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Abstract In this paper, we present a pioneering solution to the problem
of user grouping and power allocation in Non-Orthogonal Multiple Access
(NOMA) systems. The problem is highly pertinent because NOMA is a well-
recognized technique for future mobile radio systems. The salient and difficult
issues associated with NOMA systems involve the task of grouping users to-
gether into the pre-specified time slots, which are augmented with the question
of determining how much power should be allocated to the respective users.
This problem is, in and of itself, NP-hard. Our solution is the first reported
Reinforcement Learning (RL)-based solution, which attempts to resolve parts
of this issue. In particular, we invoke the Object Migration Automaton (OMA)
and one of its variants to resolve the grouping in NOMA systems. Further-
more, unlike the solutions reported in the literature, we do not assume prior
knowledge of the channels’ distributions, nor of their coefficients, to achieve
the grouping/partitioning. Thereafter, we use the consequent groupings to
heuristically infer the power allocation. The simulation results that we have
obtained confirm that our learning scheme can follow the dynamics of the
channel coefficients efficiently, and that the solution is able to resolve the issue
dynamically.
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1 Introduction

The Non-orthogonal Multiple Access (NOMA) paradigm has been established
as a promising technique to meet the future requirements of wireless capac-
ity [1]. As user demands are increasing due to the ever-increasing range of
applications and technologies, (such as the Internet of things) (IoT), NOMA
constitutes a valuable solution, as more users can be multiplexed together
in the same orthogonal Resource Block (RB) [2]. With NOMA, the diversity
of the user’s channel and power are exploited through Successive Interference
Cancellation (SIC) techniques in receivers [3]. The RB sharing introduces ques-
tions as to which users are the most ideal candidates to be grouped together,
so as to obtain the maximum gain of capacity. Additionally, the power level of
the signal intended for each user is a crucial component for successful SIC in
NOMA operation. Therefore, the performance of NOMA is highly dependent
on both the user grouping and the subsequent power allocation.

The user grouping and power allocation problems in NOMA systems are, in
general, inter-twined and intricate. The user grouping problem, in and of itself,
introduces a combinational in-feasibility when the number of users increases.
In addition, users in NOMA systems can suffer from both inter- and intra-
channel interference, constituting the non-convex property of power allocation
in NOMA systems [3]. Furthermore, the channel conditions and user behavior
in communication scenarios have a random nature, complicating the problem.
Consequently, the foundation for grouping, and thus for power allocation, can
change rapidly. Therefore, in addition to searching for instantaneous optimiza-
tion, it is necessary for a modern communication system to accommodate and
adapt to such changes.

In recent years, the fields of Machine Learning (ML), including RL, have
been exploding, which provides new opportunities for facilitating communica-
tion systems with more capacity in terms of automation. With some insight,
one sees that the problem of user grouping in NOMA systems, is similar in
nature and with regard to the solution space, to a classic problem, namely,
to the Object Partitioning Problem (OPP). The OPP concerns grouping ob-
jects into sub-collections and attempts to optimize a related objective function
to obtain a near-optimal grouping [4]. When it concerns RL-based solutions
for the OPP, many recent studies have been carried out for Equi-Partitioning
Problems (EPPs). EPPs are a subset of OPPs, where all the groups (referred
to as partitions) need to be equi-sized.

Among the ML solutions, the learning automata based Enhanced Object
Migration Automata (EOMA) is a technique that performs well for solving
different variants of EPPs [5]. Further advancements to the EOMA algorithm,
that can be found in [6] and [7], are the PEOMA and TPEOMA respectively.
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These OMA-based algorithms can partition a set of users into disjoint groups
through the use of RL (or more precisely, Learning Automata (LA)) instances,
which can handle stochastic behavior. These are powerful techniques applica-
ble in highly dynamic environments, dealing with problem instances that are
akin to the underlying ones encountered by users in NOMA systems.

The task of allocating power to the different users of a group in NOMA
systems further complicates the NOMA operations. Depending on the objec-
tive of power allocation, the formulation and complexity can be quite different.
Various solutions can be adopted for distinct problems, and heuristics-based
solutions can be quite pertinent to such a highly complex problem.

1.1 Motivation of this Paper

In communications, a particular distribution for the channel fading is often
assumed, e.g., Rayleigh fading, which involves a stochastic process in which
we observe the channel, as time proceeds. When the channel coefficient, h, is
assumed to follow a specified distribution that is time-invariant, it is equiva-
lent to assuming that the stochastic process follows a random and stationary
process. In previous solutions, although channel fading was assumed to be
following a certain random distribution, user grouping and power allocation
were traditionally carried out based on an instantaneous sample from the dis-
tribution, and thus a constant, h, was assumed to have been known, and was
utilized for optimization. In other words, the stochastic behavior of channels
was not handled in the prior grouping and power allocation.

Although channel sounding is not an expensive operation, it may not be
carried out frequently enough to follow the instantaneous changes of the chan-
nels in certain systems. Therefore, basing a system on the most recent channel
sounding result for optimization, may not be a statistically-prudent strategy.
Furthermore, due to the complexity of optimization problems, in practice, the
system may not prefer to solve the optimization problem frequently based on,
e.g., instantaneous channel sounding results every time when they are avail-
able. In addition, the overall statistics of the channel may even change over
time due to, for example, mobility. Therefore, we need a more reasonable base
for the channel coefficients for optimization, and at the same time, require a
more computationally-effective and adaptive solution.

1.2 Contributions of this Paper

In this paper, we study the problem considering the issue’s stochastic nature,
and propose an adaptive solution based on RL. To be specific, by incorporat-
ing a technique from within the OMA paradigm, partitioning problems can
be solved even in environments with a highly stochastic nature. Hence, OMA
algorithms constitute valuable methods for handling the behavior of compo-
nents in a NOMA system. In particular, we shall show that such methods are
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powerful in resolving the task of grouping the users. Indeed, even though the
number of possible groupings can be exponentially large, the OMA schemes
can yields a remarkably accurate result, which can be achieved within a few
hundred iterations! This constitutes the first phase of our solution.

The second phase groups users with different channel behaviors and al-
locates power to the respective users. For power allocation, we adopt the
objective of maximizing the sum rate, and propose two heuristic-based al-
gorithms. Other objective functions and the corresponding solutions may also
be employed for power allocation, depending on the system’s demand. This
two-step solution constitutes a straightforward but comprehensive strategy,
which has not been considered in the prior literature.

Our proposed solution handles random stationary environments and can
learn from the environment and adjust user groupings adaptively, based on the
time-averaged values of the channel’s coefficients. Instead of grouping users
and allocating power to users based on instantaneous measurements, which
is not practical due to the complexity and stochastic nature of the problem
domain, the proposed solution employs user grouping according to the time
average of the communication environment. Further, based on the obtained
groups, heuristic-based schemes resolve power allocation in NOMA systems.
In addition, when the statistics of the environment changes, the RL algorithm
can follow them so that the groupings of the users can be updated. The beauty
of the proposed algorithm is that it requires no prior knowledge of the channel,
and that the learning and adaptation are carried out while the communication
system is in operation.

