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Abstract 

Automatic speech recognition (ASR) for low-resource languages is an active field of research. 

Over the past years with the advent of deep learning, impressive achievements have been reported 

using minimal resources. As many of the world’s languages are getting extinct every year, with 

every dying language we lose intellect, culture, values, and tradition which generally pass down 

for long generations. Linguists throughout the world have already initiated many projects on 

language documentation to preserve such endangered languages. Automatic speech recognition is 

a solution to accelerate the documentation process reducing the annotation time for field linguists 

as well as the overall cost of the project. A traditional speech recognizer is trained on thousands of 

hours of acoustic data and a phonetic dictionary that includes all words from the language. End-

to-End ASR systems have shown dramatic improvement for major languages. Especially, recent 

advancement in self-supervised representation learning which takes advantage of large corpora of 

untranscribed speech data has become the state-of-the-art for speech recognition technology. 

However, for resource-constrained languages, the technology is not tested in depth. In this thesis, 

we explore both traditional methods of ASR and state-of-the-art end-to-end systems for modeling 

a critically endangered Athabascan language known as Upper Tanana. In our first approach, we 

investigate traditional models with a comparative study on feature selection and a performance 

comparison with deep hybrid models. With limited resources at our disposal, we build a working 

ASR system based on a grapheme-to-phoneme (G2P) phonetic dictionary. The acoustic model can 

also be used as a separate forced alignment tool for the automatic alignment of training data. The 

results show that the GMM-HMM methods outperform deep hybrid models in low-resource 

acoustic modeling. In our second approach, we propose using Domain-adapted Cross-lingual 

Speech Recognition (DA-XLSR) for an ASR system, developed over the wav2vec 2.0 framework 

that utilizes pretrained transformer models leveraging cross lingual data for building an acoustic 

representation. The proposed system uses a multistage transfer learning process in order to fine 

tune the final model. To supplement the limited data, we compile a data augmentation strategy 

combining six augmentation techniques. The speech model uses Connectionist Temporal 

Classification (CTC) for an alignment free training and does not require any pronunciation 

dictionary or language model. Experiments from the second approach demonstrate that it can 

outperform the best traditional or end-to-end models in terms of word error rate (WER) and 
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produce a powerful utterance level transcription. On top of that, the augmentation strategy is tested 

on several end-to-end models, and it provides a consistent improvement in performance. While the 

best proposed model can currently reduce the WER significantly, it may still require further 

research to completely replace the need for human transcribers.     
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1 Introduction 

Speech and text are the most common modes of communication. Automatic speech 

recognition (ASR) is the technology that automatically converts speech to its text form. Nowadays, 

there are many speech recognition tools integrated into our everyday life such as Google assistant, 

Siri, Google Translate etc. With the increasing use of smart devices and huge data resources, many 

companies and government agencies are interested in the development of speech technology. 

Another important application of ASR is in language documentation. More than half of the world’s 

languages are currently at different levels of endangered state, which may not persist another 

century [1]. First nations or tribal languages are amongst the highest severity of the endangered 

languages as most of them have few speakers and the new generations are diverting to major 

spoken languages due to economic, social or political reasons. Languages are carriers of cultural 

heritage, memory of important individuals or events, and they hold diverse information on 

linguistic evolution. Therefore, in order to preserve these languages, linguists have already started 

many documentation projects. 

1.1 Automatic Speech Recognition for Language Documentation 

ASR can play a key role in the language documentation process. Firstly, it can reduce the 

workload of field linguists. Manual annotation of recordings can take thousands of hours 

depending on the size of the corpus [2]. A survey from 2017 shows that, on average, each minute 

of audio data takes around 40 minutes depending on the difficulty of the associated file for a 

manual transcriber [3]. By contrast, a time-sensitive experiment reports that ASR assisted 

transcription takes 15% less time than an expert transcriber and up to 42% for a slow transcriber 

[4]. Most often, a fieldworker might have to work with any available transcriber rather than an 

expert transcriber. Secondly, ASR can provide better transcription in certain situations as well as 

assist in linguistic analysis for language documentation. Transcribers sometimes tend to overhear 

or ignore hesitations, repetitions or corrections by the speaker, which can be important for future 

analysis [5]. Humans also have physical limitations (dizziness, mental situation) that can influence 

the quality of the transcription. ASR assisted transcription provide better result in such situations. 
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Besides, language documentation often includes word-to-word alignment and phonetic analysis, 

which can be facilitated efficiently using an ASR system. 

1.2 Challenges 

There are approximately 7000 languages in the world. However, only about 100 languages 

are currently suitable for being used with a speech recognition system [6]. This is due to the fact 

that a reliable ASR system requires a tremendous amount of annotated speech data and linguistic 

expertise. A standard ASR pipeline has three prerequisites: 1) thousands of hours of audio-

transcription pair for training an acoustic model; 2) a phonetic or pronunciation dictionary that 

describes how each word of the language is structured with the acoustic units/phoneme; and 3) a 

large collection of text data for estimating how words of the language are structured, for building 

the language model. As discussed before, endangered language documentation projects generally 

take a long time and also are quite expensive. Even if the recordings are collected, it takes even 

longer time to annotate them due to the shortage of expert transcribers. Some endangered 

languages also lack standard orthography or a proper writing system, and as a result, there might 

be little or no text data available for that language. Thus, given the long pipeline of data collection 

and preparation till the point of system deployment, the whole process can take years, by which 

point it could be too late for the target application for many endangered languages. In short, 

developing an ASR system focusing on language documentation should have the following 

considerations, 

1. The system should be able to train from very little or no data from the target language. 

2. It should incorporate well with the standard workflow of a typical language 

documentation process. 

Another challenge for endangered languages is the morphological complexity. It is a 

common practice for low resource ASR systems to use other languages to supplement the data 

scarcity. This type of training requires native speakers or expert linguists with technical knowledge 

while building the ASR system. Because the added language may consist of fuzzy grammatical 

structure or different phoneme compositions which are better understood by the native speaker of 

those languages or expert linguist. However, it’s very difficult to find a native speaker or linguist 



3 
 

with the required expertise at the time of system development specially for a heavily endangered 

target language. 

This thesis investigates the ASR technology on a critically endangered Athabascan 

language known as Upper Tanana. At present, Upper Tanana has 42 known speakers in the whole 

world with five dialects [7]. But this thesis focuses only on the “Tetlin” dialect of the language 

which has only 20 known speakers. This language is mainly spoken in some communities of 

Eastern Alaska and some parts of Yukon territory of Canada. Currently, there are only a few 

literatures available about this language, but no prior research done on automatic speech 

recognition. This language is considered a morphologically complex language and it has no 

pronunciation dictionary readily available. It is also considered a tonal language, but the Tetlin 

dialect has mostly lost its tonal variation. 

Therefore, we must come up with a system or strategy that can tackle the above challenges 

associated with languages like Upper Tanana and requires the least human intervention. 

1.3 Literature Review of Low Resource ASR 

Hidden Markov Model (HMM) is the most typical algorithm for acoustic modeling in 

speech recognition. The reason behind its success came from its strong immanent mathematical-

statistical framework [8], [9] and convenient training & decoding algorithm with flexible structure 

[10]. HMMs are usually paired with GMMs where HMMs model the signal sequence and GMMs 

represent the local spectral variability [11]. Artificial Neural Network (ANN) which have shown 

to be competent in modeling highly non-linear patterns has brought new ideas to speech 

recognition. Hinton et al, in [12] used Restricted Boltzmann Machine for initializing the Deep 

Belief Networks (DBNs) that utilizes the greedy layer wise pretraining started to dominate the 

mainstream ASR system. DBNs shown to be effective for many low resource scenarios as well 

provided that strong context dependent trees are used to train the model.  

Deep learning based techniques recently outperformed conventional ML approaches and 

yields to be very effective for ASR. One common way is to map the posterior probabilities of 

HMM states through the DNN output layer usually referred as DNN-HMM model. However, 

traditional DNNs can offer limited temporal modeling of acoustic frames. They are unable to 
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illustrate the long-term dependencies within the context [13]. RNNs specially the LSTMs have 

overcome such issues and are able to store particular historical information for a long time [14], 

[15]. Recently, Google made significant progress utilizing LSTMs for large vocabulary speech 

corpus [16]. In terms of context dependency, unidirectional LSTMs only depend on past 

information. Whereas, bidirectional LSTMs (BLSTMs) are able to take full advantage of past and 

future contexts by jointly modeling two unidirectional LSTMs superimposed on each other [17]. 

Many research show BLSTMS are also quite useful in low resource scenarios [18]–[20]. 

Nonetheless, BLSTMs are certainly powerful but the models have high latency therefore 

incompatible with real-time decoding. Studies suggest chunk based training and modifying the 

decoding algorithm seem to improve such setbacks [16], [21], [22]. Even though variants of LSTM 

perform really well in different speech recognition tasks, they need a longer training time 

compared to typical feed-forward networks.  

Convolutional Neural networks (CNNs) are well known for their compelling feature 

extraction capability. CNNs can be applied for one-dimensional acoustic modeling without any 

pooling layers. These are known as TDNNs in the ASR domain. TDNNs use a feed-forward 

architecture that can be trained significantly faster than plain RNNs. In traditional TDNN 

architecture, the first layer of the network learns the context from a narrow slice of either the raw 

or processed speech signal and every subsequent layer learns by slicing the output from its previous 

layer. This method is very useful for understanding a wider temporal dependency. TDNNs in a 

likely manner have shown success for short term feature representations [23]. Combining the 

TDNN with LSTM as a hybrid model increases the capability of the architecture by capturing 

longer context information.  Researchers evaluated various combinations of TDNN and  LSTM 

layers and demonstrated a promising improvement in Word Error Rate (WER) [24], [25]. It is 

important to note that regardless of which Deep learning method is coupled with HMM, the 

performance always has some dependency on the initial alignment provided by the GMM-HMM 

models. 

End-to-End (E2E) techniques have also shown remarkable achievement on WER in a large 

data training setup. The key advantage of an E2E model is, it can be trained without explicit 

knowledge of the language structure and the morphology; in other words, can be modeled without 

acquiring any phoneme dictionary. The integration of Connectionist Temporal Classification 
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(CTC) with ASR enabled the alignment free training of E2E models. Deep Speech developed by 

Baidu and its new modification Deep Speech 2.0 architecture are the first systems that 

demonstrated the effectiveness of CTC in speech recognition task [26]. The concept of Self 

Supervised Learning (SSL) or Self Supervised Representation Learning (SSRL) have been applied 

into different fields of computer vision (CV) and Natural Language Processing (NLP). There are 

multiple frameworks have been developed based on this technique such as BERT, Wav2Vec, GPT 

etc. In ASR it can build a generalized representation from unlabeled acoustic data and be able to 

learn the mapping from speech to text without any phoneme dictionary which caught the attention 

of many researchers for low resource model development [27], [28]. 

1.4 Research Questions 

As of now, there is only a handful of research available for Upper Tanana. But there is no 

study so far regarding the ASR system in this language. Although there are lots of studies in 

acoustic modeling for low resource languages, the lack of both acoustic resources and orthography 

have been rarely studied in the past [29]. There are some studies that address a similar issue using 

domain adaptation from cross lingual SSRL [27], [30]. However, as we are dealing with a 

morphologically complex language with an extremely small dataset, it is important that not every 

recipe for implementation, pipeline, or weighted staging will suit the characteristics of a target 

language. This research also follows a non-linguistic perspective considering the developer has no 

prior linguistic expertise. The main research question of this thesis are as follows: 

• What kind of traditional modeling is best fitted for low resource endangered languages? 

• Can feature selection improve the output of a traditional ASR system? 

• For E2E, a self supervised model pretrained in a cross lingual setting are supposed to 

learn a general representation of speech structure. Is this representation good enough 

to model a previously unseen language? 

• Can an E2E model fine-tuned on an extremely small amount of target data outperform 

traditional ASR models? 

• What is the effect of data size for fine tuning a self-supervised model?  

• Does adding augmented acoustic data for fine tuning in addition to target data improve 

the result over transfer learning? 
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1.5 Thesis Organization 

The rest of the thesis is organized as follows: 

• Chapter 2 reviews concepts related to ASR including feature extraction, modeling 

techniques, Evaluation criteria and different frameworks used for this thesis. 

• Chapter 3 is presented as a manuscript which describes our investigation on feature 

selection and different modeling techniques based on ASR for Upper Tanana 

• Chapter 4 is presented as a manuscript which demonstrates our proposed DA-XLSR 

model, experimental results and discussion over other state-of-the-art models. 

• Chapter 5 summarizes the key contributions of the thesis and provides directions 

for future work. 
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2 Background and System Modeling 

This chapter describes the basics of automatic speech recognition, background concepts 

related to every step of building an ASR system including feature extraction, feature 

transformation, acoustic model, lexicon, language model, the notion of End-to-End ASR, different 

frameworks and evaluation matrices. 

2.1 Automatic Speech Recognition 

Automatic speech recognition is generally defined as a process of transcribing speech 

signals automatically into a sequence of linguistic units typically words, by means of machines or 

computer programs [31]. The process can be represented by a block diagram which consists of 

three main components a Lexicon, an acoustic model (AM) and a language model (LM) shown in 

Figure 2.1. 

The speech signal can be represented as a sequence of observation X which captures the 

essential temporal information. In practice, the speech signal is processed to generate a feature 

vector using small windows of speech frames ranging from 20 to 30 ms shifting at a specific frame 

rate usually 10 ms over the whole signal. Given the speech sequence 𝑋, the problem can be defined 

as, 

 

Figure 2.1: Generic Block Diagram of an ASR 
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�̂�  = argmax
𝑤

𝑃(𝑊|𝑋) (2.1) 

 where the goal is to find the best word sequence �̂�  that maximizes the posterior 

probability 𝑃(𝑊|𝑋). The above equation can be rewritten applying Bayes theorem, 

 

�̂�  = argmax
𝑤

𝑃(𝑋|𝑊)𝑃(𝑊)

𝑃(𝑋)
 

        =  argmax
𝑤

𝑃(𝑋|𝑊)𝑃(𝑊) 
(2.2) 

Here, the conditional probability 𝑃(𝑋|𝑊) is generally modelled using Hidden Markov 

Model (HMM) where the output probabilities are provided using pdfs from a Gaussian Mixture 

Model or Deep Neural Network. The hidden states 𝑆  of the HMM represents a sequence of 

subwords or phonemes which corresponds to the pronunciation of a given word. Therefore, the 

model can be represented under Markov’s assumption as, 

�̂�  = argmax
𝑤

𝑃(𝑋𝑛|𝑆𝑛)𝑃(𝑆|𝑊)𝑃(𝑊) (2.3) 

The likelihood term 𝑃(𝑋𝑛|𝑆𝑛) is known as the acoustic model and the prior 𝑃(𝑊)  is 

known as the language model. Since language models are usually built on word level, whereas 

speech signals are modelled at a phoneme level, a lexicon or commonly known as a pronunciation 

dictionary is required to map the phonemes to word.  

2.2 Feature Extraction 

As speech signal contains a lot of noise, extracted features provide much better results than 

the raw speech signal for speech recognition. This section presents some of the feature extraction 

methods used for this study. 
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2.2.1 Mel FilterBank 

Mel FilterBank (Fbank) is a simple feature vector derived from Mel bands of a speech 

waveform. The distribution of the Mel bands is similar to the vocal system of a human; hence it is 

useful for both speech and speaker recognition. It is an earlier step of computing Mel Frequency 

Cepstral Coefficients (MFCC). Some of the literature suggests Fbank features tend to work better 

than MFCC for DNN based acoustic models [32]. The process of computing Fbank features is 

given in Figure 2.2. 

