology.  

3.7.5 Relative evapotranspiration 

Although our EC comparison revealed a limited ability to model absolute 𝐿𝐸 (specifically in full 

canopy conditions with high surface-to-air temperature differences), it reveals little about the 

spatial output patterns. These are more important for operations intending to apply 𝐸𝑇𝑅 indices.  

𝐸𝑇𝑅 differences among thermal corrections 

Spatial similarities between 𝐸𝑇𝑅  outputs of different thermal inputs were assessed using the 

modified t-test (Appendix A7). This works because 𝐸𝑇𝑅 retains a normal distribution (albeit, with 

restrictions on the upper and lower bounds) like its predecessor ET. All trials were strongly 

correlated (𝑟 > .93, 𝑝 < 0.001) with their respective 𝑇𝐵,𝑜𝑏𝑠 -derived 𝐸𝑇𝑅 . Moreover, differences 

between 𝑇𝑅,𝑜𝑏𝑠, 𝑇𝐵, and 𝑇𝑅 trials were indistinguishable for the late season images and very small 

for the 19_177_e_4 image (𝑟 =  .957, . 960, . 948 respectively, with 𝑝 < 0.001). These findings 

suggest that 𝜖𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 and atmospheric corrections had negligible effect on ET patterns. 

We consider how the HRMET code and the derivation of 𝐸𝑇𝑅  might mask thermal spatial 

adjustments. Since HRMET was intended for daytime use, it limits large negative 𝐿𝐸 values to 

−100 𝑊 𝑚−2 by default, so any changes to the temperatures at these cells may be ignored. 𝐸𝑇𝑅 

applies further distortion by normalizing to the 2.5𝑡ℎ and 97.5𝑡ℎ percentiles. However, including 

these filters helps prevent intrusive artifacts (human objects, animals, litter) from influencing the 

results. Assuming these precautions, we conclude that 𝐸𝑇𝑅 is unaffected by thermal treatment, 

and the simplest 𝑇𝐵,𝑜𝑏𝑠 may be used.  

𝐸𝑇𝑅 chronologies 

Since our 𝐸𝑇𝑅  patterns were irreverent of thermal adjustment, the 𝑇𝑅,𝑜𝑏𝑠  output was selected 

(simply because it had better correspondence with EC) for presenting 𝐸𝑇𝑅 chronology (Figure 19). 
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Early season images at Barley depict a low-ET ridge running W to E and a high ET circular 

seeding pattern around the flux tower. These agricultural effects were replaced by water-driven 

landscape signals later in the season. Depressions with lingering soil moisture produced higher 

𝐸𝑇𝑅, while road pathways and gravel patches were apparent dead zones. Interestingly, the radius 

around the tower subjected to increased seeding density did not maintain its high 𝐸𝑇𝑅. This further 

indicates a moisture-limiting regime at season end. Forage progression of 𝐸𝑇𝑅 was less drastic 

than Barley. The NW wetland 𝐸𝑇𝑅 was lower for most of the season but increased at the end of 

July; this is partly due to it having feral grass species of differing phenology cycles. The post-

harvest 20_210_h_2 landscape revealed areas of surplus moisture (NW wetland, the E ditch line, 

and interlaying depressions) accessible to plant species with deep root systems (alfalfa). Wetland 

perimeters (NW and SW wetlands) have consistently low 𝐸𝑇𝑅  (indicative of excess salinity), 

whereas the eastern swath, central key-shaped patch, smaller south depression, and eastern 

ditch line maintained high levels of 𝐸𝑇𝑅 throughout all images.  

 
Figure 19. 𝐸𝑇𝑅 chronology at Barley and Forage  

Note: blank patches in 20_210_h_2 are the locations of hay bales omitted from the analysis 

𝐸𝑇𝑅 limitations and recommendations  

As a non-integer ordinal data type, 𝐸𝑇𝑅 alone cannot assign a quantitative weighting to ET spatial 

differences; however, 𝐸𝑇𝑅  can be used to detect ET pattern changes over time and assess 

relative areas of better or worse plant growth. The ability of 𝐸𝑇𝑅  to reveal something of the 

hydrological landscape highlights its potential for long-term monitoring purposes. Existing UAV 

methods are labour-intensive and only provide a snapshot perspective. These strategies require 
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ongoing surveillance restricted to flight limitations and data processing turn-around time. The 𝐸𝑇𝑅 

index proposes an alternative strategy using carefully selected discrete images that reveal 

hydrological landscape traits for continual crop monitoring. Since 𝐸𝑇𝑅  does not contain 

information on the location (mean ET) and scale (standard deviation) of the spatial distribution, it 

is necessary to have some estimate of average ET and a spatial standard deviation. Furthermore, 

the representation criteria for selecting 𝐸𝑇𝑅 images are well open for discussion. These plans 

should be purpose-specific, and their application limited to the observed span of hydrological 

conditions. One could potentially apply these linkages to disaggregate EC footprints and footprint 

climatologies (Kljun et al. 2015). Some other caveats for comparing 𝐸𝑇𝑅 include having similar 

plant compositions and dry surface conditions (isolating transpiration). Overall, this study presents 

a case for using discrete UAV acquisitions of thermal 𝑇𝐵,𝑜𝑏𝑠  in an operational SEB model to 

identify intrinsic field properties based on spatial ET patterns.  

3.8 Conclusion 

Our research objectives were threefold: 1) to evaluate a UAV LiDAR workflow for acquiring high-

resolution 𝐿𝐴𝐼𝑒, 𝑓𝑐, and ℎ; 2) to study the magnitude and spatial impact of incremental 𝑇𝐵,𝑜𝑏𝑠, 𝑇𝑅𝑜𝑏𝑠, 

𝑇𝐵, and 𝑇𝑅 thermal corrections; and 3) to assess the HRMET model performance based on EC 

fluxes and ET spatial patterns.  

The present use of UAV LiDAR was mostly successful. We were able to interpret a detailed DEM 

map from early season flights that helped us to acquire ℎ maps at 0.6 𝑚 and 1.0 𝑚 resolutions at 

Barley and Forage, respectively. These ℎ  maps agreed with average field observations but 

required scaling over sparse canopies. We suggest this is caused by the UAV LiDAR viewing 

more lower stems and leaves than in full canopies. We also used a Beers-Lambert method to find 

𝑓𝑐 and 𝐿𝐴𝐼𝑒 with mixed results. Estimates of 𝑓𝑐 and 𝐿𝐴𝐼𝑒 showed vegetation patterns consistent 

with RGB imagery and DEM topography and compared favourably to average field observations 

(𝑅𝑀𝑆𝐸 0.08 − 0.81 𝑚2𝑚−2). Efforts to regress LiDAR 𝐿𝐴𝐼𝑒 with handheld ceptometer readings, 

however, were less successful in terms of 𝑅2 (< 0 − 0.81) but achieved good 𝑅𝑀𝑆𝐸 (0.08 − 0.81 

𝑚2𝑚−2). We attributed the poor regression to uncertainty in our field observations and sampling 

protocols and the inherently smaller field variations compared to taller crops and tree canopies. 

We suggest that users applying the Beers-Lambert method over short vegetation (< 0.5 𝑚) 

increase their measurement precision by restricting ceptometer readings to diffuse light only and 

by averaging multiple with-row and cross-row observations within the desired 𝐿𝐴𝐼𝑒 resolution area.  
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In addition to trialling UAV LiDAR, we examined the utility of UAV thermal corrections and their 

effects on temperature. The four temperature descriptions proceeded from raw blackbody 

brightness and radiometric temperatures ( 𝑇𝐵,𝑜𝑏𝑠 and 𝑇𝑅,𝑜𝑏𝑠  respectively) to atmospherically 

corrected values (𝑇𝐵 and 𝑇𝑅). An ensemble emissivity correction incorporating LiDAR-derived 𝑓𝑐 

was successfully applied to all images. The 𝑇𝑅,𝑜𝑏𝑠  experienced uniform increases in mean 

temperature but had little impact on standard deviation. Meanwhile, the atmospheric correction 

(vicarious radiance regression) was only partially successful (3/17 flights) due to insufficient 

observed temperature contrasts. We imposed criteria that successful corrections have 𝑅2 > 0.67 

and 𝑅𝑀𝑆𝐸 < 0.4 𝑊 𝑚−2𝑠𝑟−1𝜇𝑚−1. Tenable corrections (𝑇𝐵) observed slight mean temperature 

increases in early season images (high 𝐿𝑈, low 𝜏) and ~3.5°𝐶 decreases with later images (low 

𝐿𝑈 , high 𝜏). Moreover, early season images experienced more variability (standard deviation 

increased by ~3°𝐶 ) with the atmospheric corrections. Lastly, the combined corrections (𝑇𝑅 ) 

reflected both adjustments and had a moderated temperature increase when 𝜖𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒  and 

atmospheric corrections worked in opposite directions to shift the mean temperature. We found 

that 𝜖𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 and atmospheric corrections differed depending on the canopy development stage 

and associated atmospheric parameters. Interestingly, modified t-tests with spatial auto-

correlation corrections revealed that thermal treatments had nearly identical spatial patterns to 

𝑇𝐵,𝑜𝑏𝑠 (𝑟 > .99, 𝑝 < 0.01). 

We tested HRMET’s performance on barley and forage crops using  17  images collected at 

different daytimes across three growing seasons. The model aptly responded to diurnal patterns 

and sudden flux changes; however, it overestimated 𝐿𝐸 in later season images with full canopy 

cover (LAI > 3 𝑚2𝑚−2 ) and surface-air temperature gradients exceeding 4 − 5  𝑊 𝑚−2 . 