The reader will also observe that the problem is two-pronged. Firstly, it
involves the grouping of the users, and thereafter, secondly, the corresponding
power allocations. With respect to the first prong, our solution converges ar-
bitrarily close to the optimal clustering. This, of course, does not address the
power allocation problem. To address the second prong, we have resorted to
straightforward heuristic-based algorithms.

Our contributions can thus be summarized as follows:

1. We study the user grouping and power allocation problem in stochastic
environments. This real-life scenario is hardly addressed in the literature.

2. Through a two-step solution, the user grouping and power allocation prob-
lems are solved through a RL technique and heuristic solutions, respec-
tively. The solution is adaptive to changes in the environment. Addition-
ally, without prior knowledge of the channel, the system can learn the
knowledge when the system is in operation, and thus both these solutions,
can be implemented on the fly.

3. We provide fairly extensive simulation results to illustrate the effectiveness
and the strength of RL for problems in NOMA systems.
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1.3 Organization of the Paper

The paper is organized as follows1. First of all, Section 2 summarizes the
related work in the research area of NOMA and LA. In Section 3, we depict
the configuration of the adopted system, and in Section 4, the optimization
problem is formulated and analyzed. Section 5 details the proposed solution
for the optimization problem. Numerical results are illustrated in Section 6,
before we conclude the paper in Section 7.

2 The State of the Art

In this paper, we present a solution to user grouping and power allocation
in NOMA systems through the use of LA, and specifically the OMA-based
partitioning algorithms. Therefore, in this section, we present the state of the
art of both NOMA and LA in relation to partitioning.

2.1 NOMA

Recently, NOMA technology has attracted a great attention and research effort
[1,2,8]. Substantial research has been devoted to the field of NOMA through
the recent past, and user grouping and power allocation are among the many
problems that have been researched.

A power allocation algorithm for NOMA networks was introduced in [9]
so as to assure the fairness for users. Thereafter, in a single cell scenario, the
physical layer security was studied [10]. The sum-rate and outage probabil-
ity for the downlink were analyzed in [11]. For the uplink, a power back-off
method was investigated in [12]. The aforementioned research effort mainly fo-
cused on the intra-cell interference analysis. A dense multiple cell network for
NOMA techniques considering inter-cell interference, where both uplink and
downlink transmissions were evaluated, was studied in [13]. The study of the
mmWave networks with NOMA was carried out in [14] and [15] with a focus
on random beamforming without considering the locations of the users. There-
after, the “the beamforming” strategy and power allocation coefficients were
jointly optimized for maximizing the throughput [16]. In addition, stochastic
geometry, which is able to characterize the communication distances between
transceivers by providing a spatial framework, has also been utilized in NOMA
[13,17] to model the locations of primary and secondary NOMA receivers.

In terms of user grouping and the corresponding ML techniques applied in
NOMA, the study is still in its infancy. In [18], a dynamic method for clas-
sifying users for power allocation was investigated. The channel coefficients
were sorted from high to low, and were assigned to channels, such that the
difference between the users in each group increased. In [3], the authors uti-
lized a K-means scheme for user grouping based on geolocation, where they

1 The notation for the paper is given below, so as to not distract from the content itself.
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Table 1 Table of notations.

Notation Description
h Channel coefficient

hk, hk(t), hn,k, hn,k(t) h for Uk and Un,k, and for Uk and Un,k at t

hk(t), hn,k(t) The mean of the channel coefficient for Uk

K Total number of users
N Total number of groups
K Set of user indexes
N Set of group indexes
G Set of groups
gn Set of users inside the n-th group
|gn| Number of users inside gn

Uk, Un,k User k and user k in group n
gn\Un,k The complementary set of users in set gn

∅ Empty set
yk, yk(t) Signal from BS at Uk and Uk at time t

sk Transmitted signal intended for Uk

Pn, Pn(t) Power budget for gn, and Pn considering t
τn,k Indicator of whether Uk is in group n
∆t Time period for considering average of h
S Number of states per action
ϵk Index of the current state of user k

Q = (Ua, Ub) Input query of users to the EOMA
fc, fd Carrier and Doppler frequency
W Number of combinations

pn,k, pn,k(t) Allocated power for Un,k and considering t
nk, σ

2 AWGN at Uk and Gaussian noise power
Γk(t), Γn,k, Γn,k(t) SINR of user Uk and Un,k, and considering t

In,k(t) Interference from other users to Un,k at t
b Bandwidth of the channel

R, R(t) Total data rate, and R considering t
Rk, Rn,k, Rn,k(t) Data rate of Uk and Un,k, and considering t

RQoS Minimum required data rate for a user
BK The K-th Bell number{K
κ

}
Stirling number of the second kind

Lc Number of clusters
qc Set of users in cluster c
C Set of clusters

φc,k Indicator of whether Uk is in cluster c
δ Number of φc,k = 1 for a cluster

U ′
c,g,k User k in cluster c and group g in (13)

rk Rank
Υk Ranking category of user k
Ec Mean of channel fading in qc
Θk Cluster of Uk

γ Precision in exhaustive search
vU , vL Mobility factor of users and speed of light
αc Action in the LA for cluster c

considered the grouping of NOMA systems in, for example, school halls. Max-
imum weight matching was adopted in [2] to build non-disjoint groups per RB
and for subsequently allocating power, given the obtained groups. In [19], pro-
portional fairness (PF) was applied through an exhaustive search to allocate
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groups to the RBs. Groups of size two were investigated in [8] by invoking the
Hungarian algorithm, and in [20] through PF for power allocation.

The above studies did not explore the stochastic nature of the wireless com-
munication environment, and the channel coefficients for the different users
were assumed to be known. Therefore, the optimization results based on the
known channel coefficients were valid only when the coefficients were not far
from reality. In practice, channel coefficients may vary along time rapidly, and
channel sounding may not be frequent enough to capture the instantaneous
change of mobile radio channels in the stochastic environment. In such sit-
uations, appropriate channel coefficients are to be used as the basis for user
grouping and power allocation.

2.2 Learning Automata and Object Migration Automata

An LA2 is a decision-making algorithm that can sequentially learn, the op-
timal action from among a set of actions, in a stochastic environment. At
each time instant, an action is chosen by the LA, and serves as the input to
the environment. The environment then responds to the action chosen by the
LA, by a feedback that is usually a reward or a penalty to the action. Based
on both the response of the environment and the current state of the LA,
the LA adjusts its action selection strategy for future interactions. Initial LA
was designed in [21] with a fixed structure, where the state update and the
decision functions were time-invariant. Later, Variable Structure Stochastic
Automata (VSSA) were developed, such as the linear reward-penalty scheme,
the linear reward-inaction scheme, the linear inaction-penalty scheme, and the
linear reward-penalty scheme [22], [23]. Schemes that apply nonlinear func-
tions have also been designed and analyzed [22], [23], [24], where the updating
functions can either be of continuous or discretized [25], [26]. In addition, the
Markovian representation of the states in LA can be either absorbing or er-
godic [22], [27], where the latter adapts better to non-stationary environments
where the reward probabilities are time-variant. The state-of-the-art of the
field of LA, is reported in [28], [29].