The first step of computing Mel FilterBank is preemphasis. Due to the structure of the 

human vocal system higher frequencies produce less energy. Thus, this step balances the energy 

by boosting the higher frequencies through a high pass filter. If the speech waveform is 𝑠(𝑛) the 

output of the filter is given by, 

�̂�(𝑛) = 𝑠(𝑛)−  𝛼𝑠(𝑛− 1) (2.4) 

where 𝛼 is the preemphasis filter constant and usually set between 0.9 to 1. The resulting 

signal is then split into small frames of 20-30 ms as described earlier. As framing might cause 

discontinuities in the signal, thus a Hamming or Hanning window is applied to discard the 

discontinuities. A Hamming window can be formed using the following equation, 

𝑤(𝑛) = 0.54 −  0.46 𝑐𝑜𝑠 (
2𝜋𝑛

𝑁 − 1
) (2.5) 

 

Figure 2.2: Computing Mel FilterBank features 
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where 𝑁 is the length of the window and 𝑛 = 0, . . (𝑁 − 1). After the window operation an 

N point FFT can be applied to individual frames to find the frequency spectrum. Followingly the 

power spectrum can be calculated using, 

𝑃 =
|𝐹𝐹𝑇(𝑠𝑛)|

2

𝑁
 (2.6) 

where 𝑠𝑛 is an individual frame of signal 𝑠. Finally, the Mel spectrum can be computed by 

weighting the power spectrum with Mel filters. The weight is denoted by 𝐻𝑚(𝑘) and the Mel 

spectrum is given by 𝑠(𝑚). 

𝑠(𝑚) = ∑ 𝑃𝐻𝑚(𝑘)

𝑁−1

𝑘=0

 (2.7) 

𝐻𝑚(𝑘) = 

{
 
 

 
 

0, 𝑓(𝑚+1) < 𝑘 < 𝑓(𝑚−1)
𝑘− 𝑓(𝑚−1)

𝑓(𝑚)−𝑓(𝑚−1)
𝑓(𝑚−1) < 𝑘 < 𝑓(𝑚)

𝑓(𝑚+1)−𝑘
𝑓(𝑚+1)−𝑓(𝑚)

𝑓(𝑚) < 𝑘 < 𝑓(𝑚+1)

 (2.8) 

Once the Fbank features are computed mean normalization can be applied by simply 

subtracting the mean of all values to improve the signal to noise ratio (SNR). 

2.2.2 Mel Frequency Cepstral Coefficients 

Mel Frequency Cepstral Coefficients are the most widely used input features to an acoustic 

model. It is an extension of the Mel FilterBank features which is being used by speech researcher 

for long time. In general, the first 12 coefficient of the Mel Frequency Cepstrum along with the 

energy of each frame in total of 13 is considered as the MFCC features. It can be computed 

applying a Discrete Cosine Transformation (DCT) to the FilterBanks where the initial 12 are taken 

and the remaining are discarded. Before applying DCT, the Mel spectrum is converted to the 

natural log scale. The equation below can be used to convert any frequency to Mel scale. 

𝑚𝑒𝑙(𝑓)  =  2595log10(1 + 𝑓/700)  (2.9) 
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The co-efficient can be calculated using the following equation, 

𝑐(𝑛)  =  ∑ log10(𝑠(𝑚))cos (
𝜋𝑛(𝑚 − 0.5)

𝑀
)

𝑀−1

𝑚=0

 (2.10) 

The reason behind MFCC is so popular is because standard Machine Learning algorithms 

are susceptible to highly correlated features like FilterBank. Adding an extra step of DCT 

decorrelates the features while conserving the same information. MFCC features are not well 

suited in a noisy background and not considered good for generalization problems. 

2.2.3 Perceptual Linear Prediction 

Another important feature used in this study is the Perceptual Linear Prediction (PLP) 

coefficients. PLP was first proposed by Hermansky et al [33]. It is quite similar to the MFCC 

features such as it also implies an equal loudness on the preemphasis part, however, it uses a cube 

root compression in place of the log compression. A key difference with MFCC is that it uses 

Linear Predictive Coding to compute the final coefficients. The process of extracting PLP features 

is shown in Figure 2.3. At first, a Short-Time-Fourier Transform (STFT) is computed for every 

frame to transform the signal into frequency space. Then the power spectrum is estimated from the 

power of the complex valued output which gets through the Mel frequency filterbanks. Then, the 

loudness equalization is achieved by amplifying the power of high frequencies similar to MFCC. 

Then a cubic root is taken to transform the loudness to intensity and normalized using Linear 

Predictive Coding (LPC). 

 

Figure 2.3: Computing Perceptual Linear Prediction (PLP) features 
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Finally, the PLP coefficients are computed by solving a set of recursive equations[34]. PLP 

is considered to be robust in a noisy environment and sometimes shows better results than other 

features.  

2.2.4 Fundamental Frequency Feature/ Pitch Feature 

The tones of a speech is related to the fundamental frequency or pitch of the sound which 

makes it highly effective for modeling tonal languages [35]. It can be extracted by computing the 

autocorrelation of a signal on a single frame or over a number of frames. There are different 

algorithms for pitch extraction. The method used for this research is associated with finding the 

lag values maximizing the Normalized Cross Correlation Function (NCCF) [36]. Instead of hard 

ruling over the voiced and unvoiced frames it uses the Viterbi algorithm to interpolate the unvoiced 

section. Therefore, a pitch is assigned even for unvoiced frames of the signal which helps it better 

fit with the standard GMM-HMM pipeline.  

The pitch feature is sometimes processed further to use as a feature. For example, the 

Probability of Voicing (PoV) is often combined with the pitch which is used for anticipating a 

voice or unvoiced part. Additionally, the log of a normalized subtraction of the mean used for 

smoothing the output of the pitch. Apart from the PoV and pitch, a third component is also 

generated by computing the delta log pitch from ±2 frames of unnormalized log pitch [36]. 

In this study, the pitch feature is used coupling with standard features like MFCC, PLP or 

Fbank. More details are provided in Chapter 3. As per past studies, it was found to have better 

performance not only for the tonal languages but also a significant gain for non tonal languages 

[36]. 

2.2.5 I- Vector 

I- Vectors are features extracted by adapting with an existing system generally based on a 

Universal Background Model (UBM) or Gaussian Mixture Model. I-vectors are well utilized for 

Hybrid DNN-HMM models in addition to standard MFCC features. It helps improving the speaker 

recognition or adaptation problem in speech recognition. In this research, the feature is also used 

for training DNN based models. 
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The standard procedure for extracting I-Vectors follows by forming a supervector stacking 

the means of standard feature vector taken from an audio sample adapting with a prior model [37]. 

Provided a supervector 𝑆 formed with respect to a UBM or GMM with a mean supervector 𝑀, the 

equation for I-Vectors is given by, 

𝑆 = 𝑀 + 𝑇𝑤 (2.11) 

Here, T is a matrix that defines the low dimensional space in Total Variability Space (TVS) 

based modeling and 𝑤 is the extracted I-Vector. As it is a low dimensional representation of the 

speech signal, it still contains both speaker and channel information. Therefore, discriminative 

classifiers are used to discard unwanted information. Usually, a Linear Discriminative Analysis 

(LDA) followed by a Probabilistic LDA (PLDA) is applied on a length normalized I-Vector to 

reduce the dimension. 

2.3 Acoustic Feature Transforms 

This section will describe some of the feature transformation techniques used for 

improving the features. 

2.3.1 Cepstral Mean and Variance Normalization (CMVN) 

Due to different recording conditions and recording materials such as microphone, DVR 

or background chattering recordings often get noisy. CMVN is used to normalize such noise. These 

noises regarded as convolutive noise in the time domain which convert to additive noise in the 

cepstral domain [35]. CMVN normalizes the noise by removing the mean and variance from each 

coefficient. This technique is computationally inexpensive and widely used for robust speech 

recognition. Although in general it improves the overall speech recognition however, it found to 

be degrading the performance for shorter utterances. It happens as all the utterances are 

transformed to have a zero mean and variance, therefore due to inadequate data for the parameter 

estimation in shorter utterances useful information might get lost[38]. 
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2.3.2 Delta and Delta-Delta Features 

In HMM based modeling it is assumed that each of the observations are independent from 

each other. But, when the adjacent frames of the audio signal are highly correlated it might not 

hold. Besides, phonemes are often dependent on the dynamics of the features over time. The idea 

of Delta features is to capture the dynamics of the original feature by taking the differential from 

the previous and the next frame. It can be computed using the following formula, 

𝑑𝑡 = 
∑ (𝑁
𝑛−1 𝐶𝑡+𝑛 − 𝐶𝑡−𝑛)

2∑ 𝑛2𝑁
𝑛=1

 (2.12) 

Here, 𝑑𝑡is the delta coefficient for frame t and 𝐶𝑡±𝑛 are the original features. 

To capture the dynamics even better a second derivative is also taken from the delta 

features is known as delta-delta. It can be computed using the same equation where the original 

features are replaced by the delta features. Both delta and delta-delta are usually coupled with the 

original feature to create an extended feature vector. 

2.3.3 Dimensionality Reduction and Likelihood Maximization 

Features in traditional ASR are often correlated to each other. Besides as the number of 

dimensions increases it also requires more data point to build an efficient model as we know from 

the curse of dimensionality in machine learning. Thus, its common to use algorithms such as 

Principal Component Analysis (PCA) or LDA for dimensionality reduction. PCA transforms the 

data to fewer dimensions with maximum variation in an unsupervised manner. In contrast, LDA 

finds a linear combination of features that describes the best class separation. In traditional ASR, 

the hidden states of the HMM used as class labels. Another linear transformation usually coupled 

with LDA is Maximum Likelihood Linear Transform (MLLT). It transforms the features globally 

to maximize the likelihood at a frame level for the model. Usually, LDA and MLLT are estimated 

together in a GMM-HMM system where a model is trained for a number of iterations and certain 

iterations include the estimations of LDA-MLLT.  
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2.3.4 Speaker Adaptive Training 

In order to improve the performance of a speech recognition system it needs to adapt to the 

individual user. It is possible to train the system for that particular speaker, however in that case it 

will require large amount of data from that specific user to train the system. To avoid this issue 

HMM based systems use Feature Space Maximum Likelihood Linear Regression (fMLLR). It is 

an affine transform which works similar to the MLLT but in a speaker adaptive way. First, a 

speaker independent model is trained and the best path is computed using Viterbi decoder. Then, 

using the Viterbi path the parameters for fMLLR is estimated for each speaker. Finally, the features 

are transformed according to the adaptation of fMLLR and the model is retrained on the 

transformed features. The recognition procedure also follows first pass of feature transformation 

by the fMLLR and second pass of recognition from the transformed features of the speech signal. 

2.4 Lexicon 

In traditional ASR system each word is modeled in terms of smaller segments to avoid data 

sparsity as well as decoding unseen words. It also acts a bridge between words and pronunciation 

model. The smaller segments are usually represented by phonemes or graphemes. Phonemes are 

simply the smallest contrastive unit of spoken system. On the other hand, graphemes are the 

smallest contrastive unit for written system. The list of words with their pronunciation represented 

with phonemes is known as the pronunciation dictionary or a lexicon. An example of a word 

“Green” represented with phonemes would be, 

green G R IY N  

The lexicon is generally prepared manually by expert linguist. However, due to different 

accent there can be alternative pronunciations for the same word or same pronunciation for 

different words and its always a challenging task for diverse languages. Therefore, sometimes if a 

pronunciation dictionary is not available researcher choose to supplement it with graphemes, 

characters or rule based sub-word units. The relation between graphemes and phonemes depends 

on the language. For example, Finnish and Spanish has a regular relationship, on the contrary 

English or French has an irregular relationship [29]. The relationship might deviate as well based 
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on dialect, second language learners etc. More details of how this research uses lexicon is provided 

in Chapter 3. 

2.5 Acoustic Models 

The acoustic model represents the relationship of an audio signal with the corresponding 

phoneme or subword unit [39]. It is generally built specific to a certain language with one or 

different dialects, however multilingual acoustic models are also quite common in recent times 

[40]. The states of HMM are to represent the acoustic units in an acoustic model. The detail of 

HMM modeling structure is described below. 

2.5.1 HMM Based Acoustic Models 

An HMM based acoustic model 𝜆 can be defined with five following elements. 

• A set of states 𝑆: 𝑆1, 𝑆2, … 𝑆𝑁 where at any discrete moment the system will be in 

any of those states. In an HMM the states are hidden, and the status of a particular 

state depends on the observables. 

• A discrete set of phonemes 𝑉: 𝑉1, 𝑉2, … 𝑉𝑀 for possible emission 

• A state transition probability distribution matrix 𝐴, here the probability of moving 

from state 𝑆𝑖 to state 𝑆𝑗 is given by 𝑎𝑖𝑗 

• An emission probability distribution matrix B where the probability of emitting any 

symbol 𝑉𝑘 in any state 𝑆𝑗 is given by 𝑏𝑗(𝑘) 

• An initial probability matrix 𝜋 that assigns the probability of each state 𝑆𝑖 at their 

initial state. 

There are two assumptions to be considered in a first order HMM. The first one is the 

Markov property which can be represented as, 

𝑃(𝑆𝑡|𝑆1
𝑡−1) = 𝑃(𝑆𝑡|𝑆𝑡−1) (2.13) 
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Here, 𝑆1
𝑡−1 corresponds to the state sequence 𝑆1, 𝑆2, … 𝑆𝑡−1. Thus, the assumption is given 

as the probability of any given state only depends on its previous states and not any other states 

before that. 

The second assumption is the output-independence characteristics, 

𝑃(𝑋𝑡|𝑋1
𝑡−1, 𝑆1

𝑡) = 𝑃(𝑋𝑡|𝑆𝑡) (2.14) 

where 𝑋1
𝑡−1 corresponds to the output sequence 𝑋1, 𝑋2, …𝑋𝑡−1. This assumption states that, 

at any given time 𝑡 the probability of an emitted symbol only depends on state 𝑆𝑡 and independent 

of any past observation. Below is a representation of an HMM of three states with its transition 

and emission probability (Figure 2.4). 

The HMM based acoustic modeling can be broken into three following problems in an 

ASR. 

1. The Evaluation Problem: For a given HMM, the task of determining the probability 

of a particular sequence of visible states was generated by the model. This can be 

solved using either the Forward or Backward algorithms [41]. 

 

Figure 2.4 : Example of three states with left-to-right HMM and the emission probability 
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2. The Decoding problem: If a model and set of observation is given the task of 

determining the most likely sequence of hidden states which resulted into the given 

observations. It can be efficiently solved using Viterbi algorithm [42]. 

3. The Learning problem: For a given HMM model 𝜆 =  (𝐴;  𝐵;  𝜋) with a set of 

observations 𝑂 for training, the task is to find the best parameters that maximize 

the probability of observing 𝑂: 𝜆 ∗ =  argmax
𝜆 

𝑃(𝑂|𝜆) . The Baum-Welch 

algorithm which is a special case of the expectation-maximization technique is 

usually used for tuning the model parameters. 

The emission probability distribution matrix 𝐵 can be estimated using Gaussian Mixture 

Model or DNN. Based on the emission matrix estimating method the ASR systems are commonly 

names as GMM-HMM or DNN-HMM. Detail of the GMM and DNN modeling is provided in the 

next section. 

2.5.1.1 Gaussian Mixture Model 

GMM is the most popular way of modeling the emission probability distribution for HMM 

based ASR. To determine the distribution only two parameters are considered which are the mean 

𝜇 and the covariance ∑ . The components of the GMM are given by Gaussian pdfs. The likelihood 

for a given state 𝑆𝑗 can be calculated using the following equation, 

𝑏𝑗(𝑥)  = ∑ 𝑐𝑗𝑚(𝑋|µ
(𝑗𝑚), 𝛴(𝑗𝑚))

𝑀

𝑚=1

 (2.15) 

Here, the 𝑐𝑗𝑚 represents the mixture weights for a Gaussian 𝑚 of state 𝑆𝑗 and the priors 

need to follow the constraints of a valid probability mass function given below, 

∑ 𝑐𝑗𝑚

𝑀

𝑚=1

= 1, 𝑐𝑗𝑚 ≥ 0 (2.16) 

 

2.5.1.2 Deep Neural Network 
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In earlier stages of ASR, Artificial Neural Networks (ANN) were used in combination with 

HMM to build speech recognition systems instead of GMMs. The first ANN-GMM model was 

proposed in 1990. The ANN is trained for predicting the posterior probabilities to generate the 

pseudo likelihood for each state of HMM. Due to single layer composition, this kind of models 

were not good enough and GMMs were leading the ASR research. DNN is a basically feed forward 

ANN with more than one hidden layer. Each hidden layer uses a non-linear activation function 

generally a Rectified Linear Unit (ReLU) for mapping the weights to a standardized state [43]. For 

multiclass problems such as ASR, a SoftMax nonlinearity is used on the output layer to normalize 

the probability distribution over the classes.  