Successful atmospheric corrections using the vicarious radiance approach (acquiring 𝑇𝑅 ) 

indicated an improvement with early-season 𝐿𝐸 but had little influence in later images. Ensemble 

emissivity corrected trials, 𝑇𝑅,𝑜𝑏𝑠, yielded closer EC agreement than 𝑇𝐵, but they also could not 

reconcile late-season 𝐿𝐸  errors. This suggests that HRMET struggles with aerodynamic-

radiometric differences over hot, full canopies, similar to an OS model. Overall, HRMET replicated 

𝐿𝐸 flux tower observations within 79 − 136 𝑊 𝑚−2 𝑅𝑀𝑆𝐸 given 𝑇𝐵,𝑜𝑏𝑠 and 𝑇𝑅,𝑜𝑏𝑠 thermal inputs. 

Irrespective of absolute accuracy, we assessed HRMET’s ability to capture ET spatial patterns in 

the form of the 𝐸𝑇𝑅  index. We applied the same modified t-test as performed on the thermal 

corrections and found that all 𝐸𝑇𝑅 trials were spatially consistent with the 𝑇𝐵,𝑜𝑏𝑠 𝐸𝑇𝑅 (𝑟 > .93, 𝑝 ≪

0.001). These findings imply that a 𝑇𝐵,𝑜𝑏𝑠 is equally effective as 𝑇𝑅,𝑜𝑏𝑠, 𝑇𝐵 and 𝑇𝑅 at capturing ET 

spatial patterns. Moreover, a site 𝐸𝑇𝑅  chronology reflected site hydrological changes and the 
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expected stress patterns. Consequently, we propose that 𝐸𝑇𝑅 maps derived from uncorrected 

𝑇𝐵,𝑜𝑏𝑠 can be useful to SEB users who are concerned primarily about spatial patterns of 𝐸𝑇 and 

their linkages to a changing hydrological environment.  
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4 DISAGGREGATING EDDY-COVARIANCE FOOTPRINTS USING 

UAV EVAPOTRANSPIRATION PATTERNS 

4.1 Preface 

Now in this section, we reach the intended application of our study: to disaggregate eddy-

covariance footprints using UAV high-resolution ET patterns. We start with the 𝐸𝑇𝑅 maps from 

Section 3.7.5 and ascribe them to EC data timelines using the introduced concepts of ET period 

and an ET combination method. Proceeding with Kljun et al.’s (2015) footprint parameterization, 

we applied our disaggregation method (disFFP) to individual footprints and climatologies. This 

section presents our disFFP method, showing how it reallocates flux in agreement with local flux 

features. Furthermore, we commend disFFP as a tool for EC researchers to interpret continuous 

flux footprint monitoring using discrete UAV-acquired 𝐸𝑇𝑅. 

4.2 Abstract 

Surface-atmosphere flux measurements enable the study of regional climates and localized 

energy balances. Direct flux measurements, using the eddy-covariance (EC) technique with short 

towers (less than three-metres), provide bulk values from a spatially aggregated source area 

(footprint). Additionally, variable landscape features within the footprint contribute to the overall 

flux measured at the instrument. Often, these source contributions are identified with some 

surface property or land classification for purposes of assessing flux tower representativeness or 

for regional upscaling. Contrarily, this study intends to disaggregate EC footprints using high-

resolution maps of evapotranspiration (ET).  

The rise of surface energy balance models driven by high-resolution thermal imagery presents 

new opportunities for land-atmosphere interaction research. Namely, sub-metre resolution ET 

patterns measured from unoccupied aerial vehicles (UAVs) may be used to disaggregate 

coinciding flux footprints. Furthermore, ET patterns may be ascribed to distinct flux intervals using 

flux rate, coefficient of variation, phenology timing, and hydrological characterizations and used 

to interpret entire seasonal or multi-seasonal climatologies of amalgamated footprints. Coupled 

with a validated parameterization of the backwards Lagrangian stochastic dispersion model, the 

following disFFP footprint disaggregation framework is proposed.  
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In the present study of an unirrigated barley field in a semiarid continental climate, five ET 

estimates from 2018-2020 were used to disaggregate EC source areas using the proposed 

disFFP method. Disaggregated results were compared with vegetation patterns and topography 

(proxies for access to soil moisture). The resultant footprint maps showed flux assignment 

changes of up to ±9%. It is expected that disFFP would have even stronger impacts on taller 

towers encompassing a larger footprint area.  The novel ET period and ET combination method 

added new insights to the EC bulk ET flux (144 𝑚𝑚) by mapping a smaller portion (90 − 120 𝑚𝑚) 

to pathways and gravel pads and revealing that the high-ET landscape depressions contributed 

38% higher fluxes (180 − 200 𝑚𝑚). This affirms the potential of using discrete UAV images to 

disaggregate continuous EC monitoring.  

4.3 Introduction 

Quantifying surface-atmosphere interactions is fundamental to meteorology. Application scales 

range from large eddy circulation patterns in the convective boundary layer to micro-scale 

diffusion across plant stomata. A common tool to measure turbulent fluxes at the field scale 

( 0: 200 − 1000 𝑚 ) is the eddy-covariance (EC) method. This method provides a bulk flux 

measurement over an area that can be described using a footprint model. However, 

understanding the source heterogeneity throughout the footprint requires additional information. 

High-resolution remote sensing may provide a direct way to disaggregate EC footprints of 

evapotranspiration (ET) based on a relative pattern ET index (𝐸𝑇𝑅). Still, the temporal incongruity 

between continuous EC and discrete remote sensing presents a confounding issue.  

4.3.1 Eddy-covariance footprints 

The EC technique is a benchmark for measuring land-surface interactions (Baldocchi et al. 2001). 

This non-destructive, non-intrusive approach is used to measure scalar quantities and trace gases 

(Eugster and Merbold 2015). Eddy-covariance provides continuous flux observations 

representative of a fetch of weighted contributions (aka flux footprint). Here the terms ‘flux footprint’ 

or ‘footprint’ are analogous to the ‘source weight function’ (Schmid 1997), meaning the spatial 

distribution of flux values from the ensemble of contributing surface sources. It can also be re-

interpreted as percentage isopleths of the summed footprint function within a domain of interest 

(ex. 80% of the measured flux). Methods for estimating tower-based source areas vary in 

complexity: from the empirical 100:1 rule of thumb (Burba 2013) to analytical K-theory models 

(Horst and Weil 1992), to Lagrangian statistical techniques (Kljun et al. 2002), to higher-order 
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closure numerical models, large eddy simulations, and various hybrid approaches (Leclerc et al. 

2014). Among these, the backwards Lagrangian stochastic dispersion model and its latest 

parameterized form - Flux Footprint Prediction (FFP) - (Kljun et al. 2002, 2015) share an optimal 

balance of accuracy and ease of use. 

4.3.2 Climatologies 

Although footprint modelling is framed around discrete EC averaging periods (where flow 

stationarity is assumed valid), it is often more useful to superimpose a series of footprints into a 

single climatology footprint. Within the FFP code, climatologies are created by treating each 

constituent footprint with equal weighting (Kljun et al. 2015). We refer to this type of climatology 

as a ‘combination by occurrence’. It tells the user ‘where’ the flux likely came from at any given 

time in the record. Unfortunately, this description gives misleading results when the user is 

concerned about quantifying flux contributions over a time of changing emission rates due to 

seasonality and crop phenology (Wizemann et al. 2014). A ‘combination by contribution’ 

climatology - used in the present study - provides an alternative approach for synergy between 

EC bulk measurements and footprint disaggregation strategies. 

4.3.3 Footprint disaggregation 

Interpreting EC fluxes over heterogeneous landscapes requires addressing the topic in two ways. 

First, there is the aerodynamic interpretation of heterogeneity, where surface features manipulate 

the turbulent flow fields. This situation compromises EC assumptions of a constant rate vertical 

flux and a negligible horizontal divergence (Eugster and Merbold 2015). Turbulent heterogeneities 

are typically expressed as abrupt changes in momentum roughness length (Barcza et al. 2009, 

Heidbach et al. 2017), scalar roughness lengths (Klaassen et al. 2002, Joy and Chávez 2021), 

advection (Alfieri et al. 2012), and secondary circulations (Markkanen et al. 2003). The classic 

‘small perturbation’ assumption by Schmid (2002) uses references-of-scale to minimize 

aerodynamic heterogeneity if the measurements are taken above a certain blending height (about 

equal to the roughness sub-layer height) where the flow is well mixed and representative of the 

landscape. This concept of ‘representativeness’ was also defined by Schmid (1997) as a metric 

to assess whether an EC tower location’s footprint contained features sufficiently similar to the 

region of interest. Thus, the problem of aerodynamic heterogeneity is typically resolved in the 

placement of the EC tower to allow simplifying assumptions about the flow field.  
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The second type of heterogeneity involves variable scalar emissions intrinsic to the properties of 

the landscape. Although these variable sources (or sinks) cause the scalar turbulence differences 

of the first type (aerodynamic), they remain embedded in the EC flux even when the flow 

assumptions are valid (Schmid 2002). It is the topic of ongoing research on how to interpret this 

second type (source) heterogeneity from the bulk flux measurements entrained in EC footprints.  

Various explanatory variables have been proposed to interpret intra-footprint source variations: 

canopy structure and digital elevation models for ET (Sutherland et al. 2014, 2017), thermal 

remote sensing environmental respiration (ER) (Kelly et al. 2021), surface temperature and soil 

moisture proxies for sensible heat (𝐻) and latent heat (𝐿𝐸) respectively (Anderson and Vivoni 

2016), enhanced vegetation index (EVI) proxy for gross primary production (GPP), net ecosystem 

𝐶𝑂2 exchange (NEE) and ER (Wagle et al. 2020), remote sensing GPP models (Gelybó et al. 

2013), land cover classifications (LCC) (Göckede et al. 2006, Kirby et al. 2008, Barcza et al. 2009, 

Hutjes et al. 2010, Peng 2015, Xu et al. 2017); and multivariate combination methods for 

deciphering carbon assimilation (Griebel et al. 2016), methane fluxes (Reuss-Schmidt et al. 2019, 

Tuovinen et al. 2019, Levy et al. 2020) and 𝐻 and 𝐿𝐸 fluxes (Metzger et al. 2013). 