LA can be applied to solve many different problems, including OPPs in
a random environment. The OPP is, in general, NP-hard, and a special case
of the OPP, in which the number of objects in each group is equal, is the
EPP. The benchmark solutions for the EPP have involved the classic field of
LA [30], namely, the OMA and its variations. A comprehensive review of the
previously proposed solutions for the OPP/EPP can be found in [6].

As the wireless communication system operates in a stochastic environ-
ment, and the NOMA technology involves multiple user groupings for SIC, it
is natural to apply the most recent RL-based solution for such an application
in order to improve the system’s performance in the stochastic environment.
In this study, we confirm the potential of applying the OMA in optimizing the

2 This section can be moved to the Introduction (Section 1), if recommended by the
Referees.
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Fig. 1 Groups are assigned to orthogonal resources. The users within a group employ
NOMA.

system’s performance in the stochastic environment for the NOMA, which, to
the best of our knowledge, has not been previously addressed in the literature.

3 System description

Consider a simplified single-carrier downlink cellular system that consists of
one base station (BS) and K users that are to be divided into N groups for
NOMA operation. User k is denoted by Uk where k ∈ K = {1, 2, . . . ,K}.
Similarly, the set of groups are denoted by G = {gn}, n ∈ N = {1, 2, . . . , N},
where gn is the set of users inside the n-th group. Each user can only be in one
of the groups implying that gn∩go = ∅ with n ̸= o. When a user Uk belongs to
group n, we use the notation Un,k to refer to this user and its corresponding
group. The simplified notation Uk is adopted to refer to a user, when the group
of the user is trivial or undetermined. For example, if we have 4 users in the
system, we could have user 1 and user 3 belong to group 1, and user 2 and
user 4 belong to group 2. In this case, when we want to refer to user 1 without
its group, we use the notation U1. Likewise, when we want to mention user 4
belonging to group 2, we apply U2,4.

In this paper, we will consider the case of a single BS and with K users
connected to that BS. NOMA is applied to each group, but different groups
are assigned to orthogonal resources. One realization of such a communication
scenario is shown in Fig. 1. In this scenario, the BS has assigned a frequency
band to the K users. The users are to be grouped in N groups, each of which
occupies a time slot. Here the orthogonal resource is the set of time slots, but
it could just as well be other orthogonal resources, such as frequency bands.
For mobility, the users are expected to move within a defined area. The users’
behavior in a university or an office building are examples of where their
behavior coincides with the mobility model utilized in this paper.

3.1 Channel Model

The channel model coefficient for Uk is denoted by hk(t) and refers to the
channel fading between the BS and Uk along time. The channel coefficient
is generated based on the well-recognized mobile channel model, which sta-
tistically follows a Rayleigh distribution [31]. The parameters of the channel
configuration will be detailed in the sections listing the numerical results. Note
that our proposed LA solution can handle non-stationary stochastic processes,
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and so, it is distribution-independent. Therefore, the current Rayleigh distri-
bution can be replaced by any other channel model, based on the application
scenario and the environment.

3.2 Signal Model

In NOMA, each user in a group may suffer from both intra- and inter-group
interference [3]. Intra-group interference refers to interference from other users
within the same group, and inter-group interference refers to interference from
users in other groups that employ the same band at the same time. In this
study, we consider the case that different groups adopt orthogonal resources
such that the inter-group interferences are non-existent.

Based on the NOMA protocol, the BS sends different messages to the users
of a group in a single time slot via the same frequency band. Consequently,
the received signal yk at time t for Uk can be expressed as

yk(t) =
√
pn,khk(t)sk +

|gn|−1∑
e=1

√
pn,ehk(t)se + nk, (1)

where e is the index of the users in the set gn\Un,k, which is the complementary
set of Un,k in gn. |gn| returns the number of users in gn. The received signal
yk(t) has three parts, including the signal intended to Un,k, the signal from
all users other than Un,k in the same group, and the additive white Gaussian
noise (AWGN), where nk ∼ CN (0, σ2

k) [32]. The transmitted signal intended
for Un,k and Un,e are given by sk and se ∼ CN (0, 1) respectively. pn,k is the
allocated power for Un,k. Further, the total power budget for group gn is given
by Pn.

The BS’ signals are decoded at the users through the SIC by using the
channel coefficients in an ascending order [2]. As a result, through SIC, a user
with a good channel quality can remove the interference from the users pos-
sessing poor channel qualities, while users with poor channel qualities decode
their signals without applying SIC3. Hence, for user Un,k, successful SIC is
applied when the following requirement fulfills,

|hn,w(t)|2 ≤ |hn,k(t)|2, (2)

where w is the index of the users that have lower channel coefficients than
user k in the user group gn. Note that the channel coefficient for a certain user
may be quite different in distinct frequency levels. In this study, similar to
assumptions in [33] and [34], we assume that the ranking of channel coefficients
along time, on average, keep the same for all the users. Indeed, the differences
of channel coefficients are due to the various distances among the users to the
BS, which makes the assumption in this paper valid. Eq. (2) implies that Un,k

3 We assume that differences between the time average of channel coefficients are due
to the distinct geolocations of the users. Although the channel coefficient for a user may
vary in different frequency bands, it is assumed that the ranking of the time averages of the
coefficients among the various users maintains the same order in the different bands due to
their distinct geolocations. With this assumption, the heterogeneity in different frequency
bands will not influence the results of the user grouping.
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is able to remove the messages to the users with lower channel coefficients in its
group via SIC and then retrieve its own message. Hence, Un,k considers users
with higher channel coefficients in its group as interference in the decoding
process.

4 Problem Formulation

In this section, we formulate the problem to be solved. The first problem,
which we refer to as the main problem, is formulated when instantaneous
channel coefficients, say, at time t0, are considered for grouping and power
allocation. Here time t0 is the time instant when the channel sounding is
employed for the current round of user grouping and power allocation. Ideally,
if the optimization of user grouping and power allocation is quick enough, and
if the packet is short enough, the channel coefficients can be considered as a
constant. In addition, if it is possible to re-group users and allocate power to
them more often than the changes of channel coefficients, the system becomes
adaptive and can thus be operated always in an optimized manner.

In reality, though, by studying the complexity of the main problem, we
show that it is computationally very costly to solve. Therefore, it is not prac-
tical for the BS to follow the instantaneous channel condition as the basis
for user grouping. For this reason, the main problem is divided into two sub-
problems, where in the first sub-problem, the user channels are clustered based
on the time averages of the coefficients, and subsequently, in the second sub-
problem, the power allocation is considered.