DNNs are trained using forward and backward propagation of the derivatives between the 

training output and expected output. The difference calculated via a cost function usually cross 

entropy loss given below where 𝑝 is the target probability of each symbol, 

𝐶 = −∑𝑑𝑗𝑙𝑜𝑔𝑝𝑗
𝑗

 (2.17) 

Due to the amount of training data updating weights after a whole walkthrough of the data 

is not encouraged, instead dividing the data into batches results in better training. Different 

optimizers such as Adam, SGD etc are also used to smoothen the gradient. As a deeper network 

takes more and more time to converge, unsupervised pretraining like Restricted Boltzmann 

Machine (RBM) or Discriminative Pretraining (DPT) studied by the researcher which allows 

greedy layer-by-layer training to initialize DNNs. Perhaps many hidden layers were able to be 

trained to build more sophisticated acoustic models which led to large improvements on the 

performance. RBMs are undirected graphical models with a number of nodes constructed from 

layers of observed stochastic units also known as visible units v and a layer of latent random units 

or hidden units h [15]. The joint probability of v and h is given by, 

𝑃 (𝑣, ℎ) =  
1

𝑍ℎ,𝑣
𝑒𝐸(𝑣,ℎ) (2.18) 

Where 𝑍ℎ,𝑣 is a normalizing partition function. The visible units are real-valued Gaussian 

distributed whereas the hidden units are binary valued Bernoulli distributed. 
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DPT works such, the first layer of DNN is trained with full convergence using the frame 

labels for every state of the HMM, then the outer layer which is usually a Softmax is replaced by 

another hidden layer with random initialization. However, only the second layer is updated during 

training this time. The training continues to full convergence and again a new layer is added. 

Instead of single layer pretraining multilayer training is also used in some cases. 

 Since accurately modeling the temporal dynamics of speech requires capturing long term 

dependencies in the acoustic signal, therefore typical DNN in other words Multi Layer Perceptron 

(MLP) has been replaced by more effective architectures like Time Delayed Neural Network 

(TDNN) or Recurrent Neural Network (RNN). TDNNs use a modular and incremental design for 

creating larger networks from sub components [23]. DNNs use fixed dimensionality vector for 

modeling for mapping sequential data which might not be ideal for speech. Therefore, a different 

type of architecture such as RNN or Long Short Time Memory (LSTM) has been utilized. RNNs 

use dynamically changing contextual windows over all the sequence history. LSTMs are a special 

type of RNN which avoid the vanishing/exploding gradient problems of RNN and produce even 

better results. Although RNN and LSTM has a better modeling structure, it always requires more 

data than standard DNNs, hence DNNs are more effective in low resource scenario[44]. This thesis 

uses both TDNN and a combination of TDNN with LSTM for some of the acoustic models. The 

details of the models are provided in Chapter 3 and Chapter 4. 

2.6 Language Model 

An acoustic model generally outputs a probability over phoneme or word sequence that 

best fits with the audio data. The decoder of an ASR system takes the output of the acoustic model 

and corrects it using the prior statistics of the word or phoneme based on large textual data. A 

language model is a statistical tool which is used for analyzing patterns in a human language [44]. 

LMs are trained using large scale plain text for estimating the probability distribution of word 

sequences. There are two main methods for building Language Models currently in practice. One 

is the N-Gram language model and the other is the Deep Learning Based language model. More 

detail about the two are provided in the next section. 
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2.6.1 N-Gram Language Model 

N-Gram is the most common method for language modeling. If the word sequence is 

𝑊 = 𝑤1, 𝑤2, … . . 𝑤𝑁 the probability of a word can be computed using the chain rule below, 

𝑃(𝑊) = 𝑃(𝑤1, 𝑤2, … . . 𝑤𝑁) 

= 𝑃(𝑤𝑁|𝑤1, 𝑤2, …𝑤𝑁−1) 

= ∏𝑃(𝑤𝑖|𝑤1, 𝑤2, …𝑤𝑖−1)

𝑁

𝑖=1

  

(2.19) 

The probability of a word can be derived using a relative frequency count from the word’s 

history. However, the method is not practical due to the high variability of possible context. The 

N-gram language model instead limits the preceding word to 𝑁 − 1  while estimating the 

probability from large text data. The typical N-gram model uses an input of 𝑁 = 3, in other words 

a trigram model. But Bigrams and Unigrams are also useful for isolated word recognition and other 

speech analysis. 

During the testing phase, it is possible that some of the words are not enlisted within the 

vocabulary of the language model which might result in a zero probability of the whole sequence. 

To avoid such instances smoothing techniques are used. This technique reallocated some 

probability mass to previously unseen word sequences. Various smoothing techniques are 

available such as Kneser-Ney, Witten-Bell, Katz smoothing etc. 

2.7 Forced Alignment 

In a forced alignment process the speech is automatically aligned with its corresponding 

orthographic transcription generally at a word or phoneme level. Given a mapping of the 

graphemes to the phonemes (a pronunciation dictionary) and an acoustic model, the forced aligner 

takes the speech and identifies a sequence of phones which best fits the actual pronunciation [45]. 

Forced alignment is very similar to an ASR. But in an ASR, the model is given a list of words to 

search for, in contrast for forced alignment the model is given an exact set of transcription. This is 

the reason it’s called a forced alignment. 
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In traditional ASR system, regardless the system is built on DNN-HMM or GMM-HMM, 

training the acoustic model requires the features to match with the corresponding label. For a 

typical model if the features are MFCC and labels are phonemes we need to know which feature 

vector corresponds to which phoneme for estimating the parameters of the model. However, our 

training data generally consists of a lot of noise and silent parts without actual speech. Therefore, 

the audio signals are broken into shorter segments and aligned beforehand with the transcription 

before training. In earlier times, the alignments were produced by the linguists manually which 

takes a lot of time as well as expertise over the language. Nowadays a lot of tools are available to 

automatically align speech to text, however, depending on the target language additional training 

or development of toolsets are necessary to get more accurate output. 

During the training of ASR, a forced alignment is also applied in some of the iterations to 

realign the data with its transcription. The process follows as an initial model is built using the 

available noisy data. Although the labels are not very clean at this stage, yet the model learns 

something for generating a likelihood score for each frame. The scores might not be very accurate 

however as the model already knows the labels it can be used to realign the data. This is an iterative 

process where, as the training progresses the model produces better alignment and with better 

aligned training data the model learns better parameters. 

Apart from speech recognition, the forced aligners are also used for isolating speech sounds, 

keyword search, language documentation, phonetic analysis etc. In this thesis, we developed a 

forced aligner as part of our baseline ASR system. The modeling detail and the evaluation is 

provided in Chapter 3. 

2.8 End to End Speech Recognition 

Despite the success of conventional ASR systems, it relies on very sophisticated pipeline 

of complex multi-module structures and hand engineered processes. There are several weaknesses 

in the conventional ASR system, 

• The architecture is module based and each module needs to be optimized 

individually 

• As the modules are trained separately it may contain incoherence 
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• Due to separate training of each module it’s also difficult to get high performance 

as well as making the development process complex 

• The decoding goes through each individual module making it slow and complicated 

• It involves several hand engineered components like lexicon design, label 

alignment 

• The assumptions made for HMM are also not valid for speech signal 

Therefore, to overcome such weaknesses substantial amount of research have been done 

with End to End (E2E) ASR systems over the years [46]–[50]. E2E systems integrate the different 

components of a traditional ASR system i.e. the acoustic, pronunciation and language model into 

a single network of E2E model which allows the joint optimization of all the components at the 

same time. It also reduces the requirement of any special type of feature engineering and also able 

to train on raw audio signal. E2E system works as a sequence to sequence (seq2seq) model which 

directly converts the acoustic sequences to word sequences. However, to build an effective E2E 

system there are some major challenges, 

First, there has to be a way for building large, labeled training datasets as most E2E systems 

are mainly different combinations of deep learning networks. This challenge has been addressed 

by sharing knowledge among different corpora of languages (transfer learning) and methods of 

producing synthetic data (data augmentation). However, HMM based architectures are still 

outperforming in most low resource cases. 

Second, the networks must be large enough to properly accommodate the knowledge from 

all of this data. Recent development of many architectures address these issues, for example Self 

Supervised Representation Learning (SSRL) models are able to capture the knowledge of huge 

corpora of over a hundred languages in an unsupervised fashion [51]. 

Another challenge is handling the alignment of the text labels with the input speech signal. 

This problem is also addressed by a group of researchers who developed Connectionist Temporal 

Classification (CTC) method [52]. CTC enables easily training large datasets skipping this 

alignment part. 
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E2E architectures can be divided into three major groups for ASR systems including 

Attention based Encoder-Decoder systems, CTC based approaches and RNN-Transducers [53]. 

2.8.1 Attention based Encoder-Decoder systems 

Attention based Encoder-Decoder (ED) networks were first introduced in the field of 

neural machine translation (NMT) [54]. It has three main components, the encoder, attention 

mechanism and the decoder [55]. A schematic representation of the architecture is given in Figure 

2.5 [53]. 

For speech recognition, the encoder works similar to an acoustic model. It takes the features 

𝑥 = 𝑥1, 𝑥2, … . . 𝑥𝑇 and transforms them into a hidden representation ℎ𝑒𝑛𝑐 = ℎ1
𝑒𝑛𝑐 , ℎ2

𝑒𝑛𝑐… . ℎ𝑇
𝑒𝑛𝑐. 

At a given time step 𝑢 the decoder network uses the label  𝑦𝑢−1 predicted at the previous time step 

with the context vector 𝑐𝑢 generated from the attention mechanism to output the logit ℎ𝑢
𝑑𝑒𝑐 for the 

current step. Then, the SoftMax layer converts the logit to a probability distribution 

𝑃(𝑦𝑢, 𝑦𝑢−1, … . 𝑦0, 𝑥) conditioned to the previous predicted labels and the input sequence. As the 

output label is conditioned to the previous prediction it continues to the output as long as the 

sentence end token is not predicted. As the attention depends on all the encoded input, the system 

needs to wait for the full sentence to be processed before it can start decoding. This limitation 

 

Figure 2.5: A schematic representation of Attention based Encoder-Decoder architecture 
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makes the system unusable for online decoding or live decoding. Besides this kind of system often 

degrade for longer texts used in the training sequence. 

2.8.1.1 Transformer 

Transformer is a DNN architecture introduced very recently in 2017 built for sequence 

transduction [56]. The task is similar to seq2seq models however this architecture entirely depends 

on attention mechanism without applying any recurrent or convolution operation. Transformer 

consists of an encoder and a decoder where the encoder takes the input sequence, converts it to a 

vector and then transforms it using attention mechanism. On the other hand, the decoder takes the 

transformed vector and decodes into the output sequence. Both the encoder and decoder has an 

almost identical internal structure but different weights and biases. Figure 2.6 shows a high-level 

illustration of the Transformer architecture. 

 

Figure 2.6 High-level Illustration of transformer architecture 
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The encoder has two main blocks, a self-attention sublayer consisting of multihead 

attention mechanism and another sublayer of a feed forward network. Both sublayer contains a 

residual connection and a layer normalization [56]. Self-attention is a process where the 

transformer attends to the other labels of the input sequence during encoding of a specific label. 

An attention head takes three matrices including the query 𝑄, Key 𝐾 and the value 𝑉 computed 

from the input matrix. The output of a single attention layer can be calculated using, 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉 )  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (2.20) 

In practice the transformer utilizes multiple self attention head parallelly whereas each 

contains their own query, key and value. The output matrix of self attention sublayer is obtained 

by concatenating the output of each self attention head which then fed into the feed forward 

network. 

The decoder block has similar sublayers like the encoder with one additional self-attention 

sublayer between the first self-attention layer and the feed forward network. The middle layer 

computes its query matrix 𝑄 from the first self-attention layer but takes the key 𝐾 and value 𝑉 

from the output of the encoder. The first sub layer has a masking process before the SoftMax layer 

for restricting it attend into any future position [53].The linear layer on top of the decoder converts 

output of the decoder to logits which then transformed to probabilities by the SoftMax layer like 

any other ED architecture. Finally, the label of highest probability is selected and fed back into the 

decoder to decode the next label. The process continues until the end token is not generated. 

2.8.2 CTC-based Architecture 

Connectionist Temporal Classification was first proposed in 2006 allowing alignment free 

training of E2E models [52]. It is much simpler and faster than any other E2E techniques as it 

requires only the encoder to be trained. It is also faster in decoding due to its token-level iterative 

decoding system. 

The encoder part of any CTC architecture works similar to Encoder-Decoder systems 

where the model takes an input sequence and transforms it to encoded logits. The logits are then 
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passed through a SoftMax layer to generate probability distribution conditioned to the input 

sequence. The labels of the CTC architectures are encoded with a special blank token. This gives 

the network the flexibility to output label for any part of the input sequence. It also allows the 

network to generate higher probability to the correct labels at a specific time and just generate 

higher probability to the blank token the rest of the time. For an input sequence 𝑋 and output 

sequence 𝑌 the objective of CTC can be written as, 

𝑝(𝑌|𝑋) =  ∑ ∏𝑝𝑡(𝑎𝑡|𝑋)

𝑇

𝑡=1𝐴𝜖𝐴𝑋,𝑌

 (2.21) 

The loss for CTC is calculated over the entire unsegmented input sequence to the target 

sequence. Figure 2.7 shows how CTC finds the true labels aligning the input to output [57]. During 

the alignment process it is assumed that the output labels are independent of each other although 

it’s not true for speech recognition. Thus, the outputs can be improved by incorporating a language 

 

Figure 2.7: CTC alignment process for ASR 
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model built at a character level. However, the language model needs to be trained separately which 

therefore may not be an ideal E2E system. 

2.8.3 RNN Transducer 

The assumption for conditional independence between each label while modeling with 

CTC architectures results lower performance. This problem was first addressed in RNN-

Transducer without any external language model. The RNN-Transducer has an encoder network 

similar to other E2E architecture with an additional prediction network. The prediction network 

can be treated as a language model which can be optimized jointly with the whole ASR system. 

The prediction network produces a vector 𝑝𝑢 based on all previous predicted labels. The vector is 

then fed into a network jointly with the output ℎ𝑇
𝑒𝑛𝑐 from the encoder to compute the logits. The 

rest of the process follow similar to other E2E networks. The computation of the logits 𝑍 can be 

given by, 

𝑧𝑡,𝑢 = 𝑤3ℎ𝑡,𝑢
𝑗𝑜𝑖𝑛𝑡

+ 𝑏2 (2.22) 

 Here, 𝑤 and 𝑏 are just the weights and biases of the network. Due to larger size and more 

parameters RNN-Transducers takes higher memory while training thus computationally more 

expensive then other E2E architectures. 

2.8.4 Self-Supervised Representation Learning (SSRL) 

Self-Supervised Representation Learning is a method of training DNN without any 

annotated labels. It is a special form of unsupervised learning where instead of clustering or 

grouping it learns a representation of the data using psudeo labels generated from the data itself. It 

is known as the ‘pretext’ task or pretraining which enables using part of the data to solve an 

unsupervised problem through supervised techniques. In ASR, the labels are created by masking 

some part of the input and the model focuses on recovering the missing part of the input. This way 

the model learns a very powerful representation of the input data which can be used later for many 

downstream task such as speech recognition, translation, speaker recognition etc. 
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SSRL has become a very active research topic in the ASR system. In recent year, there 

have been a lot of models introduced based on SSRL such vector quantized variational autoencoder 

(VQ-VAE) [58], Wav2vec [59], Wav2vec 2.0 [60], Mockingjay [61], Audio ALBERT [62] etc. 

2.9 E2E Frameworks 

This section will describe about the End to End frameworks used in this thesis. There are 

mainly two frameworks including Deep Speech 2.0 and Wav2vec 2.0 used for this research. Some 

other variation of the Wav2vec 2 also have been used which we describe more in Chapter 4. 