These relationships are typically derived from various forms of spatio-temporal analysis. Linear 

regression methods are common for comparing footprint aggregated explanatory variables with 

bulk EC fluxes over time (Sutherland et al. 2014, Anderson and Vivoni 2016) and for assigning 

LCC contributions from overlapping footprints (Hutjes et al. 2010, Peng 2015, Xu et al. 2017); 

whereas, a multivariate analysis represents an alternative approach using multi-level modelling 

(Levy et al. 2020) and machine learning (Metzger et al. 2013). Generally, the purpose of spatio-

temporal analysis is to qualify footprint representativeness in the site environment (Göckede et al. 

2006, Barcza et al. 2009, Reuss-Schmidt et al. 2019) or to characterize the regional flux using 

the retrieved relationships with a continuous surface variable or LCC (Metzger et al. 2013, 

Tuovinen et al. 2019, Levy et al. 2020).  

Although it has been shown that higher resolution flux aggregations compare best with EC bulk 

measurements (Sutherland et al. 2014, 2017, Anderson and Vivoni 2016, Wagle et al. 2020), the 

spatially variable source fluxes have seldom been known a priori and used explicitly to manipulate 

the flux source area. One example of this (known to the authors at the time of writing) is Gelybó 

et al. (2013), who used downscaled FPAR (fraction of photosynthetically active radiation) to weigh 

GPP contributions within a daily climatology and achieved improved comparisons with EC-derived 

bulk GPP. The desire to disaggregate intra-footprint source heterogeneity using high-resolution 
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spatial flux interpretations has been alluded to by various authors (Kljun et al. 2015, Wagle et al. 

2020, Kelly et al. 2021) and is an objective of the present work.  

4.3.4 Evapotranspiration modelling from thermal remote sensing 

High-resolution ET modelling with unoccupied aerial vehicles (UAVs) provide a unique opportunity 

for disaggregating EC footprints. Although EC is commonly used to validate such models (Song 

et al. 2016a, Xia et al. 2016, Nassar et al. 2021), thus far, the flux patterns from high-resolution 

ET modelling have not been used to re-allocate EC source areas.  

The 𝐸𝑇𝑅 product by Zipper and Loheide ll (2014) poses an intuitive solution for capturing spatially 

variable ET patterns (normalizing the 2.5𝑡ℎ and 97.5𝑡ℎ percentiles between 0-1). It does this using 

sub-metre thermal remote sensing to drive a surface energy balance model - HRMET - and 

resolve ET as a residual. Although 𝐸𝑇𝑅 originated as a tool for delineating management zones for 

precision agriculture, the same tool has the potential to disaggregate ET footprints. Particularly, 

we wonder if 𝐸𝑇𝑅  can disaggregate not only concurrent EC footprints but further be used to 

interpret longer-term climatologies based on inferred relationships with flux rate, phenology, and 

season (Wizemann et al. 2014, Reuss-Schmidt et al. 2019, Ohana-Levi et al. 2020).  

4.3.5 Segmenting observation periods 

Various criteria have been proposed to select footprints for climatology amalgamation. These 

include using spatial bias stabilization times (Kim et al. 2006), atmospheric stability regimes 

(Göckede et al. 2006), dominant seasonal wind patterns (Griebel et al. 2016), methane flux rates 

(Reuss-Schmidt et al. 2019), and phenology and climate (Wizemann et al. 2014). Ohana-Levi et 

al. (2020) showed that soil-type management zones could be inferred using seasonal or multi-

seasonal spatial ET. Furthermore, they show that ET growth patterns are inextricably linked with 

landscape properties and soil moisture. This implies that the spatial information embedded in 𝐸𝑇𝑅 

and coincident ET coefficients of variation are representative of a period of like flux patterns and 

environmental conditions. This ‘ET period’ may then be matched with a coinciding EC climatology 

representing the same period. By exploring this connection between 𝐸𝑇𝑅 and the flux environment, 

it is possible to use discrete remote sensing ET observations for interpreting continually-monitored 

EC climatologies.  
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4.3.6 Objectives 

The objectives of the present study are to: 

 Propose a disaggregated form (disFFP) of Kljun et al.'s (2015) Flux Footprint Prediction 

(FFP) parameterization using 𝐸𝑇𝑅  from the High-Resolution Mapping of 

EvapoTranspiration (HRMET) model (Zipper and Loheide ll 2014) for a single footprint 

 Explore ET period selection for linking discrete spatial ET information to eddy-covariance 

ET climatologies  

 Apply disFFP to disaggregate seasonal and multi-seasonal climatologies  

4.4 Data and methodology 

4.4.1 Data collection 

Area of study 

We monitored a barley field near Saskatoon, Saskatchewan (Canada), during the 2018-2020 

growing seasons. The continental climate experiences annual temperature swings averaging 

from −37 °𝐶  to 34°𝐶  and receives 350 𝑚𝑚  of precipitation annually (Government of Canada 

2021). The field lies in a glaciolacustrine plain that is slightly undulating (< 2% slopes) with 

ephemeral wetlands (Ellis et al. 1970). Dark brown chernozem of a fine sandy loam texture 

characterizes the soil. During this study, the environment was severely (2018) to moderately 

(2019-2020) dry (Figure 20) based on an annual standard precipitation index (SPI) spanning the 

prior 50 years using data from local weather stations (Government of Canada 2021).  
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Figure 20. Saskatoon annual SPI over 50 year period 

Red horizontal dashed lines indicate upper and lower 'normal' bounds. (data from the Government of 
Canada (2021) meteorology website database)  

Flux Tower 

Each year we set up a portable EC flux tower with accompanying meteorology instrumentation 

(Figure 21). A LI-COR 7500A open path gas analyzer with Campbell Scientific CSAT3 sonic 

anemometer (20 𝐻𝑧) was used to measure 𝐿𝐸 at 30 𝑚𝑖𝑛 averaging intervals from a height of 2 −

2.5 𝑚𝑎𝑔𝑙. Accompanying 30 𝑚𝑖𝑛 meteorology records included: additional wind speed (05103-

10, R.M. Young), four-component net radiation (CRN1, Kipp & Zonen), air temperature and 

humidity (HMP45C212, Vaisala), surface infrared temperature (SI-121, Apogee), rainfall (TE-

525M, Texas Electronics), soil heat flux (HFP01, Hukseflux), and 0.10 𝑚  and 0.20 𝑐𝑚  soil 

moistures and temperatures (CS650, Campbell Scientific). The influence from the adjacent 

groundwater observation well pad was mitigated by positioning it away from the prevailing NWW-

SEE winds observed by the tower.  
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Figure 21. Eddy-covariance meteorological station at the barley field 

Flight Schedule 

Fluxes were continuously monitored from May to September, yet we flew UAVs only on select 

days. While the 2018 and 2020 seasons have just one late-season flight each, 2019 was 

monitored throughout its phenological progression from tillering to head-filling stages. This 

progression is shown in Figure 22 using RGB imagery and ground-level photographs of the 

general site.  
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Figure 22. Barley RGB imagery 2019 

observed from a,c,e) UAV and b,d,f) ground-level during a,b) June 26, c,d) July 3, e,f) July 31-August 2  
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4.4.2 Data processing 

UAV surface energy balance 

To disaggregate EC footprints, we used a high-resolution SEB model called HRMET (Zipper and 

Loheide 2014). In summary, HRMET solves the surface energy budget by inferring sensible heat 

from surface temperature (including measured net radiation and soil heat flux) and resolving ET 

as a residual. We applied this model to our barley field using high-resolution UAV inputs of surface 

temperature and LiDAR-derived canopy viewing fraction, effective leaf area index (𝐿𝐴𝐼𝑒), and 

canopy height. We converted the modelled ET into a common scale index (𝐸𝑇𝑅) by normalizing 

between zero and one of the 2. 5𝑡ℎ  and 97.5𝑡ℎ  percentiles. The 𝐸𝑇𝑅  patterns used here were 

validated in Section 3.7.5 against RGB, thermal, and leaf area index images. Briefly, the LiDAR-

derived 𝐿𝐴𝐼𝑒  was acquired using a Beers-Lambert relationship of discrete returns and 

observations, while the canopy height was determined as the 95𝑡ℎ  percentile height from a 

LiDAR-derived digital elevation model. More detailed instructions on HRMET inputs and 𝐸𝑇𝑅 are 

given in Section 3.6. 

Flux data processing and quality control 

Eddy-covariance data was processed in Eddy Pro software (v6.2.1, 2018) using a Webb et al. 

(1980) correction for density fluctuations, Moncrieff et al. (1997, 2004) adjustments for high and 

low pass filtering, and default settings for addressing de-spiking, absolute limits, discontinuities, 

and angles of attack. We performed flux averaging over 30 𝑚𝑖𝑛 intervals with a 10% missing 

sample allowance. Afterwards, we used Rstudio (R v4.0.2, 2020) to filter remaining records 

containing 𝐿𝐸 less than −100 𝑊 𝑚−2 and friction velocity less than 0.1 𝑚 𝑠−1.  

Flux footprint  

Kljun et al.’s FFP (2015) predicts a two-dimensional flux footprint by tracing the touchdown 

probabilities back in time from the sensor location to the landscape sources. The FFP model has 

been validated against analytical models, large eddy simulations, wind tunnels, and tracer 

experiments. (Kljun et al. 2004b, 2015, Heidbach et al. 2017). The main benefits of FFP are its 

operability in most stability conditions (Kljun et al. 2004a) and its insensitivity to small roughness 

changes (Vesala et al. 2008, Leclerc et al. 2014). Shy of higher-order numerical models and 

hybrid LES approaches, which are computationally expensive, the FFP model offers a utile option. 

Some of the common footprint limitations apply to FFP, such as assumptions of flow stationarity, 
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horizontal homogeneity, and restrictions to the measurement height - measured above the 

roughness sub-layer and below the convective boundary layer (Kljun et al. 2015).  