4.1 Problem Formulation of Overall System

The objective of the main problem is to maximize the overall data rate given
channel coefficients hk(t0) and power budget. To take advantage of NOMA,
the K users need to be divided into N groups, and for each group, the users
share the same resource block (in time and frequency). Additionally, power
allocation is to be optimized according to the channel conditions for each
user in that group. To ease in the formulation, without loss of generality,
we assume that the channel coefficients are sorted in ascending order, i.e.,
h1(t0) ≤ h2(t0) ≤ . . . ≤ hK(t0)

4.
Following the description given in [3], for the n-th group, after deployment

of SIC, the SINR (signal-to-interference-plus-noise ratio) of user k in gn is
given by

Γn,k(t0) =
pn,k|hn,k(t0)|2

In,k(t0) + σ2
, (3)

4 This assumption applies only in the problem formulation with instantaneous channel
coefficients at t0. Understandably, the channel coefficients will change along time due to
the stochastic behavior, and the ranking of instantaneous channel coefficients belonging to
different users may change from time to time due to channel fading.
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where pn,k is the power allocated to Un,k. Clearly, it is true that for any
group n,

∑
j,∀Uj∈gn

pn,j ≤ Pn holds, where Pn denotes the power budget of

gn, with σ2 denoting the Gaussian noise power. Parameter In,k(t) represents
the intra-group interference from other users to Un,k, as

In,k(t0) =
∑
j,

∀j>k, {Uj , Uk}∈gn

|hk(t0)|2pn,j . (4)

Given that the SIC requirement is fulfilled, the achievable data rate of user
k is

Rn,k(t0) = b log2
(
1 + Γn,k(t0)

)
, (5)

where b is the bandwidth of the channel. Therefore, the total achievable data
rate for the system is expressed as

R(t0) =

K∑
k=1

b log2
(
1 + Γn,k(t0)

)
. (6)

Based on the above analysis, we can formulate the optimization problem
as follows.

max
{gn},{pn,k}

R(t0) (7a)

s.t. gn ∩ go = ∅, n ̸= o, n, o ∈ N (7b)∑
j,∀Uj∈gn

pn,j ≤ Pn, ∀n ∈ N , (7c)

Rn,k(t0) ≥ RQoS , k ∈ K, (7d)

hi(t0) > hj(t0), ∀i > j, i, j ∈ K. (7e)

We now explain the significance of each of the above equations. The con-
straints in (7b) say that each user can only be part of one group. In (7c), we
state that the sum of powers for a certain group needs to be less than or equal
to Pn, which guarantees that the total power of the group is within the power
constraint. The constraints in (7d) concern the demands on the Quality of
Service (QoS) for each user. Hence, the data rate of a user needs to be above a
specified required value, RQoS , ensuring the QoS to all users, and addressing
the fairness issue [32]. Finally, Eq. (7e) addresses the SIC requirement.

4.2 Complexity Considerations

We shall now consider the complexity of the associated problem. Consider-
ing the users and their placement into different groups, the minimum number
of combinations possible is a Bell number, without even reckoning with the
task of power allocation, where the Bell number gives the number of possible
partitions of a set. In our case, we have BK options where BK is the K-th
Bell number. Our task is to partition K users into κ non-empty sets. Consid-
ering that κ, without any additional constraints, can range from 1 to K, the
consecutive Bell number for K is given by

BK =
K∑

κ=1

{K
κ

}
, (8)
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where
{
K
κ

}
is the Stirling numbers of the second kind [35]. Consequently, it

follows that (
K

e lnK

)K

< BK <

(
K

e1−λ lnK

)K

, (9)

which is exponential with regard to K [35], and λ > 0. Because the number of
possible combinations to solve such a maximization problem (as stated in (7))
increases drastically with the number of users, and since the power allocation
problem is non-convex [3], finding an optimal solution to the problem, based on
instantaneous hk(t0), is computationally hard. Further, when the system is to
be adaptive to the changes in the environment, computations are to be carried
out very frequently. Therefore, it is more practical to aim for a compromised
solution, where the problem is divided into two sub-problems.

Specifically, in the first problem, we cluster the users into categories based
on the time averages of the channel coefficients, and in the second step, we
group the users based on the obtained categories, and proceed to solve the
power allocation phase. The rationale behind such a computational paradigm
is that we capture the long time average of the channel coefficients for the pur-
pose of grouping, and thereafter, the power allocation is based on the available
instantaneous values of h, or a time average computed over a certain number
of channel sounding samples of h. Thus, as the grouping is considered more
costly than the power allocation, by doing the grouping based on the mean,
and being able to do power allocation more often at a minimal cost once the
groups have been established, the computational effort is kept low.

Since there is no known solution for the general OPP, we further sim-
plify the model for the solution, to consider the equi-partitioning of the users,
namely the EPP. When all the groups are of equal sizes, we have the combi-
nation number W as:

W =
K!(

K
N
!
)N

N !

, (10)

where K
N is an integer. As a result of the above, we observe that the partition-

ing problems are still characterized by a combinatorial issue, but the number
is significantly smaller than the Bell numbers. Note that the problem is still
more complicated than just finding an optimal partitioning once and for all,
because the environment changes stochastically.

4.3 Problem Formulation of Clustering

For NOMA, the channel coefficients of the users in a group need to be as
different as possible to attain to a successful NOMA operation. To group the
users with different coefficients, we first want to cluster the users with similar
channel coefficients, and then select a single user from each cluster in order to
formulate the groups. In other words, we want to cluster similar users together
first, and then group them by selecting one user from each cluster. The first
problem is the clustering problem, which is formulated in this subsection. The
problem for user grouping, together with power allocation, is formulated in
the next subsection.
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The criterion for user clustering involves the time averages of the channel
coefficients, denoted by hk(t). In other words, the users that have similar av-
erage channel coefficients will be clustered together. The reason behind this is
that the task of grouping the users is relatively costly in terms of computation,
and it is, further, not cost-efficient to apply it based on the channel’s instan-
taneous values. If we cluster the users according to the time averages, we can
efficiently reduce the computational cost, and at the same time, capture the
advantages of statistically employing NOMA.

In this study, as mentioned, we consider clustering users to groups of the
same size. Therefore the number of the clusters is Lc = K

N , where Lc and N

are integers5. Let qc be the set of users in cluster c, where c ∈ C = {1, . . . , Lc}
is the index of the set of clusters. Clearly, for the clustering problem, the
differences between the coefficients in each cluster needs to be minimized, and
the problem can be formulated as

min
{φc,k}

Lc∑
c=1

K∑
k=1

φc,k|hk(t)− Ec|, (11a)

s.t.

Lc∑
c=1

K∑
k=1

φc,k = K, c ∈ C, k ∈ K, (11b)

K∑
k=1

φc,k = N, ∀c, (11c)

where φc,k is an indicator showing the relationship between the users and the
clusters, and is given by

φc,k =

{
1,when Uk belongs to cluster c.