2.9.1 Deep Speech 2.0 

Deep Speech is an RNN based E2E ASR system developed by Baidu [63], [64]. It is a 

complete E2E model which does not model noise, speaker variation etc. using separate 

transformation technique or hand crafted methods. Deep Speech uses spectrogram as input feature. 

The original deep speech architecture has five layers where first 3 are non-recurrent and the fourth 

one is a bidirectional recurrent layer. The fifth layer is a non-recurrent layer, and the output is a 

SoftMax layer which generates the probability for each characters in the language. Figure 2.8 

shows the structure of RNN model in Deep Speech [63].  As a single recurrent layer is probably 

not enough to capture the diverse representation of the data in their second version Deep Speech 

2.0, they increased the model capacity using up to 11 layers of bidirectional recurrent layer and 

convolutional layer. Instead of simple RNN they utilized the GRU and optimized with SortaGrad. 

Both of the models exploit CTC for an alignment free training. They mainly experimented the 

model with large data from English and Mandarin. However, their use of data augmentation 

techniques such as inducing noise, inflecting pitch explains the possible use in low resource 

languages. In this thesis we only implemented the Deep Speech 2 and tuned the hyper parameters 

like number of layers and choice of hidden units tailored to our language. More details of the 

training configuration and experiments are provided in Chapter 4. 
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2.9.2 Wav2vec 2.0 

Wav2Vec [59], [60] combines the power of SSRL with CTC to build a strong ASR 

framework. It has a multilayer feature encoder composed of CNN which takes raw audio 𝑋 and 

outputs latent representation 𝑍. Figure 2.9 demonstrates a high level architecture of wav2vec 2.0. 

The latent variables go through a quantization module to get finite set of discretized speech 

representation 𝑞. At the same time 𝑍 are partially masked and fed through a transformer network 

to build the contextualized representation 𝐶 over the raw input sequence 𝑋. Wav2Vec utilizes the 

concept of contrastive representation learning previously implemented in BERT [65] where the 

similar samples are near to each other and different ones are pushed further from unsupervised 

data. The masking is done using three different process, 

• The time-step replaced with a mask-token. 

• The time step replaced with another random time-step. 

• Cutting off a time-step with no defined mask. 

 

Figure 2.8 the structure of RNN model in Deep Speech 
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In this thesis, we used three different pretrained wav2vec 2.0 model. These models are cross 

lingually trained from 53 up to 128 languages. The idea is sharing these representations benefits 

the possibility to use features from a different language without pre-training the model again on a 

new language. More details of the training setup and the internal operation of the method is 

provided in chapter 4. 

2.10 Evaluation Matrices 

The performance of ASR is typically evaluated in terms of Character Error Rate (CER) or 

Word Error Rate (WER). There is also other metric such as Out of Vocabulary (OOV) count and 

Perplexity for measuring individual performance of the language model. In this thesis, the WER 

is adopted to track the performances of all the ASR models. The details of WER calculation is 

given below. 

2.10.1 WER 

The output of an ASR is a hypothesis of the speech signal. WER calculates the distance 

between the hypothesis and the reference or true transcription in a lowest number of modification 

required for correcting one into the other in a percentage measurement. The measurement is 

 

Figure 2.9 High level architecture of wav2vec 2.0 
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calculated using the Levenstein distance [2]. First a dynamic string alignment is performed to align 

the output from ASR to the reference text. Given the optimal alignment, the following errors are 

counted: 

• Substitution: If a word is misrecognized 

• Deletion: If the word is not present in the hypothesis 

• Insertion: If a word is inserted in the hypothesis which is not spoken 

Finally, the WER is calculated from the counts of the errors using the following equation, 

𝑊𝐸𝑅(%) =  
#𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑠 +  #𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑠 +  #𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛𝑠

#𝑤𝑜𝑟𝑑𝑠(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒)
∗ 100 % (2.23) 

2.10.2 CER 

The CER is a similar measure as WER. Instead of counting the errors at a word level for 

CER the errors are counted at a character level. The process of alignment and error calculation 

follows the same procedure as WER. It is mostly used for the models where the character is used 

as a modeling unit, so it reflects a more in depth reflection of the performance for some cases. 

Besides it also provides some insights of the wrong words in terms of closeness to the original 

transcripts. 
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3 Automatic Speech Recognition for Documenting Critically 

Endangered Athabascan Language 

This chapter includes a manuscript entitled “Automatic Speech Recognition for 

Documenting Critically Endangered Athabascan Language” by Zarif Al Sadeque and Francis M. 

Bui, which is under preparation for submission.  This work was supported in part by the Natural 

Sciences and Engineering Research Council of Canada (NSERC). The background concepts 

related to different components of the modeling technique, feature extraction, etc., are explained 

in Chapter 2. 

3.1 Abstract 

Endangered language documentation is a key process of preserving the language along 

with its history and cultural heritage. Automatic speech recognition (ASR) can be a very effective 

tool to expedite such endeavor. Although recent advancements in conventional and End to End 

(E2E) ASR systems have shown promising performance, it still remains a challenging task for 

endangered languages due to extremely limited resources. Languages with rich morphology and 

complex structure compose further obstacles. This study includes a critically endangered Northern 

Athabaskan Language ‘Upper Tanana’. It is one of the highly spoken native languages in the 

Alaskan Athabascan region, now at a critically endangered stage. In this research, we focus on 

developing an ASR system from scratch including different modules like pronunciation lexicon, 

acoustic model and language model. Here, firstly we explore different feature sets and evaluate 

the alignment accuracy at the word level on selected features. Secondly, we investigate the 

applicability of some popular algorithms for acoustic modeling based on traditional HMM and 

Deep learning. One major challenge of this research involves an extremely small data size of about 

1 hour and 9 minutes of curated speech with no pronunciation dictionary. The purpose of this study 

is to obtain a best suited combination of feature set and modeling techniques for Upper Tanana to 

develop an efficient ASR system in support of linguistic documentation. Experiments show that 

due to the limited data constraint traditional GMM-HMM methods perform better than deep hybrid 

methods. Besides, adding tonal features e.g. pitch along with standard MFCC can slightly better 

the Word Error Rate (WER). Different n-grams are also tested and reported in conjunction with 
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different feature sets. Although the approach is evaluated only for Upper Tanana, but it can be 

applied to any under resource language as it addresses most of the primary aspects of low resource 

speech recognition. 

3.2 Introduction 

Documentation of endangered languages has become a crucial need recently for both 

linguists and native speakers. It has been predicted that, almost half of the world’s 7000 languages 

might not outlast till the next century [1]. Linguists have already started developing diverse 

language archives, corpora, lexicons etc for the world’s major languages. However, for endangered 

languages, these archives are very limited. Traditional documentation procedures involve 

interlinear time-coded transcriptions including aligned parses & glosses and sometimes a 

translation as well [66]. However, endangered languages suffer from a shortage of standard 

orthography and linguistic expertise in most cases. Besides the fact, this process is also quite time-

consuming; even for an expert linguist or a native speaker, just transcribing an hour of audio can 

take approximately 30 to 50 hours [67]. This challenge in transcription is known as the 

“Transcription bottleneck”[68]. It is also imperative that the number of endangered languages is 

growing and only a few linguists are available with the specialization needed for this transcription 

task. Hence, the amount of resulted transcripts are oftentimes much smaller than one fourth of the 

actual recorded audio data [67]. The state-of-the-art ASR technology has attained astounding 

performance in meeting the human level transcription [69]–[71] which can support overcoming 

the bottleneck. Especially this can assist as a tool to provide a draft transcription for the linguists 

to easily carry out the documentation projects. 

In past years, ASR technology has succeeded remarkably for most of the highly spoken 

languages. The advancement of deep neural network (DNN) along with End to End (E2E) 

frameworks has significantly reduced the word error rate (WER) for languages like English or 

Mandarin. However, the limitation of available data makes it less compatible with endangered 

languages. In contrast, Standard Hidden Markov Model with Gaussian Mixture Model (HMM-

GMM) frameworks have been more popular among researchers for Endangered language 

documentation [1], [72], [73]. It’s also found to be more precise and robust in case of small data 

settings [74]. However, HMM based models require an extant language lexicon and a lot of 
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linguistic resources, to begin with. This work focuses on a critically endangered Athabascan 

language Upper Tanana. It is also considered a morphologically highly complex language [75]. 

Unlike common languages or some other under resourced languages where pronunciation 

dictionaries and standard coding scripts like Kaldi recipes are available, Upper Tanana has no 

freely accessible pronunciation lexicon or large annotated corpus. This is one of the main 

challenges for this research to build the ASR system from the scratch. Recently semi-supervised 

[76] and self supervised models [51] have also gained attention from the ASR research community. 

However, as this is the first study so far regarding ASR for Upper Tanana, such technologies are 

out of scope at this moment due to the dearth of data. Therefore, this research currently uses the 

traditional HMM based models including both GMM and Hybrid-DNN networks as a baseline 

model for any of the future studies related to this language. All the models developed for this 

research use KALDI RECOGNITION TOOLKIT [77]. Essentially, we develop an easily 

understandable Kaldi recipe for Upper Tanana that will create interest to more researchers for 

coming forward working with endangered languages. Besides, Kaldi comes with a lot of prebuilt 

recipes as well as online resources which we took advantage of to expedite our research. 

3.3 Contribution 

The aim of this work is to report the initial steps and findings towards developing the ASR 

system for Upper Tanana from a non-expert linguistic perspective. We build a Kaldi recipe 

demonstrating the complete procedure of Acoustic modeling, lexicon design and language 

modeling. Instead of manually building a pronunciation lexicon we utilized open accessed G2P 

libraries to automate the lexicon development. We investigate all the models from both 

quantitative and qualitative point of view including different feature sets. The contribution of this 

research is summarized as follows, 

• Extending ASR methods to Upper Tanana, an endangered northern Athabascan 

language 

• Examining the diverse ASR modeling technique for resource constrained language. 

Results show that state of art Hybrid DNN models are unable to meet the 

performance of typical GMM-HMM, even with a difference as small as 0.27% 

WER. 
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• Input feature comparison for Upper Tanana. We find that even though the dialect 

lacks tonal variation, a small improvement of 1% WER can be made by combining 

pitch with other features for GMM-HMM models. 

The rest of the Chapter is structured as follows. We revisit some existing ASR studies for 

endangered language documentation in Section 3.4. Then we explain the background of the Upper 

Tanana corpus including data collection, recording materials and some linguistic details in Section 

3.5. Followingly the Experimental Details and Results are reported in Sections 3.6 and 3.7 

respectively. Finally, the conclusion is given in Section 3.8. 

3.4 Existing ASR studies for Endangered Language Documentation 

A number of efforts have been made for automating language documentation using ASR 

technology. These involve different endangered languages as well as different modeling 

techniques. Some of these studies are part of long-term ongoing projects. There were few attempts 

on Seneca over last three years utilizing both traditional HMM based models [1], [74] and Deep 

E2E models [78]. They made a detailed report regarding how it improves the overall process by 

assisting linguists using their ASR system [79]. Yongning Na, a SINO-Tibetan endangered 

language has been a part of similar research for over 12 years [73]. Earlier researchers mostly 

utilized  CMU sphinx as the ASR tool and train it using monolingual or multilingual information 

based on similar languages [67]. In contrast, recent studies for Yongning Na exploited deep 

learning methods eg: LSTM along with connectionist temporal classification technique (CTC) to 

improve the result [5].  

Several studies also published using state-of-the-art technologies based on transformers. 

Qin et al published a research on ASR for preserving the endangered Lhasa dialect of the Tibetan 

Language. They leveraged multilingual information from Bengali, Nepali and Sinhalese for 

pretraining a transformer and refining their model. Another study on Yoloxochitl Mixtec also used 

a similar technique using multiple transformers and an automatic transcription correction system 

[68]. Most of these studies have contributed to accelerating the documentation process over the 

years, however long-term research as such Yongning Na or technologies that require large amounts 

of transcribed data like Yoloxochitl Mixtec which used around 125 hours of annotated audio data 
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might not be feasible for many endangered languages. Depending on the severity of the extinction 

and the number of available speakers some languages are in need of urgent documentation. This 

work anchors on a similar case study of Upper Tanana where at most 1 hour and 9 minutes of 

transcribed data is available. It also has less than 50 speakers reported by UNESCO Atlas of the 

World's Languages in Danger [80].  

To make it more practical and time convenient a recent project titled Elpis (Endangered 

Language Pipeline and Inference) has been conducted that also inspired this research. The project 

includes 16 endangered languages from Asia-Pacific region with data ranging from less than 1 

hour up to 3 hours. The study also uses Kaldi to implement their pipeline and building the 

components. However, their pipeline requires the pronunciation lexicon developed beforehand or 

manually by the linguists. This might not be suitable for most endangered languages due to the of 

lack standard orthography or the availability of expert linguists. Apart from endangered languages, 

there are also numerous works on low resource or under resource languages [43], [81]–[85]. 

Although these languages might not be in danger for extinction, a lot of them share a similar kind 

of challenges e.g. scarce training data or complex morphology for the development of ASR 

systems. 

3.5 Background of Upper Tanana Corpus 

3.5.1 History of the Language 

Upper Tanana is a Northern Athabascan Language which also used to be known by 

Nabesna earlier [86]. It is part of the Alaskan subgroup of the Northern Dene language family and 

closely related to Tanacross, Hän & Gwich’in languages [87]. But it has the most resemblance 

with the Tanacross language where the only difference is in tone marking. It is traditionally spoken 

in four communities of Eastern Alaska including Tetlin,  Northway, Nabesna, Scottie Creek and 

also in the Beaver Creek of Yukon territory in Canada [88]. Each community has a slightly 

different dialect than others. Although it used to be one of the highly spoken languages in the 

region, however currently it only has less than 50 speakers. Most of the speakers are elderly, above 

their sixties. While some mid-age members of the community can partly converse in the language, 

the younger generation doesn’t speak it anymore. Earlier the region had a fame for preserving its 
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culture and linguistic heritage which got changed in recent times. Therefore, it has been declared 

a critically endangered language by UNESCO. 

3.5.2 Linguistic Background 

Upper Tanana is considered a tonal language consisting of low tone and unmarked tone. 

Tonal contrast is the primary distinguishing factor between the five dialects of this language. While 

the other dialects have higher or lower tonal contrast, the Tetlin dialect has almost no contrast or 

hardly some vestigial tone [88]. The corpus of this study is based on only the Tetlin dialect. The 

Upper Tanana writing system was first developed during the 1960s by Paul Milanowski [86]. 

Originally the language has 13 vowels and 34 consonants in its writing system, however, the Tetlin 

system discerns only six vowels and a dipthong. Upper Tanana is distinguished from the other 

Alaskan Athabascan languages through the buildup of its stem vowels and the removal of stem-

final coronal non-lateral consonants [89]. The linguistic documentation of Upper Tanana first 

started in 1929 comprising mostly animal names, body parts etc. However, an extensive research 

including the proposal of some literacy materials, an orthography and also a dictionary was 

conducted long after in 1961 by Milanowski[86]. Later different researchers studied the grammar, 

phonology and lexicon of this language and it’s still ongoing. 

3.5.3 Recording Settings and Materials 

The corpus for this study is originally recorded as part of the expanded edition of the book 

“Teedląy t’iin naholndak niign:  Stories of the Tetlin people By Cora H. David” [90]. All the 

recordings used for this research were obtained by Dr. Olga Lovick, a prominent linguist and 

professor at the University of Saskatchewan. The recording took place with just one speaker Mrs. 

Cora David at several sessions for around five years starting from 2007 till 2012. Mrs. David was 

regarded as an expert in the Upper Tanana language and culture as well as an outstanding 

storyteller who died shortly after the last session in 2013. The corpus is openly accessible under 

the Alaska Native Language Archive comprising a total of 30 recordings [91]. Part of the 

recordings of this corpus were collected as audio-only with a professional recording device at a 

sampling rate of 44.1 KHz with 16-bit PCM wav format. The rest were taken as video, recorded 

with a mini-DVR camera at 240p AVC format. Most of the recordings are just monologues except 
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for some conversational instructions, questions or clarifications. The stories have different topics 

including some history or tales of the Tetlin people eg: Fishing, hunting, specific events etc. Some 

stories are also taken from her own life including her childhood or her mother’s early life. 