Kljun et al.'s (2015) FFP parameterization was adopted in this study to calculate two-dimensional 

flux footprints and climatologies. We supplied basic FFP inputs of sonic anemometer height, mean 

wind speed, Obukhov length, standard deviation of vertical velocity fluctuations, friction velocity, 

wind direction, and a boundary layer height determined using ERA5 reanalysis data (Hersbach et 

al. 2018). An 𝐿𝐸 flux term was also included for determining climatology footprints. Individual 

footprints span a single flux averaging period. They provide a two-dimensional upwind probability 

distribution useful for exploring the ET contributions of a particular record. To find a governing 

pattern, we refer to a climatology footprint of consecutive footprints.  

We adapted the FFP code to include a 𝐿𝐸 weighting for each footprint. It involves multiplying each 

footprint contribution by its respective 𝐿𝐸𝑏𝑢𝑙𝑘 (eddy-covariance flux) and dividing the final footprint 

amalgamation by cumulative 𝐿𝐸 [28]. We use 𝐿𝐸𝑏𝑢𝑙𝑘 in place of 𝐸𝑇𝑏𝑢𝑙𝑘 here because it is the raw 

measurement from which ET is derived. The resulting climatology (𝐹) tells the user 'where' flux is 

coming from and 'how much' with respect to the total cumulative flux. It assigns a greater 

weighting to records with higher 𝐿𝐸  flux (i.e. daytime fluxes) and thus distributes EC flux 

proportionate to the contributing landscape sources. 

[28] 𝐹 =
∑ (𝐹𝑖∗𝐿𝐸𝑏𝑢𝑙𝑘𝑖
𝑛
𝑖=1 )

∑ (𝐿𝐸𝑏𝑢𝑙𝑘,𝑖
𝑛
𝑖=1 )

  

Computation region 

All raster manipulations were performed over a three-metre resolution grid. This specification was 

to match the 𝐸𝑇𝑅 resolution set according to the three-metre LiDAR-derived canopy structure 

inputs used to calculate ET. Accordingly, footprint flux values were also calculated at three-metre 

resolution and georegistered with 𝐸𝑇𝑅 prior to calculations. A region of 345 𝑚 E-W by 390 𝑚 N to 

S was used for analysis. Missing values were assigned a 𝑁𝐴 (void place-holder) to keep the 

domain structure but were otherwise omitted in calculations.  

Spatial statistics 

To compare differences between two coincident raster images, we used a modified t-test in R 

(Vallejos et al. 2020) following (Clifford et al. 1989, Dutilleul 1993). This test accounts for spatial 

autocorrelation by reducing the number of observations to an effective value supplying a Pearson 

correlation coefficient (𝑟) and significance (𝑝). Although this approach provides conservative 𝑝 
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values when cyclic patterns are present - crop row patterns not considered in the default 

autocorrelation template - (Dale and Fortin 2002), it nonetheless works well for agricultural 

applications - because the conservative 𝑝 values are sufficient - (Taylor and Bates 2013).  

4.4.3 Footprint disaggregation 

A footprint disaggregation interprets what the flux tower 'sees' according to static 𝐸𝑇𝑅 images 

representative of an otherwise transient flux landscape. We infer that ET source patterns are 

linked to variations in water availability (SPI) and plant growth (phenology, foliage density and 

height); hence, we suggest that the ET pattern is a characteristic of a flux landscape and can be 

categorized into unique ET periods. It follows that an environment is defined by a finite number of 

unique ET periods and that 𝐸𝑇𝑅 could be used to interpret footprints of a different time with similar 

conditions. In the proposed disaggregated FFP (disFFP) method, we apply an 𝐸𝑇𝑅 -derived 

weighting to Kljun et al.’s (2015) FFP footprint function to acquire a source-weighted footprint. 

𝐸𝑇𝑅 selection 

To ensure 𝐸𝑇𝑅 represents the largest intra-day ET contribution (mid-day), we use a time-of-day 

window between 11:00-15:00 CST for filtering the 𝐸𝑇𝑅 candidates. This avoids times of uneven 

solar heating (from low zenith angles) and selects 𝐸𝑇𝑅 where peak ET contributions and dominant 

patterns exist. The July 31, 2019, images - 19_212_h_1 (11:00 CST) and 19_212_h_3 (14:45 

CST) - verify this assumption (𝑟 =  .91, 𝑝 < 0.01) using a modified t-test in R (Vallejos et al. 2020) 

for spatial autocorrelation (Clifford et al. 1989, Dutilleul 1993). Given a choice, we use an average 

of the two 𝐸𝑇𝑅 (𝑟 = .98, 𝑝 < 0.01) to represent this image for disaggregation. Likewise, we assume 

that the coefficient of variation - standardized metric relating spatial ET standard deviation to 

mean ET - coincides with peak ET flux, and that the spatial relationship stored therein is 

representative of the flux majority. Disaggregating individual footprints involves only one 𝐸𝑇𝑅 

image and a corresponding EC flux. For climatology graphs composed of multiple 𝐸𝑇𝑅  the 

process requires more discernment to pick an image representative of its time. 

The time frame in question, henceforth called the ET period, is identified as an interval of near-

constant rate day-over-day ET flux. Each ET period appears as a distinct linear segment on the 

cumulative ET plot. These linear trendlines are superimposed over diurnal signals and brief 

breaks in the data record, creating sections of consistent slope (ET rate). We first visually identify 

the nodes separating each period and then adjust our initial guesses using spliced linear 

regression fitting. We presume that if two 𝐸𝑇𝑅 occurred within the same period, they would be 
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similar, and an average 𝐸𝑇𝑅  would suffice. To qualify ET periods, we calculate and compare 

diurnal ET rates by averaging the total elapsed time (day and night) of each period. Coefficients 

of variation - ratios of spatial standard variation to mean ET observed in the SEB maps - are also 

given to each period as a potential moisture regime character trait.  Additionally, we consider 

growing degree days (GDD) [29] (where 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 are the maximum and minimum observed 

daily temperatures, respectively), phenology, field photos, and relative moisture conditions to 

verify the period selection. 

[29] 𝐺𝐷𝐷 =
𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

2
− 0 °𝐶 

Although 𝐸𝑇𝑅 lacks scale and magnitude, we can combine it with observations of mean ET and 

spatial standard deviation (remote sensing SEB output) to interpret scalar values. A coefficient of 

variation (𝑐𝑣𝐸𝑇) stores the spatial information (𝜎𝐸𝑇, ET spatial standard deviation; 𝜇𝐸𝑇, ET spatial 

mean) captured using a remote sensing SEB model [30]. We can then use 𝑐𝑣𝐸𝑇 to estimate a 

new spatial standard deviation (𝜎𝐸𝑇 ) corresponding to an EC measured bulk ET (𝐸𝑇𝑏𝑢𝑙𝑘) following 

𝜎𝐸𝑇 = 𝑐𝑣𝐸𝑇 𝐸𝑇𝑏𝑢𝑙𝑘. This step allows us to relate 𝐸𝑇𝑅 to actual ET values; moreover, it incorporates 

a high-quality ET observation (EC flux) into a spatial framework without relying on the SEB 

modelling accuracy. Relative ET is converted first to its standard normalized form using equation 

[31] and the 𝐸𝑇𝑅 standard deviation (𝜎𝐸𝑇𝑅) and mean (𝜇𝐸𝑇𝑅). Afterwards, a new ET map (𝐸𝑇 ) is 

made following [32]. In the case of an ET period, we substitute 𝐸𝑇𝑏𝑢𝑙𝑘 for a cumulative day-over-

day ET rate (𝐸𝑇𝑟𝑎𝑡𝑒) representative of that period. Finally, multiple ET periods are combined into 

an effective ET (𝐸𝑇𝑒) using a duration (𝑖) weighting (𝑑𝑖/ ∑ 𝑑𝑖
𝑖=𝑁
𝑖=1  ) of the total ET periods (𝑁) [33]. 

This 𝐸𝑇𝑒  product, likely with units in 𝑚𝑚 𝑑−1, is easily converted to a cumulative ET map by 

multiplying 𝐸𝑇𝑒 by the number of elapsed days.  

[30] 𝑐𝑣𝐸𝑇 =
𝜎𝐸𝑇

𝜇𝐸𝑇
 

[31] 𝐸𝑇𝑆𝑁 =
𝐸𝑇𝑅−𝜇𝐸𝑇𝑅  

𝜎𝐸𝑇𝑅
  

[32] 𝐸𝑇 = 𝐸𝑇𝑆𝑁 𝜎𝐸�̂� + 𝐸𝑇𝑏𝑢𝑙𝑘 

[33] 𝐸𝑇𝑒 = ∑ 𝐸𝑇𝚤  
𝑑𝑖

∑ 𝑑𝑖
𝑖=𝑁
𝑖=1  

 𝑖=𝑁
𝑖=1    

disFFP 

The disFFP method proposed in this study disaggregates individual footprints using the derived 

ET map (𝐸𝑇 ). First, the unscaled disaggregation matrix 𝜒 was derived following element-wise 
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multiplication of [34], where 𝑟 and 𝑐 are the number of rows and columns in the computation 

space. A scaling factor (𝜔) was then found from the areal sum 𝜔 = ∑ ∑ 𝜒𝑖,𝑗
𝑐
𝑗=1

𝑟
𝑖=1  /  ∑ ∑ 𝐹𝑖,𝑗

𝑐
𝑗=1

𝑟
𝑖=1 . 

We then applied 𝜔 as a constant scalar to all cells in 𝜒 to yield the disaggregated footprint (𝐹𝐷) 

following 𝐹𝐷 = 𝜒/𝜔. For visualization purposes, 𝐹𝐷 could then be limited to a 90% contribution 

range and converted to percentage isopleths following a minimum-value threshold discretization 

- our interpretation of Kljun et al.’s (2015) relative contribution prescription. This iterative operation 

keeps a running tally of the unassigned total flux percentage (initially 𝐹𝐷 multiplied by cell size) 

and assigns the current-iteration flux percentages to the cells falling below a current-iteration 

threshold (starting very small and increasing by 0.1% at each iteration) and continues until all 

footprint cells have assigned percentages.  