0, otherwise.
(12)

Additionally, the mean value of the channel fading in each cluster is denoted
by the parameters Ec and δ, which are given by Ec = 1

δ

∑K
k=1 hk(t)φc,k, and

δ =
∑K

k=1 φc,k respectively, where the objective function is stated in Eq. (11a).
Specifically, for all the clusters, we want to minimize the difference of the
channel coefficients between the users inside each of them. Eqs. (11b) and
(11c) give a description of the variable φc,k for user k in c. Hence, the sum of
the variable φc,k needs to be equal to the number of users, implying that all
the users need to be a part of one cluster, and in each cluster, there needs to
be an equal number of users.

The result of the clustering problem, i.e., the {φc,k} that minimizes the
objective function, can be re-arranged in an Lc ×N matrix, as

1 2 . . . N


1 U ′
1,1,k U ′

1,2,k . . . U ′
1,N,k

2 U ′
2,1,k U ′

2,2,k . . . U ′
2,N,k

. . . . . . . . . . . . . . .
Lc U ′

Lc,1,k
U ′
Lc,2,k

. . . U ′
Lc,N,k

, (13)

5 In reality, if Lc is not an integer, we can add dummy users to the system to satisfy the
requirement. Dummy users are virtual users that are not part of the real network scenario,
but are needed for constituting an equal size for all the clusters.
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indicating Lc clusters with N users in each cluster. The user in the matrix is
indexed by U ′

c,g,k, where c is the index of the cluster, and g is the index of a
user in a certain group, while k indicates the user (the position of a user k, in
the matrix, is an independent term). Note that Un,k is different from U ′

c,g,k as
the indexes are different.

For the next step, the problem is then to group users together by selecting
one user from each cluster, and to then allocate power to them in order to
achieve the maximized sum of data rate.

4.4 Problem Formulation of Power Allocation

As the grouping and power allocation tasks are inter-twined, we must consider
these two aspects jointly when we study the maximization of the data rate.
Although from the first step, we have obtained information on which users
have similar channel coefficients, we observe that the power allocation problem
remains unresolved. Therefore, we need to consider the power allocation of the
users inside each cluster so as to be able to solve both the grouping and power
allocation in NOMA.

Clearly, from the output of the clustering, we know which users are similar,
and when we take one user from each cluster and construct N groups, the size
of each group will be Lc. Without loss of generality, we can assume that the
average channel coefficients are sorted in ascending order, i.e., h1(t) ≤ h2(t) ≤
. . . ≤ hK(t) (similar to [33] and [34]). If we now consider user grouping and
power allocation based on the average channel coefficients, the problem can
be formulated as

max
{gn},{Pn}

R (14a)

s.t. gn ∩ go = ∅, n ̸= o, n, o ∈ N , (14b)∑
j,∀Uj∈gn

pn,j ≤ Pn, n ∈ N , (14c)

Rn,j(t) ≥ RQoS , j ∈ K, n ∈ N , (14d)

hi(t) > hj(t), ∀i > j, i, j ∈ K, (14e)

|gn ∩ qc| = 1, ∀c, ∀n, (14f)∑
j,∀Uj∈gn

τn,j = Lc, ∀n, (14g)

∑
n,∀n∈N

∑
j,∀Uj∈gn

τn,j = NLc. (14h)

In Eq. (14a), the parameter R is calculated based on Eq. (6) when hk(t)
is replaced by hk(t), indicating that this rate is based on the average channel
coefficients. Further, in (14b), we state that the groups need to be disjoint.
Hence, any user can only be in a single group. In Eq. (14c), we address the
constraint for the power budget. The QoS constraint is given in (14d), which
ensures the fairness among the users. The SIC constraint is given in Eq. (14e).
The constraint in Eq. (14f) specifies that only a single user is selected to
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formulate a group from each cluster. Finally, in Eq. (14g), we introduce an
indicator τn,k, stating whether Uk is in group n, as

τn,k =

{
1,when Uk belongs to group n.

0, otherwise.
(15)

This constraint states that each group has Lc users. Furthermore, all users
should belong to a certain group, which is given in Eq. (14h).

The solution to this problem will provide the grouping of users along with
their corresponding power allocations. Note that the power allocation is calcu-
lated based on the average of the channel coefficients. When communication
happens, these coefficients may be different. Thus, the power allocation can be
done for time averages of the channel sounding, or for instantaneous values.

Comparing the problem in Eq. (7) with the sub-problems in Eqs. (11) and
(14), we record the following differences. (a) In Eq. (7), the instantaneous chan-
nel coefficients are followed for grouping and optimization. However, in Eqs.
(11) and (14), the clustering and grouping of users are based on the respective
time-averaged values. (b) In Eq. (7), the groups of users may have different
sizes, while in Eqs. (11) and (14), the sizes of all the groups are equal. Indeed,
since following the instantaneous channel coefficients is both costly and im-
practical, the task of following the average values becomes a reasonable and
feasible foundation for the grouping. Considering that the equi-partitioning of
the users reduces the complexity of the original problem, practical and adap-
tive solutions based on RL algorithms can be proposed. In the next section,
we will propose a two-step solution corresponding to the sub-problems, based
on the adaptive Tabula rasa RL paradigm.

5 Solution to User Grouping and Power Allocation

The problem of grouping and power allocation in NOMA systems is two-
pronged. Therefore, in Section 5.1, we only consider the first issue of the two,
namely the clustering and the grouping of the users. We will show that our
solution can handle the stochastic nature of the channel coefficients of the
users, while it is also able to follow changes in their channel behaviors over
time, ensuring that the system can prudently follow the nature of the channels
that are similar to what we will expect in a real system. More specifically, we
will categorize users into clusters based on similar channel coefficients for long-
term fading. Because the values of h for different users are stochastic, we need
a method for capturing the long-time average of the channels. Therefore, we
exploit a ML algorithm from within the OMA family for clustering them.
Specifically, we utilize the Enhanced Object Migration Automata (EOMA) to
capture the users’ similarities, for the purposes of categorization. Thereafter,
as mentioned above, the users are grouped by taking a single user from each
cluster so that users within any one group have distinct channel coefficients.
Once the groups have been established in Section 5.1, we can utilize these
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groups to allocate power among them either instantaneously or for a time
interval using heuristic-based solutions.

5.1 Clustering Through EOMA

To solve problems in stochastic environments, the field of LA has shown itself
to be a powerful tool because fast and accurate convergence can be achieved
while the computational complexity remains low [36]. OMA algorithms are
part of the LA paradigm, and can solve partitioning problems by having LA
instances cooperate to find the best partitioning [37]. With some insight, we
see that the family of OMA algorithms are based on Tabula rasa RL. Without
any prior knowledge of the system parameters, channels, or clusters in our case,
the OMA self-learns by observing the environment that it interacts with, over
time. For our problem, the communication system constitutes the environment,
which can be observed by the OMA through, e.g., channel sounding. By gaining
knowledge from the system behavior and improving incrementally through
each interaction with the environment, the OMA algorithms prove themselves
to be compelling mechanisms for solving complex and stochastic problems. The
OMA algorithms attempt to learn the “true partitioning” in different grouping
scenarios, based on the elements from the respective groups that are accessed
together. The “true partitioning” that occurs in nature is always unknown, but
assuming that the true partitioning consists of equi-sized clusters, the OMA
algorithms can find these with a high accuracy [6], [7], [38].