3.5.4 Dataset Preparation 

The recordings are annotated using ELAN, a professional annotation tool [92]. The current 

state of the corpus has a single level of transcription based on just orthography. The transcription 

includes two levels of segmentation i.e. Utterance and Intonation Units (IU). The Intonation Units 

are just shorter segments of large or compound sentences. The corpus contains a total of 886 

utterances and 1879 IUs. Both the segmentation levels are time aligned however, we believe the 

alignments are not of the gold standard as that includes a lot of silent time frames and noises. Some 

of the recordings also included an English translation of the utterances and some notes or 

comments regarding the utterance if applicable. 

3.6 Experimental Detail 

Traditional HMM based ASR systems are composed of three main components including 

the acoustic model, lexicon, and language model. Acoustic modeling enables representing the 

speech sequence distinguishing the classes of acoustic units such as phones or subwords 

considering the variability with respect to different speakers and environments [81]. The lexicon 

 

Figure 3.1 Architecture of an HMM based ASR system and its component 
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demonstrates the phoneme structure of each word corresponding to its spoken representation. The 

decoder of an ASR system builds an N-best list of hypotheses from the acoustic model in 

combination with the lexicon which is further refined using a statistical language model to find the 

best recognition hypothesis. A high level overview of the whole process is shown in Figure 3.1, 

The rest of the section will describe our experimental detail including the data 

preprocessing, feature extraction and different modeling components stated above. 

3.7 Data Preprocessing 

As described earlier, although the dataset contains two levels of segmentation for the 

transcription, we only considered using the IUs for developing all our models. Generally shorter 

length audios are easier to train as well as promote better performance. The length of most IUs 

ranges from 2 to 4 seconds except for some longer IUs up to 15 seconds. The corpus includes some 

segments with missing transcription, silent audio and also some questions and clarifications in 

English. We removed all these portions resulting in a total of 1813 IUs before proceeding to the 

next step. It’s important to note that some of the resulting IUs still include some loan words from 

English within the narratives which we kept as it is. Although we had only one speaker for all the 

recordings, we organized each recording session as a different speaker inside the Kaldi data folder. 

We resampled all the audio from 44 KHz to 16 KHz and converted the audio to the mono channel. 

We normalized the text removing some special symbols, tags, or unwanted elements. The data 

were split to training and testing set in a 90:10 ratio. However, for alignment evaluation, we just 

visually compared a small set of recording manually aligned by ourselves. 

3.7.1 Lexicon Design 

To the best of our knowledge, there is no pronunciation dictionary readily available for 

Upper Tanana. Developing a pronunciation lexicon manually is time consuming and requires in 

depth expertise of the language. Grapheme-to-phoneme (G2P) methods are quite common on the 

other hand and have shown satisfactory performance in past studies [93], [94]. There are two 

general approaches for G2P, 1) Using a rule-based conversion system which also requires some 

level of expertise of the language 2) Bootstrapping G2P using statistical machine translation (MT) 
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methods. Since for this research we focus on a non-expert modeling of ASR, we followed MT 

method utilizing an open sourced G2P conversion tool ‘Sequitur G2P’ based on joint multigram 

modeling [95]. To train our G2P model the initial lexicon was compiled from the study by Siri et 

al which includes 272 Upper Tanana words along with their IPA pronunciation [96]. However, for 

easier understanding, we first converted all the IPA symbols to their corresponding ARPABETs 

using the standard IPA to ARPA conversion chart. Although some of our recording files included 

a separate word list, we extracted all the words directly from the transcriptions of our corpus using 

a simple rule based split function. We trained the G2P model up to a 5th order N-gram and cross 

validated it on a small test set from the initial lexicon. After successfully decoding all the words 

in the test set, we used the model to construct the final pronunciation lexicon for the whole corpus. 

3.7.2 Feature Extraction 

Traditional speech recognition systems usually rely on handcrafted features as input. Mel 

Frequency Cepstral Coefficient (MFCC) is the most widely used feature set by researchers for a 

long time. However, in a Kaldi based training environment it’s possible to extract other features 

such as Perceptual Linear Features (PLP), Mel Filter-Banks (Fbank), Spectrogram Features and 

Pitch features. Besides some literature suggests that Fbank features provide better WER for DNN 

based acoustic models [32]. In this research, we used MFCC, PLP and Fbank feature separately as 

well as combining them with the pitch for training different models. For GMM based models the 

common practice is 13 dimensions for MFCC or 23 dimensions for PLP or Fbank features. The 

features are extracted for a frame size of 25 ms with a shift of 10 ms allowing overlapping. In 

contrast, the hybrid models such as TDNN use 100 dimensional i-vectors extracted over standard 

features from longer non-overlapping frame sizes usually 1500 ms [97]. The i-vectors encode 

speaker and channel information which is helpful for speaker adaption. 

3.7.3 Acoustic Modeling 

For acoustic modeling, the sequential property of the speech signal is modeled by HMMs 

where the states correspond to each phonetic unit. The output probability density of the HMMs 

(pdfs) can be modeled using either GMM or DNN. Here, we explored both GMM-HMM as well 
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as hybrid DNN-HMM models for acoustic modeling. Before feeding into the model the features 

are normalized using Cepstral Mean Variance Normalization (CMVN). 

3.7.4 GMM Based Models 

We followed the “Kaldi for Dummies” recipe for modeling GMM based models. First, a 

Mono-phone model is trained using one of the three features and their combination with the pitch 

described earlier to produce better forced alignment for training more complex models. For context 

dependent modeling triphone models are trained by grouping the left-right adjacent phonemes. 

These models use the first and second order derivatives (Delta and Delta-Delta) on top of their 

original features. In Kaldi, this model is labelled as tri1. For more complex models we applied 

Linear Discriminative Analysis (LDA) including 4 neighboring frames and Maximum 

Likelihood Linear Transform (MLLT) in addition to the triphone model (tri2). We also applied a 

speaker adaptive training (SAT) using feature space Maximum Likelihood Regression (fMLLR) 

provided inside Kaldi (tri3). As models get better the training data also gets better aligned to the 

phonemes which facilitates further training process. 

3.7.5 DNN Based Hybrid Models 

Three Hybrid Models were implemented as part of this research. As the Hybrid Models 

can’t be trained directly from raw speech, frame-level alignments are produced using the best 

GMM based model trained earlier. Our first Hybrid model is a simple DNN-HMM model based 

on top of the Kaldi “NNet2” recipe. The architecture uses 3 dense layers of 500 nodes with tanh 

nonlinearity. Essentially this is just a deep neural network with no special modeling unit. We 

wanted to assess how a basic DNN performs over GMM. The network is trained for 20 epochs 

with an incremental setup for adding hidden layers at every 3 epochs. We built our second model 

following the ‘TDNN’ recipe comes with mini librispeech example scripts in Kaldi. The 

architecture consists of 12 TDNNF (factored TDNN) layers with an initial batch normalization 

and a final linear layer for output probability. Each factored TDNN layer has a linear affine 

sequence of operation similar to a bottleneck transformation with an input dimension of 768 nodes 

and a bottleneck dimension of 96 nodes. The model is trained on high resolution 40 dimensional 

MFCC along with 100 dimensional i-vectors. It also utilizes speed and volume perturbation for 
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augmenting audio data. Our third model is based on the ‘TDNN-LSTM’ recipe from Kaldi 

LibriSpeech scripts. It uses both TDNN and LSTM to characterize long and short dependencies 

and filter the key information. It comprises 6 TDNN layers and 3 LSTM layers where each LSTM 

layer is placed after every 2 TDNN layers. Both types of layers has 512 nodes. Every TDNN layer 

accommodates an affine sublayer with Relu activation and a batch normalization. This model also 

uses a similar input structure of (40 MFCC+100 i-vectors) and the data is also volume and speed 

perturbed as the earlier model. 

3.7.6 Language Modeling 

Language models are used to model the inter-word relationship in a larger context of 

preceding or succeeding words[35]. Traditionally N-gram or RNN based language models are used 

to produce individual word probability. However, during the decoding process, Kaldi only 

supports N-gram language models. It is possible to use DNN or RNN based language models 

afterwards for rescoring and refining the transcriptions. Due to limited data, we only used N-gram 

language models in this study. SRILM toolkit has been used to produce the N-gram models 

included in the Kaldi script. During the training and evaluation, we only used the training 

transcriptions to build the language models. Although it is a common practice to utilize all 

available text data to build a language model. But due to the nature of the endangered language 

and specifically for Upper Tanana there is no additional text resources currently available. 

Therefore, we decided to only use the training data to get a more practical result of the ASR. We 

adopted a bigram and a trigram model for decoding all our models. 
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3.7.7 Results & Discussion 

3.7.7.1 Implementation Platform 

All the experiments were performed on a platform with Intel® Core™ i7-6700 processor 

(3.4 GHz) and GeForce GTX 745. 

3.7.7.2 Feature Comparison 

 To compare the performance of ASR models we only used the Word Error Rate as our 

evaluation metric. As mentioned earlier the performance of the DNN based hybrid models depends 

on the alignment produced by the GMM based models. So first we evaluate the results from 

different features only on the GMM based models. Although the Speaker Adaptive Training 

generally leads to better performance. However, as our corpus includes only one speaker, 

depending on the type of feature sometimes speaker independent systems such as the vanilla 

triphone model (tri1) or triphone with LDA and MLLT (tri2) outperformed more complex models. 

Thus, we report only the best results for each feature here. From Table 3.1, it can be seen that the 

recognition capability of every feature varies depending on the n-gram. For example, PLP yields 

the best WER while using a 2-gram language model, in contrast, MFCC yields better WER with a 

3-gram model. However, it is evident that adding the pitch consistently improves the WER for 

Table 3.1: Comparison using different features with respect to different n-grams 

Model 
WER (%) 

2-gram 3-gram 

MFCC 52.92 51.97 

MFCC + Pitch 52.49 51.44 

PLP 51.95 52.76 

PLP + Pitch 53.81 51.71 

FBANK 57.48 60.89 

FBANK + Pitch 55.91 56.43 
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every feature in GMM based models reducing an average of 1% WER. Hence, we selected the 

best feature (MFCC + Pitch) for producing forced alignment of the training data. 

3.7.7.3 Forced Alignment 

 The acoustic model developed in this research can be used as a separate forced alignment 

tool for Upper Tanana. Although the current vocabulary is limited to the words from the training 

corpus which might not be ideal for a standard forced alignment tool. However, as this is the only 

dataset available at this point, it could be useful for linguistic analysis like isolating speech sounds, 

keyword search, phonetic analysis etc. for Upper Tanana. Figure 3.2 shows a sample textgrid file 

demonstrating the boundaries of the words inside an utterance along with its reference. The model 

output is denoted as tier “words” on the right side of the Figure and the handcrafted one is denoted 

as “reference”. If we see closely, the output from our acoustic model is rather somewhat better 

than the handcrafted alignment since the model can detect even the shorter segments of the silent 

part in the utterance. In this research, we are unable to quantify the results of the forced alignment 

due to the lack of a gold standard alignment file which is usually provided by an expert linguist. 

 

Figure 3.2 Sample word level alignment for Upper Tanana. The top tier("words") is the 

aligned output from our acoustic model whereas the bottom tier (“Refence”) is a handcrafted 

alignment produced for reference 
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3.7.7.4 Comparison Between GMM and DNN Based Models 

Although it is natural to use the same features for training the hybrid models, experiment 

shows that different features work better with different architectures. Table 3.2 enlists a 

comparison of the best WER found from different modeling techniques including both GMM and 

Hybrid models. We have found the best WER for basic DNN-HMM using Fbank features which 

confirms the statement of the literatures mentioned earlier. Followingly, TDNNF and TDNN-

LSTM were shown to perform better with MFCC. From a general impression, it can be seen that 

none of the Hybrid models was able to outperform the best GMM model in terms of WER. 

However, in terms of the CER the performance is a bit different. From a very limited data, 

sequential training with TDNN-LSTM achieved a relative reduction of 33.14% in CER from the 

GMM-HMM model. The intuition of the two different matrices is that, while a low WER provides 

a higher degree of correctness for the exact reproduction of the words but the CER demonstrates 

the relative error within the incorrect words. As a result, the TDNN-LSTM model may recognize 

a slightly lower number of correct words, but the incorrect words are much closer to the original 

transcriptions.  

Figure 3.3 shows a histogram of the WER as well as CER for the GMM-HMM and TDNN-

LSTM models. Here we can see in terms of WER both have a similar distribution. But for CER, 

the TDNN-LSTM has a higher occurrence between 0 to 25% and is exponentially distributed over 

the rest of the error bins. In comparison, the distribution for GMM-HMM is more evenly spread 

Table 3.2 : Comparison of DNN based models with best GMM-HMM model 

Model LM Feature WER (%) CER (%) 

DNN-HMM 3-gram FBank 59.06 34.28 

TDNNF 2-gram MFCC 62.47 40.91 

TDNN-LSTM  3-gram MFCC 51.71 25.25 

GMM-HMM 3-gram MFCC+Pitch 51.44 37.77 
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across the different ranges of CER. This signifies that TDNN-LSTM is more likely to have less 

CER for most of the utterances. Table 3.3 provides a randomly chosen set of utterances according 

to the different bins of WER from the GMM-HMM model. Similarly, Table 3.4 shows the WER 

 

Figure 3.3 Distribution of WER and CER in GMM-HMM and TDNN-LSTM model 

 

Table 3.3 Example of utterances according to different levels of WER and CER for 

GMM-HMM model 

Original GMM-HMM WER (%) CER (%) 

hugn t'eey łahtthagn nts'ą' įįjih hugn t'eey nts'ą' įįjih 20 30.30 

ay shyiit tah shyi' hiiye'įįł ay shyiit tah shyįį 40 34.48 

jign nįtsįį jign dii 50 58.33 

nǫǫgaay eł hugn niiduuy eł hugn noogaay iin huugn niiduuy iin 83.33 38.70 

nahnalxon ch'a nan' naa nts'ą' 150 78.57 
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and CER for the same utterances for the TDNN-LSTM. The first two samples confirm that for a 

same WER the hybrid model is closer to the true transcription. The 3rd and 4th examples indicate a 

hypothesis that the GMM based model is better suited for short utterances and the TDNN-LSTM 

is better for longer utterances. Although the WER and CER both reflect the performance of an 

ASR system, generally the aim of an ASR is to exactly reproduce the transcriptions. So, the WER 

is generally more preferred as an evaluation metric. 

To better analyze the hypothesis, we compare different acoustic models for different length 

of utterances. Figure 3.4 demonstrates the result based on quartiles of character length of the 

 

Figure 3.4 Comparison of different models based on character length of an utterance. 

C_len stands for character length 
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Table 3.4 Example of utterances according to different levels of WER and WER for 

TDNN-LSTM model 

Original TDNN-LSTM WER (%) CER (%) 

hugn t'eey łahtthagn nts'ą' įįjih hugn t'eey or nts'ą' įįjih 20 27.27 

ay shyiit tah shyi' hiiye'įįł ay shyiit tah jį' hiiyehnih 40 27.58 

jign nįtsįį chinh dii 100 91.16 

nǫǫgaay eł hugn niiduuy eł hugn noogaay iin hugn niiduuy iin 66.66 35.48 

nahnalxon ch'a nahatdal xol' ch'a 100 42.857 
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utterances. Because even a single word with a longer character length may pose complexity for 

speech recognition. As it can be seen for a shorter utterance length the standard GMM-HMM 

models perform much better than any of the hybrid models which include both isolated word 

recognition and a combination of multiple shorter length words. On the other hand, as we grow 

the length of the utterance TDNN-LSTM model tends to have less WER than the best GMM based 

model. The TDNNF however model has a very close WER to GMM-HMM for shorter length 

utterances. But for other quartiles, the TDNNF model shows a bit of uncertainty in its performance. 

To have a better understanding a random example from each quartile is shown in Table 3.5. 

To analyze even further we examine the WER for the number of words in utterances 

regardless of the character length. The results are shown in Table 3.6. Here an interesting 

observation is that TDNNF has a WER of 61.11% and strongly outperforms other models for 

single or isolated word recognition. Whereas the TDNN-LSTM shows 100% WER for the same. 