[34] 𝜒 =
𝐸𝑇 

∑ ∑ 𝐸𝑇 𝑖,𝑗
𝑐
𝑗=1

𝑟
𝑖=1

 𝐹 

4.5 Results and discussion 

We start this section by designating ET periods for each growing season and discussing 

similarities among years. We then test disFFP for a single flux footprint, an ET period, and 

seasonal climatologies. Lastly, the discussion then extends to disaggregating a multi-season 

climatology within a single ET period.  

4.5.1 ET periods 

Cumulative seasonal ET graphs provide a basis for segmenting ET periods (Figure 23). We split 

each season into five ET periods: namely ‘Pre’, ‘Early’, ‘Mid’, ‘Late’, and ‘Post’, to which 𝐸𝑇𝑅 are 

matched. Piece-wise linear regression affirmed the node selections with 𝑅𝑀𝑆𝐸 of 2.2, 1.5, and 

2.0 𝑚𝑚 and 𝑅2 > 0.99 for 2018, 2019, and 2020 respectively (Appendix B1). The relatively close 

2019 June 26 and July 3 images fall along visually discernable slopes, 3.2 and 3.8 𝑚𝑚 𝑑−1 , 

respectively and are thus separated. The brief ‘Early’ segments (2018 and 2019) are consistent 

with a rapid green-up period after early season rainfall (Figure 23). The longer ‘Early’ segment for 

2020 is consistent with improved crop growth (greater LAI and canopy height than in 2018 -2019). 

The ‘Early’, ‘Mid’, and ‘Late’ periods generally coincided with tillering through head filling 

(Appendix B2). Not unexpectedly, the ‘Pre’ and ‘Post’ seasons reflect the fringe growth phases of 

emergence and canopy senescence. Year-to-year nuances on the exact phenology dates reflect 

a mix of segmentation biases and yearly unique hydrological circumstances. While the 2019 and 

2020 ‘Late’ periods occupied heading to fruit development stages, the 2018 ‘Late’ ET period 
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occurred from heading to harvest. We suspect this deviation is related to 2018’s dry field 

conditions (Figure 20) and stunted crop growth (Table 8).  

Across the three seasons, the ET period to growing degree day (GDD) associations differed 5-

36% (standard deviation as a percentage of sample mean), with the ending GDD of the ‘Pre’ 

periods having the least precision and the ‘Mid’ and ‘Late’ GDDs having the highest precisions 

(Appendix B2). Similarly, ET rates varied 2 − 38%, with the closest agreement between ‘Late’ 

periods and the least agreement for the ‘Pre’ and ‘Post’ periods. It is peculiar that ET rates are 

relatively consistent across years for like periods despite 2020 having nearly twice the foliage 

height and density than those from 2018. Although ET rates differentiate ET periods within a 

season, they alone may not be sufficient to group ET periods across growing seasons. 

Additionally, consistent coefficients of variation across ‘Late’ periods (Table 8) suggest that this 

metric may offer a corollary to ET rate for interpreting ET periods. Other factors such as SPI, LAI, 

canopy height, and phenology timing may influence ET period associations between years.  

  
Figure 23. Cumulative ET denoting constant-rate ET periods 

Flight overpass days (vertical red lines) and cumulative precipitation (blue line) were added for reference 
for the 2019 and 2020 seasons 

Table 8. Phenology corresponding to UAV field days 
𝑬𝑻𝑹 date 

[YY_DDD] 
𝑬𝑻𝑹 Barley 
phenology 

ET 
period 

ET period rate 
[𝒎𝒎 𝒅−𝟏] 

Coefficient of 
Variation 

𝑳𝑨𝑰𝒆* 
[𝒎𝟐 𝒎−𝟐] 

h* 
[𝒎] 

18_207 Anthesis Late 2.7 0.10 2.5 0.65 
19_177 Tillering Early 3.2 0.07 0.2 0.18 
19_184 Stem 

Elongation 
Mid 3.8 0.23 

0.4 0.23 
19_212 Head 

Filling 
Late 2.6 0.10 

3.4 0.70 
20_210 Heading Late 2.6 0.10 5.2 0.84 

* Computation region (field) averaged values  
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4.5.2 Disaggregation 

Single footprint 

Following the conversion from 𝐸𝑇𝑅  to 𝐸𝑇  (Equations [30],[31],[32]), we demonstrate how the 

spatial ET patterns from a high-resolution SEB model Figure 24a) can be re-interpreted (Figure 

24b) using the more-accurate 𝐸𝑇𝑏𝑢𝑙𝑘. This novel ET combination method pairs the accuracy of 

the EC method with the precise spatial distributions of a high-resolution ET model and thus 

incorporates the strengths from both approaches. In future work, we suggest testing the allotment 

accuracy of this method using in-situ ET survey techniques.   

 

 
Figure 24. Barley ET combination method expressed as latent heat flux 

a) LE measured from SEB model and b) re-interpreted using eddy-covariance bulk LE for 20_210_h_2 

As an initial test for the disFFP method, we apply it to an individual footprint (Figure 25). This 

represents our closest means of comparison because the EC footprint and 𝐸𝑇𝑅 image directly 

coincide. The 20_210_h_1 footprint (Figure 25a) extends across a transpiring depression with 

high ET indicated in yellow (Figure 25b). The disFFP method (Figure 25c) responds accordingly 

by assigning these hotspots a higher-ranking flux value (minus 2 − 4%). Similarly, the influence 

of low-ET foot pathways and access roads (Figure 25d) is reduced - i.e. positive flux percent 

change - (Figure 25e). This example demonstrates the ability of disFFP to address source-

heterogeneity from surfaces of heightened ET (moisture-rich depressions) and reduced ET 

(pavement, cover material, extensive bare ground) mingled in the landscape. Ultimately, disFFP 
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shows what we already intuitively know about the ET flux pattern based on variable crop growth 

and topography (indicative of soil moisture availability).  

 
Figure 25. Barley disFFP progression with single LE footprint July 28, 2020 

a) FFP, b) 𝐸𝑇  (expressed as latent heat) from 𝐸𝑇𝑅 , c) disFFP changes to FFP, d) FFP and b) disFFP  

The previous example qualifies disFFP based on known coinciding ET patterns. We continue the 

discussion to amalgamated climatologies where concurrent remote sensing ET patterns were not 

directly observed. We now rely on the proposed ET period linkages to inform disFFP application. 

Seasonal 

We test disFFP using the 2019 ‘Early’, ‘Mid’, and ‘Late’ ET period climatologies (Figure 26). The 

original FFP footprint (Figure 26a) overlooks source heterogeneity depicted using 𝐸𝑇𝑒  - the 

combination of 𝐸𝑇𝑅 and 𝑐𝑣𝐸𝑇 from each ET period (Figure 26b); whereas, the disFFP footprint 

(Figure 26c) makes these relative adjustments (−4 to +6% change).  

The combination of ET source patterns and EC footprints provide a new line of feedback for 

improving EC experiments. We notice the 𝐸𝑇𝑒 depicts a yellow, crescent-shaped patch of high 
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ET surrounding the flux tower and the highest-weighted 𝐹  contributions (Figure 26a). 

Coincidentally, 𝐹𝐷  is also concentrated around the tower (Figure 26e). This insight provides 

feedback for us to improve our tower installations by addressing cropping management around 

the tower. Moreover, while Kljun et al.’s FFP parameterized code (2015) enabled a 90% 

contribution fetch for the single footprints, it truncated the climatology footprint limits below 90%, 

so an 80% flux extent was imposed. Breaking away from the 1𝑉: 100𝐻 rule of thumb (Burba 2013), 

this finding suggests that for short-tower (2 − 3 𝑚𝑎𝑔𝑙) climatology footprints over short vegetation 

(less than one-metre) at 80% contribution the ratio is half as much (1𝑉: 50𝐻) than that of the 

anticipated field coverage.  

A benefit of disFFP is that it adapts to alterations imposed on the study site. For example, whereas 

the adjacent research pad occupied a large 𝐹 portion in the FFP approach, it was systematically 

devalued in 𝐹𝐷 using the disFFP method. Access paths in the 2018 and 2020 images (not shown) 

are also accounted for in the 𝐹𝐷. The disFFP method presents a pragmatic approach for adapting 

EC footprints to surrounding flux landscapes while being flexible to site disturbance.  
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Figure 26. Barley seasonal disFFP application 2019 

a) original FPP, b) 𝐸𝑇𝑒 underneath footprint, c) respective disFFP changes, d) FFP over 𝐸𝑇𝑒 map, e) 
disFFP over 𝐸𝑇𝑒 map. Climatology windrose is limited to daytime (6:00-18:00 CST) values. Footprint 
values (F) are given as a percentage of the total flux (limited to the computation region extent) 

Ancillary to disFFP, our ET combination method (converting 𝐸𝑇𝑅  and 𝑐𝑣𝐸𝑇  to 𝐸𝑇𝑒  and 𝐸𝑇 ) 

presents the ability to allocate cumulative ET across the featured landscape (Figure 27). In this 

example, the 144 𝑚𝑚 of ET estimated using the EC method is re-interpreted within the source 

heterogeneity of the field. It is revealed that a negligible 90 − 100 𝑚𝑚 of ET occurred over the 

roadways and northern tillage ridge, while the ET from depressional areas exceeded our EC 

estimate by 38% (180 − 200 𝑚𝑚). 
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Figure 27. Effective ET rate (𝐸𝑇𝑒) and cumulative ET for early to late ET periods in 2019 

Multi-season 

In addition to seasonal applications, we test disFFP using multi-year data from similar ET periods. 