In the OMA, the users of our system need to be represented as abstract
objects. Therefore, in OMA terms, the users are called objects. The OMA
algorithms require a number of states per action, indicated by S. An action in
LA is a solution that the algorithm can converge to. In our system, the actions
are the different clusters that objects can be assigned to. Hence, based on the
current state of an object, we know that object’s action, which is precisely its
current cluster in the system. Therefore, each object, or user in our case, has a
given state indicated by ϵk = {1, 2, ..., SLc}, where ϵk denotes the current state
of Uk, S is the number of states per action, and Lc is the number of clusters.
Clearly, because we have Lc clusters, the total number of possible states is
SLc. To indicate the set of users inside cluster c, where c ∈ [1, 2, . . . , Lc], we
have qc. The cluster for a given user, k, is represented by Θk, where the set of
clusters is denoted by C and Θk ∈ C = {q1, q2, . . . , qLc

}.
The states are the foundational memory components of the OMA algo-

rithms, and the objects are moved in and out of states as they are penalized
or rewarded in the RL process. In this paper, we utilize the EOMA variant
of OMA, where each object has an equal number of possible states. We say
that the algorithm has converged when all the objects have reached the two
innermost states of an action. When convergence has been attained, we reckon
that the solution that the EOMA algorithm has found, is sufficiently accurate.

The requirement for convergence can be tuned through the number of states
introduced to the system. Consequently, introducing a deeper state space in-
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creases the solution’s accuracy of finding the “true partitioning”. However, the
time before convergence is achieved, also increases with the number of states.
Therefore, the state depth, given by S, is a trade-off between time and accu-
racy. In Fig. 2, we describe the state numbering of any two actions. By way
of example, consider a scenario with three possible clusters: the first cluster of
the EOMA will have the state numbering from 1 to S, where the innermost
state is 1, and the second innermost state is 2, while the boundary state is S.
For the second cluster, it will have the innermost state S + 1 and the second
innermost state S + 2, while the boundary state is 2S. Likewise, for the third
cluster, the numbering will be 2S + 1 for the innermost and 2S + 2 for the
second innermost state whilst 3S for the boundary state.

1 2 3

U1 U1

4

α1 α2

8 7 6

U3U3

5

Fig. 2 An example of the states of the EOMA, for the updates for the penalty for U1 and
U3 when they have the same ranking category.

Algorithm 1 Clustering of Users

Require: hk(t) for all users K over ∆t

while not converged do {Convergence is reached when all users are in the two most
internal states of any action}

for all K do
Rank the users from 1 to K {Index 1 is given to the user with lowest hk(t) (K to
the highest)}

end for
for K

N
pairs (Ua, Ub) of K do {The pairs are chosen uniformly from all possible pairs}

if Υa = Υb then {If Ua and Ub have the same ranking category}
if Θa = Θb then {If Ua and Ub are clustered together in the EOMA}

Process Reward
else {If Ua and Ub are not clustered together in the EOMA}

Process Penalty
end if

end if
end for

end while{Convergence has been reached}

Algorithm 1 gives the overall operation for the clustering of the users. The
functionalities on receiving a reward or a penalty, as the EOMA is interacting
with the NOMA system, are given in Algorithms 2 and 3. In the algorithms,
we consider the operation in relation to a pair of two users Ua and Ub (Q =
(Ua, Ub)). The EOMA considers users in pairs (called queries, denoted by
Q). Through information about their pairwise rankings, we work towards a
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clustering of the users into the different channel categories. For each time
instant ∆t, the BS obtains values of hk(t) through channel sounding, and we
use the average of the samples of ∆t as input to the EOMA (hk(t)). Note that
when ∆t = 1, the instantaneous values are utilized as the input.

The BS proceeds to rank the users, indicated by rk = {1, 2, ...,K}, where
each Uk is given a single value of rk for each∆t. For the ranks, rk = 1 is given to
the user that has the lowest channel coefficient compared to the total number
of users; rk = K is given to the user with the highest channel coefficient of
the users, and the others are filled in between them with ranks from worst to
best. Furthermore, the values of these ranks corresponds to ranking categories,
denoted by Υk for Uk, where Υk = {r ∈ [1, N ] = 1, r ∈ [1 + N, 2N ] = 2, r ∈
[1 + 2N, 3N ] = 3, . . . , r ∈ [K − N + 1,K] = Lc}. In this way, even if the
users have similar channel conditions, they will be compared, and the solution
can work on determining the current best categorization of the K users for
the given communication scenario. As depicted in Algorithm 1, we check the
users’ ranking categories in a pairwise manner. If the users in a pair (query)
are in the same ranking category, they will be sent as a query to the EOMA
algorithm. The EOMA algorithm will then work on putting the users that are
queried together in the same cluster, which, in the end, will yield clusters of
users with similar channel coefficients. More precisely, if two users have the
same ranking categories, they are sent as a query to the EOMA and the LA
is rewarded if these two users are clustered together, and penalized if they are
not.

Algorithm 2 Process Reward
Require: Q = (Ua, Ub) {A query (Q), consisting of Ua and Ub}
Require: The state of Ua (ϵa) and Ub (ϵb)

if ϵa mod S ̸= 1 then {Ua not in innermost state}
ϵa = ϵa − 1 {Move Ua towards innermost state}

end if
if ϵb mod S ̸= 1 then {Ub not in innermost state}

ϵb = ϵb − 1 {Move Ub towards innermost state}
end if
return The next states of Ua and Ub

As an example, let us consider four users in a NOMA communications
scenario for ∆t = 5. The users should be grouped into two groups. Therefore,
we need to categorize them into two clusters based on their channel conditions:
one with weak channel conditions (ground truth in this example: Υ1 = 1 and
Υ2 = 1) and the other with strong channel conditions (ground truth in this
example: Υ3 = 2 and Υ4 = 2). First, when hk(5) for the different users are
obtained, we rank them according to hk(5). Then, we consider the arbitrary
pair Q = (U1, U3), ranked r1 = 2 giving Υ1 = 1 and r3 = 2 giving Υ3 = 1
(r = {3, 4} resulting in Υ = 2). Additionally, their current states are ϵ1 = 3
and ϵ3 = 5. For this scenario the state depth for each action is four, meaning
that we have 8 states in total (SLc = 8). Following the descriptions given in
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Algorithm 3 Process Penalty
Require: Q = (Ua, Ub) {A query (Q), consisting of Ua and Ub}
Require: The state of Ua (ϵa) and Ub (ϵb)

if ϵa mod S ̸= 0 and ϵb mod S ̸= 0 then {Neither of the users are in boundary
states}