This also stands the same for longer words. An example of a long isolated word from the test set 

is given below, 

Table 3.5 Example of Transcriptions for each quartile of utterance length 

Transcription C_len(<9) C_len(10-19) C_len(20-29) C_len(>30) 

Original neetsay dihįįshyįį' mbeł ch'ikee julkąą xa 

hii'eł 

nts'aa' tsuudį' hiinįįthan 

niign t'eey 

GMM-HMM neetsay dii iin shyįį' meł gąą xa hiiyehnih nts'aa' ts'uunih dii 

niitanh niign t'eey 

DNN-HMM neetsay yih diign shyįį' meł ts'iikeey 

ts'uutaanak hiiyehnih 

nts'aa' tuu niihąą niign 

t'eey 

TDNNF neetsay dishyįį' eł ch'itay julkąą xa 

hii'eł 

nts'aa' dinįį' haniig eł 

TDNN-LSTM neetsay diign shyiit meł ts'iikeey ch'il gąą 

xa hiiyehnih 

meł ts'iikeey ch'il gąą 

xa hiiyehnih 

 

 
 

Original  ; naach'ihnaak'ąą' 

GMM-HMM ; naachihnaakąą 

DNN-HMM ; naachihnaakąą 

TDNNF ; naach'ihnaak'ąą' 

TDNN-LSTM ; naachihnaakąą 
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 Here although the outputs from different models are very close but only the TDNNF seems 

to accurately map the apostrophes (‘) within the word. As of our previous character length based 

evaluation, for a higher number of words TDNN-LSTM again has a better WER than others. Due 

to the limitation of data availability, our sample size for test data was also kept small. Therefore, 

from a non-expert linguistic perspective, it is difficult to determine a true qualitative comparison 

between the two modeling schemes. But analyzing the different results it can be intuitively said 

TDNN-LSTM can better capture the longer sequence of words and also the output is often closely 

produced to the original transcription. For isolated word recognition, TDNNF has a better 

modeling capability even for longer length words, but overall, the GMM-HMM has better word 

accuracy over any other models. 

It is also important to note that, using a GPU machine the TDNN-LSTM takes around 52 

min 19 sec for training while the GMM based model takes only 1 min 30 sec on average. Similarly, 

the average decoding time for a TDNN-LSTM model is 59.32 ms higher than a GMM based model. 

This summarizes that even though deep learning techniques have shown to be very effective for 

high resource speech recognition, the potential of such technology for endangered languages with 

limited data is still under discussion. 

3.8 Conclusion 

This work presents a comparative study on feature selection and modeling techniques 

towards building an efficient ASR pipeline for the endangered Upper Tanana language. We 

Table 3.6 Comparison of different models based on Number of Words in an utterance. 

N_Words stands for Number of Words 

Model 
WER (%) 

Single Word N_Words(2-3) N_Words(4-5) N_Words(>5) 

GMM-HMM 72.22 51.36 48.24 63.10 

DNN-HMM 88.88 58.22 58.77 62.13 

TDNNF 61.11 56.16 65.78 70.87 

TDNN-LSTM 100 49.31 56.14 54.34 
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demonstrate that MFCC and PLP both can be useful for modeling traditional GMM based acoustic 

models. However, additional pitch features can certainly boost up the performance of tonal 

languages.  We analyze three DNN based Hybrid models with respect to selective features. 

Experiments show that TDNN-LSTM can potentially improve the transcription task in a certain 

aspect, but it still needs further examination by an expert linguist for a true evaluation. Although 

a closely correct transcription will provide a good baseline for linguists, sometimes it can also take 

more time to correct it if a lot of words are incorrect. Therefore, it is a small tradeoff between the 

GMM-HMM and Hybrid TDNN-LSTM, but in general, both models can be similarly useful for 

endangered speech recognition. 

The bottleneck in language documentation specially for endangered languages is a big 

challenge that requires early attention. Although our best result with 51.44 % WER is definitely 

not comparable with a human-level transcription, but it is the first step towards building a more 

accurate ASR system and also a contribution to further research. For future work, our next step is 

to study multilingual acoustic models to build a more robust ASR system for the target language. 

Since there is no pre-existing lexicon for a lot of endangered languages, we also plan to explore 

End to End systems with state-of-the-art technologies that can skip the lexicon requirement and 

improve performance. 
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4 Leveraging Cross-Lingual Transfer Learning and Data 

Augmentation for Endangered Speech Recognition: A Study on 

Upper Tanana 

This chapter includes a manuscript entitled “Leveraging Cross-Lingual Transfer Learning 

and Data Augmentation for Endangered Speech Recognition: A Study on Upper Tanana” by Zarif 

Al Sadeque and Francis M. Bui, which is under submission to the IEEE Access journal.  This work 

was supported in part by the Natural Sciences and Engineering Research Council of Canada 

(NSERC). The background concepts of this chapter including SSRL, transformers, CTC, etc., 

which are explained in Chapter 2. 

4.1 Abstract 

Unlike high-resource languages, endangered languages often lack any pronunciation or 

language model available for directly training Automatic Speech Recognition (ASR) systems. 

End-to-end (E2E) ASR techniques have been studied to overcome such obstacles, wherein acoustic 

features are mapped directly to the graphemes or characters. Although E2E models can achieve 

good results, these systems usually require larger amount of speech-text paired data than traditional 

ASR systems to provide similar performance. In recent years, self-supervised pre-training has 

achieved great success leveraging unlabeled speech data from multiple languages to build an 

acoustic representation that can be fine-tuned on a downstream task, e.g., ASR with limited 

language resources. This strategy has also found utility on applications with domain shift issues, 

particularly for major languages such as English or Spanish. However, for an extremely low-

resource scenario, where the target language is completely unobserved in the pre-training stage 

(i.e., out of language), the performance leaves much to be desired. In this work, we investigate 

such a scenario, focusing on the critically endangered Athabascan language Upper Tanana, and 

propose an effective method based on cross-lingual transfer learning from pretrained transformer 

model and data augmentation. Using only 1 hour and 9 minutes of available speech data and no 

language model, the proposed model exhibits a relative reduction of 12.8% in Word Error Rate 

(WER) compared to the best known state-of-the-art conventional ASR system, and 7.3% relative 
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reduction over using only transfer learning. We also evaluate the impact of data size and 

complexity in contrast to previous state-of-the-art systems and validate the proposed augmentation 

strategy with several other E2E techniques. Results demonstrate that the proposed model is more 

resilient to the impact of data size, thus ensuring robustness, low computational complexity and 

better performance. Moreover, the augmentation strategy is consistent for different E2E methods. 

4.2 Introduction 

Speech is considered the most direct form of communication that carries accurate 

information and emotion between humans. Researchers have endeavored to build intelligent 

systems that can interact through speech for many years. In this context, Automatic Speech 

Recognition (ASR) is an important stepping-stone toward successful human-machine interaction. 

Accordingly, collaboration from multiple disciplines and advancements in artificial intelligence 

have resulted in enormous success for most major spoken languages. However, minority languages 

from the indigenous and tribal communities such as Upper Tanana still lack resources and attention 

from researchers. Many of these languages are on the verge of extinction and are commonly 

regarded as endangered languages. Approximately 50% of languages of about 7000 languages are 

now on this endangered list and may not persist for another century [1]. Consequently, without 

suitable intervention or remedy, this undesirable trajectory may induce a tremendous loss in 

cultural heritage and diversity. One of the major approaches to preserving these languages is by 

documenting audio and textual evidence, which typically requires significant financial resources, 

workforce, and subject matter expertise. Moreover, these projects are usually time-consuming and 

may not be feasible for nearly extinct languages. In this context, ASR technology can assist people 

with minimal linguistic knowledge and resources to support this process [74].  

There are two general approaches for modeling ASR systems currently in practice: one is 

the traditional approach that uses HMM-based methods [77], and the other involves E2E systems 

based on deep learning [98]. The traditional ASR methods can be decomposed into acoustic, 

pronunciation and language models, which require a handcrafted lexicon designed by linguists, 

external language modeling and expert knowledge of the specific language. E2E techniques, on 

the other hand, can potentially avoid the complex modeling procedure and also require less human 
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intervention [63]. However, these models need to have significantly more labeled data to match 

the performance of the traditional models, which is a big challenge for endangered languages [28].  

Recent evolution in partially supervised or self-supervised pretraining has established 

promising potential of E2E speech recognition systems with limited data [27], [99], [100]. 

Supervised pretraining is essentially another form of transfer learning that focuses on a single 

predefined task, but it potentially converges much faster than a standard E2E technique [27]. Self-

supervised pretraining instead leverages large-scale unlabeled data to effectively train more 

generalized and robust representations of the data, which can be utilized to fit multiple downstream 

applications [60]. This type of learning framework based on unsupervised pretraining is often 

referred to as self-supervised learning (SSL) [101] or self-supervised representation learning 

(SSRL) [102].  

While SSL requires more data to achieve a good representation, it can be fine-tuned later 

with much less labeled data to fit the targeted task. Moreover, it also improves the performance on 

cross-lingual speech recognition, where multiple languages are utilized for the pretraining session 

[103], [104]. By training in this manner, the model is pushed to learn a language-invariant robust 

speech representation that can be exploited to reduce the search parameters for low resource 

languages and give the training process a head start. It is important to know that the self-supervised 

pretraining approach notoriously demands a very high computational cost [51]. However, the idea 

is that, once the pretraining is completed, the model can be fine-tuned easily with lower data 

requirements as well as less computational resources. 

Due to data shortage, endangered languages have been generally trained under traditional 

ASR systems. However, for some critically endangered languages like Upper Tanana, neither a 

large amount of data nor an already established pronunciation dictionary is available. This makes 

the speech recognition task extremely difficult. For traditional ASR, one way to solve this task by 

using closely related languages to build a pronunciation model from graphemes of the available 

data [29]. This still requires an extensive knowledge of the particular language family, and the 

availability of closely related languages.  

Another way is to use a generalized representation from cross-lingual acoustic model and 

fine-tune it to improve the model. To this end, most of the existing research works using SSL 

include a small ratio of data from the low-resource languages in the pretraining session and analyze 
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the performance. Some works also evaluate the performance based on data from different domains 

of the same language for fine-tuning and examine adaptability [28]. This research work, by contrast, 

tackles the problem by applying no additional pretraining, but rather by fine-tuning using a 

completely unseen language from the pretrained session, and subsequently improving it even 

further using our strategically designed data augmentation method. 

The rest of the Chapter is organized as follows. Section 4.3 clarifies the contributions of 

the Chapter. Then, related works are described in Section 4.4. This is followed by the proposed 

methodology in Section 4.5 and the experimental setup in Section 4.6. Next, experimental results 

and discussions are reported in Section 4.7. Lastly, the conclusion is presented in Section 4.8. 

4.3 Contributions 

In this study, we focus on developing an ASR system for Upper Tanana and investigating 

the performance of cross-lingual SSL compared with different existing acoustic modeling 

techniques. Upper Tanana is a critically endangered Athabascan language. It belongs to the 

Alaskan subgroup of the Northern Dene language family [105]. According to the UNESCO Atlas 

of the World's Languages in Danger [80], this language has fewer than 50 speakers and most 

speakers are now grandparents. As the number of speakers for this language is constantly 

decreasing, preservation has become an urgent necessity. To the best of our knowledge, there is 

no published research so far regarding ASR for this language. This language is designated as an 

extremely low-resource language, as the only dataset available to date has merely 1 hour and 9 

minutes of transcribed speech data. There are four main contributions in this study, summarized 

as follows: 

• We develop a complete E2E ASR modeling strategy for extremely low-resource 

endangered languages without any pronunciation model or external language model, 

which delivers better performance compared to other traditional and E2E models. 

• We show that self-supervised learning can be fine-tuned effectively for out of language 

speech recognition even on a low scale dataset. It will be demonstrated that, even 

without applying any data augmentation, this approach can still outperform state-of-

the-art traditional models. 
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• We provide an effective data augmentation technique that can be implemented with 

any E2E ASR model to potentially improve the performance. Our proposed system 

attains a relative reduction of 7.3%–21% WER over state-of-the-art E2E models like 

wav2vec2-voxpopuli, XLS-R and Deep Speech. 

• We analyze the effect of data size and complexity compared with other traditional and 

E2E ASR models, confirming that the performance is consistent over data size with 

less complexity. 

Furthermore, this work should serve as a reference for future research activities on ASR 

based on this endangered language, and more broadly for designing acoustic modeling schemes 

for other extremely low-resource scenarios. 

4.4 Related Works 

Various research investigations have been conducted to date in order to compensate for the 

limited amount of labeled data for the ASR development in endangered languages.  There have 

been several studies on Seneca, an endangered Iroquoian language. Jimerson et al. [1], [74] 

proposed using additional data from online resources along with synthetic verb forms to improve 

traditional ASR modeling with limited resources. Thai et al. [78] further studied E2E modeling 

frameworks for the same language using Deep Speech and mini-GCNN model. They proposed a 

multistage data augmentation method to improve the WER up to 15% over using transfer learning. 

Transformer based methods also garnered a lot of attention very recently for endangered 

speech recognition. Qin et al. [106] introduced a multilingual and multilevel unit modeling 

technique for the low-resource Lhasa dialect of Tibetan language. They pretrained a transformer-

based model with Bengali, Nepali and Sinhalese along with Tibetan and fine-tuned the model on 

the Lhasa dialect of Tibetan language to improve the character error rate.  Another study by Shi et 

al. [68] used transformer based models for Yoloxochitl Mixtec, a Mexican endangered language. 

The paper compared rule-based transcription correction and fusion of multiple transformer-based 

architectures for supplementing the data scarcity problem, showing both delivering competitively 

similar performances. 
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Self-supervised E2E models have also been well-utilized for endangered languages. 

Notably, Yi et al. [27] investigated the performance of pretrained wav2vec2 models on six low 

resource languages from the Call home dataset, and achieved an improvement around 20% over 

supervised pretraining.  

There are also some papers that share similar objectives and constraints, thus providing 

inspiration for our work. Gomez et al. [30] studied self-supervised methods, including pretrained 

wav2vec2 models, to evaluate performance on domain shifted ASR. However, they did not apply 

the models on endangered speech recognition. Focusing on a significantly diverted and coded 

speech, they investigated the impact of fine-tuning the data size and robustness of the models. A 

similar study was conducted by Al-Ghezi et al. [28], where they applied different pretrained 

wav2vec2 models on L2 Swedish language (Swedish as second language learner). They showed 

that large multilingual pretrained models achieved better WER over monolingual Swedish models. 

Another study by Wang et al. [107] introduced the term “out of language”, and evaluated the 

performance of 5 common voice languages without including them in the pretraining section of 

the SSL. Their results also advocated cross-lingual pretraining over monolingual baseline models 

for better stable performance. However, the paper did not investigate the effect of data size used 

for fine-tuning. 

 

4.5 Methodology 

This section describes our proposed model based on cross-lingual transfer learning from a 

pretrained transformer model and data augmentation (DA-XLSR).  First, we briefly describe the 

problem formulation. Then, we provide a comprehensive overview of the overall structure of the 

proposed model, including a high-level summary of the wav2vec 2.0 framework, its pre-training 

procedure and adaptation to our endangered speech recognition system. Last, we explain the data 

augmentation process and further fine-tuning to refine the model.  

4.5.1 Problem Formulation 

Four major issues impel this research study. First, most of the previous research works on 

low-resource languages experimented with at least 10 hours of training data [68], [79], [81], [108]. 
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Pushing the boundary on the data scarcity, this research endeavors to improve the ASR 

performance on an extremely low-resource scenario, where only 1 hour and 9 minutes of curated 

speech data are available. 

Second, endangered languages often lack sufficient pronunciation and orthographic 

documentation, such as a phoneme dictionary, which is a primary requirement for most traditional 

ASR systems. Therefore, this study considers developing an ASR system without any 

pronunciation or language model. We have to make do with only the transcriptions available from 

the extremely limited training data. 