This enables focused investigation on a specific growth stage. We apply a contribution 

disaggregation to the 2018-2020 ‘Late’ ET periods (Figure 28). Dominant wind patterns from the 

NWW and SEE directions form the overall footprint shape. Underlying landscape forces further 

articulate the flux ranking by attributing greater ET to the higher 𝐸𝑇𝑒 and removing it from low 𝐸𝑇𝑒 

areas. The resultant footprint maintains a similar extent to the original FFP, yet it repositions the 

footprint values in accordance with 𝐸𝑇𝑅 . Interestingly, the multi-season approach softens the 

signals from our site disturbances (access paths) yet retains the key landscape ET patterns. 

Despite interannual differences, we identify a persistence of the low-ET ridge running E-W, four 

unique high-ET depressions, and a low-ET gravel pad in the SW corner. It follows that multiple 

images are best suited for inferring intrinsic landscape features from ET patterns. 



68 

 

 
Figure 28. Disaggregated interseasonal climatology footprints 2018-2020 

Climatologies (by contribution) from barley anthesis to senescence (‘Late’ ET periods). Footprint values 
(F) are given as a percentage of the total flux (limited to 80%) 

4.5.3 Limitations and recommendations 

Limitations exist when using discrete 𝐸𝑇𝑅 observations (and derived 𝐸𝑇𝑒) to interpret continuous 

EC footprints. Since flight conditions cannot be controlled during 𝐸𝑇𝑅 acquisitions, this challenges 

their representativeness of ET periods. Further differences in flight payloads or instrument types 

may also introduce uncertainty into the 𝐸𝑇𝑅 comparison, especially when collection takes place 

over multiple seasons and equipment is replaced. We also note that spatial relationships from 

𝑐𝑣𝐸𝑇 have some diurnal and seasonal influences, so our peak-day assumption provides only a 

first-order estimate (Appendix B3). Future work could incorporate a variable 𝑐𝑣𝐸𝑇  model 

responding to some continuously monitored environmental variable. Finally, with interpreting ET 

periods between seasons, it is assumed that the crop type and agricultural management (seeding, 

fertilizing, irrigation) remain the same.  
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In this study, we developed a new disaggregation technique (disFFP) for interpreting source 

heterogeneity in EC footprints using high-resolution ET patterns from UAV remote sensing. We 

demonstrated how disFFP can spatially allocate bulk eddy-covariance 𝐿𝐸 within a footprint and 

across the greater extent of the field. Moreover, we gave a practical example of spatially allocating 

cumulative ET for seasonal water balances. Coupled with ET periods and characteristic 𝐸𝑇𝑅 

maps, we showed how disFFP captures persistent source heterogeneity patterns in a flux 

landscape and thus can alleviate disparate UAV and EC measurement time scales. Consequently, 

disFFP might be run using a catalogue of pre-determined 𝐸𝑇𝑅 maps. Upon retrieving this 𝐸𝑇𝑅 

database, the EC study could continue without further UAV acquisitions. We recommend 

exploring disFFP over a longer range of EC data, further considering spatial soil moisture 

availability in addition to the factors discussed (phenology timing, foliage density and height, SPI). 

Another extension of this work might be to test disFFP on larger regions containing multiple land 

classifications. For these complex landscapes, it seems necessary to derive unique 𝐸𝑇𝑅 

relationships for each land classification and use a mosaic of 𝐸𝑇𝑅 to then apply disFFP. 

4.6 Conclusion 

This study demonstrates the utility of using discrete 𝐸𝑇𝑅  maps from UAVs to disaggregate 

continuous EC tower flux footprints. We introduced a disaggregated flux footprint prediction 

method (disFFP) using Kljun et al.'s (2015) parameterized footprint model as a base. We then 

developed the concept of ET period using steady rate eddy-covariance ET fluxes with piece-wise 

linear regression to differentiate periods. We used 𝐸𝑇𝑅 from HRMET (Zipper and Loheide ll 2014) 

and coefficients of variation to represent the ET patterns from coinciding ET periods. Then we 

discussed these ET periods in terms of phenology, foliage density and height, and SPI, 

demonstrating that ET rate alone was not enough to categorize ET periods among hydrological 

landscapes of different years. After verifying disFFP on a single footprint, we extended it to 

climatology footprints through the concepts of ET period and 𝐸𝑇𝑅 linkages. This method resolved 

spatial flux influences around known high ET corridors (well-watered depression) and low ET 

zones (especially those created through human alteration, i.e. access pathways, monitoring pads, 

equipment, etc.). An EC bulk ET of 122 𝑚𝑚 was depicted as a map of spatially variable sources: 

0 − 20 𝑚𝑚  around pathways and gravel pads and 180 − 200 𝑚𝑚  derived over moisture-rich 

depressions. Ultimately, disFFP improved upon FPP by depicting what is intuitively known about 

the ET flux pattern based on variable crop growth and topography (tied to soil moisture availability). 

Furthermore, we demonstrated how similar 𝐸𝑇𝑅 images from one year could interpret the disFFP 



70 

 

spatial flux patterns of another year similar to or better than the coinciding FFP proximity-based 

description. These findings warrant further investigation into the disFFP method and its utility in 

EC monitoring programs.  

5 SYNTHESIS AND CONCLUSION 

We set out to find a way to disaggregate eddy-covariance (EC) fluxes using sub-metre 

evapotranspiration (ET) from a surface energy balance model - HRMET. First, we began the study 

by assessing HRMET; performance against EC short tower flux estimates, as this comparison 

had not been published yet in other works. This step comprised most of Section 3, the first 

manuscript. Integrating with HRMET, we assessed a UAV Light Detection And Ranging (LiDAR) 

method for retrieving high-resolution canopy structures of crop height (ℎ), canopy viewing fraction 

(𝑓𝑐), and Leaf Area Index (LAI). Upon validating HRMET and its ET pattern, in the form of a relative 

ET index (𝐸𝑇𝑅), we continued with the initial objective of disaggregating EC footprints throughout 

Section 4. In that section, we proposed the concept of ‘ET period’ to help form linkages between 

discrete 𝐸𝑇𝑅  maps and continuous climatology footprints based on characteristic landscape 

hydrology and phenology traits. We first tested our disaggregated Flux Footprint Prediction 

(disFFP) on a single footprint with coincident 𝐸𝑇𝑅. Based on ET period, we extended disFFP 

application to a seasonal climatology and then to a multi-season single-period trial.  

Key results from this thesis include:  

 UAV LiDAR can provide high-resolution ℎ, 𝑓𝐶, and 𝐿𝐴𝐼 estimates coinciding with observed 

field patterns (RGB and DEM maps) and field-average values. 

 UAV LiDAR interpretations of ℎ are underestimated in sparse canopies but can be scaled 

to match ground-level observations. 

 UAV LiDAR derived 𝐿𝐴𝐼𝑒 achieved good 𝑅𝑀𝑆𝐸 (0.08 − 0.81 𝑚2𝑚−2) with ground LP-80 

LAI observations, but that a large range of 𝑅2 (< 0 − 0.81) indicates a need for higher-

precision sampling protocols for LAI observations in short-field crops; 

 Practical application of the ‘vicarious radiance’ approach requires 𝑅2 > 0.67 and 𝑅𝑀𝑆𝐸 <

0.4 𝑊 𝑚−2𝑠𝑟−1𝜇𝑚−1 to be effective; 

 Thermal atmospheric and 𝜖𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 corrections have larger effects in early-season images 

when greater atmospheric moisture is present; 

 Thermal corrections had little effect on relative temperature patterns, as shown from a 

modified t-test (𝑟 > .99, 𝑝 ≪ 0.001); 
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 HRMET applied with UAV LiDAR and 𝑇𝐵 or 𝑇𝐵,𝑜𝑏𝑠 surface temperatures gave a 79 − 136 

𝑊 𝑚−2 𝑅𝑀𝑆𝐸 (equivalent to 0.12 − 0.22 𝑚𝑚 ℎ𝑟−1 at 20°𝐶) against EC latent heat flux and 

tended to overestimate 𝐿𝐸  over full canopies when surface-air temperature gradients 

exceeded 4 − 5 °𝐶;  

 𝐸𝑇𝑅  preserves ET patterns similarly using 𝑇𝐵,𝑜𝑏𝑠 (uncorrected sensor brightness 

temperature) as it does with 𝑇𝐵, 𝑇𝑅,𝑜𝑏𝑠, and 𝑇𝑅 as shown from a modified t-test (𝑟 > .93, 

𝑝 ≪ 0.001);  

 𝐸𝑇𝑅 and ET period have synergy within the proposed disFFP method enabling EC footprint 

disaggregation; 

 disFFP allocates bulk EC estimates of LE and ET to the surrounding landscape using 𝐸𝑇𝑅 

and combines the accuracy of the EC method with the spatial precision of a UAV surface 

energy balance model. (Allocated 144 𝑚𝑚 of cumulative ET over roadways with 100 𝑚𝑚 

and wet depressions with 200 𝑚𝑚) 

 disFFP may add greater versatility to EC research by allowing continuous footprint 

disaggregation from discrete UAV acquisitions. 

In Section 3, we tested the application of UAV LiDAR to acquire high-resolution inputs of ℎ, 𝑓𝑐, 

and 𝐿𝐴𝐼 for use in a surface energy balance model - HRMET. Moreover, we assessed the utility 

of atmospheric and 𝜖𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒  temperature corrections and their impacts on HRMET output 

magnitude and pattern. Lastly, we compared HRMET against short tower EC fluxes and 

characterized the changing moisture environment using ET patterns as depicted with the 𝐸𝑇𝑅 

index.  

Our choice of an HRMET delivery method was decided based on the available UAV payloads 

held within our research team. Alongside existing FLIR Pro Vue R and ThermoMap infrared 

imagers, we used a Riegl miniVUX1-UAV LiDAR to retrieve survey-grade point clouds for canopy 

structure derivation. Our assessment of LiDAR-derived ℎ, 𝑓𝑐, and LAI was confounded somewhat 

by poor spatial registration with ground observations; however, the resultant products agreed with 

independent RGB imagery, site knowledge, and field-average observations. 