ϵa = ϵa + 1 {Move Ua towards boundary state}
ϵb = ϵb + 1 {Move Ub towards boundary state}

else if ϵa mod S ̸= 0 and ϵb mod S = 0 then {Ub in boundary state and Ua not in
boundary state}

ϵa = ϵa + 1
temp = ϵb
x = unaccessed user in cluster of Ua closest to boundary state
ϵx = temp
ϵb = ϵa

else if ϵb mod S ̸= 0 and ϵa mod S = 0 then {Ua in boundary state and Ub not in
boundary state}

ϵb = ϵb + 1
temp = ϵa
x = unaccessed user in cluster of Ub closest to boundary state
ϵx = temp
ϵa = ϵb

else {Both users are in boundary states}
ϵy = ϵ{a or b} {y equals a or b with equal probability}
temp = ϵy
x = unaccessed user in cluster of U ̸y closest to boundary state
ϵx = temp
ϵy = ϵ̸y {Move chosen user (y) to cluster of ̸ y}

end if
return The next states of Ua and Ub

[6], [7], [39], or the same concept that we observe in Algorithms 2 and 3, we
understand that the objects are currently not clustered together. Therefore,
we will penalize them according to Algorithm 3. A visualization of the example
is depicted in Fig. 2.

Algorithm 4 Get Groups
Require: The users and information about their cluster obtained by the EOMA

for all clusters in C do
Rank the users from 1 to Lc based on h(t) {r = 1 to the user with lowest value (r = Lc
to the highest)}

end for
for Number of groups (N) do

for all r do
for all clusters in C do {Each group will consist of one user from each cluster with
the same rank}

gn = One user from each cluster with rank r
end for

end for
end for
return The users’ groups
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When the algorithm has converged, the users in distinct actions constitute
different clusters. We will then invoke Algorithm 4, to obtain the groups that
are needed for the power allocation, where the users are selected into groups
based on their ranking of hk(t) within each cluster. Again we use the ranking
information of the users, where users with the same rank in each cluster are
put together. Thus, all the users with the same rank in each of their respective
clusters, will form a group.

5.2 Power Allocation via Heuristic-based Solutions

Once the grouping of the users has been established, we can allocate power to
the different users in such a way that the joint data rate (R) is maximized.
For a group with K

N = Lc users and power budget Pn, the problem can be
expressed by:

max

K∑
k=1

b log2
(
1 + Γn,k

)
, (16a)

s.t.

K∑
k=1

pn,k ≤ Pn, ∀n, n ∈ N , (16b)

0 ≤ pn,k, ∀n, n ∈ N , ∀k, k ∈ K, (16c)

RQos ≤ Rk, ∀k, k ∈ K, (16d)

where Γn,k =
pn,k|hn,k|2

|hn,k|2(Pn−
∑

∀i≤k pn,i)+σ2 . Our goal is to determine the power to

the different users within each group so as to maximize the total data rate of
all the groups.

Note the the objective function for the optimization may be changed to
also work with other functions, such as that of maximizing the minimum data
rate within a group. There are also numerous ways of power allocation in

Algorithm 5 Greedy solution for the power allocation

Require: hn,k for all users K {Requires the value of hn,k for t
(
hn,k(t)

)
or ∆t

(
hn,k(∆t)

)
}

Require: RQoS {The minimum required data rate}
Require: G {The groups established in Algorithm 4}

for all gn, in G do
for all users, i from 1 to the size of gn do {Ordered, where user 1 has the lowest h (Lc

has the highest h)}

Solve for pn,i using RQoS = B log2

(
1 +

pn,i|hn,i|2

|hn,i|2(Pn−
∑

∀k≤i pn,k)+σ2

)
{The feasibil-

ity check}
end for
if Pn −

∑
i pn,i ≥ 0 then

pn,Lc = Pn −
∑

j,∀pn,j∈gn\pn,Lc
pn,j {The problem is feasible, and we give the

remaining power to the strongest user}
end if

end for
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Algorithm 6 Channel-coefficient based solution for power allocation

Require: hn,k for all users K {Requires the value of hn,k for t
(
hn,k(t)

)
or ∆t

(
hn,k(∆t)

)
}

Require: RQoS {The minimum required data rate}
Require: G {The groups established in Algorithm 4}

for all gn, in G do
for all users, i, in gn do {Ordered, where user 1 has the lowest h (Lc has the highest
h)}

if i is 1 then {For the weakest user}
Rn,1 = RQoS {Data rate of weakest user}

Solve for pn,1 using Rn,1 = B log2

(
1 +

pn,1|hn,1|2

|hn,1|2(Pn−pn,1)+σ2

)
else if i is Lc then {For the strongest user}

pn,Lc = Pn −
∑

j,∀pn,j∈gn\pn,Lc
pn,j {We give the remaining power to the

strongest user}
else {For the user between the weakest and strongest user}

Γn,i =
pn,i|hn,i|2

|hn,i|2(Pn−
∑

∀k≤i pn,k)+σ2

Solve for pn,i using
Γn,i

Γn,i−1
=

|hn,i|2

|hn,i−1|2
{SINR of user i is based on a relation

between Ui and Ui−1}
end if

end for
end for
return The power for the different users in the different groups

various communication scenarios [40],[32]. The power allocation schemes can
be replaced by any other algorithm and will not change the nature of the
RL procedure. However, in this paper, we will consider two heuristic-based
algorithms, namely, the greedy algorithm and the channel coefficient based
algorithm for maximizing the sum rate.

For the greedy solution, we allocate to the users with limited power to
just fulfill the minimum required data rate, and give the remaining power to
the user with the best channel coefficient, as presented in Algorithm 5. Given
Eqs. (5) and (6), allocating the majority of power to the users with higher
values of h will result in a higher sum rate for the system. Consequently, the
stronger users are benefited more from the greedy solution than those with
weaker channel coefficients. Nevertheless, the weak users’ required data rate
is ensured, and can be adjusted to the given scenario. The greedy solution can
also be used for checking the feasibility. When all users are given power values
that are just sufficient to fulfill the QoS requirement, and if the total power is
sufficient, we deem the solution obtained as being “feasible”.

The main drawback of the greedy solution is that the data rates among
the users may be highly unbalanced. To mitigate this drawback, we propose
another solution based on a relation between the values of |h|2 of the different
users, when they are a part of an established group. This solution is depicted in
Algorithm 6. As observed in the algorithm, we base a linear algebraic system
on the SINR (Eq. (3)), intra-group interference (Eq. (4)) and the data rate (Eq.
(5)) for optimizing the sum rate of the system given by Eq. (6). Firstly, the
data rate of the user with the weakest h is ensured by setting its data rate equal
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to RQoS . Once we know the data rate of the weakest user, we can calculate the
power that needs to be given to that particular user. Consequently, we then
find the power for the users between the weakest and strongest users for the
given group (based on hn,i), where we use the SINR of the previous user times
the relation between h-values for the previous user and the user for whom we
are finding the SINR. Once we have the SINR for the user in-between the
weakest and strongest, we can calculate its needed power based on Eq. (3).
The strongest user is then given the remaining power by subtracting the power
allocated for the other users from the total power budget of its group. The
process is repeated for all the groups.