Third, it is noted that the majority of the previous studies based on pretrained Wav2Vec2 

included the corresponding language in the pretraining phase [27], [28], [60], [103], [104]. As a 

result, the existing evaluation criteria may no longer be appropriate for a scenario involving 

previously unseen language. Accordingly, this motivates us to also investigate the domain 

adaptation problem and improve the performance even further. Besides, as the language is not 

included in the pretraining, the added challenge is that the model often does not have any prior 

knowledge of certain phonemes or characters and their associated pronunciation. 

Fourth, ASR can boost the preservation process of any endangered language. Therefore, it 

is reasonable to deploy such a technology in end-user applications, with field data collection by 

the linguist. Thus, the computational complexity and resource requirements need to be practical. 

To address these issues, we provide a thorough analysis on training and testing time on the 

proposed model. 

4.5.2 Wav2Vec 2.0 framework 

Our proposed model is built on the transformer model Wav2Vec 2.0 originally developed 

by Baeveski et al. [60]. The architecture of Wav2Vec 2.0 framework is comprised of three major 

components. As shown in Figure 4.1, the first one is the feature encoder 𝑓 ∶  𝒳 → 𝒵. It is based 

on a multilayer convolutional network that allows raw audio 𝒳 as input and maps to the latent 
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output 𝑧1 , 𝑧2 , . . . 𝑧𝑇  for T timesteps. The encoder uses temporal convolution and layer 

normalization with GELU activation.  

The second component is the transformer network 𝑔 ∶ 𝒵 → 𝐶 that follows a similar 

architecture like BERT [56], [65]. Despite using a fixed positional encoding, the network utilizes 

a convolutional layer in its beginning, which effectively works as a relative positional encoder. 

The self-attention layers of the transformer produce a contextualized representation 𝑐1, 𝑐2, ..., 𝑐𝑇 

from the latent information.  

The fundamental advantage of wav2vec 2.0 model comes from its self-supervised 

pretraining, where the pseudo labels are generated from its quantization module 𝒵 →  𝒬 which is 

the third component of the architecture. As the output from the feature encoder 𝑧1, 𝑧2, . . . 𝑧𝑇 are 

continuous, this module discretizes them to 𝑞1, 𝑞2, ..., 𝑞𝑇 for a finite set of labels, thus feeding 

through the transformer for self-supervised training.  

4.5.2.1 Pretraining:  

Here, the idea of self-supervised pretraining is implemented by masking a proportion of 

the output timesteps from the feature encoder network and train it with the unmasked quantized 

 

Figure 4.1 On the left side: the structure of cross-lingual wav2vec2.0 containing a shared 

quantizer on top of a shared CNN encoder, producing cross-lingual quantized speech 

embeddings for self-supervised pretraining through contrastive loss. On the right side: the 

decoding module consisting of an additional linear projection layer trained by CTC loss criterion. 
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outputs as target. The network learns the latent representations from the speech audio through a 

contrastive learning process optimizing the loss function given by, 

ℒ = ℒ𝑚 + 𝛼ℒ𝑑 (4.1) 

where, ℒ𝑚 is the contrastive loss, ℒ𝑑  is the diversity loss and 𝛼  is a tunable hyper-

parameter [10]. Unlike autoregressive training, the objective of ℒ𝑚  is to characterize the true 

quantized latent representation 𝑞𝑡  within a set of 𝐾 + 1 candidates �̃� ∈ 𝑄𝑡 including 𝐾 negative 

candidates, similar to a classification problem.  The negative candidates are sampled uniformly 

from other timesteps of the same utterance in case of a monolingual training or utterance from a 

different language for multilingual. The contrastive loss is given as, 

ℒ𝑚 = − log
exp(𝑠𝑖𝑚 (𝑐𝑡, 𝑞𝑡))

∑ exp(𝑠𝑖𝑚 (𝑐𝑡, �̃� ))�̃�−𝑞𝑡

 (4.2) 

where 𝑠𝑖𝑚  defines the cosine similarity of context representation 𝑐 and quantized 

representation 𝑞. 

The diversity loss motivates the model to utilize both 𝑉 positive and negative samples that 

are stored in a codebook. For all 𝐺 codebooks, the model maximizes the entropy 𝐻 of averaged 

softmax distribution for each codebook 𝜌
𝑔

 over a batch of utterances. Given these parameters, the 

diversity loss can be formulated to minimize the negentropy as 

ℒ𝑑 = 
1

𝐺𝑉
 ∑−𝐻 (𝜌

𝑔
) .

𝐺

𝑔=1

 (4.3) 

During the multilingual pretraining phase, the batches are built by sampling from a 

multinomial distribution 

(𝜌𝑙)𝑙=1,…,𝐿 where 𝜌𝑙~(
𝑛𝑙

𝑁
)𝛽 (4.4) 
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where, 𝑛𝑙 is the pretraining data length for language 𝑙, 𝑁 is total data length, and 𝛽 is a 

parameter allowing for the  control of the importance between high and low resource languages 

[103]. 

4.5.2.2 Fine tuning: 

 After the pretraining phase, the wav2vec2 model is fine-tuned by appending a randomly 

initialized linear projection layer to the context network, as illustrated in Figure 4.1. The pretrained 

model is generally trained to optimize a Connectionist Temporal Classification (CTC) loss 

criterion, in order to directly predict the target tokens. In our case, we perform this fine tuning in 

a multistage transfer learning process.  

4.5.3 Proposed ASR model 

The high-level architecture of our proposed DA-XLSR model is depicted in Figure. 4.2. 

The proposed model is implemented in a two-stage transfer learning scheme along with data 

augmentation. In the first stage, we utilize a transformer model pretrained on a high resource 

dataset to initialize our model. As training a self-supervised model from scratch without sufficient 

data to obtain good performance is rarely plausible, most works in the existing literature for low-

resource languages focused on fine-tuning already pretrained models to carry out certain 

downstream tasks [100]. In this research, we experiment with three pretrained models, trained in 

a cross-lingual setting, which are mainly extended from the wav2vec 2.0 framework.  Ideally, the 

pretrained model can be trained on any monolingual or cross-lingual setting. However, as this 

 

Figure 4.2 High level block diagram of the proposed DA-XLSR-53 model 
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study needs to tackle a downstream domain shift problem, it is evident that the donor languages 

used for pretraining plays a vital role on the final performance. Depending on structural and 

pronunciation similarity between the donor and target languages, the performance can deteriorate 

even further. The main idea of cross-lingual pretraining is to learn the common knowledge among 

the shared data from different languages. Therefore, instead of using a monolingual pretrained 

model, we intentionally focus on transferring weights from a cross-lingual wav2vec 2.0 model. 

The dataset used for the pretraining depends on the pretrained model used. We fine-tune this model 

on the extended dataset of Upper Tanana generated from data augmentation. We provide a brief 

detail of the pretrained models later in this section. 

In the second stage, we transfer the weights from the initial model, and refine on the 

original limited dataset of Upper Tanana. Augmented data often incorporate significant digital 

artifacts. Since the amount of augmented data is substantially larger than the original data in the 

extended dataset, the network could be skewed towards the representation of augmented data 

rather than original data [78]. This second stage helps suppress the skewness and improve the 

performance for the original dataset. 

 

4.5.3.1 Data Augmentation:  

In solving the low-resource ASR problem, data augmentation approaches have been found 

to be quite effective in improving performance. Many augmentation methods have been proposed, 

including speed perturbation [109], pitch adjust [110], vocal tract length perturbation, and 

SpecAugment [111]. As our system is based on wav2vec 2.0 framework, which uses raw audio for 

input, we need to utilize augmentation techniques compatible with raw audio samples.  

In this context, perturbation-based methods are mainly applied to generate new samples to 

extend the original dataset. Figure 4.3 shows an overview structure of the proposed augmentation 

process. Here, we combine six audio resampling techniques, including adding Gaussian noise 

(GN), frequency masking, time masking, pitch shift, clipping distortion and time stretching. Each 

technique is strategically selected, based on insights from the existing literature, as well as 

empirical performance results with our datasets.  In the following, we provide a brief rationale for 

each technique. 
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Adding Gaussian Noise to audio samples smoothens the input space, and may potentially 

make it simpler to learn [112]. Given an input signal 𝑥(𝑡), with the Gaussian normally distributed 

noise 𝑛(𝑡) and a desired noise variance of 𝜎2, the output signal 𝑦(𝑡) can be generated as 

𝑦(𝑡) = 𝑥(𝑡) + 𝜎 × 𝑛(𝑡). (4.5) 

Frequency masking and time masking have also been shown to be effective techniques in 

improving ASR performance [111]. For the number of frequency channels 𝑣 in the audio signal, 

we mask [𝑓0, 𝑓0 + 𝑓]  channels, where  𝑓  is selected from a uniform distribution and 𝑓0 

from (0, 𝑣 − 𝑓). Time masking works similarly, with timesteps [𝑡0, 𝑡0 + 𝑡]  masked, where 𝑡 is 

selected from a uniform distribution and 𝑡0 is taken from [0, 𝜏 − 𝑡]. Here, 𝜏 is the number of total 

timesteps in the signal. 

Time stretch and pitch shift work on opposing principles. Time stretch modifies the tempo 

without affecting the pitch, whereas pitch shift modifies the pitch of the signal without affecting 

the tempo. However, having both types of augmented samples may help generalize the 

representation during model training. 

Clipping distortion is another popular augmentation technique for ASR, and it operates by 

clipping each audio signal in a random percentage of points. This percentage is chosen from a 

uniform distribution of two parameters, i.e., the min-percentile and the max-percentile. 

Overall, Figure 4.3 shows visually how a sample signal may change in the time and 

frequency domains, after each augmentation method has been applied. We apply six methods 

separately and produce an extended dataset that is expanded effectively seven times, including the 

original audio samples. 

 

4.5.4 Pretrained models 

The following pretrained models used in this research are open source and publicly 

available in the Hugging Face online library. 
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4.5.4.1 Wav2vec2-xlsr-53:  

XLSR-53 follows the same architecture as the original wav2vec 2.0 model. The 

quantization module is shared across languages which produces multilingual quantized unites for 

contrastive learning. The model assimilates shared discrete tokens from different languages and 

creates a bridge between them. It was pretrained using three large multilingual dataset including 

Common Voice, Babel and Multilingual LibriSpeech (MLS). The training corpus combines 53 

languages with 56000 hours of speech data. This model outperformed previous monolingual 

models with 16% relative improvement in word error rate. It also shows its effectiveness for speech 

recognition on previously unseen languages, which makes it a good match for our research. 

4.5.4.2 Wav2vec2-large-100k-voxpopuli:  

This model was trained on 100k hours of speech data on 23 European Languages. The 

dataset was collected from European parliamentary event recordings. Therefore, it contains 

European Union (EU) languages only [107]. The model uses the same hyperparameter settings as 

the original wav2vec2 model. It was evaluated for out of domain pre-training setup, where it uses 

 

Figure 4.3 Overview of the data augmentation process 
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common voice ASR corpus in addition to the political domain EU parliament recordings. The 

model outperforms previous multilingual models like the XLSR-53 for most of the EU languages. 

It was also trained for out-of-language scenarios, such as our research problem, where the model 

is assessed for previously unseen languages, and the results are competitive to the XLSR-53 model. 

Although this model was mostly tested on EU based languages, it is nevertheless considered as 

one of the initial baselines for our study. 

4.5.4.3 Wav2vec2-XLS-R-300m:  

XLS-R is a large-scale cross-lingual speech representation model, also based on the 

wav2vec 2.0. Originally the model was trained in three different parameter settings, including 300 

million, 1 billion and 2 billon parameters. The parameter difference comes from its number of 

convolutional blocks for feature encoding. The model was pretrained on 436k hours of publicly 

available data from VoxPopuli (VP-400), MLS, Common Voice, VoxLingua107 and Babel. The 

whole dataset comprises 128 languages from all over the world and involves several domains. 

XLS-R is evaluated on a wide-range and diverse downstream tasks, i.e., Automatic Speech 

Translation (AST), ASR and Speech classification (Language Identification and Speaker 

Identification). 

4.5.5 Baseline Mainstream Systems 

We select two well established traditional ASR models including GMM-HMM and 

TDNN-LSTM as a baseline for this study. We also compare with some state-of-the-art end-to-end 

models, such as Deep Speech 2.0 and different pretrained multilingual wav2vec 2.0 models, for 

assessing the model performance. These models previously showed promising results on various 

low-resource ASR problems. 

Traditional ASR models: We implement all the traditional ASR models using the Kaldi toolkit 

[77], with the SRILM language modeling toolkit for the language modeling [113]. Although our 

proposed DA-XLSR model itself does not require any pronunciation dictionary, for the 

implementation of traditional ASR models, we need to build a pronunciation dictionary as part of 

this research. The construction of this customized dictionary is briefly described next. It should be 

noted that due to low-resource nature of this language, this simplified construction should not be 
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considered a comprehensive or robust approach. It also shows the difficulty encountered by using 

traditional approaches, thus motivating the necessity for alternative E2E methods. 

First, the initial dictionary is built from a list of 270 words, with their corresponding IPAs 

collected from the paper “Vowels of Upper Tanana Athabascan” [96]. The IPAs are then converted 

to ARPAbet using the standard IPA-ARPAbet conversion table [114] for easier understanding and 

training in the Kaldi platform. We develop the pronunciation dictionary utilizing the Sequitur G2P 

toolkit [95] that uses a joint sequence modeling technique to convert grapheme to phoneme. We 

train the Sequitur model by feeding in the initial phoneme dictionary and build a unigram model. 

The model is retrained up to 5-gram and the final model is used to convert all the unique words 

from our dataset to develop a pronunciation dictionary for Upper Tanana. 

4.5.5.1 GMM-HMM:  

The baseline GMM-HMM model is adapted from the “Kaldi for Dummies” tutorial recipe. 

First, a context-independent mono-phone model is trained using 13-dimensional MFCCs 

normalized using Cepstral Mean and Variance Normalization (CMVN). The features are extracted 

over 25-ms frames shifted at every 10 ms. This produces a rough estimation for the force-alignment 

of the training dataset. We also experiment with using other features including Perceptual Linear 

Prediction (PLP) and Mel Filter-Bank (F-Bank). However, for this research, it is empirically 

determined that using conventional MFCC shows the best results.  

The model is extended to a context-dependent tri-phone model, trained using 39-

dimensional stacked MFCCs generated from the original MFCC features and their first and second 

order derivatives. The second model produces better alignments for the training data. Some more 

complex models are produced subsequently, by applying Linear Discriminant Analysis (LDA) 

with Maximum Likelihood Linear Transform (MLLT) and Speaker Adaptive Training (SAT) to 

the tri-phone model. We use a Language Model (LM) of 3-gram with Witten-Bell discounting. For 

all the experiments using GMM-HMM framework, the vanilla triphone model shows the best 

results, and is accordingly used for aligning the training dataset for DNN-based models. 
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4.5.5.2 TDNN-LSTM:  

We implement the hybrid chain Kaldi model following the “librispeech” recipe. The 

acoustic model is based on Time-Delayed Neural Network (TDNN), combined with Long Short-

Term Memory Network (LSTM). It combines the attributes of TDNNS with LSTMs to model the 

long and short-term dependencies and obtain essential information. The architecture consists of 6 

TDNN blocks of 512 nodes interleaved with 3 LSTM blocks of 512 nodes after every two TDNN 

blocks. Each TDNN block contains an affine layer accompanied by ReLU and a batch 

normalization. The network takes an input feature of five consecutive 40-dimensional MFCCs 

vectors concatenated with 100-dimensional i-vectors. We apply volume perturbation and 3-way 

speed perturbation to augment the data before training. For language modeling, we apply different 

n-grams. Again, it is also found empirically that the previous 3-gram language model, with Witten-

Bell discounting, performs the best for this model as well. 

4.5.5.3 Deep Speech 2.0:  

The Deep Speech 2.0 model was originally developed for English and Mandarin Languages 

[64]. However, it has been recently explored for many low-resource ASR tasks and found to be 

effective. In this research, we use an architecture that consists of two convolutional layers and 5 

bi-directional Gated Recurrent Unit (GRU) layers. Each convolution layer is accompanied by a 

Batch Normalization layer and a ReLU activation. We utilize the spectrogram feature extraction 

for the input to the network. The power of the spectrogram is normalized over all the frames of 

each utterance. The architecture uses CTC loss criterion as the cost function with Adam optimizer. 