To address difficulties in obtaining thermodynamic surface temperatures from UAV thermal, we 

assessed incremental thermal treatments for preserving HRMET output ET patterns. After post-

processing instrument calibrations, we considered the effects of using raw brightness temperature 

(𝑇𝐵,𝑜𝑏𝑠), target brightness temperature (𝑇𝐵), observed radiometric temperature (𝑇𝑅,𝑜𝑏𝑠), and target 

radiometric temperature (𝑇𝑅). We applied an 𝜖𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 correction to find 𝑇𝑅,𝑜𝑏𝑠 and a radiance 
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linear regression with ground-level observations to determine 𝑇𝑅,𝑜𝑏𝑠 ; afterwards, these were 

combined to form the quintessential 𝑇𝑅. Surprisingly, we found that all thermal treatments were 

spatially related and produced indistinguishable 𝐸𝑇𝑅 estimates (𝑟 > .99,𝑝 < 0.01).  

We started with the understanding that HRMET is a hybrid model involving a two-source radiation 

scheme with a one-source bulk handling of sensible heat. After assessing the component fluxes 

of HRMET’s surface energy balance, we realized that it performs more like a one-source model. 

Mainly, it underestimated sensible heat flux over full canopies when surface-air temperatures 

exceeded 4 − 5 °𝐶. 

When comparing HRMET, we used a time weighting scheme to register meteorological and EC 

records. This process determined the exact environmental inputs to use in HRMET at the time of 

footprint overpass; it also shifted the EC estimate towards either adjacent 30 𝑚𝑖𝑛  record, 

depending on the overpass period. From this comparison, HRMET replicated EC fluxes within 

79 − 136 𝑊 𝑚−2 𝑅𝑀𝑆𝐸 (equivalent to 0.12 − 0.20 𝑚𝑚 ℎ𝑟−1 at 20°𝐶). The modest performance of 

HRMET at matching EC fluxes was compensated by its ability to capture precision ET patterns. 

Continuing with our first objective, our work in Section 4 took the described ET patterns 

(represented by 𝐸𝑇𝑅) and applies them to disaggregate EC flux footprints. After defining our 

borrowed footprint model, we proceeded to introduce our concept of ‘ET period’ and the proposed 

disaggregated flux footprint prediction (disFFP) method. We made a base assessment of disFFP 

using a single 𝐸𝑇𝑅  and the coinciding EC footprint. Finally, we tested disFFP in more useful 

examples of a seasonal climatology disaggregation  

To bridge the connection between discrete 𝐸𝑇𝑅  and continuous EC fluxes, we presented the 

concept of ‘ET period’. Namely, we defined an ET period as an interval of constant rate day-over-

day EC flux. These ET periods also maintained similar representative coefficients of variation 

(from ET remote sensing SEB model). In pictures and with a phenology timeline, we showed how 

our seasonal ET periods generally coincided with vegetative growth phases. Additionally, we 

considered concurrent site hydrology to explain apparent inter-seasonal timing differences 

between like periods.  

We then introduced our disFFP as a direct method for single footprints and as a guided approach 

using ET period linkages for climatology footprints. Our single footprint disaggregation showed 

that disFFP reallocated EC flux in favour of ET sources and away from non-transpiring features. 

Intriguingly, disFFP worked around site interferences (access roads, pathways, equipment) and 

diminished the contributions of these areas over the original footprint model. A similar confirmation 
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was made when we extended disFFP to seasonal climatology applications. Moreover, we gave 

an example that considered 144 𝑚𝑚 of cumulative ET (measured during part of the 2019 season 

at Barley) and used disFFP to attach absolute ET values to the seasonal 𝐸𝑇𝑅 map (100 𝑚𝑚 over 

roadways and 200 𝑚𝑚  over wet depressions). Finally, we tested inter-seasonal disFFP by 

combining 𝐸𝑇𝑅 of like ET periods from three years. We found that the averaged 𝐸𝑇𝑅 softened the 

impact of year-to-year site modifications and exposed the prevailing landscape source 

heterogeneities of the time. These findings implicate using ET patterns and ET periods for future 

work describing flux landscapes under constant monitoring.  

In conclusion, our work demonstrates a new way to interpret EC data using ET maps acquired 

from discrete UAV energy balances. We presented a novel UAV-LiDAR workflow for retrieving 

detailed canopy structures. We then benchmarked the HRMET model against EC fluxes and 

showed that a raw brightness temperature is sufficient to replicate 𝐸𝑇𝑅 patterns. Afterwards, we 

applied 𝐸𝑇𝑅 to disaggregate EC footprints by supplying an ET period description. This disFFP 

approach allocated fluxes consistent with interlaying footprint features. We present this work as 

a novel workflow for high-resolution UAV energy balance retrieval and EC footprint disaggregation. 
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APPENDIX A 

A1. Flight logs 

Flight logs 

 

  

Date Site Time (CST) 
[hh:mm:ss] 

Flight duration Sensor Height 
[𝒎𝒂𝒔𝒍] 

Cloud cover 
[%] 

T 
[°𝑪] 

Wind speed 
[𝒌𝒎 ∙ 𝒉𝒓−𝟏] 

Wind direction 
[° P 𝑵] 

2018/07/26 B 11:37:35 00:11:21 L - - - - - 
2018/07/26 B 12:00:00 00:16:16 T - - - - - 
2019/06/13 B 10:07:59 00:16:48 L 100 75 22 12.43 178 
2019/06/13 B 10:28:34 00:16:49 L 100 75 22 12.13 179 
2019/06/13 B 11:40:53 00:15:15 T - - - - - 
2019/06/13 B 14:06:43 00:43:31 D 95 97 27 7.82 79 
2019/06/26 B 09:33:44 00:18:29 L 101 19 16 7.67 258 
2019/06/26 B 11:18:44 00:23:05 T 118 44 22 10.53 277 
2019/06/26 F 12:24:59 00:22:11 T 120 33 23 8.16 280 
2019/06/26 F 12:54:39 00:15:36 L 104 75 20 14.18 247 
2019/06/26 F 13:13:57 00:15:24 L 104 75 21 14.14 256 
2019/06/26 F 14:18:01 00:26:54 T 97 71 21 12.44 293 
2019/06/26 B 15:21:53 00:29:32 T 95 44 21 12.45 279 
2019/06/26 B 09:30:00 00:30:00 D - - - - - 
2019/07/03 B 08:02:47 00:18:42 L 101 75 13 9.16 311 
2019/07/03 B 07:23:26 00:32:47 D 98 75 12 11.94 300 
2019/07/03 F 08:46:00 00:27:42 D 98 75 14 9.31 302 
2019/07/03 F 09:17:41 00:15:25 L 103 75 15 10.04 297 
2019/07/03 F 09:37:58 00:15:21 L 104 75 15 10.78 296 
2019/07/03 F 11:18:51 00:29:31 D 97 75 17 19.03 289 
2019/07/03 B 12:21:13 00:36:16 D 99 75 18 18.48 276 
2019/07/03 B 13:56:24 00:36:24 D 97 75 18 20.19 234 
2019/07/03 F 15:25:53 00:23:17 D 98 86 14 16.11 340 
2019/07/31 B 10:12:34 00:18:49 L 101 39 20 16.54 330 
2019/07/31 B 10:35:58 00:39:05 D 97 29 21 14.8 334 
2019/07/31 F 12:11:58 00:16:12 L 103 19 22 13.68 330 
2019/07/31 B 12:11:58 00:16:12 L 103 19 22 13.68 330 
2019/07/31 F 12:32:34 00:16:56 L 104 19 22 12.39 331 
2019/07/31 F 12:56:06 00:32:11 D 98 19 23 10.9 332 
2019/07/31 B 14:20:30 00:39:59 D 97 27 23 11.63 335 
2019/08/30 F 14:57:38 00:15:31 L 104 100 17 11.28 135 
2019/08/30 F 15:17:57 00:11:51 L 103 100 17 11.36 138 
2019/08/30 F 14:30:00 00:30:00 D  - - - - - 
2020/07/28 B 12:00:00 00:30:00 D - - - - - 
2020/07/28 F 13:15:00 00:30:00 D - - - - - 
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A2. Soil texture analysis for Barley 
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A3. Soil texture analysis for Forage 
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A4. Thermal camera specifications 

Thermal camera specifications 
Platform Handheld Ebee+ (ThermoMAP) EbeeX (Duet) 
Measurement Thermal Thermal Thermal 
Sensor FLIR T650sc FLIR Vue Pro FLIR Vue Pro R 
Focal Length  24.6 9 mm 13 mm 
Image Size 640 X 580 640 X 512  640 X 512 
Spectral range 750-1300 nm 750-1350 nm 750-1350 nm 
Central Wavelength 1029 1079 nm 1029 nm 
Reported Accuracy ± 1 °𝐶 ± 5 °𝐶 ± 5 °𝐶 
Sensitivity  0.2 °𝐶 - 0.04 °𝐶 
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A5. Meteorological summary 