6 Numerical Results

For the experiments reported here, we used MatLab for simulating the values
of h. Additionally, a Python script was utilized for simulating the LA solution
to the user grouping and the greedy solution to power allocation.

The numerical results for the power allocation solution are based on the
results obtained from the EOMA clustering and grouping. For the simulations,
we used a carrier frequency of 5.7GHz and an underlying Rayleigh distribution
for the corresponding values of h(t). For mobility in our model, we utilized a
moving pace corresponding to the movement inside an office building. Thus,
we assumed a mobility factor of 2 km

h = vU for the users’ receivers. We sampled
the values of h according to 1

2fd
, where fd is the Doppler frequency, where the

latter is expressed as fd = fc(
vU
vL

), and vL is the speed of light.
In the figures given below, we use “Sample Number” (∆t) as the notation

on the X-axis. The numerical results for the sub-problems will be presented
separately in Sections 6.1 and 6.2.

6.1 Results for Grouping

For evaluating the simulation of clustering and grouping, we base our accuracy
on whether or not the LA found the clusters that correspond to the minimized
difference between the users in a cluster, based on the users’ given mean val-
ues of h in the simulations. Remarkably, if it is provided with such pairwise
inputs, the EOMA yielded a 100% accuracy in which the learned clustering
was identical to the unknown underlying clustering in every single run for the
example provided with −30dB difference between values of h, and for groups
of size 4, 6, 8, 10, 12, 14, 16, 18 and 20, where the number of users in a group
was equal to two. The difference between the users can be replaced by any
other equivalent condition, and these values are only generated for testing the
solution. The reader should observe that in a real-life scenario, the “true par-
titioning” is always unknown. The number of iterations that it took for the
EOMA to achieve 100% accuracy for the different numbers of users is depicted
in Fig. 3. These results were based on h values that are shown in Fig. 4. In the
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Fig. 3 Graph showing the average number of
required iterations (∆t) before convergence
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100 independent experiments.
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Fig. 6 The changes of states in the EOMA
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starts changing clusters around 40∆t.

interest of simplicity of presentation, the plot shown in Fig. 4 is for 4 users.
For the case of 20 users, the lines become hard to distinguish, even though
the principles used in the simulation of h are the same. Notably, the EOMA
retains its accuracy as the number of users increases, and yields 100% accuracy
both for four users as well as 20 users6.

When we formulated the problem in Section 3, for conciseness, we assumed
that the ranking of the average values of the channel coefficients were kept the
same. In fact, the proposed EOMA algorithm can follow the changes adaptively
even if the mean values vary along time. Here in Figs. 5 and 6, we demon-
strate that the EOMA is able to follow the changes adaptively when the users’
channel coefficients vary along time. As depicted in Fig. 5, a change in channel
coefficients happens at around ∆t ≈ 40. From Fig. 6, we can observe that the

6 In these simulations, we used S = 8. The way that we obtained the solution’s accuracy
was in terms of whether or not the EOMA found the clusters that it should have found,
based on the mean values of the different users in the NOMA system.
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EOMA quickly detects the change even as early as around ∆t ≈ 40, and up-
dates its clustering after approximately 20 samples. More specifically, we can
observe from Fig. 5 that the most similar users are initially U1 and U3, and
U2 and U4, which change to U1 and U4, and U2 and U3 after around 40 sam-
ples. To show the updates of the states in the EOMA, the states are depicted
as a function of time in Fig. 6. Initially, the objects are randomly located in
boundary states (State 24 and State 12 in this figure). We can observe that the
users with similar coefficients move to the same cluster after a few interactions,
and they eventually move to deeper states. When the environment changes at
around time instant 40, they move shallower instead of deeper. Eventually,
the user clusters are updated in accordance to the new environment, and the
states move deeper and deeper again. The LA converges once all the objects
are in the innermost states (1 or 2, or 14 or 13), which we can observe from the
end of the lines in the plot. It is important to note that, in this example, we
have utilized a state depth of 12 in the EOMA. With a shallower state space,
we could have followed the channels more instantaneously.

6.2 Results for Power Allocation

The simulation of the greedy solution and the channel-coefficient based solu-
tion to power allocation was done based on the groups established in the LA
solution. For demonstrating the results of our approaches, we compared our
solutions with those obtained by an exhaustive grid search. The exhaustive
grid search was implemented in a step size of 0.001 (γ = 0.001). It was carried
out for the same groups and the same values obtained from h through chan-
nel sounding as for the greedy and the channel-coefficient based solutions. We
tested both the cases of doing power allocation based on instantaneous values,
and on a time average (∆t = 5). In Fig. 7, we depict the results of the three
approaches, for an average of ∆t = 5 samples of h.

As illustrated, the results of the greedy solution coincide with that of the
exhaustive search, which means that giving more power to the user with strong
channel coefficient, indeed, optimizes the sum rate of the system in the cur-
rent configuration. The results of the channel-coefficient based solution have
a better fairness among the users, where this is at a cost of attaining to a
sub-optimal solution in terms of sum rate. The computations required for the
greedy or the channel-coefficient based solution, depend on the number of users
in each group, where 2Lc computations are needed for each group. By way of

comparison, for Lc users in each group, we need to test
(
Pn

γ

)Lc
combinations

for an exhaustive search.

Because the LA-based adaptive grouping solution accomplishes the par-
titioning of the users in favor of NOMA technology (i.e., users with distinct
channel coefficients are grouped together), once the group is formulated, the
objective of the power allocation may be changed to any other interesting
form for NOMA, and thus different solutions can be further developed. In
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Fig. 7 Data rate for exhaustive, greedy and channel-based solution for groups of three
users. Based on averages over 5 samples of |h(t)|.

other words, the objective function of power allocation is not constrained to
be the one requiring “sum-rate maximization”.

7 Conclusions

In this paper, we have proposed a novel solution to the user grouping and
power allocation problems in NOMA systems, also taking into consideration
the stochastic nature of the users’ channel coefficients. The grouping has been
achieved by using the tabula rasa RL technique specified by the EOMA, and
the simulation results presented show that a 100% accuracy for finding clusters
of similar h(t) over time, can be obtained in a limited number of iterations. In
addition, our solution is able to follow the changes of h(t), which makes our
solution for grouping adaptive to changes in users’ channel conditions, and the
corresponding changes for their group associations. For power allocation, we
proposed two solutions for the sum rate maximization with a QoS constraint
for users. Our two-step solution offers flexibility with regard to both the group-
ing and power allocation phases, and can be used as stand-alone components
of a NOMA system.
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