We use character-based tokenization and greedy search for decoding the output. We also 

experiment with applying the proposed data augmentation module with the Deep Speech 2 

architecture. 

4.6 Experimental Setup 

This work implements both traditional ASR and E2E deep learning based ASR methods 

for analyses and comparisons. While the former methods do not need special requirements, the 

latter ones require a GPU for proper implementation and timely training. This is especially relevant 
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for the proposed model, which incorporates a transformer model. Accordingly, for demanding 

training involving a GPU, a Tesla P100 with 16 GB VRAM (as made available on Kaggle) is 

utilized for speed. However, when it comes to testing, to enable a fair and practical complexity 

comparison, we revert to a more consumer-grade mid-range Nvidia GeForce RTX 3060 GPU. 

4.6.1 Dataset 

The dataset used for this research was originally collected for an expanded edition of the 

book “Teedląy t’iin naholndak niign: Stories of the Tetlin people By Cora H. David” [90]. To 

support endangered language preservation for North American Native Languages, this dataset was 

further curated and annotated for research by Lovick et al [91]. The curated dataset consists of 886 

utterances with native transcription and comments about the transcription in English. All the 

utterances are spoken by one female speaker, although the audio files were recorded in different 

times and different recording conditions. The dataset has a total of 1941 unique words and there is 

no pronunciation dictionary publicly available for this language yet.  

The utterances are further segmented into 1879 shorter-length sentences denoted as 

Intonation Units (IU) provided along with the dataset. Since the segmentations are done manually 

by domain experts, and shorter segments are more likely to facilitate the training process, the IUs 

are utilized for training both the baseline systems and the proposed model. Most of the IUs are 

 

Figure 4.4 Distribution of utterance length in the dataset 
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within 2 to 4 seconds length, with a few long-length IUs up to 15 seconds. For easier understanding, 

we will refer to the IUs as utterances for rest of the manuscript. Figure 4.4 shows the corresponding 

distribution of utterance length in the dataset. 

4.6.1.1 Data Preprocessing: 

In order to obtain good downstream performance results, the corpus is preprocessed to 

mitigate noise and redundancy. The speech data is collected in a form of interview, which includes 

some redundant conversational speech in English, some spoken noise, and long silent parts in the 

recording. The dataset also includes some utterances without corresponding transcription and vice 

versa. We have omitted these unpaired speech data and the redundant speech segments from the 

corpus before proceeding to the next step. We also normalize the text data, removing any special 

characters and symbols. However, the single quote mark (‘) is kept, as this character is used to 

notate some acoustic variations in words. 

4.6.1.2 Training: 

Before training different models, we split the preprocessed dataset into a development set 

and Testing set using a 90:10 split ratio. The traditional models require the training audios to be 

aligned with the corresponding phonemes. Therefore, to verify alignment quality, we evaluate the 

forced alignment with a hand-aligned test set previously prepared by the experts before training 

the final model. As a result, the test sets in the traditional models and E2E models have different 

number of utterances. The development set is further split into a 90:10 training and validation set. 

The training configurations for the Deep Speech 2 and traditional models are already discussed in 

previous section. 

For our proposed model, we use the same hyperparameter setting for all three pretrained 

models. We train in an incremental setting, starting with only 10 minutes of training data and 

increase it to 20 min, 40 min and full 1 hour 9 min of data. The only difference in hyperparameters 

for different data sizes is in the mask time probability, which is selected as 0.075 for 10 minutes 

and 20 minutes data sizes, and as 0.05 for 40 minutes and full data size. The other parameters are 

mostly adopted from the original wav2vec 2.0 model [60] and other variants [103], [104]. 

Essentially, we select the hyperparameters heuristically, and also based on the previously available 
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literature whenever appropriate. The common hyperparameters used for finetuning all the 

pretrained models are summarized in Table 4.1.  

All the models are primarily trained for 70 epochs, with an initial learning rate of 3e-4. 

Moreover, we utilize early stopping based on the word error rate (WER) on the validation set. The 

models are optimized using Adam with a warm up for 500 steps, held constant for next 40% 

updates, and linearly decayed for the rest of the time steps as training progresses. We do not train 

the feature encoder layers, as those layers are supposed to be already trained sufficiently during 

the pretraining session. 

Figure 4.5 shows a corresponding overview for the training and evaluation process. For all 

three pretrained models, we use the large sized wav2vec 2.0 setup, with approximately 300M 

parameters and primarily fine-tune only utilizing the cross-lingual transfer learning without any 

data augmentation. This initial fine tuning takes around 2 hours 10 mins for each model, which 

provides some observational data to find the best pretrained model for the Upper Tanana Language 

as well as to find the performance of just using transfer learning. Finally, all three models are 

retrained in a two-stage learning described earlier on the augmented dataset with a similar 

incremental setting corresponding to the augmented set prepared from 10 min, 20 min, 40 min and 

the complete record of the original data. The training on the augmented set of total data takes 

around 11 hours for each model. 

Table 4.1 : Hyperparameters for the proposed model 

Hyperparameter Value 

Attention Dropout 0.1 

Hidden Dropout 0.1 

Feature Projection Dropout 0.0 

Layer Dropout 0.1 

Warm up steps 500 

Learning rate 3e-4 

 



71 
 

4.7 Results And Discussions 

This section presents the results and discusses various performance observations of the 

proposed model. We mainly use WER as a performance metric, which is the most commonly used 

metric in ASR model evaluations. 

4.7.1 Performance Improvement:  

First, we evaluate the model performance compared with the traditional HMM based 

models. From Table 4.2, it can be seen that, at 45.06%, the proposed DA-XLSR-53 model yields 

a WER that is 6.91% lower than the baseline GMM model, and 6.65% lower than the best hybrid 

model TDNN-LSTM.  

 

Figure 4.5 Overall training and evaluation pipeline for selected 

models. 
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Due to very low amount of training data, it is easier to train the GMM-HMM model to a 

convergent performance result, compared to the DNN-HMM. The TDNN-LSTM is a powerful 

model. However, even after using volume and speed perturbations, it is still unable to improve 

much from the GMM-HMM. The proposed model attains a 45.06% WER without using a language 

model, which is a 12.8 % relative reduction in WER from the best traditional model. Since 

pretrained models are leveraged, the proposed model has already learned a variety of speech 

information, as well as environmental noise and sounds from recording equipment, among other 

distortions. Moreover, multilingual information extends the model’s generalization ability over 

out-of-language data. No language model is used, and greedy search is instead needed for decoding. 

Next, we compare the proposed model to various transfer learning approaches, which 

involve directly fine-tuning the pretrained Wav2Vec2 models with no data augmentation. Also, 

we evaluate the results against DeepSpeech2, which is another state-of-the-art E2E model. From 

Table 4.3, it can be seen that the proposed method achieves a relative improvement of 7.39% over 

the best-performing transfer learning method Wav2Vec2-XLSR-53. While most previous studies 

suggest that the larger XLS-R-300m model should outperform XLSR-53 or wav2vec2-100k-

Voxpopuli [28], [100], it is found that for our dataset and application scenario, the XLSR-53 

variant actually outperforms the rest. This is because, although the pretrained model with more 

language and variation should generally lead to better performance, if the pretraining data is more 

dissimilar, it lacks the specificity for the target language. The proposed model utilizes more in-

domain data, generated from the augmentation module on top of the pretraining information, thus 

leading to better performance. Since the DeepSpeech2 model is trained from scratch, and this type 

Table 4.2 : Results for the proposed model compared to the traditional HMM based models 

Model Feature LM WER% 

GMM-HMM MFCC 3-gram 51.97 

DNN-HMM  Fbank 3-gram 59.06 

TDNN-LSTM  MFCC 3-gram 51.71 

DA-XLSR- 53 Raw audio None 45.06 
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of model requires large amount of data [64], the resulting performance, at 83.12% WER, is worse 

than the Wav2Vec2 models for the application scenario under investigation.  

Last but not least, for a more practical and relevant assessment of system performance, we 

also justify our results against other published works that also deal with low-resource endangered 

languages. It should be noted that this type of comparison is not as direct analytically, because 

there are differences in methodology as well as in datasets. Nevertheless, it should reveal how our 

proposed model is performing relative to other realistic application scenarios, with similar 

linguistic constraints and objectives. Jimerson et al [74] studied a data augmentation strategy for 

Seneca language that used 2 hours and 35 minutes of audio data. They were able to achieve a WER 

of  59.11% using traditional model with synthetic verb forms. Thai et al  [78] extended the research, 

in order to achieve a WER of 57% using deep speech with transfer learning. A similar approach 

was also applied to the endangered Tujia Language by Yu et al  [115]. This work reported a WER 

of 46.19% from 2 hour and 54 minutes of data. Another study on the Yoloxochitl Mixtec language 

by Jiatong et al [68] used a self-supervised model that resulted in a WER of 39.2%, but this 

required a rather extensive 10-hour subset of their data.  They also reported evaluating their model 

on Puebla Nahuatl language with a 10-hour subset that resulted an WER of 43.7%. By contrast, 

our proposed model uses a much more limited 1 hour and 9 minutes of data, achieving a WER of 

45.06%. Therefore, compared to the existing literature on low-resource endangered languages, our 

proposed model is highly competitive. 

Table 4.3 : Results for the proposed model compared to State-of-the-Art E2E models 

Model Feature LM WER % 

DeepSpeech2 Spectrogram None 83.12 

Wav2vec2-xlsr-53 Raw audio None 48.66 

Wav2vec2-xls-r-300m Raw audio None 54.91 

Wav2vec2-100k-voxpopuli Raw audio None 50.74 

DA-XLSR- 53 Raw audio None 45.06 
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4.7.2 Comparison over data size:  

We next compare the effect of different data size with the traditional GMM-HMM, hybrid 

TDNN-LSTM and Deep Speech 2. We train all the models using 10 min, 20 min, 40 min and the 

full original data. From Figure 4.6, it can be seen that for all the data sizes, the proposed model 

outperforms the other models. By leveraging pretrained weights from large multilingual datasets, 

even with only 10 minutes of data, the proposed model still performs better than the others. This 

also provides a practical lower-bound for the minimal amount of data required for such models to 

train effectively for the Upper Tanana language. As mentioned previously, the Deep Speech 2 is 

trained from scratch. Therefore, using less than 40 minutes of data shows little to no impact on the 

training for this approach. It is evident that, for all models, generally better results are achieved 

with more data. In particular, the performance of the traditional models can be quite close to the 

proposed model with sufficient data. However, a major difference is that traditional models 

typically require a lot of preprocessing, along with a pronunciation lexicon and a language model 

to achieve a similar result. 

 

Figure 4.6 Comparison over different data size for different traditional and E2E models. 
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4.7.3 Comparison of ASR systems in terms of model complexity:  

We also calculated the training and testing time for each traditional and E2E models. Since 

we trained the traditional and E2E models on different GPU system the training time is not directly 

comparable with each other. However, we tested all the models on the same machine using same 

computational resources. Since for the traditional models we used a different number of utterances 

in the test set, thus for a fair comparison an average decoding time is also calculated including 

common utterances for both test set. From Table 4.4, it shows that the training time is much higher 

for any Deep-learning based model. Although the average decoding time per utterance for Deep 

Speech 2 model is only 14.89 ms which is significantly less than the others, however in terms of 

performance the model is still far behind than the others, which makes the model practically less 

efficient. The proposed model requires a decoding time of 96 ms per utterance which is less than 

half of the traditional models. However, this is notable that we only used greedy search in this 

research as no language model were used. 

4.7.4 Consistency of the Augmentation Strategy:  

We verify the consistency of the proposed augmentation strategy applying over all the E2E 

models used in this study. The results are presented in Figure 4.7. The figure shows a similar 

improvement trend for all the wav2vec2 models. As such our previous results the XLSR-53 

Table 4.4 : Comparison of training time, testing time of Traditional and E2E models 

Model # of Utt for test Train time  Test time 

Average 

Decoding time per 

Utt. 

GMM-HMM 118 1 min 30 s 33s  279.66 ms 

TDNN-LSTM 118 52 min 19 s 40 s 338.98 ms 

Deep Speech 2.0 182 13 hrs 9 min 2.71s 14.89 ms 

DA-XLSR 182 11 hrs 38 min 17.51s 96 ms 
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performs better than other models after applying the augmentation to all the models. For all three 

wav2vec2 models a relative improvement 6.29% to 8.75% were possible to achieve from 70 epoch 

of training. In contrast, it shows a big improvement for the deep Speech 2 model attaining around 

21.75% relatively. Although the performance is still not satisfactory for the Deep Speech 2 model, 

however it verifies the augmentation strategy is consistently useful for most E2E models. 

4.8 Conclusion 

In this work, an ASR system is proposed for critically endangered language Upper Tanana. 

This research aims to utilize transfer learning from cross lingual data and data augmentation to 

provide an effective result for extremely low resource languages when there is no pronunciation 

or language model directly available. Our experiments demonstrate that such model can exceed 

the performance of best-known traditional models using only 1 hour and 9 minutes of data without 

using any language model. It also validates the effectiveness of cross lingual pretrained models for 

 

Figure 4.7 The results (WER) of different E2E models before and after applying the 

augmentation. TL stands for transfer learning. 
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out of language training. We also focus on further improvement of the result from data 

augmentation that shows consistency over most state-of-the-art E2E models. Our analysis verifies 

that larger pretrained models or models including more language does not necessarily perform 

better. We were able to achieve the best result for Upper Tanana from XLSR-53 that was pretrained 

on 53 languages. We anticipate the result depends more on the morphological correlation between 

the languages in the pretraining and the target language. Although the traditional models take much 

shorter time to train, the decoding time is significantly larger compared to the E2E models. Since 

this research is motivated by the documentation of the Endangered Languages like Upper Tanana, 

the shorter decoding time can be immensely helpful for the linguists in their fieldwork. As potential 

future work, we can consider improving our model, investigating different strategies and data 

augmentation technique such as GAN, multimodal network etc as well as study other low resource 

endangered languages in future. 
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5 Conclusion 

This final chapter first describes the major contributions of the thesis. Then, some potential 

future works for research and applications are discussed.  

5.1 Summary of Contribution 

The contributions of the two manuscript forming the body of this thesis are provided in 

Section 3.3 and 4.3 respectively. Here, we briefly review the major highlights once again on 

account of completeness: 

• This is the first time an ASR system is built for Upper Tanana addressing the challenges 

of extremely small size of labelled data and no phonetic dictionary. 

• An investigation on feature selection and model development for low resource speech 

recognition is presented based on Upper Tanana corpus. 

• An E2E ASR modeling strategy is proposed that delivers better performance compared 

to other traditional and E2E models without any phonetic dictionary or language model. 

• An effective data augmentation technique is provided which can potentially improve the 

performance of any E2E model. 

5.2 Future Works 

Before we discuss the future direction, it is important to highlight some remaining 

challenges. Firstly, the experiments of this thesis were conducted on a single low resource 

language. Although the performance is justified with the size of labelled data, but we don’t know 

how well it is generalized to other critically endangered or morphologically complex languages. 

Besides, most endangered languages are not easily accessible for ASR training and every language 

has its own performance curve. Secondly, although during the development we consulted with a 

field linguist for necessary directions. However, the outputs are not examined at each step by her, 

rather by an NLP expert. Hence, for future works we need to cross validate the updates in depth 

by a field linguist first. 
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While some areas of exploration were investigated into this thesis, some of the future 

extensions of this work can potentially include: 

• Identifying closely related language from large archives of languages and pretrain cross 

lingual self-supervised model using those selected languages. Although identifying 

closely related language is a long term burdensome task for endangered languages, but 

it can potentially improve the performance to a large difference. 

• Validate the proposed model on closely related languages for a generalized evaluation. 

It might be possible to limit the amount of data from the major languages to mimic a 

similar constrain, however a lot of endangered language does not follow a well-

structured grammar or orthography similar to the commonly spoken languages. 

• A thorough investigation on generating synthetic data from both acoustic and text data 

can potentially benefit the acoustic as well as language modeling. 
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