Meteorology summary 
Image Outgoing 

longwave 
radiation 

Incoming 
shortwave 
radiation 

Air 
temperature at 
~3 𝒎𝒂𝒈𝒍 

Surface 
brightness 
temperature 

Vapour 
pressure 
deficit 

Wind 
speed at 
3 𝒎𝒂𝒈𝒍 

Friction 
velocity 

Relative 
humidity at 
3 𝒎𝒂𝒈𝒍 

[yy_ddd_sensor_#] [𝑊 𝑚−2] [𝑊 𝑚−2] [°𝐶] [°𝐶] [𝑃𝑎] [𝑚 𝑠−1] [𝑚 𝑠−1] [%] 
18_207_e_1 286 -5 21 24 1592 1.4 0.24 46 
19_177_e_1 776 18 18 26 1035 2.2 0.17 62 
19_177_e_4 660 18 21 27 1538 2.9 0.29 48 
19_177_h_1 850 26 21 29 1690 3.0 0.20 45 
19_184_h_1 155 0 12 13 231 2.2 0.18 80 
19_184_h_4 973 21 18 24 1251 3.1 0.27 53 
19_184_h_5 258 3 17 18 808 2.7 0.30 57 
19_212_h_1 631 -9 20 23 1039 2.5 0.34 71 
19_212_h_3 818 8 25 29 2062 2.8 0.39 47 
19_242_h_1 569 23 17 25 926 2.1 0.23 55 
20_210_h_1 726 10 27 30 2220 3.4 0.38 37 
19_177_e_2 809 20 20 26 1186 2.5 0.29 54 
19_177_e_3 642 13 21 25 1416 2.5 0.31 49 
19_184_h_2 521 4 15 17 714 2.3 0.31 66 
19_184_h_3 630 10 17 21 1168 2.6 0.37 54 
19_184_h_6 434 4 18 19 991 2.0 0.23 58 
19_212_h_2 851 19 24 30 1973 2.3 0.33 53 
19_242_h_2 149 5 16 18 1003 1.6 0.19 62 
20_210_h_2 874 70 30 46 3253 3.6 0.37 29 
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A6. Sigmoidal gap filling 

The 𝑓𝑐  gap filling process used equation [𝛼 ] to fit the 𝑓𝑐  data to canopy height. The three 

coefficients a, b and c represent the upper asymptote, quickness of change, and max 𝑞 threshold 

respectively. Since 𝑓𝑐 varies from 0 − 1, we set the upper asymptote 𝑎 = 1. The 𝐿𝐴𝐼𝑒 gap filling 

process used equation [𝛼] also to fit the 𝐿𝐴𝐼𝑒 data to canopy height (𝑥 is a placeholder for 𝑓𝑐 or 

𝐿𝐴𝐼𝑒). The three coefficients a, b and c represent the upper asymptote, quickness of change, and 

max 𝑞 threshold respectively.  

[𝛼] 𝑥 =
𝑎

1+𝑒−𝑏(𝑞−𝑐) 
 

Canopy gap filling sigmoidal fit 
Site ID b c 𝑹𝑴𝑺𝑬 Mean 

bias 
𝑹𝒂𝒅𝒋
𝟐  

CLBA 18_207 11.49 0.26 0.41 0.4 0.61 
CLBA 19_184 14.02 0.26 0.02 0 0.48 
CLBA 19_177 12.50 0.26 0.06 0.05 0.64 
CLBA 19_212 8.30 0.28 0.35 0.34 0.53 
CLBA 20_210 8.45 0.34 0.29 0.28 0.43 

 

LAI gap filling sigmoidal fit 
Site ID a b c 𝑹𝑴𝑺𝑬 Mean 

bias 
𝑹𝒂𝒅𝒋
𝟐  

CLBA 18_207 3.11 17.24 0.33 1.96 1.83 0.54 
CLBA 19_184 1.25 19.57 0.18 0.31 0.28 0.67 
CLBA 19_177 0.64 26.77 0.13 0.14 0.12 0.57 
CLBA 19_212 4.61 12.79 0.40 2.98 2.85 0.52 
CLBA 20_210 5.65 15.73 0.44 4.66 4.51 0.26 
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A7. Modified t-test of trial temperatures and ETR 

Modified t-test of trial temperatures and 𝐸𝑇𝑅 
Image 𝑻𝑩,𝒐𝒃𝒔 comparison Temperature 𝑬𝑻𝑹 

  𝑛𝑚𝑜𝑑* 𝒓 (p<0.01) 𝑛𝑚𝑜𝑑* 𝒓 (p<0.01) 
18_207_e_1 𝑇𝑅,𝑜𝑏𝑠 86 .986 81 .966 
19_177_e_1 𝑇𝑅,𝑜𝑏𝑠 34 .991 55 .941 
19_177_e_4 𝑇𝑅,𝑜𝑏𝑠 30 .996 50 .957 
19_177_e_4 𝑇𝐵 31 .998 37 .960 
19_177_e_4 𝑇𝑅 31 .997 36 .948 
19_177_h_1 𝑇𝑅,𝑜𝑏𝑠 17 .99 23 .933 
19_184_h_1 𝑇𝑅,𝑜𝑏𝑠 26 .916 39 .959 
19_184_h_4 𝑇𝑅,𝑜𝑏𝑠 71 .996 97 .995 
19_184_h_5 𝑇𝑅,𝑜𝑏𝑠 198 .989 266 .953 
19_212_h_1 𝑇𝑅,𝑜𝑏𝑠 506 .988 484 .997 
19_212_h_3 𝑇𝑅,𝑜𝑏𝑠 478 .992 506 .997 
19_212_h_3 𝑇𝐵 466 .997 484 .997 
19_212_h_3 𝑇𝑅 474 .994 477 .996 
20_210_h_1 𝑇𝑅,𝑜𝑏𝑠 188 .993 190 .998 
20_210_h_1 𝑇𝐵 182 .999 183 .998 
20_210_h_1 𝑇𝑅 186 .997 182 .996 

19_177_e_2 𝑇𝑅,𝑜𝑏𝑠 87 .990 72 .995 
19_177_e_3 𝑇𝑅,𝑜𝑏𝑠 170 .989 105 .994 
19_184_h_2 𝑇𝑅,𝑜𝑏𝑠 20 .981 39 .992 
19_184_h_3 𝑇𝑅,𝑜𝑏𝑠 32 .993 41 .986 
19_184_h_6 𝑇𝑅,𝑜𝑏𝑠 33 .991 39 .986 
19_212_h_2 𝑇𝑅,𝑜𝑏𝑠 45 .998 40 .999 

19_242_h_2 𝑇𝑅,𝑜𝑏𝑠 45 .936 57 .955 
20_210_h_2 𝑇𝑅,𝑜𝑏𝑠 36 .997 47 .997 

* effective number of observations reduced from a 10000 random subsample of each raster 
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APPENDIX B  

B1. Piece-wise linear regression fitting 

 
Piece-wise linear regression fitting 

a) 2018, b) 2019, and c) 2020 
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B2. ET period information 

ET Period Information 
Year Period Phenology Start (CST) 

[yyyy-MM-dd] 
End (CST) 
[yyyy-MM-dd] 

ET_rate 
[𝒎𝒎 𝒅−𝟏] 

GDD 
(start) 
[°𝑪 𝒅] 

GDD (end) 
[°𝑪 𝒅] 

2018 Pre Germination - Tillering 2018-06-01 2018-06-12 1.5 10* 206 

 Early Tillering - Stem Elongation 2018-06-12 2018-06-22 2.8 206 395 

 Mid Stem Elongation - Heading 2018-06-22 2018-07-15 4.5 395 804 

 Late Heading - Harvested 2018-07-15 2018-08-10 2.7 804 1319 

 Post Harvested 2018-08-10 2018-09-30 0.6 1319 1506 

2019 Pre Germination - Tillering 2019-06-03 2019-06-23 0.7 26* 322 

 Early Tillering - Stem Elongation 2019-06-23 2019-06-28 3.2 322 424 

 Mid Stem Elongation -
Booting 

2019-06-28 2019-07-15 3.8 424 721 

 Late Booting - Fruit Development 2019-07-15 2019-08-07 2.6 721 1146 

 Post Fruit Development - 
Harvested 

2019-08-07 2019-09-30 1.1 1146 1865 

2020 Pre Germination - Leaf 
Development 

2020-05-29 2020-06-08 1.0 11* 161 

 Early Leaf Development - Stem 
Elongation 

2020-06-08 2020-07-01 2.6 161 532 

 Mid Stem Elongation - Booting 2020-07-01 2020-07-15 4.6 532 778 

 Late Booting - Fruit Development 2020-07-15 2020-07-30 2.6 778 1077 

 Post Fruit Development - 
Harvested 

2020-07-30 2020-09-30 0.9 1077 1507 

* Weather station installed after seeding. Growing Degree Days prior to seeding estimated from a nearby weather station 
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B3. ET period information 

ET Period Information 
Image 
[𝒚𝒚_𝑫𝑫𝑫_𝒑_#]* 

Date Start overlap CST 
[𝒉𝒉:𝒎𝒎: 𝒔𝒔] 

End overlap CST 
[𝒉𝒉:𝒎𝒎: 𝒔𝒔] 

Solar 
zenith 
∠ [°] 

ET spatial 
mean 
(𝝁𝑬𝑻) 
[𝑾 𝒎−𝟐] 

ET spatial 
standard 
deviation (𝝈𝑬𝑻) 
[𝑾 𝒎−𝟐] 

ET coefficient 
of variation 
(𝒄𝒗𝑬𝑻) 
[-] 

18_207_e_1 July 
26, 
2018 

13:03:00 13:10:00 32.7 0.03 0.31 0.10 

19_177_e_1 June 
26, 
2019 

11:24:00 11:33:00 34.9 0.02 0.51 0.04 

19_177_h_1 June 
26, 
2019 

15:09:00 15:20:00 38.1 0.02 0.56 0.03 

19_177_e_4 June 
26, 
2019 

15:30:00 15:40:00 39.3 0.04 0.54 0.07 

19_184_h_1 July 3, 
2019 

7:41:00 7:54:00 67.4 0.01 0.11 0.13 

19_184_h_4 July 3, 
2019 

12:41:00 12:45:00 29.6 0.13 0.57 0.23 

19_184_h_5 July 3, 
2019 

14:14:00 14:23:00 31.6 0.04 0.09 0.43 

19_212_h_1 July 
31, 
2019 

10:48:00 11:00:00 44.0 0.06 0.64 0.09 

19_212_h_3 July 
31, 
2019 

14:37:00 14:47:00 37.7 0.09 0.81 0.11 

20_210_h_1 July 
28, 
2020 

11:20:00 11:34:00 39.8 0.08 0.76 0.10 
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